文档库 最新最全的文档下载
当前位置:文档库 › 用proe计算截面模量和梁的抗弯应力

用proe计算截面模量和梁的抗弯应力

用proe计算截面模量和梁的抗弯应力
用proe计算截面模量和梁的抗弯应力

用proe计算截面模量和梁的抗弯应力

关键词:proe计算截面模量proe分析应用

力学抗弯应力计算

前言

计算梁截面的抗弯应力,需要计算梁截面模量。截面模量的计算采用proe计算比较单。

本文以实例介绍用proe计算截面模量的操作,从proe计算的结果,分析proe系统对截面模量的概念和定义,从而对proe计算结果,在实践中可信可用,达到事半功倍的效率。

一.应用实例:

有一简支梁的受力和长度如下,图1

图1

图中简支梁的支点间距L=3000毫米,P=1500 N,作用点在梁的中间处。

梁的横截面图如图2所示:

图2

求在梁的中间点处横截面的抗弯应力。

图2中截面为复合截面,其模量的计算有多种算法,而用proe计算比较简单,高效。下面介绍:因为本例是采用proe计算梁的截面模量,首先在proe的环境下,创建梁的模型。

创建的模型如图3所示。

图3

有了梁的模型,就可以在这个基础,进行截面模量的计算。

二.具体详细的操作如下:

1.打开一个零件模型;*.prt ,如图3.的模型。

2.点击菜单:“分析”-“模型”-在模型上已经创建的剖面基准面,如DTM1,

3.这时再单击“模型”的下拉菜单“剖截面质量属性”令,

4.proe系统就自动计算下述结果:

有了这种操作,才有下面的计算结果。

自动计算下述结果,系统把信息保存在文件名:xsecmass.dat)中,(为了对照说明,把全文录入)

面积= 7.8600000e+02 毫米^2

根据_坐标边框确定重心:

X Y 6.5623410e+00 0.0000000e+00 毫米

相对于_坐标系边框之惯性. (毫米^4)

惯性张量

Ixx Ixy 9.1825500e+04 0.0000000e+00

Iyx Iyy 0.0000000e+00 7.8196800e+05

惯性极坐标力矩8.7379350e+05 毫米^4

重心的惯性(相对_ 坐标系边框) (毫米^4)

惯性张量

Ixx Ixy 9.1825500e+04 0.0000000e+00

Iyx Iyy 0.0000000e+00 7.4811945e+05

区域相对主轴的惯性力矩:(毫米^4)

I1 I2 9.1825500e+04 7.4811945e+05

惯性极坐标力矩8.3994495e+05 毫米^4

从_ 定位至主轴的旋转矩阵:

1.00000 0.00000

0.00000 1.00000

从_ 定位至主轴的一个旋转角(度):

关于z 轴0.000

相对主轴的回旋半径:

R1 R2 1.0808623e+01 3.0851352e+01 毫米

截面模数和相应点:

模量 1 2 坐标

关于轴1: 3.33911e+03 毫米^3 -1.5623e+00 -2.7500e+01 毫米

3.33911e+03 毫米^3 -1.5623e+00 2.7500e+01 毫米

关于轴2: 1.27748e+04 毫米^3 -5.8562e+01 7.5000e+00 毫米

1.39999e+04 毫米^3 5.3438e+01 7.5000e+00 毫米

三.理解和应用上述的计算结果。

在上述数据信息中,列举了好多力学中的术语和单位和概念,这些概念与力学中的概念完全相同,必须有力学的基础。为了更好的理解上述数据的定义,proe在计算前就已经对各个对象变量,进行了准确详细的定义。这些定义就在文档中:

这个文档的名称为:《剖面的计算质量属性列表》(利用“帮助”查到这个文档),对模量的计算有如下的定义:

“剖面模量和对应点(section moduli and the corresponding ponts)-对每一个主轴(例如,轴1,轴2)进行计算,其计算方法是:(加注:此句不是直译法)用关于所选轴的面积惯矩除以剖面上距所选轴最远的点到轴之间的距离。在截平面上沿直交的主轴的这些点具有最小(多数是负的)和最高(多数是正的)坐标值。”

根据这段文本的主要内容可以理解为:

1 模量的存在必须有相应的主轴;

2. 模量的计算求得:面积惯性矩除以点到轴的距离;

3. 点到轴的距离,是在剖面上距所选轴最远的点到轴

的距离;

4. 在截平面上沿直交的主轴的这些点,具有最小和最

高的两个点,而面积惯性矩只有一个,分别用最小

和最高的去除同一个面积惯性矩,所以得到两个关

于轴的模量,所以在列表中关于轴1和轴2分别各

有两个模量。

在这这种的理解基础上,可参考图4如下

图4

关于“模量”的概念:模量又称“抗弯截面系数”,其属性特点:是只决定几何形状和几

何尺寸的的几何量,常以Wz表示,它的存在条件:截面必须对于

某中性轴而言,才有模量。

图4中的轴1和轴2是proe系统中自动计算和自动设置的轴1和轴2,为了看得明显,把它加大和加红。对于轴2有两个:

其中:1.27748e+04毫米^3=12774.8毫米^3(在截平面上沿直交的主轴的这些点具有

最小(多数是负的)坐标值,计算而得)

