文档库 最新最全的文档下载
当前位置:文档库 › 蛋白质冷冻变性

蛋白质冷冻变性

蛋白质冷冻变性
蛋白质冷冻变性

鱼肉蛋白质冷冻变性原因分析

鱼肌肉蛋白质在冻藏过程中的变性与新鲜度、冻藏温度、水分含量、pH值、脂肪氧化、氧化三甲胺还原产生的二甲胺和甲醛等因素密切相关。

用低温冻藏的鱼生产鱼糜时,鱼肉肌原纤维蛋白(Myofibrillar proteins)中的F一肌动蛋白(F 一action)和肌球蛋白(Myosin)因发生物化变化和结构上的改变使二者不能结合形成肌动球蛋白(Actomyosin),造成鱼糜弹性很差。主要原因就是肌动蛋白和肌球蛋白发生冷冻变性引起结构改变造成的。J R Herrera在研究虹鳟鱼(Rainbow trou)时发现分子内的构象变化和分子间的聚合作用发生的同时,疏水作用、氢键及二硫键等也会共同作用使蛋白质分子失去原有的空间构型而发生蛋白质变性。Soottawat Benjakul的研究结果表明,鱼肌肉中的油脂氧化也是影响蛋白质结构和功能的重要因素。多脂鱼与低脂鱼相比更容易发生蛋白质变性,多不饱和脂肪酸较多的鱼类要比含量较少的鱼种更易发生蛋白质变性。在冷冻过程中,蛋白质暴露于空气中,由于氧化作用引起氨基酸破坏、肽链断裂、蛋白质一脂质复合体的形成等原因导致蛋白质发生变性。并且许多脂质降解物具有很强的与多肽、蛋白质结合的能力,随着贮藏时间的延长造成蛋白质聚合体溶解性降低。蛋白质发生冷冻变性时的明显特征是Ca2+-ATPase活性明显降低,研究发现Ca2+-ATPase活性降低时肌球蛋白头部区域会发生改变。由于肌球蛋白头部区域和尾部区域均与鱼糜制品的凝胶形成能有关,因此冷冻时,由于肌球蛋白尾部区域发生变化从而影响鱼糜制品的弹性。一般来说,肌球蛋白的尾部区域在凝胶形成的第一阶段有重要作用,头部区域在凝胶形成的第二阶段起重要作用。肌球蛋白尾部在肌球蛋白和肌动球蛋白之间的热凝胶过程中具有重要作用。由此可见影响蛋白质变性的因素是多种多样的。

淡水鱼类蛋白质冷冻变性的研究

何利平等研究鲢鱼在低温冻藏时的生化和质地特性参数之间的变化规律,考察了几种冻藏方法对其品质的影响。其采用的生化特性参数为K值和EPN值。质地特性采用具有样品测定室为挤压剪切室的Ottawa质地测定系统。研究表明冻结前去内脏、低温等处理可很显著地影响肌肉蛋白质变性的速度,这与Soottawat Benjakula研究鲻的蛋白质冷冻变性情况相似。

曾名勇等以肌动球蛋白的盐溶解性、肌原纤维蛋白ATPase活性以及肌原纤维蛋白的琉基含量为指标。研究不同冻藏温度(-10℃、-20℃、-30℃、-40℃)对鲈鱼肌原纤维蛋白变性的影响。结果表明,在不同温度下冻藏时,鲈鱼肌动球蛋白的盐溶性、肌原纤维蛋白的ATPase 活性以及巯基含量随着冻藏时间的延长,均呈下降趋势。且鲈鱼蛋白质的变性速度在不同冻藏温度下的差异极其显著。

夏达金等对我国四大淡水鱼在冻藏过程中蛋白质变性问题进行了研究。研究以4种淡水鱼在一5℃、一12℃及一18℃下冻藏2个月分析其蛋白质变性程度。在冷冻条件下4种鱼蛋白质变性程度顺序为:鳙鱼>鲢鱼>草鱼>鲤鱼。

袁春红等对冻结条件与冻藏温度对鲢鱼肉肌原纤维蛋白冷冻变性的影响进行了研究,探讨了不同冻结终温、冻结速率以及冻结贮藏温度对鲢鱼肉肌原纤维蛋白ATPase活性的变化。结果表明,冻结终温和冻结速率对肌球蛋白变性的影响最小,即使在慢速冻结(从0℃经过72h 冻结到-40℃)下,样品肌原纤维蛋白的Ca2+、Mg2+、EDTA—ATPase活性变化都很小。在贮藏过程中,贮藏温度越低肌原纤维蛋白越稳定,而慢冻和快冻对于其后冻藏过程中肌原纤维蛋白变性的差异也不显著。与冻结速率和冻结终温相比,冻结贮藏温度的影响明显。

丁玉庭等对黑豚肌肉肌原纤维(MF)ATPase活性进行了研究以考察黑豚肌肉蛋白质变性情况。黑豚肌肉在0℃冷藏和一IO℃冻藏时间越长.MFATPase活性下降越多,蛋白质变性越严重。

鱼肉蛋白质冷冻变性的防止办法

1、添加糖类物质

经过多年来实践.到目前为止最有效的防止鱼肉蛋白玲冻变性的方法是使用添加剂。在日本最早用于防止“变性”的物质是丙三醇。随着对防变性”技术研究的深入,人们已发现包括糖类、氨基酸在内的几十种物质具有抗玲冻变性效果。尽管对蛋白质的冷冻变性具有防止效果的物质有几十种,可是到目前为止,仍然以糖类如砂糖、山梨醇的效果为最好。其防变性效果被认为是其介于蛋白质分子之间,与蛋白质反应基结合,使蛋白质分子处于饱和状态。其效果与其浓度有直接关系。此外,根据“共晶点”理论.在“共晶点以下温度冻结溶液中水分不析出,如果防止冷冻变性的添加物的浓度高于“共晶点”的浓度,

就会形成一个不完全冻结的区域,隔离和减缓蛋白质分子的凝集,起到防止变性的作用。糖类的添加,一般有砂糖和山梨醇分别使用和混合使甩,其混合总量为5~8%,山梨醇防变性效果比砂糖好一些。

2、添加多磷酸盐

多磷酸盐是焦磷酸盐、偏磷酸盐、聚合磷酸盐等按一定比倒配合而成的一种粉状物质。添加多磷酸盐的第一个作用是提高鱼肉PH值,使其保持在中性附近以利蛋白质稳定。第二个作用是提高鱼肉的离子强度。因为经加工采肉后漂洗的鱼肉离子强度从原来的0.1附近一下降低许多,多磷盐加入使其又回复到0.1附近,促进肌肉蛋白质的稳定第三个作用是其

