文档库 最新最全的文档下载
当前位置:文档库 › 烧结矿粉化的原因.

烧结矿粉化的原因.

烧结矿粉化的原因.
烧结矿粉化的原因.

烧结矿粉化的原因及措施

烧结矿粉化是多种因素、复杂的综合原因

一、烧结矿SiO2含量高,SiO2大于7%以上,已形成正硅酸钙2Ca0. SiO2, 正硅酸钙存在相变(β到γ的相变),造成烧结矿的粉化。

*硅酸钙体系(CaO-SiO2)生产熔剂性烧结矿时产生CaO-SiO2体系的粘结相。该体系的化合物有:硅灰石(CaO·SiO2)熔点为1540℃,硅钙石(3CaO·2SiO2)熔点1478℃,正硅酸钙(2CaO·SiO2)熔点2130℃,硅酸三钙(3 CaO·SiO2)熔点1900℃;共晶体有:SiO2+ CaO·SiO2熔点1438℃,CaO·SiO2+3CaO·2SiO2熔点1457℃,2CaO·SiO2+ CaO熔点2065℃。

可见,这个体系的融化温度都很高,烧结温度下产生的液相数量不会多。但其中的正硅酸钙2 CaO·SiO2是固相反应的最初产物,熔点又很高,因此烧结矿中可能有这种矿物。正硅酸钙的存在对烧结矿的强度起破坏作用。这是因为正硅酸钙在冷却过程中发生一系列的晶形转变,体积膨胀,产生内应力,导致烧结矿粉碎。

在850℃时,α丿-C2S转变成γ-C2S,体积膨胀12%,当温度降至525℃—20℃之间,β-C2S转变成γ-C2S,体积膨胀10%。β对γ来说是单变关系的介稳型,即降温到525℃—20℃之间时,有β向γ转变,而升温过程中却没有γ向β的转变。

烧结过程中应采取措施,防止C2S晶型转变的破坏作用。如生产高碱度或超高碱度(2.5—5.0)烧结矿,促进生成3 CaO·SiO2及铁酸

钙,防止生成C2S;或加入某些添加剂,如MgO、Al2O3等,稳定β-C2S防止其晶型转变,加P2O5、Cr2O3、B2O3等可以和C2S形成固熔体,对C2S晶型转变起抑制作用;另外在为防止或减少它在烧结过程中的形成可降低燃料消耗,采用小粒度的石灰石、焦粉和矿粉,加强烧结料的混匀等。

二、烧结矿的FeO含量也影响烧结矿强度,造成烧结矿的粉化。*燃料用量烧结料中的配碳量决定烧结温度、烧结速度和气氛条件,它对烧结速度和气氛条件,对烧结矿物组成影响很大。

烧结非熔剂性赤铁矿时,烧结矿的矿物组成与含碳量关系。当配碳量过少(3%—4%),不能保证赤铁矿充分还原或分解,磁铁矿结晶程度差。燃料层液相数量少,只有少量铁橄榄石和钙铁橄榄石不均匀的分布在磁铁矿和石英接触处,不起粘结作用,粘结相主要是玻璃质,孔洞多,强度差,但还原性好。在正常燃料用料下,烧结矿矿物主要是磁铁矿和铁橄榄石,还有少量浮士体,磁铁矿结晶程度提高,粘结相主要是铁橄榄石,孔洞少,烧结矿强度提高。当燃料消耗过多时(>7%),烧结温度升高,还原气氛增加,生成大量的浮士体和铁橄榄石,磁铁矿减少,可能出现金属铁,烧结矿因过熔,造成大孔薄壁或气孔度少的烧结矿,使强度和还原性都变坏。

生成熔性烧结矿时,随着含碳量增加,磁铁矿结晶程度提高,生成大粒结晶,粘结相主要是钙铁橄榄石,孔洞少,烧结矿强度提高,但用碳量过多时,浮士体和钙铁橄榄石增加,磁铁矿减少,易生成过熔烧结矿。同时,高温下易生成正硅酸钙,在冷却时发生晶型转变,