1.39999e+04毫米^3=13999.9毫米^3(在截平面上沿直交的主轴的这些点具有

最高(多数是正的)坐标值。计算而得)四.根据已经算的模量利用力学知识求梁中间处的抗弯应力。

图1中简支梁的支点间距L=3000毫米,P=1500 N,作用点在梁的中间处。

为便于计算,引用符号W轴2=1.3999e+04MM^3= 1.39999*10^4=13999.9MM^3

简支梁在中间处受力P=150 KG=1500 N

简支梁中间处的距离:L1=L/2=1500 MM,

简支梁中间处最大弯矩M max=1500 * 1500 N -MM

简支梁中间处的最大抗弯应力=1500 *1500 N –MM / 13999.9 MM^3

=161 N / MM^2=161Mpa

到此为止,利用了proe计算了梁的截面模量,并从proe“帮助”中得到了截面模量的定义,从proe的计算结果中,得到了实际应用。利用力学求抗弯应力公式算出了截面抗弯的正应力。从而确定了梁在这种情况安全强度。

弹性模量E和泊松比

00 EA A P == ε σε 弹性模量E 和泊松比μ的测定 拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为: 式中 A 0为零件的横截面积。 由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。横向应变与纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。 因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比μ。 (一) (一) 试验目的 1. 1.用电测方法测定低碳钢的弹性模量E 及泊松比μ; 2. 2.验证虎克定律; 3. 3.掌握电测方法的组桥原理与应用。 (二) (二) 试验原理 1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为: 0EA PL L ?= ?(1) 若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E 。 (2) 由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即 (3) 所以(2)成为: (4) 0)(A L PL E ???= )(L L ??= ?εε ???= 10A P E

弹性模量计算方法

用户登录 新用户注册Array大学物理实验 第一层次 预备性实验 基础性实验 第二层次 综合与设计1 综合与设计2 第三层次 研究与创新 自学物理实验 近代物理实验 专业物理实验 光电子技术实验 传感器技术实验 单片机应用实验 物理光学实验 应用光学实验 现代光学实验

弯曲法等。 用力F作用在一立方形物体的上面,并使其下面固定(如图一),物体将发生 形变成为斜的平行六面体,这种形变称为切变,出现切变后,距底面不同距离 处的绝对形变不同(AA'>BB'),而相对形变则相等,即 (6-3) 式中称为切变角,当值较小时,可用代替,实验表明,一定限度内切 变角与切应力成正比,此处S为立方体平行于底的截面积,现以符号 表 示切应力 ,则 (6-4) 比例系数G称切变模量。 测量切变模量的方法有静态扭转法、摆动法。 实验目的 1. 掌握测量固体杨氏弹性模量的一种方法。 2. 掌握测量微小伸长量的光杠杆法原理和仪器的调节使用。 3. 学会一种数据处理方法——逐差法。 实验仪器 杨氏模量仪、尺读望远镜、光杠杆、水准仪、千分尺、游标卡尺(精度0.02m m )及1kg砝码9个。 实验的详细装置如图1所示。其中尺读望远镜由望远镜和标尺架组成,望 远镜的仰角可由仰角螺钉调节,望远镜的目镜可以调节,还配有调焦手轮。杨 氏模量仪是一个较大的三脚架,装有两根平行的立柱,立柱上部横梁中央可以 固定金属丝,立柱下部架有一个小平台,用于架设光杠杆。小平台的位置高低 可沿立柱升降、调节、固定。三脚架的三个脚上配有三个螺丝,用于调节小平 台水平。 光杠杆如图2所示,将一个小反射镜装在一个三脚架上,前两脚和镜子同

弹性模量和刚度关系

1、弹性模量: (1)定义 弹性模量:材料在弹性变形阶段内,正应力和对应的正应变的比值。 材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。 “弹性模量”是描述物质弹性的一个物理量,是一个总称,包括“杨氏模量”、“剪切模量”、“体积模量”等。所以,“弹性模量”和“体积模量”是包含关系。 一般地讲,对弹性体施加一个外界作用(称为“应力”)后,弹性体会发生形状的改变(称为“应变”),“弹性模量”的一般定义是:应力除以应变。例如: 线应变——对一根细杆施加一个拉力F,这个拉力除以杆的截面积S,称为“线应力”,杆的伸长量dL除以原长L,称为“线应变”。线应力除以线应变就等于杨氏模量E=( F/S)/(dL/L) 剪切应变——对一块弹性体施加一个侧向的力f(通常是摩擦力),弹性体会由方形变成菱形,这个形变的角度a称为“剪切应变”,相应的力f除以受力面积S称为“剪切应力”。剪切应力除以剪切应变就等于剪切模量G=( f/S)/a 体积应变——对弹性体施加一个整体的压强p,这个压强称为“体积应力”,弹性体的体积减少量(-dV)除以原来的体积V称为

“体积应变”,体积应力除以体积应变就等于体积模量: K=P/(-dV/V) 在不易引起混淆时,一般金属材料的弹性模量就是指杨氏模量,即正弹性模量。单位:E(弹性模量)吉帕(GPa) (2)影响因素 弹性模量是工程材料重要的性能参数,从宏观角度来说,弹性模量是衡量物体抵抗弹性变形能力大小的尺度,从微观角度来说,则是原子、离子或分子之间键合强度的反映。 凡影响键合强度的因素均能影响材料的弹性模量,如键合方式、晶体结构、化学成分、微观组织、温度等。因合金成分不同、热处理状态不同、冷塑性变形不同等,金属材料的杨氏模量值会有5%或者更大的波动。 但是总体来说,金属材料的弹性模量是一个对组织不敏感的力学性能指标,合金化、热处理(纤维组织)、冷塑性变形等对弹性模量的影响较小,温度、加载速率等外在因素对其影响也不大,所以一般工程应用中都把弹性模量作为常数。 (3)意义 弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。