和某些金属离子生成鳌合物,提高鱼糜制品弹性。多磷酸盐用量一般为O.2~0.3%。

3、充分漂洗并添加适量食盐

一般单独使用防冷冻变性添加物效果的较小。只有在混合使用的情况下,糖类、食盐、或多磷酸盐共存,才能有效地发挥各种添加物的作用。提高防止变性效果。

蛋白质变性

蛋白质在烹调过程中的变化 富含蛋白质的食物在烹调加工中,原有的化学结构将发生多种变化,使蛋白质改变了原有的特性,甚至失去了原有的性质,这种变化叫做蛋白质的变性。蛋白质的变性受到许多因素的影响,如温度、浓度、加工方法、酸、碱、盐、酒等。许多食品加工需要应用蛋白质变性的性质来完成,如:水煮蛋、咸蛋、皮蛋、豆腐、豆花、鱼丸子、肉皮冻等。 在烹调过程中,蛋白质还会发生水解作用,使蛋白质更容易被人体消化吸收和产生诱人的鲜香味。因此我们需要了解和掌握蛋白质在烹调和食品加工过程中的各种变化,使烹调过程更有利于保存时食物中的营养素和增进营养素在人体的吸收。 一、烹调使蛋白质变性 1、振荡使蛋白质形成蛋白糊 在制作芙蓉菜或蛋糕时,常常把鸡蛋的蛋清和蛋黄分开,将蛋清用力搅拌振荡,使蛋白质原有的空间结够发生变化,因其蛋白质变性。变形后的蛋白质将形成一张张有粘膜的网,把空气包含到蛋白质的分子中间,使蛋白质的体积扩大扩大很多倍,形成粘稠的白色泡沫,即蛋泡糊。 蛋清形成蛋泡糊是振荡引起蛋白质的变性。蛋清能否形成稳定的蛋泡糊,受很多因素的影响。蛋清之所以形成蛋泡糊,是由于蛋清中的卵粘蛋白和类粘蛋白能增加蛋白质的粘稠性和起泡性,鸡蛋越新鲜,蛋清中的卵粘蛋白和类粘蛋白质越多,振荡中越容易形成蛋泡糊。因此烹调中制作蛋泡糊,要选择新鲜鸡蛋。 如果搅拌震动的时的温度越低或振荡时间较短,蛋清形成的蛋白糊放置不久仍会还原为蛋清,因为这种情况下,只能破坏蛋白质的三、四结构,蛋白质二级螺旋结构没有拉伸开,无法形成稳定的蛋白质网。一旦失去振荡的条件,空气就会从泡沫中逸出,蛋白质又回复到原来的结构,这种变性称为可逆性。烹调和食品加工都不希望发生这种可逆变性发生,要设法提高蛋泡糊的稳定性。 向蛋清中加入一定量的糖,可以提高蛋泡糊的稳定性。蛋清中的卵清与空气接触凝固,使振荡后形成的气体泡膜变硬,不能保容较多的气体,影响蛋泡糊的膨胀。糖很强的渗透性,可以防止卵清蛋白遇空气凝固,使蛋泡糊的泡膜软化,延伸性、弹性都增加,蛋泡糊的体积和稳定性也增加。 做蛋泡糊时,容器、工具和蛋清液都不能沾油。搅打蛋清时如果沾上少量油脂就会严重破坏蛋清的起泡性能,因为油脂的表面张力大于蛋清泡膜的表面张力,能将蛋泡糊的的泡沫拉裂,泡沫中的空气很快从断裂处逸出,蛋泡糊就不能形成。

蛋白质变性的因素

强氧化性是如何破坏蛋白质的? 首先,先认识蛋白质的空间结构。基本上都是外部是亲水的,内部的功能区域是疏水的(球状蛋白基本是这样的)。 氨基酸中 侧链亲水的有: 甘氨酸; 带羟基的丝氨酸(Ser),苏氨酸(Thr),酪氨酸(Tyr); 带巯基的半胱氨酸(Cys); 带酰胺基的天冬酰胺(Asn),谷氨酰胺(Gln); 酸性的赖氨酸(Lys),精氨酸(Arg),组氨酸(His), 以及碱性的天冬氨酸(Asp),谷氨酸(Glu)。 侧链疏水的有: 侧链烷基的丙氨酸(Ala),缬氨酸(Val),亮氨酸(leu),甲硫氨酸(Met),异亮氨酸(Ile);带吲哚基的色氨酸(Trp); 带苯环的苯丙氨酸(Phe); 带吡咯环的脯氨酸(Pro)。 由上可知,外部亲水的羟基,巯基都是还原性基团: 羟基被氧化的酮羰基,醛基或羧基(酪氨酸的酚羟基被洋洋为什么,我就不知道)。 巯基被氧化为磺基,要是在酸性条件下,磺基是可以脱离的,这也是用二氧化硫漂白的纸张变黄的原因。 另外色氨酸中吲哚基含有碳碳双键,具有还原性。 故强氧化性可以使蛋白质变性。 碱性条件是如何破环蛋白质的? 碱性条件可以破环除色氨酸外的所有氨基酸。 碱性条件氢氧根跟氨基作用,使氨基脱离形成氨水,气化跑掉。色氨酸能保留的下来的原因是色氨酸吲哚基中的氮是以亚氨基的形式存在。至于为何,目前我解释不了。 酸性条件是如何破环蛋白质的? 酸性条件可以破环含羟基的氨基酸的羟基。具体我不知道,没修炼到家,只是我根据老师给的资料推测的。 酸性条件可以破环色氨酸色氨酸吲哚基中的亚氨基被破环,我想应该是被还原成氨基。 至于重金属离子使蛋白质变性的原因,我也不清楚。 以上只是草草的解释,具体涉及原子作用里的问题,我的有机化学没学好,有待进一步深造。这些都是改变物理条件也不能恢复的反应,故是蛋白质变性的因素。 至于为什么强还原性不能使蛋白质变性? 还原性最强的是金属单质(我知道的好像就金属单质),以上氨基酸的官能团,不是惰性基

何谓蛋白质变性

何谓蛋白质变性?简述蛋白质变性的因素,举例说明蛋白质变性在日常生活和医学上的意 义。 所谓蛋白质变性,就是天然蛋白质的严密结构(注1)在某些物理或化学因素作用下,其特定的空间结构被破坏,从而导致理化性质改变和生物学活性的丧失,如酶失去催化活力,激素丧失活性。 变性蛋白质和天然蛋白质最明显的区别是溶解度降低,同时蛋白质的粘度增加,结晶性破坏,生物学活性丧失,易被蛋白酶分解。生活中最常见的例子,就是煮鸡蛋的时候,蛋清变成蛋白了。 引起蛋白质变性的原因可分为物理和化学因素两类。物理因素可以是加热、加压、脱水、搅拌、振荡、紫外线照射、超声波的作用等;化学因素有强酸、强碱、尿素、重金属盐、十二烷基磺酸钠(SDS)等。在临床医学上,变性因素常被应用于消毒及灭菌。反之,注意防止蛋白质变性就能有效地保存蛋白质制剂。 变性并非是不可逆的变化,当变性程度较轻时,如去除变性因素,有的蛋白质仍能恢复或部分恢复其原来的构象及功能,变性的可逆变化称为复性。许多蛋白质变性时被破坏严重,不能恢复,称为不可逆性变性,比如说用金属盐、辐射使蛋白质变性。 我们有时常常会看到变性的蛋白质在溶液中沉淀,蛋白质的变性的确与沉淀有密不可分的关系,但并不是所有变性的蛋白质都会在溶液中沉淀。具体地说,变性蛋白质一般易于沉淀,但也可不变性而使蛋白质沉淀,在一定条件下,变性的蛋白质也可不发生沉淀,变性蛋白质只在等电点附近才沉淀,沉淀的变性蛋白质也不一定凝固。例如,蛋白质被强酸、强碱变性后由于蛋白质颗粒带着大量电荷,故仍溶于强酸或强减之中。但若将强碱和强酸溶液的pH调节到等电点,则变性蛋白质凝集成絮状沉淀物,若将此絮状物加热,则分子间相互盘缠而变成较为坚固的凝块。 下面是蛋白质沉淀的原理:蛋白质所形成的亲水胶体颗粒具有两种稳定因素,即颗粒表面的水化层和电荷。若无外加条件,不致互相凝集。然而除掉这两个稳定因素(如调节溶液pH至等电点和加入脱水剂)蛋白质便容易凝集析出。如将蛋白质溶液pH调节到等电点,蛋白质分子呈等电状态,虽然分子间同性电荷相互排斥作用消失了。但是还有水化膜起保护作用,一般不致于发生凝聚作用,如果这时再加入某种脱水剂,除去蛋白质分子的水化膜,则蛋白质分子就会互相凝聚而析出沉淀;反之,若先使蛋白质脱水,然后再调节pH到等电点,也同样可使蛋白质沉淀析出。 下面介绍几种能使蛋白质因变性而沉淀的方法: 重金属盐沉淀蛋白质 蛋白质可以与重金属离子如汞、铅、铜、银等结合成盐沉淀,沉淀的条件以pH稍大于等电点为宜。因为此时蛋白质分子有较多的负离子易与重金属离子结合成盐。重金属沉淀的蛋白质常是变性的,但若在低温条件下,并控制重金属离子浓度,也可用于分离制备不变性的蛋白质。 临床上利用蛋白质能与重金属盐结合的这种性质,抢救误服重金属盐中毒的病人,给病人口服大量蛋白质,然后用催吐剂将结合的重金属盐呕吐出来解毒。有机溶剂沉淀蛋白质 可与水混合的有机溶剂,如酒精、甲醇、丙酮等,对水的亲和力很大,能破坏蛋白质颗粒的水化膜,在等电点时使蛋白质沉淀。在常温下,有机溶剂沉淀蛋白