使烧结矿粉化,强度和还原性都变坏。

三、烧结矿R2, 烧结矿R2低于1.7以下,烧结矿液相中的玻璃质增加,造成烧结矿的粉化。

*烧结矿碱度在燃料用料一定的条件下,烧结矿的最终矿物组成主要取决于烧结矿碱度。小于1的低碱度烧结矿,主要矿物为磁铁矿及少量浮士体和赤铁矿,主要胶结相为铁橄榄石及少量玻璃体,磁铁矿结晶程度较完全,多为自行晶及半自行晶,并与胶结相形成均匀的粒状结构,烧结矿强度好,无粉化现象。碱度1—1.5时,烧结矿胶结相主要为钙铁橄榄石及玻璃体,将磁铁矿晶粒粘结起来。

碱度为1.5—2.5的熔剂性烧结矿,含铁矿物与上面基本相同,粘结相主要为钙铁橄榄石、铁酸钙、硅酸钙及玻璃贴等。随着碱度升高,钙铁橄榄石和玻璃铁含量急剧下降,铁酸钙和硅酸钙含量明显增加。由于粘结相矿物的强度较差,并且冷却时发生正硅酸钙由β向γ晶型转变,造成烧结矿严重粉化,烧结矿质量下降。

碱度在2.5以上的高碱度烧结矿,几乎不含钙铁橄榄石和玻璃体,只有铁酸钙、磁铁矿和硅酸钙三种矿物。随着碱度升高,铁酸钙和硅酸三钙明显增加,磁铁矿减少,矿物组成基本不变。由于作为主要矿物组成的磁铁矿和铁酸钙,强度和和还原性均较好。并且随着硅酸三钙量的增加,正硅酸钙明显减少,同时过量的CaO起了稳定β-2CaO·SiO2的作用,所以此类烧结矿不发生粉化现象,强度和还原性均好。高碱度烧结矿具有上述特点,是由于燃料用量一定时,随着碱度的提高,熔剂量逐渐增多,放出的CO2,降低了烧结料层温度和

还原气氛,有利于提高烧结矿的氧化度,所以磁铁矿减少,铁橄榄石减少以至消失,而过量的CaO有利于生成CaO·Fe2O3和CaO—SiO2体系矿物。

四、烧结原料中使用的褐铁矿大于20%,易造成烧结矿的粉化。褐铁矿理论含铁48—66%,亲水性好,实际含铁37—55%。镍矿粉属于褐铁矿。

*(Fe2O3.nH2O)是一种含结晶水的三氧化二铁。

褐铁矿冶炼性能:有害杂质高(P),易还原,可烧性差。

五、烧结矿的快速冷却也影响烧结矿强度,造成烧结矿的粉化。*冷却过程中对烧结矿的质量有以下影响:

(1)影响矿物成分在冷却过程中,烧结矿中气孔边沿部分的矿物会发生再氧化,Fe3O4氧化成Fe2O3,引起体积膨胀,造成烧结矿强度变坏。

(2)影响晶体结构高温的液相冷却速度太快,会使液相中析出的矿物来不及结晶或者来不及长大,生成没有结晶或结晶不完全的脆性的玻璃质。同时,在冷却过程中,正硅酸钙(2CaO·SiO2)的晶型转变还会引起体积膨胀,使烧结矿自动粉化。

(3)冷却过急会产生内应力。

因此,控制烧结矿的冷却速度对提高烧结矿的强度是很重要的。

六、烧结操作对烧结矿质量的影响

烧结过程的温度和气氛除了与燃料用量有关外、还与点火温度、冷却速度和料层厚度等操作条件有关。因此,操作制度亦支接影响烧

结矿矿物组成。如烧结料表层温度低,冷却快,化合反应不充分,矿物与赤铁矿为主,主要胶结物为玻璃质,强度差,在往下的料层中,温度升高,还原气氛增强,玻璃质逐渐减小,橄榄石、铁酸钙等胶结物增多,浮士铁广泛出现,磁铁矿逐渐增加,赤铁矿逐渐减少,强度提高。由此可见,不同深度料层中烧结矿矿物组成有很大差异。上层强度差,中下层强度好。为了保证上下层质量均匀,可采用热风烧结。