弹性模量的测定整理

弹性模量的定义及其相互关系 材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量(Elastic Modulus )。弹性模量的单位是GPa 。“弹性模量”是描述物质弹性的一个物理量,是一个总称,包括“杨氏模量”、“剪切模量”、“体积模量”等。所以,“弹性模量”和“体积模量”是包含关系。 一般地讲,对弹性体施加一个外界作用(称为“应力”)后,弹性体会发生形状的改变(称为“应变”),“弹性模量”的一般定义是:应力除以应变。 线应变:对一根细杆施加一个拉力F ,这个拉力除以杆的截面积S ,称为“线应力”,杆的伸长量dL 除以原长L ,称为“线应变”。线应力除以线应变就等于杨氏模量E=( F/S)/(dL/L)。 剪切应变:对一块弹性体施加一个侧向的力f (通常是摩擦力),弹性体会由方形变成菱形,这个形变的角度a 称为“剪切应变”,相应的力f 除以受力面积S 称为“剪切应力”。剪切应力除以剪切应变就等于剪切模量G=( f/S)/a 。 体积应变:对弹性体施加一个整体的压强P ,这个压强称为“体积应力”,弹性体的体积减少量(-dV)除以原来的体积V 称为“体积应变”,体积应力除以体积应变就等于体积模量: K=P/(-dV/V)。 意义:弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。弹性模量E 是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。 说明:弹性模量只与材料的化学成分有关,与其组织变化无关,与热处理状态无关。各种钢的弹性模量差别很小,金属合金化对其弹性模量影响也很小。 泊松比(Poisson's ratio ),以法国数学家 Simeom Denis Poisson 为名,是横向应变与纵向应变之比值它是反映材料横向变形的弹性常数。 在材料的比例极限内,由均匀分布的纵向应力所引起的横向应变与相应的纵向应变之比的绝对值。比如,一杆受拉伸时,其轴向伸长伴随着横向收缩(反之亦然),而横向应变 e' 与轴向应变 e 之比称为泊松比ν。 泊松比ν与杨氏模量E 及剪切模量G 之间的关系 ()()??? ? ??+=+==ννν1G 2orE 12E orG 1-G 2E 材料弹性模量的测试方法 弹性模量的测试有三种方法:静态法、波传播法、动态法。 静态法测试的是材料在弹性变形区间的应力-应变,静态法指在试样上施加一恒定的弯曲应力,测定其弹性弯曲挠度,根据应力和应变计算弹性模量。静态法属于对试样具有破坏性质的一种方法,不具有重复测试的机会,且测试精度低,测试结果波动大。另外,静态法只能对材料的杨氏模量进行测定,不能测试材料的剪切模量及泊松比。 其主要缺点是: 1.应力加载的速度会影响弹性模量的数值 2.脆性材料如陶瓷无法测量 3.不能在高温下测试.在高温下,材料发生蠕变,使得应变测试值增大。 超声波法:测试超声波在试样中的传播时间及试样长度得到纵向或横向传播速度,然后计算

关于土体的弹性模量

关于土体的弹性模量、压缩模量与变形模量 2013-05-30 15:39:28| 分类:自然科学|举报|字号订阅根据土体学推算的结果,在弹性阶段,E=Eo=Es(1-2μ^2/(1-μ))。但在实际工程中,经常发现有弹性模量大于压缩模量的情况,并有经验说是E=(2~5)·Es,且有试验数据,但是没有理论上的推导,对试验数据也未实际去研究过。从网络上收集这方面的论述,本篇进行简要总结,并适当修改,今后再逐步去积累这方面的经验。 论述零(关于变形模量和压缩模量的关系,土力学教材) 土的变形模量和压缩模量,是判断土的压缩性和计算地基压缩变形量的重要指标。为了建立变形模量和压缩模量的关系,在地基设计中,常需测量土的侧压力系数ξ 和侧膨胀系数μ(泊松比)。侧压力系数ξ:是指侧向压力δx 与竖向压力δz 之比值,即: ξ =δx/δz 土的侧膨胀系数μ (泊松比):是指在侧向自由膨胀条件下受压时,侧向膨胀的应变εx 与竖向压缩的应变εz 之比值,即μ=εx/εz 。根据材料力学广义胡克定律推导求得ξ 和μ 的相互关系,ξ=μ/(1-μ)或μ=ε/(1 +ε),土的侧压力系数可由专门仪器测得,但侧膨胀系数不易直接测定,可根据土的侧压力系数,按上式求得。 在土的压密变形阶段,假定土为弹性材料,则可根据材料力学理论,推导出变形模量E0 和压缩模量Es 之间的关系。令β=1-2u*u/(1-u),则