蛋白质变性后的方面

蛋白质变性后的方面 (一)生物活性丧失 蛋白质的生物活性是指蛋白质所具有的酶、激素、毒素、抗原与抗体、血红蛋白的载氧能力等生物学功能。生物活性丧失是蛋白质变性的主要特征。有时蛋白质的空间结构只有轻微变化即可引起生物活性的丧失。 (二)某些理化性质的改变 蛋白质变性后理化性质发生改变,如溶解度降低而产生沉淀,因为有些原来在分子内部的疏水基团由于结构松散而暴露出来,分子的不对称性增加,因此粘度增加,扩散系数降低。(三)生物化学性质的改变 蛋白质变性后,分子结构松散,不能形成结晶,易被蛋白酶水解。蛋白质的变性作用主要是由于蛋白质分子内部的结构被破坏。天然蛋白质的空间结构是通过氢键等次级键维持的,而变性后次级键被破坏,蛋白质分子就从原来有序的卷曲的紧密结构变为无序的松散的伸展状结构(但一级结构并未改变)。所以,原来处于分子内部的疏水基团大量暴露在分子表面,而亲水基团在表面的分布则相对减少,至使蛋白质颗粒不能与水相溶而失去水膜,很容易引起分子间相互碰撞而聚集沉淀。 DNA变性

DNA变性指DNA分子由稳定的双螺旋结构松解为无规则线性结构的现象。变性时维持双螺旋稳定性的氢键断裂,碱基间的堆积力遭到破坏,但不涉及到其一级结构的改变。凡能破坏双螺旋稳定性的因素,如加热、极端的pH、有机试剂甲醇、乙醇、尿素及甲酰胺等,均可引起核酸分子变性。 变性DNA常发生一些理化及生物学性质的改变: 1)溶液粘度降低。DNA双螺旋是紧密的刚性结构,变性后代之以柔软而松散的无规则单股线性结构,DNA粘度因此而明显下降。2)溶液旋光性发生改变。变性后整个DNA分子的对称性及分子局部的构性改变,使DNA溶液的旋光性发生变化。 3)增色效应(hyperchromic effect)。指变性后DNA溶液的紫外吸收作用增强的效应。DNA分子中碱基间电子的相互作用使DNA分子具有吸收260nm波长紫外光的特性。在DNA双螺旋结构中碱基藏入内侧,变性时DNA双螺旋解开,于是碱基外露,碱基中电子的相互作用更有利于紫外吸收,故而产生增色效应。 各类连接键,结构稳定的键 多肽链中氨基酸残基的构成以及排列顺序称为氨基酸的一级结构,连接一级结构的键是肽键。氨基酸的二级结构是指氨基酸主链原子的局部空间结构,并不涉及氨基酸残基侧链构象,二级结构的种类有α-螺旋、β-折叠、β-转角儿以及无规卷曲。氢键是维系二级结构最主要的键。三级结构是指多肽链主链以及侧链原子的空间排布。次

浅谈蛋白质变性的原因

浅谈蛋白质变性的原因 引起蛋白质变性的原因可分为物理和化学因素两类.物理因素可以是加热、加压、脱水、搅拌、振荡、紫外线照射、超声波的作用等;化学因素有强酸、强碱、尿素、重金属盐、十二烷基磺酸钠(SDS)等.在临床医学上,变性因素常被应用于消毒及灭菌.反之,注意防止蛋白质变性就能有效地保存蛋白质制剂.蛋白质的变性很复杂,要判断变性是物理变化还是化学变化,要视具体情况而定.如果有化学键的断裂和生成就是化学变化;如果没有化学键的断裂和生成就是物理变化. 1、重金属盐使蛋白质变性,是因为重金属阳离子可以和蛋白质中游离的羧(suo)基(含 C、H、O的基)形成不溶性的盐,在变性过程中有化学键的断裂和生成,因此是一个化学变化. 2、强酸、强碱使蛋白质变性,是因为强酸、强碱可以使蛋白质中的氢键断裂.也可以和游离的氨基或羧基形成盐,在变化过程中也有化学键的断裂和生成,因此,可以看作是一个化学变化. 3、尿素、乙醇、丙酮等,它们可以提供自己的羟基或羰基上的氢或氧去形成氢键,从而破坏了蛋白质中原有的氢键,使蛋白质变性.但氢键不是化学键,因此在变化过程中没有化学键的断裂和生成,所以是一个物理变化. 4、加热、紫外线照射、剧烈振荡等物理方法使蛋白质变性,主要是破坏蛋白质分子中的氢键,在变化过程中也没有化学键的断裂和生成,没有新物质生成,因此是物理变化.否则,鸡蛋煮熟后就不是蛋白质了.而我们知道,熟鸡蛋依然有营养价值,其中的蛋白质反而更易为人体消化系统所分解吸收. (1)蛋白质受热或遇到_____、____、____等化学物质,会发生化学反应,失去原有的生理 活性。(填具体物质) (2)维生素是人们不可缺少的营养物质,缺乏维生素或摄入不足,会导致人体患病。缺乏 维生素C,会引起___________。请例举两种富含维生素的常见食品:_________、_________等。 (2)1蛋白质受热或遇到()、()、()等化学物质时,结构就会被破坏,失去 生理活性.(填类) 2变质食品中含有有毒的(),其中()的毒性较大. 3一氧化碳可与人体血液中的()结合,使红细胞输氧能力降低.,尼古丁和焦油使吸烟者对香烟产生依赖性并诱发疾病.

