文档库 最新最全的文档下载
当前位置:文档库 › [RBCC变循环火箭冲压发动机CFD模拟]RBCC CFD benchmark

[RBCC变循环火箭冲压发动机CFD模拟]RBCC CFD benchmark

[RBCC变循环火箭冲压发动机CFD模拟]RBCC CFD benchmark
[RBCC变循环火箭冲压发动机CFD模拟]RBCC CFD benchmark

2017年西北工业大学 843火箭发动机原理 硕士研究生考试大纲

843 《火箭发动机原理》 考试大纲 一、考试内容: 根据我校教学及该试题涵盖专业多的特点,对考试范围作以下要求: 1、火箭发动机绪论:两次能量转换、固体火箭发动机的结构、固体和液体火箭发动机的优缺点。 2、火箭发动机的工作参数:推力、推力系数、质量流率、特征速度、总冲、比冲的概念;高度和膨胀状态对推力系数的影响;最大推力产生的条件;相关的计算。 3、固体推进剂:固体推进剂的分类;推进剂的主要成分和作用;推进剂的加工工艺;衡量推进剂的能量标准;双基推进剂的贮存安定性问题。 4、火箭发动机燃烧室热力计算:燃烧室热力计算的内容、模型和计算步骤;固体推进剂的假定化学式;GIBBS自由能法和布莱克林法的计算思路;输运过程。 5、喷管流动过程:冻结流动和平衡流动;喷管流动的热力计算方法;发动机冲量系数;喷管流动所包含的损失;二相流损失的概念和形成喷管二相流损失的原因。 6、固体推进剂的燃烧:双基推进剂的多阶段模型;复合推进剂的多火焰模型;燃速的温度敏感系数;侵蚀燃烧概念、机理以及对发动机性能产生的影响;压强对双基和复合推进剂燃烧的影响机理;异常燃烧;平台燃烧;平台推进剂。 7、固体火箭发动机内弹道计算:平衡压强的概念、公式及计算;燃烧室压强的稳定性条件;燃喉比K、喉通比J和波别多诺斯采夫准则的概念和物理意义;燃气流动和侵蚀燃烧对平衡压强的影响;一维内弹道的计算方法;点火延迟。 8、液体火箭发动机系统:开式循环和闭式循环。 9、液体推进剂:常用的液体推进剂,化学当量比和余氧系数。 10、推力室工作过程:推力室的气动区域划分;燃烧准备过程;雾化作用和雾化质量的影响因素;韦伯数;平均直径。 11、推力室的冷却:再生冷却;表面沸腾换热。 二、参考书目

火箭的发射原理

火箭的发射原理 航空和航天 航空和航天是当今人类认识和改造自然过程中最活跃,最有影响力,也最有发展前途的科学和技术领域,是人类文明高度发展的重要标志, 也是衡量一个国家科学和技术水平,以及综合实力的重要标志。 航空 航空是指载人或不载人的飞行器在地球大气层中的航行活动。航空活动的范围主要限于离地面30公里的大气层内。在大气层中航行的飞行器 (航空器),只要克服自身的重力就能升空。比空气轻的航空器,如气球、飞艇,用空气静力升空;比空气重的航空器,如飞机、直升机, 则要利用空气动力才能升空,风筝也是利用空气动力升空的一种最原始的航空器。可见,航空离不开地球的大气圈,也摆脱不了地球的引力 作用。 航天 航天是指载人或不载人的飞行器在太空的航行活动,也叫做空间飞行或宇宙航行。航天包括:环绕地球的运行、飞往月球或其它星球的航行 (包括环绕某一天体运行、从其近旁飞过或在其上着陆)、行星际空间的航行及飞出太阳系的航行。可见,航天活动的范围要比航空活动的 范围大得多。一类在太阳系内的航行活动叫做航天;一类,在太阳系以外的航行活动叫做航宇。 航天不同于航空,航天要在极高真空的太空以类似于自然天体的运行规律飞行。因此,航天首先,必须有不依赖空气,且具有巨大推力的运 载工具——火箭。 火箭的概念和原理 火箭是一种依靠火箭发动机喷射工作介质产生的反作用力推动前进的飞行器。 火箭的飞行原理是它借助了物体的反作用力,就像一只充足气体的气球,当我们把它从手中放开后,气球内的气体便顺着气球的气嘴喷出, 同时气球向前冲去。因自身携带氧化剂,用不着像飞机那样依靠大气中的氧,所以火箭可以飞出大气层,在真空条件下飞行。 火箭的三大系统 运载火箭是将人造卫星、宇宙飞船、空间站和宇宙探测器等航天器送入太空的运载工具,是人类一切航天活动的基础。它主要包括三大 系统:动力系统、结构系统和控制系统。 动力系统即火箭发动机系统,是火箭的动力装置,堪称火箭的心脏。它依靠推进剂在燃烧室内燃烧,形成高温高压燃气,通过喷管高速 排出后产生反作用力推动火箭前进。火箭发动机按使用推进剂的类别分为液体火箭发动机、固体火箭发动机、固液混合式火箭发动机三种。 结构系统通常称为箭体结构,它是火箭的躯体,用于连接火箭所有结构部段,使之成为一整体,具有良好的空气动力外形和飞行性能。 控制系统是火箭的大脑和神经中枢。火箭发射后的级间分离、俯仰偏航、发动机关机与启动、轨道修正和星箭分离等一系列动作,都依 靠控制系统完成。 推进剂——发动机的“食粮” 火箭发动机使用的燃料称为推进剂,堪称火箭发动机的“食粮”。目前,各国研制的运载火