Eo=βEs 。 当μ =0 ~0.5 时,β = 1 ~0 ,即Eo/Es 的比值在0 ~ 1 之间变化,即一般Eo 小于Es。但很多情况下Eo/Es 都大于1。其原因为:一方面是土不是真正的弹性体,并具有结构性;另一方面就是土的结构影响;三是两种试验的要求不同),μ、β 的理论换算值: 土的种类及其对应的μ、β 值: 碎石土0.15 ~0.20 ,0.95~0.90 砂土0.20 ~0.25 ,0.90 ~0.83 粉土0.23 ~0.31 ,0.86 ~0.726 粉质粘土0.25~0.35 ,0.83 ~0.62 粘土0.25 ~0.40 ,0.83 ~0.47 注:以上E0 与Es 之间的关系是理论关系。 E --弹性模量;Es --压缩模量;Eo--变形模量。由于土的侧膨胀系数μ(泊松比)是弹性力学的参数,土通常是弹塑性材料,所以μ>0.5 时,它就不能再成为泊松比了。 论述一(实际遇上的情况) 变形模量的定义在表达式上和弹性模量是一样的E=σ/ε ,对于变形模量ε是指应变,包括弹性应变εe和塑性应变εp。对于弹性模量而言,ε 就是指εe(计算变形模量时,应变ε 包括了弹性应变和塑性应变)。 岩土的弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量,即:弹性模量>压缩模量>变形模量。弹性模量也叫杨氏模量(岩土体在弹性限度内应力与应变的比值),压缩模量一般是有侧限的,杨氏模量

强度-刚度--弹性模量区别

强度-刚度--弹性模量区别强度定义: 1、材料、机械零件和构件抵抗外力而不失效的能力。强度包括材料强度和结构强度两方面。强度问题有狭义和广义两种涵义。狭义的强度问题指各种断裂和塑性变形过大的问题。广义的强度问题包括强度、刚度和稳定性问题,有时还包括机械振动问题。强度要求是机械设计的一个基本要求。 材料强度指材料在不同影响因素下的各种力学性能指标。影响因素包括材料的化学成分、加工工艺、热处理制度、应力状态,载荷性质、加载速率、温度和介质等。 按照材料的性质,材料强度分为脆性材料强度、塑性材料强度和带裂纹材料的强度。①脆性材料强度:铸铁等脆性材料受载后断裂比较突然,几乎没有塑性变形。脆性材料以其强度极限为计算强度的标准。强度极限有两种:拉伸试件断裂前承受过的最大名义应力称为材料的抗拉强度极限,压缩试件的最大名义应力称为抗压强度极限。②塑性材料强度:钦钢等塑性材料断裂前有较大的塑性变形,它在卸载后不能消失,也称残余变形。塑性材料以其屈服极限为计算强度的标准。材料的屈服极限是拉伸试件发生屈服现象(应力不变的情况下应变不断增大的现象)时的应力。对于没有屈服现象的塑性材料,取与0。2%的塑性变形相对应的应力为名义屈服极限,用σ0。2表示。③带裂纹材料的强度:常低于材料的强度极限,计算强度时要考虑材料的断裂韧性(见断裂力学分析)。对于同一种材料,采用不同的热处理制度,则强度越高的断裂韧性越低。 按照载荷的性质,材料强度有静强度、冲击强度和疲劳强度。材料在静载荷下的强度,根据材料的性质,分别用屈服极限或强度极限作为计算强度的标准。材料受冲击载荷时,屈服极限和强度极限都有所提高(见冲击强度)。材料受循环应力作用时的强度,通常以材料的疲劳极限为计算强度的标准(见疲劳强度设计)。此外还有接触强度(见接触应力)。 按照环境条件,材料强度有高温强度和腐蚀强度等。高温强度包括蠕变强度和持久强度。当金属承受外载荷时的温度高于再结晶温度(已滑移晶体能够回复到未变形晶体所需要的最低温度)时,塑性变形后的应变硬化由于高温退火而迅速消除,因此在载荷不变的情况下,变形不断增长,称为蠕变现象,以材料的蠕变极限为其计算强度的标准。高温持续载荷下的断裂强度可能低于同一温度下的材料拉伸强度,以材料的持久极限为其计算强度的标准(见持久强度)。此外,还有受环境介质影响的应力腐蚀断裂和腐蚀疲劳等材料强度问题。 结构强度指机械零件和构件的强度。它涉及力学模型简化、应力分析方法、材料强度、强度准则和安全系数。 按照结构的形状,机械零件和构件的强度问题可简化为杆、杆系、板、壳、块和无限大体等力学模型来研究。不同力学模型的强度问题有不同的力学计算方法。材料力学一般研究杆的强度计算。结构力学分

弹性模量E 和泊松比μ的测定

00EA A P ==ε σε弹性模量E 和泊松比μ的测定 拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为: 式中 A 0为零件的横截面积。 由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。横向应变与纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。 因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比μ。 (一) 试验目的 1.用电测方法测定低碳钢的弹性模量E 及泊松比μ; 2.验证虎克定律; 3.掌握电测方法的组桥原理与应用。 (二) 试验原理 1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为: 0EA PL L ?= ? (1) 若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E。 (2) 由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即 (3) 所以(2)成为: (4) 式中: ΔP——载荷增量,kN; A 0-----试件的横截面面积,cm 为了验证力与变形的线性关心,采用增量法逐级加载,分别测量在相同载荷增量 ΔP 0 )(A L PL E ???=0 ) (L L ??=?εε ???=10A P E