蛋白质变性机理

蛋白质变性机理 1、蛋白质介绍 2、蛋白质变性结果 1)活性丧失 蛋白质的生物活性是指蛋白质所具有的酶、激素、毒素、抗原与抗体、血红蛋白的载氧能力等生物学功能。生物活性丧失是蛋白质变性的主要特征。有时蛋白质的空间结构只要轻微变化即可引起生物活性的丧失。 2)某些理化性质的改变 蛋白质变性后理化性质发生改变,如溶解度降低而产生沉淀,因为有些原来在分子内部的疏水基团由于结构松散而暴露出来, 分子的不对称性增加,因此粘度增加,扩散系数降低 蛋白质分子凝聚从溶液中析出

3)生物化学性质的改变 蛋白质变性后,分子结构松散,不能形成结晶,易被蛋白酶水解。蛋白质的变性作用主要是由于蛋白质分子内部的结构被破坏。天然蛋白质的空间结构是通过氢键等次级键维持的,而变性后次级键被破坏,蛋白质分子就从原来有序的卷曲的紧密结构变为无序的松散的伸展状结构(但一级结构并未改变)。所以,原来处于分子内部的疏水基团大量暴露在分子表面,而亲水基团在表面的分布则相对减少,至使蛋白质颗粒不能与水相溶而失去水膜,很容易引起分子间相互碰撞而聚集沉淀。 4)致变因素 引起蛋白质变性的原因可分为物理和化学因素两类。物理因素可以是加热、加压、脱水、搅拌、振荡、紫外线照射、超声波的作用等;化学因素有强酸、强碱、尿素、重金属盐、十二烷基磺酸钠(SDS)等。在临床医学上,变性因素常被应用于消毒及灭菌。 反之,注意防止蛋白质变性就能有效地保存蛋白质制剂。蛋白质的变性很复杂,要判断变性是物理变化还是化学变化,要视是物理变化 加热、紫外线照射、剧烈振荡等物理方法使蛋白质变性,主要是破坏蛋白质分子中的氢键,在变化过程中也没有化学键的断裂和生成,没有新物质生成,因此是物理变化。 否则,鸡蛋煮熟后就不是蛋白质了。而我们知道,熟鸡蛋依然有营养价值,其中的蛋白质反而更易为人体消化系统所分解吸收。 5)复性

蛋白质变性

蛋白质变性 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

蛋白质在烹调过程中的变化 富含蛋白质的食物在烹调加工中,原有的化学结构将发生多种变化,使蛋白质改变了原有的特性,甚至失去了原有的性质,这种变化叫做蛋白质的变性。蛋白质的变性受到许多因素的影响,如温度、浓度、加工方法、酸、碱、盐、酒等。许多食品加工需要应用蛋白质变性的性质来完成,如:水煮蛋、咸蛋、皮蛋、豆腐、豆花、鱼丸子、肉皮冻等。 在烹调过程中,蛋白质还会发生水解作用,使蛋白质更容易被人体消化吸收和产生诱人的鲜香味。因此我们需要了解和掌握蛋白质在烹调和食品加工过程中的各种变化,使烹调过程更有利于保存时食物中的营养素和增进营养素在人体的吸收。 一、烹调使蛋白质变性 1、振荡使蛋白质形成蛋白糊 在制作芙蓉菜或蛋糕时,常常把鸡蛋的蛋清和蛋黄分开,将蛋清用力搅拌振荡,使蛋白质原有的空间结够发生变化,因其蛋白质变性。变形后的蛋白质将形成一张张有粘膜的网,把空气包含到蛋白质的分子中间,使蛋白质的体积扩大扩大很多倍,形成粘稠的白色泡沫,即蛋泡糊。蛋清形成蛋泡糊是振荡引起蛋白质的变性。蛋清能否形成稳定的蛋泡糊,受很多因素的影响。蛋清之所以形成蛋泡糊,是由于蛋清中的卵粘蛋白和类粘蛋白能增加蛋白质的粘稠性和起泡性,鸡蛋越新鲜,蛋清中

的卵粘蛋白和类粘蛋白质越多,振荡中越容易形成蛋泡糊。因此烹调中制作蛋泡糊,要选择新鲜鸡蛋。 如果搅拌震动的时的温度越低或振荡时间较短,蛋清形成的蛋白糊放置不久仍会还原为蛋清,因为这种情况下,只能破坏蛋白质的三、四结构,蛋白质二级螺旋结构没有拉伸开,无法形成稳定的蛋白质网。一旦失去振荡的条件,空气就会从泡沫中逸出,蛋白质又回复到原来的结构,这种变性称为可逆性。烹调和食品加工都不希望发生这种可逆变性发生,要设法提高蛋泡糊的稳定性。 向蛋清中加入一定量的糖,可以提高蛋泡糊的稳定性。蛋清中的卵清与空气接触凝固,使振荡后形成的气体泡膜变硬,不能保容较多的气体,影响蛋泡糊的膨胀。糖很强的渗透性,可以防止卵清蛋白遇空气凝固,使蛋泡糊的泡膜软化,延伸性、弹性都增加,蛋泡糊的体积和稳定性也增加。 做蛋泡糊时,容器、工具和蛋清液都不能沾油。搅打蛋清时如果沾上少量油脂就会严重破坏蛋清的起泡性能,因为油脂的表面张力大于蛋清泡膜的表面张力,能将蛋泡糊的的泡沫拉裂,泡沫中的空气很快从断裂处逸出,蛋泡糊就不能形成。 蛋清变成稳定性的蛋泡糊,不能在恢复成原来的蛋清,这种变性称作不可逆变性。不可能变性完全破坏了蛋白质的空间结构,组成蛋白质大分子的肽链充分伸展开,这些肽链在搅拌过程中互相聚集又互相交联,形

浅谈蛋白质变性原理的烹饪应用

浅谈蛋白质变性和水解原理的烹饪应用 作者:黄五洲 摘要:蛋白质的变性与水解是烹饪化学中的重要原理,是烹饪时原料发生的各种变化中最重要的变化之一.理解蛋白质的变性与水解的理论,运用其理论指导烹饪实践,解决烹饪的相关问题,无疑对菜肴食品的色、香、味、形、质感的改善与提高有着重要的现实意义.本文谨以本人多年的烹饪学习与实践体会,浅谈蛋白质的变性与水解,以求与烹饪同行作为学习交流,以求对烹饪后学者有所指点帮助 关键词:蛋白质变性.水解 论文正文 一.蛋白质的理解 蛋白质是一种结构十分复杂的高分子有机化合物。由碳、氢、氧、氮等元素构成。 蛋白质是食物原料, 特别是肉食性原料的主要组成分(一般的食物原料, 蛋白质与水分、碳水化合物、脂类即点有原料有效成分的95%多), 豆类、蛋类、各种瘦肉和鱼类含蛋白质较丰富13%~18%。粮谷类的蛋白质含量为7%~10%。蔬菜为0.9%~2%。因此说, 蛋白质在烹饪过程中的变化, 是食物原料烹饪过程中最重要变化, 学习、关注蛋白质的烹饪变化情况, 对烹饪菜肴食品的色、香、味、形以及质感的调整有着重要的指导意义 二.蛋白质的变性与水解的概念认识 蛋白质在温度、酸、碱、盐、有机溶剂、机械作用、紫外线照射等物理化学因素作用下,内部的分子高度规则性排列发生了变化,使蛋白质改变了原来的性质,这就是蛋白质变性。原料内蛋白质变性,有利于人体消化液对蛋白质的消化吸收,并可形成菜品特殊的形态、口感和滋味。 肉料蛋白质变性后,若继续加热,蛋白质会发生水解,形成多肽,这些多肽类物质进一步水解,最后分解成各种氨基酸,溶于汤汁中,使汤汁有鲜味。 三. 蛋白质的变性的烹饪应用 1.温度使蛋白质变性 ⑴烹饪熟处理 肉料须经过加热至蛋白质变性才是成熟。成熟的肉与生肉相比,无论在形态、口感,还是滋味方面,都有极大的区别。 事实上, 烹饪更多的利在利用温度使蛋白质发生应有的变化,从而获得良好的色、香、味、形、质感,使之成为美食,使烹饪成为一种艺术 ⑵温度使蛋白质变性,从而形成菜肴良好的形态 利用蛋白质变性原理,在带有一定韧性的动物原料表面刻切花刀,经焯水处理,能获得菜肴食品优美的形态.