固体火箭发动机壳体用材料综述

固体火箭发动机壳体用材料综述 摘要:概述了国内外固体火箭发动机壳体用先进复合材料研究应用现状,同时对固体火箭发动机壳体的纤维缠绕成型工艺进行了阐述。 关键词:固体火箭发动机复合材料树脂基体纤维缠绕成型 1 固体火箭发动机简介 固体火箭发动机是当今各种导弹武器的主要动力装置,在航空航天领域也有相当广泛的应用。它的特点是结构简单,因而具有机动、可靠、易于维护等一系列优点,非常适合现代化战争和航天事业的需要。但固体火箭发动机部件在工作中要承受高温、高压和化学气氛下的各种复杂载荷作用,因此其材料通常具有极优异的性能,往往代表着当代材料科学的最先进水平。标志当代高性能固体发动机的主要特征是:“高能、轻质、可控”,这三者都是以先进材料为基础和支柱的,选用具有优良比强度和卓越耐热性能的先进复合材料已成为提高发动机性能的一项决定性因素。 2 固体火箭发动机壳体用材料 固体火箭发动机壳体既是推进剂贮箱又是燃烧室,同时还是火箭或导弹的弹体,因此,在进行发动机壳体材料设计时,应考虑如下几个基本原则[1]: a. 固体火箭发动机壳体就其工作方式来讲,是一个内压容器,所以壳体承受内压的能力是衡量其技术水平的首要指标; b. 发动机壳体是导弹整体结构的一部分,所以又要求壳体具有适当结构刚度; c. 作为航天产品,不仅要求结构强度高,而且要求材料密度小; d. 发动机点火工作时,壳体将受到来自内部燃气的加热,而壳体结构材料,尤其是壳体结构复合材料的强度对温度的敏感性较强,所以,在设计壳体结构材料时,不能仅限于其常温力学性能,而应充分考虑其在发动机工作过程中,可能遇到的温度范围内的全面性能。评价和鉴定壳体材料的性能水平,固然要以最终产品是否满足使用要求为原则,但从设计选材的角度来说,也应有衡量的指标和

火箭发动机

火箭发动机 科技名词定义 中文名称:火箭发动机 英文名称:rocket engine 定义:由飞行器自带推进剂,不依赖外界空气提供氧化剂的喷气发动机。 应用学科:航空科技(一级学科);推进技术与航空动力装置(二级学科) 以上内容由全国科学技术名词审定委员会审定公布 火箭发动机就是利用冲量原理,自带推进剂、不依赖外界空气的喷气发动机。目录

?火箭发动机的优势 ?现代火箭发动机 ?其他能源的火箭发动机 ?我国最新成果 ?世界知名火箭发动机 展开 编辑本段简介 火箭发动机是喷气发动机的一种,将推进剂箱或运载工具内的反应物料(推进剂)变成高速射流,由于牛顿第三定律而产生推力。火箭发动机可用于航天器推进,也可用于导弹等地面应用。大部分火 火箭发动机 箭发动机都是内燃机,也有非燃烧形式的发动机。 编辑本段工作原理 大部分发动机靠排出高温高速尾气来获得推力,固体或液体推进剂(由氧化剂和燃料组成)在燃烧室中高压(10-200 bar)燃烧产生尾气。 向燃烧室供入推进剂 液体火箭通过泵将氧化剂和燃料分别泵入燃烧室,两种推进剂成分在燃烧室混合并燃烧。而固体火箭的推进剂事先混合好放入储存室,工作时储存室就是燃烧室。固液混合火箭使用固体和液体混合的推进剂或气体推进剂,也有使用高能电源将惰性反应物料送入热交换机加热,这就不需要燃烧室。

火箭发动机 火箭推进剂在燃烧并排出产生推力前通常储存在推进剂箱中。推进剂一般选用化学推进剂,在经历放热化学反应后产生高温气体用于火箭推进。 燃烧室 化学火箭的燃烧室通常呈圆柱体形,其尺寸要满足推进剂充分燃烧,所用推进剂不同,尺寸不同。用L * 描述燃烧室尺寸 公式 这里: Vc 是燃烧室容量 At 是喷口面积 L* 的范围通常为25-60英尺(0.6 - 1.5 m) 燃烧室的压力和温度通常达到极值,不同于吸气式喷气发动机有足够的氮气来稀释和冷却燃烧,火箭发动机燃烧室的温度可达到化学上的标准值。而高压意味着热量在燃烧室壁的传导速度非常快。 喷嘴 发动机的外形主要取决于膨胀喷嘴的外形:钟罩形或锥形。在一个高膨胀比的渐缩渐阔喷嘴中,燃烧室产生的高温气体通过一个开孔(喷口)排出。 如果给喷嘴提供足够高的压力(高于围压的2.5至3倍),就会形成喷嘴阻流和超音速射流,大部分热能转化为动能,由此增加排气的速度。在海平面,发动机排气速度达到音速的十倍并不少见。

火箭发动机新技术-复习大纲

火发新技术课复习大纲 塞式喷管技术 1.塞式喷管的构成、主要结构参数的定义。 a)塞式喷管主要由内喷管和塞锥构成。 b)两个膨胀面积比:内喷管的扩张比εi,塞式喷管的总膨胀面积比εt 塞式喷管总膨胀面积比是传统喷管的扩张比具有相同的物理意义,均表 2. 型喷管,在低于设计高度上仍然具有高性能。 3.多单元塞式喷管的主要结构类型 多单元塞式喷管按照排列方式可以分为环形和线性两种。 a)环形包括环喉式、环簇式、环形(瓦状单元) b)线性包括直排式(瓦状单元)、直排式(三维内喷管)和环直形(瓦状 单元) 4.采用圆转方内喷管的必要性 1)能够保证喉部区域的热防护要求,圆形截面的冷却换热效果最好,强度 最高。 2)便于减少线性排列的多个单元推力室之间的间隙,还可更好地与塞锥贴 合 3)可以采用二维平板式塞锥型面,从而使得塞锥的设计加工都得到简化。特种推进技术 1.电推进与化学推进工作机制的区别是什么? 电推进装置是利用电能加热或者直接加速推进剂,使得推进剂以高速喷