拉伸法测弹性模量实验报告

大连理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 5 实验台号 实验时间 2008 年 11 月 11 日,第12周,星期 二 第 5-6 节 实验名称 拉伸法测弹性模量 教师评语 实验目的与要求: 1. 用拉伸法测定金属丝的弹性模量。 2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。 3. 学会处理实验数据的最小二乘法。 主要仪器设备: 弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器 实验原理和内容: 1. 弹性模量 一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。 单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。 有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即 l l ?=E S F 其中的比例系数 l l S F E //?= 称为该材料的弹性模量。 性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。

实验中测定E , 只需测得F 、S 、l 和l ?即可, 前三者可以用常用方法测得, 而l ?的数量级很小, 故使用光杠杆镜尺法来进行较精确的测量。 2. 光杠杆原理 光杠杆的工作原理如下: 初始状态下, 平面镜为竖直状态, 此时标尺读数为n 0。 当金属丝被拉长l ?以后, 带动平面镜旋转一角度α, 到图中所示M ’位置; 此时读得标尺读数为n 1, 得到刻度变化为01n n n -=?。 Δn 与l ?呈正比关系, 且根据小量忽略及图中的相似几何关系, 可以得到 n B b l ??= ?2 (b 称为光杠杆常数) 将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到 n b D FlB E ?= 2 8π (式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。) 根据上式转换, 当金属丝受力F i 时, 对应标尺读数为n i , 则有 28n F bE D lB n i i +?= π 可见F 和n 成线性关系, 测量多组数据后, 线性回归得到其斜率, 即可计算出弹性模量E 。 . 用望远镜和标尺测量间距B : 已知量: 分划板视距丝间距p , 望远镜焦距f 、转轴常数δ 用望远镜的一对视距丝读出标尺上的两个读数N1、N2, 读数差为ΔN 。 在几何关系上忽略数量级差别大的量后, 可以得到 N p f x ?= , 又在仪器关系上, 有x=2B , 则N p f B ??=21 , (100=p f )。 由上可以得到平面镜到标尺的距离B 。

弹性模量定义与公式

弹性模量 开放分类: 弹性模量”的一般定义是:应力除以应变,即弹性变形区的应力一应变曲线的斜率:其中 入 是弹性模量,【stress 应力】是引起受力区变形的力,【 strain 应变】是应力引起的变化与 物体原始状态的比,通俗的讲对弹性体施加一个外界作用, 弹性体会发生形状的改变称为 应 变”材料在弹性变形阶段,其应力和应变成正比例关系(即胡克定律),其比例系数称为 弹性模量。弹性模量的单位是达因每平方厘米。 弹性模量”是描述物质弹性的一个物理量, 是一个总称,包括 杨氏模量”、剪切模量”、体积模量”等。所以, 弹性模量”和体积模量” 是包含关系。 基本信息? 其他外文名:Elastic Modulus 类型:定律 目录 定义/弹性模量? 定义为理想材料在小形变时应力与相应的应变之比。 中文名:弹性模量 定义:应力除以应变 混凝土弹性模量测定仪 弹性模量modulusofelasticity ,又称弹性系数,杨氏模量。 弹性材料的一种最重要、最具特征的力学性质。是物体变形难易程度的表征。用

弹性模量是工程材料重要的性能参数, 从宏观角度来说,弹性模量是衡量物体抵抗能力大小 的尺度,从微观角度来说,则是原子、或之间键合强度的反映。凡影响键合强度的因素均能 影响材料的弹性模量, 如键合方式、、、微观、温度等。因合金成分不同、热处理状态不同、 根据不同的受力情况,分别有相应的 ?(杨氏模量)、?(刚性模量)、?等。它是一个材料常数, 表征材料抵抗弹性变形的能力,其数值大小反映该材料弹性变形的难易程度。 对一般材料而言,该值比较稳定,但就高聚物而言则对温度和加载速率等条件的依赖性较明 显。 对于有些材料在弹性范围内应力 -应变曲线不符合直线关系的,则可根据需要可以取切线弹 性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。 线应变/弹性模量? K ?问融禅鬥的力学性播£四 a' 1 n K i 、 tTr r \ 1 J $ 弹性模量? 对一根细杆施加一个拉力 F ,这个拉力除以杆的截面积 S,称为“线应力”,杆的伸长量 dL 除以原长L ,称为“线应变”。线应力除以线应变就等于 E=(?F/S )/(dL/L ) 剪切应变: 对一块弹性体施加一个侧向的力 f (通常是摩擦力),弹性体会由方形变成菱形,这个形变 的角度a 称为“剪切应变”,相应的力 f 除以受力面积S 称为“剪切应力”。剪切应力除以 剪切应变就等于剪切模量 G=(?f/S )/a 体积应变/弹性模量? 对弹性体施加一个整体的压强 p ,这个压强称为“体积应力”,弹性体的体积减少量 (-dV ) 除以原来的体积 V 称为“体积应变”,体积应力除以体积应变就等于体积模量 :?K=P/(-dV/V ) 在不易引起混淆时,一般金属材料的弹性模量就是指杨氏模量,即。 单位:E (弹性模量)兆帕(MPa 意义/弹性模量? 冷塑性变形不同等,金属材料的杨氏模量值会有 5%或者更大的波动。但是总体来说,金属 材料的弹性模量是一个对组织不敏感的力学性能指标,合金化、热处理(纤维组织)、冷塑 性变形等对弹性模量的影响较小, 、加载速率等外在因素对其影响也不大, 所以一般工程应