蛋白质的变性

蛋白质的变性 湖南省长沙市长大附中高二92班莫超指导老师:胡老师 “生命是蛋白体的存在方式”,蛋白质是构成生命的物质基础。蛋白质对于我们来说再熟悉不过了,它在生产生活、医疗、生命体的活动和科学前沿上都有着举足轻重的作用,而人类健康对于蛋白质有着重要的需求和条件。为了更充分地了解蛋白质的作用和性质,我做了以下的探究实验。 实验日期:2008年11月日 实验目的: 1)掌握蛋白质的变性和盐析的区别,加深对蛋白质的理解。 2)通过设计实验、动手操作等提高自自己对实验的实践能力。 3)通过实验,感受它带给我们的乐趣,提高自己对化学的兴趣度。实验提示: 1)蛋白质的变性与凝结:蛋白质的分子表面上有大量各种极性基团,它们强烈吸引水分子,使溶液中的蛋白质成为高度水化的分 子。直接吸附在蛋白质分子表面的水分子结合得最牢固,称为结 合水,其数量约为蛋白质量的20%~50%;吸附在外层的水分子数 量更多,但结合较松散。蛋白质的水化使它在溶液中有很高的稳 定性,是典型的亲水胶体。另一方面,蛋白质在多种条件下会发 生胶凝作用,形成体积相当大的内部有很多空腔并包容着大量液 体的软胶状物体。常见的例子如鸡蛋受热时整体凝固,少量的蛋 白质将大量的水分子包围在一起凝固,不能再流动。蛋白质的凝 固通常是在发生变性作用以后产生的。蛋白质在多种情况下会发 生变性,加热和多种物理、化学或机械处理都可能使蛋白质发生 变性作用,使蛋白质的分子结构变成松散的无定形结构,分子中

的活性基团更多暴露,化学活性增强,较易发生各种化学反应和 凝结作用。变性蛋白质和天然蛋白质最明显的区别是溶解度降低,同时蛋白质的黏度增加,结晶性破坏,生物学活性丧失,易被蛋 白酶分解,即发生凝固。 2)蛋白质的盐析:在蛋白质溶液中加入某些浓的无机盐(如Na2SO4或(NH4)2SO4等)溶液后,可以使蛋白质凝聚而从溶液中析 出,这种作用叫做盐析。这样析出的蛋白质仍可以溶解在水中, 也不影响原来的性质。盐析是可逆过程。 实验用鸡蛋清溶液的制取: 取鸡蛋清25ml,加入100ml蒸馏水,搅匀后,用浸湿的纱布过滤,即可得到鸡蛋清溶液。 实验用品: 1)蛋白质来源:鸡蛋蛋清或豆浆。 2)实验所用仪器和试剂:试管、烧杯、玻璃棒、酒精灯、试管夹、胶头滴管、石棉网、三角架、蒸馏水、硝酸铅溶液、甲醛溶液、 饱和硫酸铵溶液。 实验过程: 1)实验设计依据的原理: A:高温、重金属离子、甲醛能使蛋白质变性而凝结,且凝结后的蛋白质不能溶于水,变性是化学变化。 B:在蛋白质溶液中加入盐溶液可降低蛋白质的溶解度,因而使蛋白质从深液中析出,盐析是物理变化。 应用:高温消毒、甲醛溶液保存动物标本、漂白粉消毒等;盐析用来分离和提纯蛋白质。

首先我们来看看什么时蛋白质的变性

首先我们来看看什么时蛋白质的变性。 蛋白质的变性是蛋白质的一条重要性质。这条性质在日常生活、医疗、工农业生产中都有着重要的用途。那么,蛋白质的变性是物理变化还是化学变化呢?在此做一简单的讨论。 判断一个变化是物理变化还是化学变化的依据就是看在这个变化中有无新物质生成。在物理变化过程中因无新物质生成,也就没有化学键的断裂和生成;在化学变化中因有新物质的生成,所以一定有化学键的断裂和生成。因此,判断蛋白质的变性是物理变化还是化学变化,一定要从蛋白质的结构上分析,看在变化过程中有无化学键的断裂和生成。 蛋白质是由多种氨基酸通过肽键构成的高分子化合物,在蛋白质分子中各氨基酸的结合顺序称为一级结构:蛋白质的同一多肽链中的氨基和酰基之间可以形成氢键,使得这一多肽链具有一定的构象,这些称为蛋白质的二级结构;多肽链之间又可互相扭曲折叠起来构成特定形状的排列称为三级结构,三级结构是与二硫键,氢键等联系着的。变性作用是蛋白质受物理或化学因素的影响,改变其分子内部结构和性质的作用。一般认为蛋白质的二级结构和三级结构有了改变或遭到破坏,都是变性的结果。能使蛋白质变性的化学方法有加强酸,强碱,重金属盐,尿素,乙醇,丙酮等;能使蛋白质变性的物理方法有加热,紫外线照射,剧烈振荡等。重金属盐使蛋白质变性,是因为重金属阳离子可以和蛋白质中游离的羧基形成不溶性的盐,在变性过程中有化学键的断裂和生成,因此是一个化学变化。 强酸、强碱使蛋白质变性,是因为强酸、强碱可以使蛋白质中的氢键断裂。也可以和游离的氨基或羧基形成盐,在变化过程中也有化学键的断裂和生成,因此,可以看作是一个化学变化。 尿素、乙醇、丙酮等,它们可以提供自己的羟基或羰基上的氢或氧去形成氢键,从而破坏了蛋白质中原有的氢键,使蛋白质变性。但氢键不是化学键,因此在变化过程中没有化学键的断裂和生成,所以是一个物理变化。加热、紫外线照射,剧烈振荡等物理方法使蛋白质变性,主要是破坏厂蛋白质分子中的氢键,在变化过程中也没有化学键的断裂和生成,没有新物质尘成,因此是物理变化。否则,鸡蛋煮熟后就不是蛋白质了。 从以上分析可以看出,蛋白质的变性既有物理变化,也有化学变化。但蛋白质的变性是很复杂的,要判断变性是物理变化还是化学变化,要视具体情况而定。如果有化学键的断裂和生成就是化学变化;如果没有化学键的断裂和生成就是物理变化。 天然蛋白质的严密结构在某些物理或化学因素作用下,其特定的空间结构被破坏,从而导致理化性质改变和生物学活性的丧失,如酶失去催化活力,激素丧失活性称之为蛋白质的变性作用(denaturation)。变性蛋白质只有空间构象的破坏,一般认为蛋白质变性本质是次级键,二硫键的破坏,并不涉及一级结构的变化。 变性蛋白质和天然蛋白质最明显的区别是溶解度降低,同时蛋白质的粘度增加,结晶性破坏,生物学活性丧失,易被蛋白酶分解。 引起蛋白质变性的原因可分为物理和化学因素两类。物理因素可以是加热、加压、脱水、搅拌、振荡、紫外线照射、超声波的作用等;化学因素有强酸、强碱、尿素、重金属盐、十二烷基磺酸钠(SDS)等。在临床医学上,变性因素常被应用于消毒及灭菌。反之,注意防止蛋白质变性就能有效地保存蛋白质制剂。 变性并非是不可逆的变化,当变性程度较轻时,如去除变性因素,有的蛋白质仍能恢复或部分恢复其原来的构象及功能,变性的可逆变化称为复性。例如,前述的核糖核酸酶中四对二硫键及其氢键。在巯基乙醇和8M尿素作用下,发生变性,失去生物学活性,变性后如经过透析去除尿素,巯基乙醇,并设法使疏基氧化成二硫键,酶蛋白又可恢复其原来的构象,生物学活性也几乎全部恢复,此称变性核糖核酸酶的复性。