*脉石成分及添加物脉石中的SiO2是影响烧结矿矿物组成的重要因素。只有一定数量的SiO2,才能形成足够数量的铁橄榄石或钙铁橄榄石等粘结相,将分散的磁铁矿晶粒粘结起来,保证烧结矿的强度。如果烧结料中的SiO2数量太少,则烧结矿矿物只有磁铁矿、赤铁矿和少量玻璃体,烧结矿由大量磁铁矿集合而成,粘结相数量少,只有少量玻璃体充填于磁铁矿晶粒之间,起不到连接作用,烧结矿强度不好。

脉石中含有一定量的Al2O3,烧结过程中进入熔体中,使烧结矿矿物结构大大复杂化。Al2O3含量大于7%时,形成多种铝铁酸盐和硅铝酸盐,减少以至消除2CaO·SiO2的形成,有利于提高烧结矿强度。同时形成铝酸钙和铁酸钙固熔体(CaO·Al2O3+CaO·Fe2O3),降低烧结料的熔化温度,促进液相生成。

烧结料中增加MgO含量,烧结矿粉化虑明显下降,提高烧结矿强度。其原因是形成了一系列新的含MgO矿物,如钙镁橄榄石、铁蔷薇灰石、镁橄榄石、黄长石等,从而起到稳定β-2CaO·SiO2的作用。此外加入一定量的MgO能改善烧结矿还原性,这是因为镁橄榄石能形成阻止了难还原的铁橄榄石和钙镁橄榄石的形成。

烧结料中加入一定量的磷灰石,也可防止烧结矿粉化。实践表明,烧结料中含P达0.04时,烧结矿不再粉化。这是因为P能与烧结料中β-2CaO·SiO2形成固熔体,从而稳定β-2CaO·SiO2不发生相变,防止烧结矿粉化。

此外,B2O3、Cr2O3、V2O5等也能起稳定β-2CaO·SiO2的作用。

2011-10-14

磨细石粉在混凝土中的应用

磨细石粉在混凝土中的 应用 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

磨细石粉在混凝土中的应用本文着重研究了磨细石粉作为掺合料在混凝土中的应用,结果表明:磨细石粉并非一种惰性材料,其代替粉煤灰应用于混凝土中时,混凝土的工作性能、抗压强度明显提高,收缩和抗渗等耐久性指标也明显改善。尤其在应用于低水胶比、高强度混凝土时,可显着降低混凝土的粘度,提升混凝土的流动性能。 [关键词]磨细石粉;混凝土;工作性;耐久性 前言 近年来随着国家经济的快速发展,基础建设力度不断加大,作为混凝土优质掺合料的粉煤灰和矿粉日益短缺。由于市场需求大、利润丰厚,许多不法商家供应的粉煤灰和矿粉都存在以次充好的情况,向粉煤灰和矿粉中掺入了大量的不明来源的工业废渣,导致粉煤灰和矿粉的质量波动大。由于粉煤灰和矿粉自身的化学体系较为复杂,难以通过便捷的方法迅速地检定其质量,因此给混凝土的质量控制带来了较大难度。 磨细石粉(石粉)主要是石灰岩经机械加工后小于的微细粒,在国外已经应用多年,近年来受到了国内混凝土学界的热捧。本公司试验人员也对其展开了深入的研究,并尝试找出一条便捷的快速检测方法,为未来更好地控制混凝土的质量提供技术储备。 1、原材料 水泥:金峰P·水泥,3d水泥强度为;28d水泥强度为;

矿粉:苏州马嘉矿粉,比表面积403m2/kg,28d活性指数99%; 粉煤灰:苏州望电Ⅱ级灰,45μm方孔筛筛余18%,烧失量%; 粗骨料:5~碎石,含泥量%; 细骨料:中粗砂,细度模数,含泥量%; 水:市政自来水; 减水剂:苏州弗克 RX-1 型聚羧酸高性能减水剂,减水率25%。 磨细石粉:比表面积为500m2/kg。 影响磨细石粉的质量指标主要有两个,其一是细度,可以方便地用负压筛或勃氏比表面积仪测出;其二是石粉中的CaCO3的纯度。 石粉中的CaCO3的纯度可以通过检测的CO2含量间接地反映,方法亦可以有两种:(1)可以测定其烧失量来间接反映CaCO3的纯度,(2)可以通过向磨细石粉中加入过量盐酸,待反映完毕后,称量盐酸所不能溶解的物质的质量来间接反映 CaCO3的纯度。这两种方法操作简便,对实验室和实验员的要求均不高,检测迅速。虽然这两种方法并不能区分CaCO3和MgCO3,但由于CaCO3和MgCO3对混凝土强度和和易性的影响差异并不明显,所以这种快速检测方法对于混凝土的质量控制非常实用。 表1 粉料化学成分分析 %