出产生反作用推力。然而在化学推进中,推进剂燃烧使化学能转化为热能,然后在喷管中膨胀加速,使热能转化为动能。并且在电推进中,能源系统和推进剂供给系统是相互独立的;而在化学推进中是一体的。 2.电推进的工作特点是什么? 1)比冲高,大大节省推进剂质量,提高有效载荷比 2)推力小 3)比冲(或推力)越高,需要的功率越大 4)属外能系统,受总冲影响小 5)对于给定的控制时间,存在一个最佳比冲,使功率和推进剂质量流量最 小 3.典型的电推进推力器分类 按照加速机理的不同,一般可分为: 1)电热式推力器:电阻加热式推力器、电弧加热等离子体推力器和微波加 热等离子体推力器; 2)静电式推力器:霍尔推力器、离子推力器等; 3)电磁式推力器:PPT、SF-MPD、AF-MPD等; 4.微推进推力器分类 1)微电推进:电热式、静点式、电磁式; 2)化学微推进:固体微推进、液体微推进; 3)冷气微推进; 5.介绍不同种类电推进推力器的工作原理 1)离子推力器: 由阴极发射出的电子,在径向磁场的作用下在放电室以螺旋线的轨迹向阳极运动,在运动的过程中与中性推进剂粒子碰撞,使得中性原子 电离,电离的离子在加速栅极的作用下高速喷出产生推力。 2)霍尔推力器: 推进剂(通常是Xe)通过阳极喷射进入环形空间,在此气体被从外部空心阴极发出的逆向电子流所电离。 因径向磁场的作用,导致电子沿圆周方向作漂移运动,电子漂移运动形成的电流称为霍尔电流,它与径向磁场相互作用,产生沿轴向的电 磁加速力,使等离子体高速喷出,产生推力。 3)磁等离子体推力器(MPD): ①有附加磁场的时候,推力产生的机理变得十分复杂,首先弧电流的周 向分量与附加磁场相互作用会产生轴向和径向的洛伦兹力,对推力有 直接和间接的贡献; ②其次,弧电流径向分量和自感应磁场强度的周向分量相互作用将产生 洛伦兹力的轴向分量; ③最后,弧电流的径向分量与磁场的轴向分量相互作用产生周向的洛伦 兹力使等离子体旋转,能量通过这种旋流作用部分转化为轴向推力; ④这样在有附加磁场的情况下,总推力应为这几个分量之和。

火箭发动机-原理-英汉专业单词

火箭发动机-原理-英汉专业单词

Chapter 1 Introduction (第一章绪论) principles of solid rocket motor solid rocket motor solid propellant rocket motor liquid propellant rocket engine hybrid propellant rocket engine ramjet primary propulsion (main motor)booster sustainer control motor pulse ignition motor rocket projectile artificial rainfall rocket bundled-style rocket booster spacecraft MLRS space shuttle vehicle extended range rocket-propelled grenade extended range guided munition guided projectile aeronautics and space missile conventional weapon civil application High-Tech weapon group target air inlet central inlet propellant working pressure working fluid 固体火箭发动机原理 固体火箭发动机 固体推进剂火箭发动机液体推进剂火箭发动机混合推进剂火箭发动机冲压发动机 主推进系统(主发动机)助推器 续航发动机 控制发动机 脉冲点火发动机 火箭弹 人工增雨火箭 捆绑式火箭助推器 飞船 多管发射火箭系统 航天飞机(太空梭) 火箭增程榴弹 增程制导弹药 制导炮弹 航空航天 导弹 常规武器 民用 高技术武器 集群目标 进气道 中心进气道 推进剂 工作压强 工作流体,工质 燃气 固体推进剂装药 点火器 燃烧室 喷管 锥形喷管 钟形喷管 双圆弧喷管

“固体火箭发动机气体动力学”课程 学习指南

1.课程属性 火箭武器专业(即武器系统与工程专业的火箭弹方向)的专业课程体系包括固体火箭发动机气体动力学、固体火箭发动机原理、火箭弹构造与作用、火箭弹设计理论和火箭实验技术。“固体火箭发动机气体动力学”属于专业基础课,是该专业的先修课程。 2.为什么要学习固体火箭发动机气体动力学课程 固体火箭发动机的工作过程是由推进剂燃烧和燃气流动构成的,燃气流动既是燃烧的直接结果,也是固体火箭发动机产生推进动力所需要的。因此,燃气流动是“固体火箭发动机原理”的重要组成部分。 “固体火箭发动机原理”课程将固体火箭发动机内的流动处理成燃烧室内的零维流和喷管中的一维流,如果不学习本课程,一方面不易理解固体火箭发动机内的流动过程,对学好“固体火箭发动机原理”课程是不利的;另一方面,对毕业后继续深造的学生而言,缺乏必要的气体动力学知识,难以深入开展本学科领域的基础理论研究,而本科毕业后直接从事固体火箭研制工作的学生将难以利用先进的计算工具进行工程设计与性能分析,不能适应时代发展和技术进步的要求。通过“固体火箭发动机气体动力学”课程的学习,学生既可以结合固体火箭发动机中的燃气流动问题,系统了解和掌握气体动力学的基本理论和计算方法,构建起完备的专业知识结构,同时也为学好后修课程奠定了坚实的理论基础,提高解决固体火箭发动机设计、内弹道计算、性能分析等实际工程技术问题的能力。 3.“固体火箭发动机气体动力学”的知识结构 把握课程的知识结构是学好“固体火箭发动机气体动力学”的前提。本课程由三个知识模块组成,即气体动力学基础知识、固体火箭发动机中一维定常流动和激波、膨胀波与燃烧波。 (1)气体动力学模块(14学时) 该模块由教材的第一至第三章组成,是相对独立、自成系统的知识模块,目的是建立起基本的气体动力学系统知识,为学习第二个知识模块奠定必要的气体动力学理论基础。该模块的主要知识点为 ?课程背景 ?流体与气体,气体的输运性质,连续介质假设,热力学基本概念与基础知识:系统,环境,边界,状态,过程,功,热量,焓,比热 比,热力学第二定律,理想气体,等熵过程方程,气体动力学基本 概念:控制体,拉格朗日方法,欧拉方法,迹线,流线,作用在流 体上的外力,扰动 ?拉格朗日方法与欧拉方法的关系,连续方程,动量方程,能量方程,熵方程 ?流动定常假设,一维流动假设,一维定常流的控制方程组,伯努利方程,气流推力,声速,对数微分,马赫数,马赫锥,理想气体一 维定常流的控制方程组,滞止状态,滞止过程,滞止参数,动压, 气体可压缩性,临界状态,最大等熵膨胀状态,速度系数,气体动 力学函数 (2)固体火箭发动机中的一维定常流动模块(8学时) 该模块为教材的第四章,是气体动力学知识在固体火箭发动机中的具体应用,分别针对喷管、长尾管、燃烧室装药通道展开讲述,最后简要介绍多驱动势广义一维流动。本知识模块的目的是为学生学习固体火箭发动机原理奠定理论基