蛋白质热变性

实验1 蛋白质热变性DSC测试实验 一、实验目的与要求 了解用差示扫描量热法(DSC)测量蛋白质热变性的方法,用差扫描量热法研究白蛋白在纯水和乙二醇溶液中的热变性行为,比较在这些体系中蛋白质变性的差异,并测量分析新鲜蛋清的热变性行为。 二、实验装置 1.差示扫描量热仪(Pyris Diamond DSC)。 2.标定物质:高纯度铟(>99.99%),高纯度锌(>99.99%)。 3.高纯度氮气。 5.标准液体铝皿。 6.被测样品。 7.压样机。 8.高精度电子天平。 9.DSC取样附件。 三、实验方法与步骤 1、原理 一般认为,凡是能引起蛋白质天然构象的变化、而不涉及肽键断裂的任何过程,都叫变性。由于加热而产生的蛋白质变性称为热变性。变性会使物理性质、化学性质和生物性能发生改变。蛋白质在生命活动中表现出的种种生物功能,完全取决于其特定的构象,一旦这种特定的构象受到破坏,其生物功能就会随之消失。因此研究蛋白质在不同条件下的热变性规律具有非常重要的意义。示差扫描量热法能直接给出蛋白质热变性过程的温度和能量变化,是研究蛋白质构象变化和结构稳定性的一种非常有效的方法。 2、操作方法 (1)配制溶液,制备样品; (2)按照仪器使用手册,在指导教师的指导下对仪器进行基线优化、温度标定、炉子标定和热流标定; (3 )称取被测样品5-10mg,装入样品皿,用压样机封样; (4)编制温度程序,以10K/min速率在30—90℃范围内升温,记录实验曲线; (5)换其他不同样品,进行相同的操作。 四、实验注意事项 1、试样放入样品皿时,要保证试样充分摊开,和样品皿的底部充分接触; 2、加样和取样时要规范操作,不能用力过大,以免损坏仪器。 3、因为蛋白质的构象转变和热历史有关,所以测量要在相同的实验条件下进行。 五、实验记录

蛋白质的变性

2010年第45卷第4期生物学通报23 在物理和化学因素作用下,蛋白质分子特定的空间构象被破坏,从有序的空间结构变成无序的空间结构,进而导致蛋白质理化性质的改变和生物活性的丧失,称为蛋白质的变性(denatura-tion)。物理因素如高温、放射线等,化学变性剂如SDS、尿素、盐酸胍能够破坏疏水作用、盐键、氢键、范德华力,因而能破坏蛋白质的高级结构。但是,很多变性剂不影响二硫键,在二硫键仍然完整的情况下难以彻底破坏蛋白高级结构使其完全变性。如果再加上还原剂如二巯基乙醇等,则可以蛋白质完全变性。关于二硫键与蛋白质结构的关系,以后将专门撰文介绍。 蛋白质变性的主要特征是生物活性丧失。蛋白质变性的本质,是二硫键以及非共价键的破坏导致高级结构和空间构象的破坏,但不涉及一级结构中氨基酸序列的改变。蛋白质变性后,空间构象严重被破坏且不能复原,称为不可逆性变性。如果变性程度较轻,去除变性因素后蛋白质仍可恢复原有的构象和活性,称为复性(renaturation)。例如,调节蛋白质溶液的离子浓度和pH值,可使蛋白质部分变性,通过透析纠正导致蛋白变性的离子浓度和pH值,可以使变性的蛋白质复性,重新恢复其原有结构和活性。 细胞内环境的离子成分和浓度、pH值、温度等条件利于维护蛋白质分子的高级结构,以保证其发挥正常的生理功能。因此,细胞内蛋白质分子不容易发生变性,一旦发生则意味着细胞受到严重的病理损伤,如烧伤。但细胞内的蛋白质分子也可发生折叠错误或严重的构象改变,尽管其一级结构不变,但功能已受明显影响,严重时可导致疾病发生,此类疾病称为蛋白构象病,如亨丁顿舞蹈病(Huntington disease)和疯牛病等。 在临床医学应用方面,酒精用于消毒灭菌就是利用了70%~75%的酒精(乙醇)对细菌蛋白质的变性作用。但高浓度(如>90%)酒精使菌体表面蛋白迅速变性凝固,形成一层坚固的膜,这样酒精不能很好地渗入到菌体内部进一步变性菌体内蛋白质,因而杀菌能力反而下降。高温灭菌是利用高温快速变性微生物蛋白质,从而使病原微生物灭活。煮鸡蛋是典型的高温导致蛋白质不可逆变性的例子。科学家采用各种剧烈的物理化学条件,在体外使蛋白变性以阐明蛋白质分子的性质和结构特征。另外,防止和减缓蛋白质变性对肉蛋类、海鲜、奶制品保鲜具有重要意义。疫苗的有效成分是抗原,防止蛋白质变性对疫苗的有效性至关重要。 (请关注这一内容的读者阅览2010年第45卷第5期“二硫键与蛋白质的结构”一文) (E-mail:xug@https://www.wendangku.net/doc/aa12606715.html,) 蛋白质的变性 徐国恒(北京大学医学部生理与病理生理系北京100191)中国图书分类号:Q51文献标识码:E 色品种嫁接到一起,可以轻松实现一株双色或多色、绚丽多姿,大大提高其观赏价值;将李属(Prunus)的桃(P.persica)、杏(P.armeniaca)、李(P. salicina)、梅(P.mume)等不同种果树相互嫁接到一起,可以让一株树上长出不同时期成熟、不同口味的多种果品,提高庭院等有限空间的利用率。 图7接芽斜放切口愈合状 嫁接是生物学基本知识在生产中的具体应用,是学生非常喜欢的实践活动。活动中学生付出自己的智慧和汗水,陶冶性情,体验成功的喜悦,进而激发出更加广泛地勤于动手、勇于实践、不怕吃若的积极性和自信心,值得大力推广。 主要参考文献 1曲泽洲,孙云蔚,黄昌贤等.果树栽培学总论.第2版.北京:农业出版社,1992,160—179. 2晏晓兰.梅花.北京:中国林业出版社,2004,137—142. 3陈俊愉,程绪珂,严玲璋等.中国花经.上海:上海文化出版社, 1990. (E-mail:hbgys8882@https://www.wendangku.net/doc/aa12606715.html,) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