矿粉在泥凝土中的应用

矿渣微粉在商品混凝土中的应用 [摘要]本文介绍了国内外矿渣微粉的应用情况,并分析了矿渣微粉对商品混凝土性能的影响,说明了将矿渣微粉与I级粉煤灰复合配制商品混凝土可以发挥优势互补效应,使混凝土的性能得到进一步改善。阐述了矿渣微粉在商品混凝土应用过程中应注意的问题。 [关键词]矿渣微粉;商品混凝土 1引言 矿渣作为水泥混合材在我国已有40多年的历史,但20世纪90年代以前,大多数是将矿渣和水泥熟料一起粉磨,属粗放型应用。由于矿渣与水泥熟料的易磨性相差很大,与熟料混磨后的矿粉较粗,其比表面积为300m2/kg左右,在水泥水化时矿渣的活性不能充分发挥。因此,掺混合材的水泥一般都是早期强度低,凝结时间长。如将矿渣经过单独粉磨得到矿渣粉,由于其比表面积达到400m2/kg以上,颗粒较细,则其活性可以得到充分发挥,这种颗粒细小的粉磨矿渣就是磨细矿渣(GGBFS)(也称矿渣微粉,简称矿粉)。 2矿渣微粉在国内外的应用情况 1862年德国人发现水淬矿渣具有潜在的活性后,矿渣长期作为水泥混合材使用。1865年德国开始生产石灰矿渣水泥。随着矿渣硅酸盐水泥良好的耐久性及应用价值不断为人们所认识,19世纪初在欧洲得到了广泛的应用。德国有关矿渣硅酸盐水泥的研究资料比硅酸盐水泥的还要多。1933年出现了湿碾矿渣及湿碾矿渣混凝土技术,50年代这一技术曾在大型混凝土和预制混凝土中应用,因湿碾矿渣浆具有储存和运输困难的缺点,该技术并未得到广泛推广。1958年南非将水淬矿渣烘干磨细,克服了湿碾矿渣浆储存及运输困难的缺点,首次将矿粉用于商品混凝土。进入60年代,随着预拌混凝土工业的兴起和发展,矿粉作为混凝土的独立组分得到了广泛应用,90年代在东南亚、我国台湾、香港地区也得到了广泛的使用。目前,国外一些发达国家已将掺有矿粉的混凝土普遍用于各类建筑工程。西欧掺有矿粉的水泥约占水泥总用量的20%;荷兰矿粉掺量65%~70%的水泥约占水泥总销量的60%,几乎各种混凝土结构都采用此种水泥;英国矿粉的每年销售量已达到100多万吨;美国、加拿大现在也将矿粉掺入水泥中应用于各种建筑工程;在日本、新加坡、东南亚地区矿粉普遍地应用于商品混凝土和掺入水泥中。 美国1982年发布了《混凝土和砂浆用的磨细粒化高炉矿渣》标准(ASTMC989-82),并于1989年进行了修订。澳大利亚、加拿大、英国等在1980年-1986年期间也相继制定了矿粉的材料标准。日本在1986年由土木学会制定了《混凝土用矿渣粉》标准草案,于1995年3月正式修订为日本的国家工业标准(JISA6206-1995),日本1988年还制定了《掺高炉矿渣粉的混凝土的设计与施工指南(草案)》。这些标准的制定和实施极大地推动了矿粉混凝土技术的研究,并促使矿粉混凝土技术得到了令人瞩目的发展。在我国,矿渣运用的历史久远,但都是作为活性混合材添加在水泥熟料中,成为硅酸盐水泥、普通硅酸盐水泥或矿渣硅酸盐水泥。随着国际上对矿粉研究地不断深入和大规模地开发利用,我国20世纪80年代改革开放的力度不断加大,预拌混凝土的崛起与发展以及政府日益注重的环境保护,自20世纪90年代起,我国开始了矿粉的特性及应用研究工作。1998年上海市实施地方标准《混凝土和砂浆用粒化高炉矿渣微粉》,1999年《粒化高炉矿渣微粉在混凝土中应用技术规程》制定颁布。2000年国家标准《用于水泥和混凝土的粒化高炉矿渣粉》(GB18046-2000)颁布实施,2002年国家标准《高强、高性能混凝土用矿物外加剂》颁布,在该标准中正式将矿渣微粉命名为“矿物外加剂”纳入混凝土第六组分。磨细矿渣作为一个独立的产品出现在建筑市场,广泛应用于商品混凝土中。矿粉的应用逐渐成熟,并被广泛接受和使用。据不完全统计上海每年用于商品混凝土和掺加在水泥中的矿粉已达到80万吨。 3矿渣微粉对混凝土性能的影响 3.1矿粉细度(比表面积)及其对混凝土强度的影响 磨细矿渣微粉磨到一定细度(比表面积),才能充分参与水化反应提高活性。矿粉细度大小直接影响矿粉的增强效果,原则上矿粉细度越大则效果越好,但要求过细则粉磨困难,成本大