火箭发动机工作原理

火箭发动机工作原理本文包括: 1. 1. 引言 2. 2. 推力和固体燃料火箭 3. 3. 液体推进剂及其他类型的火箭 4. 4. 了解更多信息 5. 5. 阅读所有太空学类文章 空探索了。它的神奇之处很大程度上是因为 它的复杂性。太空探索是非常复杂的,因为 其中有太多的问题需要解决,有太多的障碍 需要克服。所面临的问题包括: 太空的真空环境 热量处理问题 重返大气层的难题 轨道力学 微小陨石和太空碎片 宇宙辐射和太阳辐射

在无重力环境下为卫生设施提供后勤保障 但在所有这些问题中,最重要的还是如何产生足够的能量使太空船飞离地面。于是火箭发动机应运而生。 一方面,火箭发动机是如此简单,您完全可以自行制造和发射火箭模型,所需的成本极低(有关详细信息,请参见本文最后一页上的链接)。而另一方面,火箭发动机(及其燃料系统)又是如此复杂,目前只有三个国家曾将自己的宇航员送入轨道。在本文中,我们将对火箭发动机进行探讨,以了解它们的工作原理以及一些与之相关的复杂问题。 火箭发动机基本原理 当大多数人想到马达或发动机时,会认为它们 与旋转有关。例如,汽车里的往复式汽油发动 机会产生转动能量以驱动车轮。电动马达产生的转动能量则用来驱动风扇或转动磁盘。蒸汽发动机也用来完成同样的工作,蒸汽轮机和大 多数燃气轮机也是如此。 火箭发动机则与之有着根本的区别。它是一种反作用力式发动机。火箭发动机是以一条著名的牛顿定律作为基本驱动原理的,该定律认为“每个作用力都有一个大小相等、方向相反的反作用力”。火箭发动机向一个方向抛射物质,结果会获得另一个方向的反作用力。 火箭发动机工作原 理

开始时您可能很难理解“抛射物质,获得反作用力”这个概念,因为这好像和真实情况不大一样。火箭发动机似乎只会发出火焰和噪音,制造压力,而与“抛射物质”没什么关系。我们来看几个例子,以便更好地了解真实情况: 如果您曾经使用过猎枪,特别是那种12铅径的大猎枪,那么您 就知道它会产生巨大的“撞击力”。也就是说,当您开枪时, 猎枪会狠狠地向后“撞击”您的肩膀。这种撞击力就是反作用 力。猎枪将31.1克的金属以大约1120公里/小时的速度沿某个 方向发射出去,同时您的肩膀会受到反作用力的撞击。如果您 开枪时穿着轮滑鞋或站在滑雪板上,枪会起到类似于火箭发动 机的作用,反作用力会使您向相反的方向滑动。 如果您见过粗大的消防水管喷水的场景,可能会注意到消防员 要花很大的力气才能抓住它(有时您会看到有两名或三名消防 员手持同一根消防水管)。水管发生的情况与火箭发动机类似。 水管向一个方向喷水,消防员们则运用自身的力量和重量来克 服反作用力。如果他们放开水管,那么水管会劲头十足地四处