蛋白质变性

蛋白质变性 蛋白质的变性既有物理变化,也有化学变化: 蛋白质是由多种氨基酸通过肽键构成的高分子化合物,在蛋白质分子中各氨基酸的结合顺序称为一级结构:蛋白质的同一多肽链中的氨基和酰基之间可以形成氢键,使得这一多肽链具有一定的构象,这些称为蛋白质的二级结构;多肽链之间又可互相扭曲折叠起来构成特定形状的排列称为三级结构,三级结构是与二硫键,氢键等联系着的。变性作用是蛋白质受物理或化学因素的影响,改变其分子内部结构和性质的作用。一般认为蛋白质的二级结构和三级结构有了改变或遭到破坏,都是变性的结果。能使蛋白质变性的化学方法有加强酸,强碱,重金属盐,尿素,乙醇,丙酮等;能使蛋白质变性的物理方法有加热,紫外线照射,剧烈振荡等。重金属盐使蛋白质变性,是因为重金属阳离子可以和蛋白质中游离的羧基形成不溶性的盐,在变性过程中有化学键的断裂和生成,因此是一个化学变化。 强酸、强碱使蛋白质变性,是因为强酸、强碱可以使蛋白质中的氢键断裂。也可以和游离的氨基或羧基形成盐,在变化过程中也有化学键的断裂和生成,因此,可以看作是一个化学变化。 尿素、乙醇、丙酮等,它们可以提供自己的羟基或羰基上的氢或氧去形成氢键,从而破坏了蛋白质中原有的氢键,使蛋白质变性。但氢键不是化学键,因此在变化过程中没有化学键的断裂和生成,所以是一个物理变化。加热、紫外线照射,剧烈振荡等物理方法使蛋白质变性,主要是破坏厂蛋白质分子中的氢键,在变化过程中也没有化学键

的断裂和生成,没有新物质尘成,因此是物理变化。否则,鸡蛋煮熟后就不是蛋白质了。 从以上分析可以看出,蛋白质的变性既有物理变化,也有化学变化。但蛋白质的变性是很复杂的,要判断变性是物理变化还是化学变化,要视具体情况而定。如果有化学键的断裂和生成就是化学变化;如果没有化学键的断裂和生成就是物理变化。 天然蛋白质的严密结构在某些物理或化学因素作用下,其特定的空间结构被破坏,从而导致理化性质改变和生物学活性的丧失,如酶失去催化活力,激素丧失活性称之为蛋白质的变性作用(denaturation)。变性蛋白质只有空间构象的破坏,一般认为蛋白质变性本质是次级键,二硫键的破坏,并不涉及一级结构的变化。 变性蛋白质和天然蛋白质最明显的区别是溶解度降低,同时蛋白质的粘度增加,结晶性破坏,生物学活性丧失,易被蛋白酶分解。 引起蛋白质变性的原因可分为物理和化学因素两类。物理因素可以是加热、加压、脱水、搅拌、振荡、紫外线照射、超声波的作用等;化学因素有强酸、强碱、尿素、重金属盐、十二烷基磺酸钠(SDS)等。在临床医学上,变性因素常被应用于消毒及灭菌。反之,注意防止蛋白质变性就能有效地保存蛋白质制剂。 变性并非是不可逆的变化,当变性程度较轻时,如去除变性因素,有的蛋白质仍能恢复或部分恢复其原来的构象及功能,变性的可逆变化称为复性。例如,前述的核糖核酸酶中四对二硫键及其氢键。在β 巯基乙醇和8M尿素作用下,发生变性,失去生物学活性,变性后如

蛋白质变性和凝固

蛋白质变性和凝固 蛋白质分子在一定的物理或化学因素的影响下,其分子结构发生改变,从而改变蛋白质的性质,这个变化叫蛋白质的变性。变性后的蛋白质尽管它的化学组成没有改变,但空间构型已遭破坏,内部某些特征已发生改变,因此,原有生物活性也发生变化。同时也不再溶于水,从溶液中凝结沉淀出来,这个过程叫蛋白质的凝固。高温灭菌消毒,就是利用加热使蛋白质凝固从而使细胞死亡。 有关蛋白质的结构 A.氨基酸 (1)每个氨基酸分子都具有中心碳原子,至少都有一个氨基和一个羧基,并且都有一个氨基和一个羧基连接在该碳原子上。注意理解“至少”的含义,比如当R基含有氨基或羧基时,这个氨基酸分子就不只有一个氨基和羧基了,同时还要注意氨基酸分子中都有一个氨基和羧基直接连在同一个碳原子上。 (2)不同的氨基酸分子具有不同的R基,细胞内构成蛋白质的大约20种氨基酸,在结构上的主要区别就是R基结构的不同。 B.二肽 (1)由两个氨基酸分子脱水缩合而成,失去水分子中的氢分别来自羧基和氨基。 (2)二肽化合物中,连接两个氨基酸分子的那个键(—CO—NH—)叫肽键。

C.多肽 (1)由多个氨基酸分子缩合而成的含有多个肽键的化合物,因其呈链状,也称肽链。 (2)注意区分肽、肽键和肽链:肽键是肽的连接结构,而肽链是多肽的空间结构。 (3)氨基酸间脱水缩合时,原来的氨基和羧基已不存在,形成的化合物即多肽的一端只有一个氨基,另一端只有一个羧基(不计R基上的氨基和羧基数)。所以对于一条多肽来说,至少应有的氨基和羧基数都是一个。(4)若有n个氨基酸分子缩合成m条肽链,则可形成(n-m)个肽键,脱去(n-m)个水分子,至少有—NH2和—COOH各m个。 (5)蛋白质分子可以含有一条或m条肽链,肽链通过化学键(不是肽键)互相连接,具有不同的空间结构。 (6)关于蛋白质分子量的计算:n个氨基酸形成m条肽链,每个氨基酸的平均分子量为a,那么由此形成的蛋白质的分子量为: n?a-(n-m)?18 (其中n-m为失去的水分子数,18为水的分子量) 总共 1页 1

蛋白质的沉淀和变性实验.

实验五蛋白质的沉淀和变性实验 一、实验目的 1.加深对蛋白质胶体溶液稳定因素的认识。 2.了解沉淀蛋白质的几种方法及其实用意义。 3.了解蛋白质变性与沉淀的关系。 二、实验原理 在水溶液中的蛋白质分子由于表面生成水化层和双电层成为稳定的亲水胶体颗粒,在一定的理化因素影响下,蛋白质颗粒可因失去电荷和脱水而沉淀。蛋白质的沉淀反应可分为两类。 1.可逆的沉淀反应。 此时蛋白质分子的结构尚未发生显著变化,除去引起沉淀的因素后,蛋白质的沉淀仍能溶解在原来的溶剂中,并保持其天然性质而不变性。如大多数蛋白质的盐析作用或在低温下用乙醇(或丙酮)短时间作用于蛋白质。提纯蛋白质时,常利用此类反应。 2.不可逆沉淀反应。 此时蛋白质分子内部结构发生大改变,蛋白质常因变性而沉淀,不再溶于原来的溶剂中。如加热引起的蛋白质沉淀于凝固,蛋白质于重金属离子或某些有机酸的反应都属于此类反应。 蛋白质变性后,有时由于维持溶液稳定的条件仍然存在(如电荷)并不析出。因此变性蛋白质并不一定都表现为沉淀,而沉淀的蛋白质也未必都已变性。 三、实验材料、器材与试剂 1.材料 鸡蛋清的水溶液(新鲜鸡蛋清:水=1:9)。 2.器材 (1)试管及试管架; (2)吸量管; (3)滴灌; (4)小烧杯; (5)容量瓶。 3.试剂 (1)3%硝酸银溶液; (2)5%三氯乙酸溶液 (3)95%乙醇;