弹性模量定义与公式

弹性模量 开放分类:基本物理概念工程力学物理学自然科学 “弹性模量”的一般定义是:应力除以应变,即弹性变形区的应力-应变曲线的斜率:其中λ 是弹性模量,【stress应力】是引起受力区变形的力,【strain应变】是应力引起的变化与 物体原始状态的比,通俗的讲对弹性体施加一个外界作用,弹性体会发生形状的改变称为“应 变”。材料在弹性变形阶段,其应力和应变成正比例关系(即胡克定律),其比例系数称为 弹性模量。弹性模量的单位是达因每平方厘米。“弹性模量”是描述物质弹性的一个物理量, 是一个总称,包括“杨氏模量”、“剪切模量”、“体积模量”等。所以,“弹性模量”和“体积模量” 是包含关系。 编辑摘要 基本信息编辑信息模块 中文名:弹性模量其他外文名:Elastic Modulus 定义:应力除以应变类型:定律 定义/弹性模量编辑 混凝土弹性模量测定仪图册 弹性模量modulusofelasticity,又称弹性系数,杨氏模量。 弹性材料的一种最重要、最具特征的力学性质。是物体变形难易程度的表征。用E表示。

定义为理想材料在小形变时应力与相应的应变之比。 根据不同的受力情况,分别有相应的拉伸弹性模量(杨氏模量)、剪切弹性模量(刚性模量)、体积弹性模量等。它是一个材料常数,表征材料抵抗弹性变形的能力,其数值大小反映该材料弹性变形的难易程度。 对一般材料而言,该值比较稳定,但就高聚物而言则对温度和加载速率等条件的依赖性较明显。 对于有些材料在弹性范围内应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。 线应变/弹性模量编辑 弹性模量图册 对一根细杆施加一个拉力F,这个拉力除以杆的截面积S,称为“线应力”,杆的伸长量dL 除以原长L,称为“线应变”。线应力除以线应变就等于杨氏模量E=( F/S)/(dL/L) 剪切应变: 对一块弹性体施加一个侧向的力f(通常是摩擦力),弹性体会由方形变成菱形,这个形变的角度a称为“剪切应变”,相应的力f除以受力面积S称为“剪切应力”。剪切应力除以剪切应变就等于剪切模量G=( f/S)/a 体积应变/弹性模量编辑 对弹性体施加一个整体的压强p,这个压强称为“体积应力”,弹性体的体积减少量(-dV)除以原来的体积V称为“体积应变”,体积应力除以体积应变就等于体积模量: K=P/(-dV/V) 在不易引起混淆时,一般金属材料的弹性模量就是指杨氏模量,即正弹性模量。 单位:E(弹性模量)兆帕(MPa) 意义/弹性模量编辑 弹性模量是工程材料重要的性能参数,从宏观角度来说,弹性模量是衡量物体抵抗弹性变形能力大小的尺度,从微观角度来说,则是原子、离子或分子之间键合强度的反映。凡影响键

四点弯曲弹性模量及弯曲应变计算公式

图1 四点弯曲的剪力图和弯矩图 图1中l 为力臂,l s 为下跨距。 经过推导(具体推导过程详见材料力学教科书),跨距中点位置(l s /2)试样材料的位移y (l s /2)为: EI l l l F l y s s 48)43()2(22-= (1) 加载压头位置(l )试样材料的位移y (l )为: EI l l l F l y s 12)43()(2 -= (2)

根据公式(1),如果是四点1/4弯曲(对应于上跨距为下跨距l s 的1/2),对于矩形横截面样品,跨距中点位置位移y (ls/2)为: 3 22 2 641148)43()2(bd Fl EI l l l F l y s s s =-= (3) 对应,四点1/4弯曲,杨氏模量E 的计算公式为: 3 3 6411bd l y F E s ? = (4) 对应,四点1/4弯曲,试样弯曲应变计算公式为: 21148s l dy E = =σ ε (5) 公式(4)、(5)中y 为跨距中点位置位移。 同样,根据公式(1),如果是四点1/3弯曲(上跨距为下跨距的1/3),对于矩形横截面样品,跨距中点位置位移y (ls/2)为: 3 2 221082348)43()2(bd Fl EI l l l F l y s s s =-= (6) 对应,四点1/3弯曲,杨氏模量E 的计算公式为: 3 3 10823bd l y F E s ?= (7) 对应,四点1/3弯曲,试样弯曲应变计算公式为:

223108s l dy E = =σ ε (8) 公式(7)、(8)中y 为跨距中点位置位移。 根据公式(2),如果是四点1/4弯曲,l /l s =1/4,对于矩形横截面样品,加载压头位置(l s /4)试样位移为: 3 38bd E Fl y s ?= (9) 对应,四点1/4弯曲,杨氏模量E 的计算公式为: 3 38bd l y F E s ? = (10) 对应,四点1/4弯曲,试样材料弯曲应变的计算公式为: 2 6s l dy E ==σ ε (11) 公式(10)、(11)中y 为样品加载支点位置位移。 同样,根据公式(2),如果是四点1/3弯曲,对于矩形横截面样品,加载压头(l /ls =1/3)位置试样位移为: 3 3275bd E Fl y s ?= (12) 对应,四点1/3弯曲,杨氏模量E 的公式为:

应力应变弹性模量

应力应变弹性模量 应力:又称内力的集度,即单位面积上的“内力”,单位通常为MPa。其垂直于截面方向的分量称为“正应力”或“法向应力”;相切于截面的分量称为“剪应力”或“切应力”。它是反应物体在一点处受力程度的量。 应变:又称为“相对变形”,没有单位。物体由于外因(荷载、温度变化等)使它的几何形状和尺寸发生相对改变的物理量。物体某线段单位长度内的形变(伸长或缩短),即线段长度的改变与线段原长之比,称为“正应变”或“线应变”,用“ε”表示;两相交线段所夹角度的改变,称为“切应变”或“角应变”,用“γ”表示。六面体形状的单元体,其形变可分为六个独立分量,即三个线应变(εx、εy、εz)和三个角应变(γx、γy、γz)。变形后单元体积元素的改变值与原单元体积的比值称为“体积应变”。 弹性模量:单位为MPa(或牛顿/平方米),在弹性变形范围内,其应力与变形之间保持线性函数关系,即服从虎克定律。它是表征晶体中原子间结合力强弱的物理量,是组织结构不敏感参数。 弹性模量是材料的固有属性,弹性模量与材料强度的关系,混凝土的弹性模量随强度等级的增大而增大,而钢筋的弹性模量则相反,弹性模量的测量等都有待认真分析。

弹性模量(杨氏模量)是弹性材料的一种最重要、最具特征的力学性质。是物体弹性t变形难易程度的表征。用E表示。定义为理想材料有小形变时应力与相应的应变之比。E以单位面积上承受的力表示,单位为牛/米^2。模量的性质依赖于形变的性质。剪切形变时的模量称为剪切模量,用G表示;压缩形变时的模量称为压缩模量,用K表示。模量的倒数称为柔量,用J表示。————————————————————————弹性模量描述材料的抗应变或应力形变后恢复原形的能力。 拼音:tanxingmoliang 英文名称:modulusofelasticity 说明:又称杨氏模量。弹性材料的一种最重要、最具特征的力学性质。是物体弹性t变形难易程度的表征。用E表示。定义为理想材料有小形变时应力与相应的应变之比。E以单位面积上承受的力表示,单位为牛/米^2。模量的性质依赖于形变的性质。剪切形变时的模量称为剪切模量,用G表示;压缩形变时的模量称为压缩模量,用K表示。模量的倒数称为柔量,用J表示。拉伸试验中得到的屈服极限бb和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变形的能力,为了表示材料在弹性范围内抵抗变形的难易程度,在实际工程结构中,材料弹性模量E的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变形量来判断其刚度的。一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中A0为零件的横截面积。由上式可见,要想提高零件的刚度E A0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。因此,构件的理论分析和设计计算来说,弹性模量E是经常要用到的一个重要力学性能指标。在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。弹性模量在比例极限内,材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比,用牛/米^2表示1定义拼音:tanxingmoliang 英文名称:Elastic Modulus, 一般地讲,对弹性体施加一个外界作用(称为“应力”)后,弹性体会发生形状的改变(称为“应变”),“弹性模量”的一般定义是:应力除以应变。例如: 线应变—— 对一根细杆施加一个拉力F,这个拉力除以杆的截面积S,称为“线应力”,杆的伸长量dL除以原长L,称为“线应变”。线应力除以线应变就等于杨氏模量E=( F/S)/(dL/L) 剪切应变—— 对一块弹性体施加一个侧向的力f(通常是摩擦力),弹性体会由方形变成菱形,这个形变的角度a 称为“剪切应变”,相应的力f除以受力面积S称为“剪切应力”。剪切应力除以剪切应变就等于剪切模量 G=( f/S)/a 体积应变—— 对弹性体施加一个整体的压强p,这个压强称为“体积应力”,弹性体的体积减少量(-dV)除以原来的体积V称为“体积应变”,体积应力除以体积应变就等于体积模量: K=P/(-dV/V)

(整理)变形模量、弹性模量、压缩模量的关系.