固体火箭冲压发动机设计技术问题分析

第33卷第2期 固体火箭技术 J o u r n a l o f S o l i dR o c k e t T e c h n o l o g y V o l .33N o .22010 固体火箭冲压发动机设计技术问题分析 ① 徐东来,陈凤明,蔡飞超,杨 茂 (西北工业大学航天学院,西安 710072) 摘要:总结了自1965年以来固体火箭冲压发动机研制技术的总体发展特征和趋势,结合当前新一代战术导弹提出的大空域、宽M a 数和大机动性等越来越高的设计需求,从冲压发动机热力循环技术本质要求出发,分析了当前工程上普遍采用的固定几何进气道、固定几何喷管、燃烧室共用、无喷管助推器和变流量燃气发生器等5项主体设计技术固有的技术缺陷、不足和局限性,明确指出现行的折中设计思想是产生问题的根源,提出未来应遵循“开源节流”设计思想,优先突破喷管调节技术,积极开发进气道调节技术,努力提高现有燃气发生器变流量调节技术水平,切实完善固体火箭冲压发动机热力循环,以促其成功应用。 关键词:固体火箭冲压发动机;设计技术;进气道;喷管;燃气发生器 中图分类号:V 438 文献标识码:A 文章编号:1006-2793(2010)02-0142-06 A s s e s s m e n t o f d e s i g nt e c h n i q u e s o f d u c t e dr o c k e t s X UD o n g -l a i ,C H E NF e n g -m i n g ,C A I F e i -c h a o ,Y A N GM a o (C o l l e g e o f A s t r o n a u t i c s ,N o r t h w e s t e r nP o l y t e c h n i c a l U n i v .,X i 'a n 710072,C h i n a ) A b s t r a c t :T h e d e s i g n c h a r a c t e r i s t i c s a n d t r e n d s o f d u c t e d r o c k e t s s i n c e 1965a r e s u m m a r i z e d .A i m i n g a t d e m a n d i n g d e s i g nr e -q u i r e m e n t s p o s e d b y n e wg e n e r a t i o nt a c t i c a l m i s s i l e s ,n a m e l y ,l o n g r a n g e ,w i d e M a c hn u m b e r r a n g e ,a n dh i g hm a n e u v e r a b i l i t y ,e t c .,t h e i n h e r e n t l i m i t a t i o n s a n dd i s a d v a n t a g e s o f f i v ec o m m o n l y u s e d m a j o r d e s i g nt e c h n i q u e s ,i .e .t h e d e s i g no f f i x e d -g e o m e t r y i n l e t ,f i x e d -g e o m e t r y n o z z l e ,c o m m o nc o m b u s t i o nc h a m b e r ,n o z z l e l e s s b o o s t e r ,a n dv a r i a b l ef l o wg a s g e n e r a t o r ,a r e a n a l y z e df r o m t h ev i e w p o i n t o f e s s e n t i a l r e q u i r e m e n t s o f r a m j e t t h e r m o d y n a m i c c y c l e .T h e p a p e r c l e a r l y p o i n t s o u t t h a t t h e c o m p r o m i s e p h i l o s o p h y i s t h es o u r c e o f t h e s e p r o b l e m s a n d s u g g e s t s t h a t t h e o p t i m u m c o n t r o l i d e a ,i .e .,m a k i n g b r e a k t h r o u g hi nn o z z l er e g u l a t i o nt e c h -n i q u e f i r s t ,a c t i v e l y d e v e l o p i n g i n l e t r e g u l a t i o n t e c h n i q u e ,a n d i m p r o v i n g g a s g e n e r a t o r f l o wc o n t r o l t e c h n i q u e s h o u l db e f o l l o w e d t o p e r f e c t r a m j e t t h e r m o d y n a m i c c y c l e a n df a c i l i t a t e t h e a p p l i c a t i o n s u c c e s s f u l l y . K e yw o r d s :d u c t e dr o c k e t ;d e s i g nt e c h n i q u e s ;i n l e t ;n o z z l e ;g a s g e n e r a t o r 0 引言 固体火箭冲压发动机是第3代冲压发动机。除具 有传统冲压发动机主级比冲高、可提供导弹较远的动力射程且保持高速飞行等性能优势外,因其全固体设计,不仅燃烧稳定可靠,而且突破液体燃料稳定燃烧对于燃烧室的最小尺寸限制,更易于小型化,结构更为简单紧凑,方便贮存和使用维护。所以,被认为是最适合于中等超声速、中远程、小尺寸战术导弹使用的理想高速巡航动力装置。自1965年以来,世界各主要武器大国针对其竞相大力开展了技术研究。 但迄今为止,除前苏联在1965~1967年间研制定型,并成功用于S A -6近程防空导弹外,极少有固体火 箭冲压发动机成功研制和应用案例。特别是自1995年后,针对射程100k m 以上的小尺寸中等超声速超视距空空导弹,欧洲和俄罗斯正在分别大力研制“流星”(M e t e o r )导弹和R -77M 导弹,虽然均历经10余年努力研发,却都迟迟难以定型。不论欧洲等西方发达国家, 即便是继承前苏联衣钵的俄罗斯,历经近半个世纪不懈努力,技术上已经长足进步,却也难以取得研制成功。这究竟是何道理?特别值得深刻反思。 关于冲压发动机的技术发展,国外S o s o u n o v [1] 、W i l s o n [2] 、Wa l t r u p [3] 、F r y [4] 、S t e c h m a n [5] 、B e s s e r [6]和H e w i t t [7]等先后做了阶段性总结和探讨。其中,最具代表性的是在2004年F r y 总结提出的冲压发动机T o p 10 — 142—① 收稿日期:2009-12-28。 基金项目:武器装备预研基金项目(9140A 28030207H K 0332)。 作者简介:徐东来(1970—),男,博士生,主要研究方向为航空宇航推进理论与工程。

火箭发动机原理复习提纲

火箭发动机复习提纲 1、火箭发动机主要组成?工作过程?优、缺点? 2、掌握表征火箭发动机性能的各主要参数的定义、计算公式、影响因素等,如推力(真空推力、特征推力、等效喷气速度)、推力系数、比冲、总冲、特征速度、工作时间、燃烧时间、点火延迟时间、冲量系数等。 1

3、按照推进剂的细微结构分类,双基推进剂和复合推进剂各属于什么推进剂?各自的基本组元?它们稳态燃烧过程的主要区别是什么? 4、推进剂的燃速?常用的燃速公式?推进剂的燃速特性?确定燃速特性的主要方法?燃速与哪些因素有关?何谓燃速的温度敏感系数? 2

5、液体火箭发动机推进剂供应系统的分类?泵压式的开式和闭式循环?各循环的工作原理图? 6、何谓固体推进剂“几何燃烧规律”(或称“平行层燃烧规律”)? 7、试证明喷管工作在完全膨胀( P=a P)状态时产 e 生的推力最大。而为什么高空工作的二、三级喷管采用欠膨胀? 3

8、掌握固体推进剂中双基推进剂的多阶段燃烧模型和复合推进剂的多火焰燃烧模型,以及固体推进剂的侵蚀燃烧现象和产生侵蚀燃烧的机理、判断准则、预防措施等。 9、喷管流动中的主要损失有哪些?产生二相流损失的主要原因? 4

10、掌握固体火箭发动机热力计算(包括燃烧室热力计算和喷管热力计算)的主要任务、计算模型和主要的计算步骤等。 11、何谓平衡压强?试用图解法讨论平衡压强的稳定性条件?为了满足这个稳定性条件,对推进剂燃速特性(如n r=)应有什么要求? ap 12、计算题,以固体火箭发动机性能参数和内弹道 5