(4)饱和硫酸铵溶液; (5)硫酸铵结晶粉末。 四、实验方法 1. 蛋白质的盐析 中性无机盐(硫酸铵、硫酸钠、氯化钠等)的浓溶液能析出蛋白质。盐的浓度不同,析出的蛋白质也不同。如球蛋白可在半饱和硫酸铵溶液中析出,而清蛋白则在饱和硫酸铵溶液中才能析出。由盐析获得的蛋白质沉淀,当降低其盐类浓度时,又能再溶解,故蛋白质的盐析是可逆的过程。 加蛋清溶液5mL于试管中,再加入等量的饱和硫酸铵溶液,混匀后静置数分钟则析出球蛋白的沉淀。倒出少量浑浊沉淀,加少量水,观察是否溶解,为什么?将管内容物过滤,向滤液中加硫酸铵粉末到不再溶解为止,此时析出的沉淀为清蛋白。取出部分清蛋白,加少量蒸馏水,观察沉淀的再溶解。 2.重金属离子沉淀蛋白质。 重金属离子与蛋白质结合成不溶于水的复合物。 取一支试管,加入蛋白质溶液2mL,再加3%硝酸银溶液1~2滴,振荡试管有沉淀生成,放置片刻,倾去上清液,向沉淀中加入少量的水,沉淀是否溶解?为什么? 3.某些有机酸沉淀蛋白质。 取一支试管,加入蛋白质溶液2mL再加入1mL5%三氯乙酸溶液,振荡试管,观察沉淀的生成。放置片刻,倾去上清液,向沉淀中加入少量水,观察沉淀是否溶解。 4.有机溶剂沉淀蛋白质。取一支试管,加入2mL蛋白质溶液,再加入2mL95%乙醇,混匀,观察沉淀的生成。 五、实验结果 略

蛋白质变性

蛋白质的变性 蛋白质的变性是蛋白质的一条重要性质。这条性质在日常生活、医疗、工农业生产中都有着重要的用途。那么,蛋白质的变性是物理变化还是化学变化呢?在此做一简单的讨论。判断蛋白质的变性是物理变化还是化学变化,一定要从蛋白质的结构上分析,看在变化过程中有无化学键的断裂和生成。蛋白质是由多种氨基酸通过肽键构成的高分子化合物,在蛋白质分子中各氨基酸的结合顺序称为一级结构;蛋白质的同一多肽链中的氨基和酰基之间可以形成氢键,使得这一多肽链具有一定的构造,这些称为蛋白质的二级结构;多肽链之间又可互相扭曲折叠起来构成特定形状的排列称为三级结构,三级结构是与二硫键、氢键等联系着的。变性作用是蛋白质受物理或化学因素的影响,改变其分子内部结构和性质的作用,一般认为蛋白质二级结构和三级结构有了改变或遭到破坏,都是变性的结果。能使蛋白质变性的化学方法有加强酸、强碱、重金属盐、尿素、乙醇、丙酮等;能使蛋白质变性的物理方法有加热、紫外线照射、剧烈振荡等。重金属盐使蛋白质变性,是因为重金属阳离子可以和蛋白质中游离的羧基形成不溶性的盐,在变性过程中有化学键的断裂和生成,因此是化学变化(如课本中例子,CuSO4使蛋白质变性)。强酸、强碱使蛋白质变性,是因为强酸、强碱可以使蛋白质中的氢键断裂。也可以和游离的氨基或羧基形成盐,在变化过程中也有化学键的断裂和生成,因此,可以看作是一个化学变化。尿素、乙醇、丙酮等,它们可以提供自己的羟基或羰基上的氢或氧去形成氢键,从而破坏了蛋白质中原有的氢键,使蛋白质变性。但氢键不是化学键,因此在变化过程中没有化学键的断裂和生成,所以是物理变化。加热、紫外线照射,剧烈振荡等物理方法使蛋白质变性,主要是破坏蛋白质分子中的氢键,在变化过程中也没有化学键的断裂和生成,没有新物质生成,因此也是物理变化。否则鸡蛋煮熟后就不是蛋白质了。从以上分析可以看出,蛋白质的变性是很复杂的,蛋白质的变性既有物理变化,也有化学变化。要判断变性是物理变化还是化学变化,要视具体情况而定。如果有化学键的断裂和生成就是化学变化;如果没有化学键的断裂和生成就是物理变化。

蛋白的变性和复性

蛋白的变性和复性 变性:蛋白质的空间结构是体现生物功能的基础,蛋白质折叠则是形成空间结构的过程。蛋白质一级结构决定其高级结构的著名学说, 认为蛋白质折叠是受热力学因素控制的. 天然蛋白质处于能量最低(即热力学最稳定)的状态. 一般来说, 天然蛋白质的结构是相对稳定的, 结构的稳定性也是其保持生物个体功能和物种的相对稳定所要求的. 蛋白质担负着复杂的生化反应, 同时在生物合成以后, 蛋白质本身也经历着繁杂的生理过程. 蛋白质自翻译以后, 还需进行一系列的翻译后过程, 包括跨膜转运、修饰加工、折叠复性、生化反应、生物降解等. 这些过程似乎都伴随着蛋白质的结构转换, 不但受蛋白质肽链自身的热力学稳定性所控制, 而且还受动力学过程控制. 变性原因:蛋白质因受某些物理或化学因素的影响,分子的空间构象被破坏,从而导致其理化性质发生改变并失去原有的生物学活性的现象称为蛋白质的变性作用(denaturation)。变性作用并不引起蛋白质一级结构的破坏,而是二级结构以上的高级结构的破坏,变性后的蛋白质称为变性蛋白。 引起蛋白质变性的因素很多,物理因素有高温、紫外线、X-射线、超声波、高压、剧烈的搅拌、震荡等。化学因素有强酸、强碱、尿素、胍盐、去污剂、重金属盐(如Hg2+、Ag+、Pb2+等)三氯乙酸,浓乙醇等。不同蛋白质对各种因素的敏感程度不同。 蛋白质变性后许多性质都发生了改变,主要有以下几个方面: (一)生物活性丧失 蛋白质的生物活性是指蛋白质所具有的酶、激素、毒素、抗原与抗体、血红蛋白的载氧能力等生物学功能。生物活性丧失是蛋白质变性的主要特征。有时蛋白质的空间结构只有轻微变化即可引起生物活性的丧失。 (二)某些理化性质的改变 蛋白质变性后理化性质发生改变,如溶解度降低而产生沉淀,因为有些原来在分子内部的疏水基团由于结构松散而暴露出来,分子的不对称性增加,因此粘度增加,扩散系数降低。(三)生物化学性质的改变 蛋白质变性后,分子结构松散,不能形成结晶,易被蛋白酶水解。蛋白质的变性作用主要是由于蛋白质分子内部的结构被破坏。天然蛋白质的空间结构是通过氢键等次级键维持的,而变性后次级键被破坏,蛋白质分子就从原来有序的卷曲的紧密结构变为无序的松散的伸展状结构(但一级结构并未改变)。所以,原来处于分子内部的疏水基团大量暴露在分子表面,而亲水基团在表面的分布则相对减少,至使蛋白质颗粒不能与水相溶而失去水膜,很容易引起分子间相互碰撞而聚集沉淀。 复性:如果变性条件剧烈持久,蛋白质的变性是不可逆的。如果变性条件不剧烈,这种变性作用是可逆的,说明蛋白质分子内部结构的变化不大。这时,如果除去变性因素,在适当条件下变性蛋白质可恢复其天然构象和生物活性,这种现象称为蛋白质的复性(renaturation)。 外源基因在大肠杆菌中的高表达常常导致包涵体的形成,虽然包涵体具有富集目标蛋白质、

相关文档