变形模量的定义在表达式上和弹性模量是一样的E=σ/ε,对于变形模量ε是指应变,包括弹性应 变ε e 和塑性应变ε p ,对于弹性模量而言,ε就是指εe(计算变形模量时,应变ε包括了弹性应变和 塑性应变)。 岩土的弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。弹性模量>压缩模量>变形模量。 弹性模量也叫杨氏模量(岩土体在弹性限度内应力与应变的比值)压缩模量是有侧限的,杨氏模量是无侧限的。同样的土体,同样的荷载,有侧限的土体应变小,所以压缩模量更大才对。这只是弹性理论上的关系,对土体这种自然物不一定适用。土体计算中所用的称为“弹性模量”不一定是在弹性限度内。E——弹性模量;Es——压缩模量;Eo——变形模量。 弹性模量=应力/弹性应变,它主要用于计算瞬时沉降。 压缩模量和变形模量均=应力/总应变。压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出的,而变形模量则是通过现场的原位载荷试验得出的,它是无侧限的。弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。地堪报告中,一般给出的是土的压缩模量Es与变形模量Eo,而一般不会给出弹性模量E。 数值模拟中一般用Eo,E (50) ,达到峰值应力(应变)50%时的割线模量。 Es(勘查报告中提供),有侧限,E=2.0~5.0Es(看别人这么弄的)。具体请查阅资料。 Eo应该是变形模量,E是弹性模量,Es是压缩模量,弹性模量与压缩模量应该有上百倍的关系吧,不应该只有五倍,一般e =3~5 Es ;根据结果调整参数;问题是地质报告上只会提供压缩模量; 工程上,土的弹性模量就是指变形模量,因为土发生弹性变形的时间非常短,变形模量与压缩模量是一个量级,但是由于土体的泊松比小于0.5,所以土的变形模量(弹性模量)总是小于压缩模量的。在钱家欢主编的《土力学》P86中有公式:E = Es(1-2v^2/(1-v)) Es为变形模量,E为变形模量(弹性模量)。 上边的说法有点问题呀。变形模量与压缩模量之间有换算关系。E0=〔1-2u*u/(1-u)〕Es,而不是弹性模量与压缩模量之间有换算关系,弹性模量E一般比E0,ES要大很多的。一般要大一个数量级的。再者土体进行弹性的数值模拟时要取的是那一个参数。一般工程地质报告中只提供一个Es。 可见,数值计算中,有两种取法: 1)一种是按弹性理论推出的弹性模量与压缩模量的关系E = Es(1-2v^2/(1-v)),可以计算出所需要的弹性模量; 2)就是根据经验取E=2.0~5.0Es,反复试算确定弹模;两种方法各有优点:第一种可以很方便的算出弹模,但与实际情况的弹模有一定的差别;第二种需要试算多次才能找到所需要的弹模,但比较符合实际情况; E=2.0~5.0Es,有那么大么?应该是E =(2.0~5.0)* Es(1-2v^2/(1-v))。 土的弹性模量是土抵抗弹性变形的能力,压缩模量是土在侧限条件下的,竖向附加应力与竖向应变的比值,土工试验得到和勘察报告提的是压缩模量。变形模量是无侧限条件下的应力与应变的比值。E=〔1-2u*u/(1-u)〕Es公式是变形模量和压缩模量的理论公式,实际工程并不符合这个公式。至于弹性模量和变形模量的关系,土在弹性阶段的变形模量等于弹性模量。一般情况下比压缩模量要大,大多少,视具体工程而论。三轴试验得到弹性模量取得是轴向应力与轴向应变曲线中开始直线段(即弹性阶段)的斜率。 看看高大钊编的《土质力学与土力学》(正文94页),该书是提到压缩模量、变形模量、弹性模

钢筋混凝土弹性模量计算方法

钢筋混凝土弹性模量计算方法 (1) 首先建立有限元模型,这里我们选用ANSYS软件自带的专门针对混凝土的单元类型Solid 65,进入ANSYS主菜单 Preprocessor->Element Type->Add/Edit/Delete,选择添加Solid 65号混凝土单元。 (2) 点击Element types窗口中的Options,设定Stress relax after cracking为Include,即考虑混凝土开裂后的应力软化行为,这样在很多时候都可以提高计算的收敛效率。 (3) 下面我们要通过实参数来设置Solid 65单元中的配筋情况。进入ANSYS主菜单Preprocessor-> Real Constants->Add/Edit/Delete,添加实参数类型1与Solid 65单元相关,输入钢筋的材料属性为2号材料,但不输入钢筋面积,即这类实参数是素混凝土的配筋情况。 (4) 再添加第二个实参数,输入X方向配筋为0.05,即X方向的体积配筋率为5%。 (5) 下面输入混凝土的材料属性。混凝土的材料属性比较复杂,其力学属性部分一般由以下3部分组成:基本属性,包括弹性模量和泊松比;本构关系,定义等效应力应变行为;破坏准则,定义开裂强度和

压碎强度。下面分别介绍如下。 (6) 首先进入ANSYS主菜单Preprocessor-> Material Props-> Material Models,在Define Material Model Behavior 窗口中选择Structural-> Linear -> Elastic-> Isotropic,输入弹性模量和泊松比分别为30e9和0.2 (7) 下面输入混凝土的等效应力应变关系,这里我们选择von Mises 屈服面,该屈服面对于二维受力的混凝土而言精度还是可以接受的。在Define Material Model Behavior 窗口中选择Structural-> Nonlinear-> Inelastic-> Rate Independent-> Isotropic Hardening Plasticity-> Mises Plasticity-> Multilinear,输入混凝土的等效应力应变曲线如下图所示。 (8) 最后输入混凝土的破坏准则,在Define Material Model Behavior 窗口中选择Structural-> Nonlinear-> Inelastic-> Non-metal Plasticity-> Concrete,设定混凝土的裂缝张开剪力传递系数为0.5,裂缝闭合剪力传递系数为0.9,混凝土的单轴抗拉强度为3e6,单轴抗压强度为30e6,开裂软化参数为1,其他空着使用默认值。其参数具体意义参见《混凝土结构有限元分析》一书。 (9) 接着还要定义钢筋材料性质。在Define Material Model Behavior窗口菜单中选择Material-> New,加入新的材料。添加以

相关文档