性能计算为主,注意以下几点: (1) 熟记固体火箭发动机性能参数计算的一些简单公式(见P28,图2-13)。 (2) 熟记内弹道计算的平衡压强公式,并掌握影响平衡压强的主要因素 (3) 计算中注意公式中各参量的单位及单位的换算,以确保计算结果的正确性。 6

FLUENT软件在固体火箭发动机内流场计算中的应用前景

中国兵工学会火箭导弹专业委员会第十一次学术会议 FLUENT软件在固体火箭发动机 内流场计算中的应用前景 方玉琪魏志军 (北京理工大学机电工程学院,北京100081) 摘要FLUENT作为一个商用软件,它在一般工程技术中具有极高的应用价值。本文首先对 FLUENT软件进行了一些基本的介绍,然后结合固体火箭发动机内流场数值模拟中遇到的问题, 分析了软件中的所采取的一些相应的措施,发现FLUENT能较好的满足固体火箭发动机内流场 的数值模拟,在以后的内流场数值模拟中具有较好的应用前景。 主题词固体火箭发动机,内流场,数值模拟,湍流模型,边界条件 1 引言 近年来,随着计算机技术和计算方法的不断进步,固体火箭发动机内流场数值模拟的工作越来越受到重视。在以往的研究中,由于受数值计算水平的制约,人为的将固体火箭发动机燃烧室和喷管中的流场分开计算,从而不能真实反映装药几何形状对喷管流场的影响。分开计算的模式割裂了二者的有机联系,为了统一计算,首先就要生成一体化的网格。在固体火箭发动机内流场计数值模拟中,还要考虑两相流动、传热、燃烧、辐射等诸多问题。目前,通常的做法是将流动和燃烧、传热等分开考虑,以简化燃烧室内流场研究的数学模型。但是燃气的流动仍然涉及到两相、湍流和化学反应,而且由于三维药柱和潜入喷管的应用,使几何边界和初始边界条件难以确定,再加上药柱燃烧造成了边界移动,使问题更趋复杂。那么,能不能找到一种方法或者软件对其进行综合分析考虑呢?在目前的几种计算软件中,FLUENT作为一种用于模拟具有复杂外形的流体流动以及热传导的计算机程序,能够很好的满足数值模拟的要求,具有较好的应用前景。 2 FLUENT软件简介 FLUENT的软件设计基于“CFD计算机软件群的概念”,不同领域的计算软件组合起来,成为CFD软件群。针对每一种流动的物理问题的特点,采用适合于它的数值解法在计算速度,稳定性和精度等各方面达到最佳,从而高效率地解决各个领域的复杂流动的计算问题。这些不同软件都可以计算流场、传热和化学反应,在各软件之间可以方便地进行数值交换。各种软件采用统一的前后端处理工具,这就省却了科研工作者在计算方法、编程、前后处理等方面投入的重复、低效的劳动,而可以将主要精力和智慧用于物理问题本身的探索上。FLUENT 提供了完全的网格灵活性,可以使用非结构网格,例如二维三角形或四边形网格、三维四面体/六面体/金字塔形网格来解决具有复杂外形的流动。甚至可以用混合型非结构网格。它采用C语言编写,具有很大的灵活性与能力,因此动态内存分配,高效数据结构,灵活的解控 ―169―

火箭发动机原理教学大纲

《火箭发动机原理》课程教学大纲 课程代码:110132307 课程英文名称:Solid Rocket Motor 课程总学时:32 讲课:32 实验:0 上机:0 适用专业:弹药工程与爆炸技术 大纲编写(修订)时间:2017.10 一、大纲使用说明 (一)课程的地位及教学目标 本门课程是弹药工程与爆炸技术专业的一门专业选修课。固体火箭发动机是卫星、火箭、飞机、导弹等产品的动力装置,它在现代科学技术研究,国民经济的发展,人们日常生活的改善等方面有着很大的利用价值,在本专业中对于火箭、导弹或炮弹增程有着极其重要的作用。 通过本课程的学习,学生将达到以下要求: 1.熟练掌握固体火箭发动机的基本结构、工作原理,燃气在喷管与燃烧室内的流动过程,掌握固体火箭发动机内弹道的计算方法。 2.掌握固体火箭发动机的总体结构设计方法。 3.要求学生能将所学知识灵活运用于产品的设计和生活实践当中。 (二)知识、能力及技能方面的基本要求 要求学生理解并掌握《火箭发动机原理》这门课程,使学生对固体火箭发动机有一定的认识。 1.掌握固体火箭发动机原理的主要内容,包括固体火箭发动机的工作原理、固体火箭推进剂以及固体火箭推进剂在燃烧室中的燃烧过程、燃气在喷管中的流动过程、固体火箭发动机性能参数、固体火箭发动机的热力计算、固体火箭发动机的内弹道计算方法等方面的知识。 2.掌握固体火箭发动机设计的主要内容,包括固体火箭发动机的基本结构,主要设计参量的选择,发动机结构的初步设计等。 3.了解固体火箭发动机的应用及发展趋势,并能用所学知识指导在本领域的技术研究和产品的设计。 (三)实施说明 1.教学方法:课堂讲授中重点对固体火箭发动机的基本概念,工作原理和设计方法进行讲解。培养学生的思考能力和分析问题的能力。在讲授中注意采用理论知识与实际应用相结合的方法,提高学生分析问题、解决问题的能力。 2.教学手段:在教学中主要采用电子教案、CAI 课件及多媒体教学系统等教学手段相结合。 (四)对先修课的要求 要求学生先修高等数学、理论力学、材料力学、流体力学、气体动力学、工程热力学、数值分析、机械设计、计算机基础等课程。 (五)对习题课的要求 通过对固体火箭发动机的基本结构与工作原理,固体推进剂的分类,内弹道计算及发动机的结构设计等内容有针对性的布置习题,以巩固和加强所学的理论。 (六)课程考核方式 1.考核方式:考查。 2.考试目标:重点考核学生对固体火箭发动机的基本概念,工作原理和设计方法的理解程度和掌握程度。