矿粉的应用

一、矿渣粉及其在国内外的应用情况 矿渣粉是水淬粒化高炉矿渣经粉磨后达到规定细度的一种粉体材料。自从1862年德国人发现水淬粒化高炉矿渣具有潜在活性后,矿渣长期作为水泥混合材使用。2000年以前,矿渣在作为水泥混合材使用上国内外存在差异,国外除将矿渣和水泥熟料混磨生产矿渣水泥外,还有将矿渣单独磨细,然后与磨细后的熟料混合,生产矿渣水泥,而国内只是通过混磨生产矿渣水泥。由于矿渣较熟料难磨细,混磨时水泥中矿渣的细度较熟料小的多,水泥细度控制在300m2/kg左右的情况下,矿渣粉的细度仅能达到200~250m2/kg左右,因而不但水泥中矿渣粉的活性不能充分发挥,而且矿渣用过高时,使混凝土的粘聚性很差,混合料容易离析和泌水,混凝土抗渗性能降低。这样矿渣在水泥中的掺量受到了较大限制,一般不超过30%。随着国际上对矿粉研究的不断深入和大规模的开发利用,我国20世纪80年代改革开发的力度不断加大,预拌混凝土的崛起与发展以及政府日益注重环境保护,自 20世纪90年代起,我国开始了矿粉的特点及应用研究。清华大学对矿粉在高强混凝土的应用进行了研究,在其编写的《高强混凝土结构设计与施工指南》一书中,特别提出矿粉在配制高强混凝土方面的巨大潜力。冶金部建筑研究总院在搜集大量国内外有关资料,尤其是在日本资料的基础上,立项进行矿粉成套技术的开发研究工作,在产品性能、矿粉混凝土性能等方面获得了大量数据,完成了“宝钢高炉矿渣微粉在混凝土中应用研究”课题的第一阶段工作,上海建筑材料科学研究院和上海宝钢企业开发总公司共同完成了该课题。此课题的完成为1998年上海市地方标准《混凝土和砂浆用粒化高炉矿渣微粉》,1999年《粒化高炉矿渣微粉在混凝土中应用技术规程》的制定颁布创造了条件。2000年国家标准《用于水泥和混凝土的粒化高炉矿渣粉》(GB18046-2000)颁布实施。 随着矿渣磨细技术的不断发展,矿渣被磨至相应细度的能耗越来越低,并且细度也很容易达到400m2/kg以上,为矿渣粉的大量应用打下了良好基础。2000年11月上海宝钢率先从日本引进的年产60万吨矿粉立磨生产线投产。随后的几年内,武钢、鞍钢、宝钢二线、唐钢、首钢、安徽朱家桥等大型矿粉立磨生产线相继投产,另外还有不少生产线在建。这样矿粉的应用已在全国范围内广泛展开。因此我国混凝土,特别是商品混凝土胶凝材料体系正由“水泥”、“水泥+粉煤灰”向“水泥+粉煤灰+矿粉”体系转变,由于理论研究和应用技术开发都存在着不足之处,大量应用势必出现这样或那样的问题,特别是我国地域辽阔,应用环境存在很大差别,技术水平也很不均衡,业内人士加强定期交流,总结经验,吸取教训,少走歪路是非常必要的。 二、矿粉对混凝土性能的影响 矿粉对混凝土性能的影响的研究可以由“矿粉+水泥浆体”到“矿粉+水泥胶砂”再到“矿粉混凝土”逐步进行。但对于普通应用单位,如商品混凝土搅拌站,就不必遵循此规律,可借鉴有关研究成果,直接进行混凝土试验,找出特定条件下的合理配合比。 1. 矿粉对混凝土工作性能和力学性能的影响 1)矿粉比表面积在430m2/kg~520m2/kg之间,掺量在30%~40%范围,增强效应表现得最为显著。 2)单掺矿粉会使混凝土的粘聚性提高,凝结时间有所延长,泌水量有增大的迹象,可能对混凝土泵送带来一定的不利影响; 3)矿粉和Ⅰ级粉煤灰复配配制混凝土,可以充分发挥二者的“优势互补效应”,使混凝土的坍落度增加,和易性好,粘聚性好,泌水得到改善。同时混凝土成本可显著降低。 4)针对水泥-粉煤灰-矿粉胶凝材料体系,在等量取代的前提下,粉煤灰的掺量以不超过20%为宜,粉煤灰和矿粉掺量以不超过40%为宜,同时建议采用60d或90d强度作为混凝土评定标准,以充分利用混凝土的后期强度。 2. 矿粉对混凝土耐久性的影响