固体燃料火箭发动机学习笔记

固体火箭发动机的基本结构:点火装置、燃烧室、装药、喷嘴构成。 固体火箭发动机的工作与空气无关 常见的推进剂有:1.双基推进剂(双基药) 2.复合推进剂(复合药) 3.复合改进双基推进剂(改进双基药)

直接装填! 形式: 自由装填:药柱直接放在燃料室 贴壁浇筑:把燃料直接和燃烧室粘贴在一起(液体发动机发射前现场加注推进剂)固体火箭一旦制造完成即处于待发状态 经过压身或浇注后形成的一定结构形式的装药我们叫他装药或者药柱 药柱的燃烧面积在燃烧过程中随时间变化必须满足一定的规律 完成特定任务所需要的。

装药面积的燃烧规律决定了发动机压强和推力面积的发展规律。 为了满足上述规律需要对装药的表面用阻燃层进行包裹,来控制燃烧面积变化规律。 药柱可以是:当根、多根,也可事实圆孔药,心孔药 燃烧室是一个高压容器! 装药燃烧的工作室。 燃烧时要求要求: 容积、对高温(2000-3000K)高压气体(十几到几十兆帕)的承载能力 与高温燃气直接接触的壳体表面需要采用适当的隔热措施

高温高压燃气的出口 作用: 1.控制燃气流出量保持燃烧室内足够压强。 2.使燃气加速膨胀,形成超声速气流,产生推动火箭前进的反作用推力。

部件作用:进行能量转化 工艺特点: 形状:先收拢后扩张的拉瓦尔喷灌,由收敛段、头部、扩张段、 中小型火箭,锥形喷管(节省成本和时间) 工作时间长、推力大、质量流速大采用高速推进剂的大型火箭采用特制喷管(收敛段和和直线段的母线可能不是直线可能是抛物线双圆弧)仔细设计型面,提高效率 作用:使燃气的流动能够从亚声速加速到超声速流 喉部环境十分恶略,烧蚀沉积现象影响性能(改变喉部尺寸改变性能)。

液体火箭发动机再生冷却槽黏塑性分析

龙源期刊网 https://www.wendangku.net/doc/a113224997.html, 液体火箭发动机再生冷却槽黏塑性分析 作者:杨进慧陈涛金平蔡国飙 来源:《计算机辅助工程》2013年第03期 摘要:采用Robinson黏塑性模型,利用渐近积分法结合大型有限元程序Marc完成液体火箭发动机再生冷却槽的热结构耦合分析.经验证,Robinson黏塑性模型能够很好地模拟内壁材料NARloy-Z高温时的拉伸特性,且在循环载荷下迟滞回环曲线与试验结果符合良好.冷却槽关键点应力分析明确阐释在不同工作阶段内外壁由于材料属性、工况不同导致的应力制约关系;残余应变分析清晰再现冷却槽“狗窝”失效模式及变形情况,同时为定量计算其损伤累积及剩余寿命提供坚实基础. 关键词:再生冷却槽;黏塑性分析;热结构;失效 中图分类号:V434.1文献标志码:B 0引言 液体火箭发动机推力室再生冷却槽两侧极大的温度梯度和压力梯度导致内壁在工作过程中产生很大的塑性变形,随着循环次数的增多,内壁逐渐变形减薄并向燃气侧凸起最后断裂,形成“狗窝”失效破坏[1-2],准确分析上述热力循环载荷下内壁的结构失效过程是推力室失效模式分析及寿命预估的基础. 美国Lewis研究中心设计开展了多种关于再生冷却推力室的试验,首次提出“狗窝”失效模式,试验结果表明,非弹性应变的累积是推力室内壁失效的主要原因[3];考虑推到力室工作 过程中的高温环境,美国格兰研究中心(GRC)应用有限元方法结合Robinson和Freed等黏塑性统一本构方程分析推力室内壁的非线性响应,结果表明采用黏塑性模型进行结构分析能够更精确地预估推力室寿命[4];其中,Robinson模型能够很好地模拟在不同应力状态和高温下合 金的回弹效应,即在硬化阶段后恢复到相应的软化状态,该效应对蠕变失效有至关重要的作用[5].本文采用Robinson黏塑性模型,利用渐近积分法结合大型有限元程序Marc对液体火箭发 动机再生冷却槽进行热结构耦合分析,旨在模拟其在工作过程中的变形情况及失效模式,进行详细的温度场及结构场分析,为进一步的损伤计算及寿命预估提供数据基础. 1数学物理模型 本文采用NASA Lewis研究所试验机作为液体火箭发动机再生冷却槽结构分析的计算算例,对其进行热结构耦合分析.典型的液体火箭发动机推力室壁面结构模型见图1,其外壳材料为镍基合金,衬层材料为铜合金NARloy-Z. 综上所述,Robinson黏塑性模型能够很好地描述冷却槽的失效模式及变形情况.3结论

西工大固体火箭发动机知识点精品总结

一、固体火箭发动机:由燃烧室,主装药,点火器,喷管等部件组成。 工作过程:通过点火器将主装药点燃,主装药燃烧,其化学能转变为热能,形成高温高压燃气,然后通过喷管加速流动,膨胀做功,进而将燃气的热能转化为动能,当超声速气流通过喷管排出时,其反作用力推动火箭飞行器前进。工作原理:1能量的产生过程2热能到射流动能的转化过程 优点:结构简单,使用、维护方便,能长期保持在备战状态,工作可靠性高,质量比高。 缺点:比冲较低,工作时间较短,发动机性能受气温影响较大,可控性能较差,保证装药稳定燃烧的临界压强较高。 二、1.推力是发动机工作时内外表面所受气体压力的合力。F=F 内+F 外 F=mu e +Ae(Pe-Pa) 当发动机在真空中工作时Pa=0.这时的推力为真空推力。 把Pe=Pa 的状态,叫做喷管的设计状态,设计状态下产生的推力叫做特征推力。 2.把火箭发动机动,静推力全部等效为动推力时所对应的喷气速度,称为等效喷气速度u ef 。 3影响喷气速度的因素来自两个方面:a).推进剂本身的性质b) 燃气在喷管中的膨胀程度 3.流量系数的倒数为特征速度C ?,他的值取决于推进剂燃烧产物的热力学特性,即与燃烧温度,燃烧产物的气体常数和比热比K 值有关,而与喷管喉部下游的流动过程无关。 4.推力系数C F 是表征喷管性能的参数,影响推力系数的主要因素是面积比和压强比。当Pe=Pa 时,为特征推力系数,是给定压强比下的最大推力系数,Pa=0时为真空推力系数。 5.发动机的工作时间包括其产生推力的全部时间,即从点火启动,产生推力开始,到发动机排气过程结束,推力下降到零为止。确定工作时间的方法:以发动机点火后推力上升到10%最大推力或其他规定推力的一点为起点,到下降到10%最大推力一点为终点,之间的时间间隔。 6.燃烧时间是指从点火启动,装药开始燃烧到装药燃烧层厚度烧完为止的时间,不包括拖尾段。确定燃烧时间的方法:起点同工作时间,将在推力时间曲线上的工作段后部和下降段前部各做切线,两切线夹角的角等分线与曲线的交点作为计算燃烧时间的终点。 7.总冲是发动机推力和工作时间的乘积。总冲与有效喷气速度和装药量有关,要提高总冲,必须用高能推进剂提高动推力。 8.比冲是燃烧一千克推进剂装药所产生的冲量。提高比冲的主要途径是选择高能推进剂,提高燃烧温度,燃气的平均分子量越小,比冲就越大,比冲随面积比变化的规律和推力系数完全相同。当大气压强减小,比冲增大,真空时达到最大,提高燃烧室压强可增加比冲。 9.在火箭发动机中常用实际值对理论值的比值来表示这个差别。这个比值就叫做设计质量系数,亦发动机冲量系数。 1.推力系数的变化规律:(1)比热比、工作高度一定时,随着喷管面积比的增大,推力系数增先大,当达到某一最大值后,又逐渐减小(2)比热比k 、面积比A e A t 一定时,C F 随着发动机工作高度的增加而增大; 2.最大推力分析:Pc 、At 、Pa 一定时,喷管处于完全膨胀工作状态时所对应的面积比,就是设计的最佳面积比,可获得最大推力; 3.比冲的影响因素:(1)推进剂能量对比冲的影响。能量高,R T f 高,c*高,Is 高; (2)喷管扩张面积比Ae/At 对比冲的影响。在达到特征推力系数前,比冲随喷管扩张面积比的增大而增加。(3) 环境压强Pa 对比冲的影响。Pa 减小,Is 增大;(4) 燃烧室压强Pc 对比冲的影响。当喷管尺寸和工作高度一定时,Pc 越高,u ef 越大。(5) 推进剂初温T 对比冲的影响。比冲随初温的增加而增大。 4.火箭发动机性能参数对飞行器性能的影响: V max =I s lnu (1)发动机的比冲Is 越大,火箭可以达到的最大速度Vmax 也越大,射程就越远。(2)火箭的质量数μ越大,火箭可以达到的最大速度Vmax 也越大.(3) 发动机比冲Is 和火箭的质量数μ可以**理 实c c C =ξ理实s s I I =ξN C F F C c C c ξξξ==理理实实**

飞机发动机原理——冲压喷气发动机

飞机发动机原理——冲压喷气发动机 2006年11月25日 冲压喷气发动机的诞生 早在1913年,法国工程师雷恩·洛兰就提出了冲压喷气发动机的设计,并获得专利。但当时没有相应的助推手段和相应材料,只停留在纸面上。1928年,德国人保罗·施米特开始设计冲压式喷气发动机。最初研制出的冲压发动机寿命短、振动大,根本无法在载人飞机上使用。于是1934年时,施米特和G·马德林提出了以冲压发动机为动力的“飞行炸弹”,于1939年完成了原型。后来这一设计就产生了纳粹德国的V-1巡航导弹。此外纳粹德国还曾试图将冲压喷气发动机用在战斗机上。1941年,特劳恩飞机实验所主任、物理学家欧根·森格尔博士在吕内堡野外进行了该类型发动机的试验,但最终未能产生具有实用意义的发动机型号。 冲压喷气发动机的原理 冲压喷气发动机的核心在于“冲压”两字。 冲压发动机由进气道(也称扩压器)、燃烧室、推进喷管三部组成,比涡轮喷气发动机简单得多。冲压是利用迎面气流进入发动机后减速、提高静压的过程。这一过程不需要高速旋转的复杂的压气机,是冲压喷气发动机最大的优势所在。进气速度为3倍音速时,理论上可使空气压力提高37倍,效率很高。高速气流经扩张减速,气压和温度升高后,进入燃烧室与燃油混合燃烧。燃烧后温度为2000

一2200℃,甚至更高,经膨胀加速,由喷口高速排出,产生推力。因此,冲压发动机的推力与进气速度有关。以3倍音速进气时,在地面产生的静推力可高达200千牛。 冲压喷气发动机原理图 冲压喷气发动机与其他推进方式结合后,衍生了多种有特色的发动机,如火箭/冲压组合发动机、整体式火箭冲压发动机等。 冲压喷气发动机目前分为亚音速、超音速、高超音速三类。 亚音速冲压发动机 亚音速冲压发动机使用扩散形进气道和收敛形喷管,以航空煤油为燃料。飞行时增压比不超过 1.89,飞行马赫数小于 0.5时一般不能正常工作。亚音速冲压发动机用在亚音速航空器上,如亚音速靶机。 超音速冲压发动机

相关文档
相关文档 最新文档