矿粉对混凝土性能的影响

矿粉对混凝土性能的影响 双击自动滚屏发布者:admin 发布时间:2009-6-5 阅读:652 次【字体:大中小】 矿粉对混凝土性能的影响 矿粉对混凝土性能的影响的研究可以由“矿粉+水泥浆体”到“矿粉+水泥胶砂”再到“矿粉混凝土”逐步进行。但对于普通应用单位,如商品混凝土搅拌站,就不必遵循此规律,可借鉴有关研究成果,直接进行混凝土试验,找出特定条件下的合理配合比。 1. 矿粉对混凝土工作性能和力学性能的影响 1)矿粉比表面积在430m2/kg~520m2/kg之间,掺量在30%~40%范围,增强效应表现得最为显著。 2)单掺矿粉会使混凝土的粘聚性提高,凝结时间有所延长,泌水量有增大的迹象,可能对混凝土泵送带来一定的不利影响; 3)矿粉和Ⅰ级粉煤灰复配配制混凝土,可以充分发挥二者的“优势互补效应”,使混凝土的坍落度增加,和易性好,粘聚性好,泌水得到改善。同时混凝土成本可显著降低。 4)针对水泥-粉煤灰-矿粉胶凝材料体系,在等量取代的前提下,粉煤灰的掺量以不超过20%为宜,粉煤灰和矿粉掺量以不超过40%为宜,同时建议采用60d或90d 强度作为混凝土评定标准,以充分利用混凝土的后期强度。 2. 矿粉对混凝土耐久性的影响 1)混凝土水化热。掺加矿粉,可降低浆体水化热,单掺量小于50%时,水化热降低不明显。当达到70%掺量时,3d和7d水化热分别降低约36%和29%;矿粉和粉煤灰复配,可显著降低浆体3d、7d水化热,采用20%矿粉和20%粉煤灰复配,浆体3d和7d水化热分别降低38%和20%,对要求严格控温的大体积混凝土,矿粉和粉煤灰复配是理想的矿物掺合料组合,可以有效减少混凝土早期温缩裂缝的危险。 2)抗渗性能。混凝土中掺加矿粉或矿粉和粉煤灰复配,发挥掺合料的微集料效应和二次水化反应,可以使混凝土孔径细化,连通孔减少,混凝土密实性提高,从而大幅提高混凝土的抗渗性能。采用库仑电量方法评价,矿粉、粉煤灰和引气剂均

土的液塑限试验

土的液塑限实验步骤: 1.取0.5mm筛下的代表性土样200g,分开放入三个盛土杯皿中,加入不同数量的蒸馏水, 土样的含水率分别控制在液限(a点),略大于塑限(c点)和两者的中间状态(b点),用调土刀调匀,放置18h以上,(定a点锥入深度,对于100g锥应为20±0.2mm;对于76g锥应为17mm。测定c点的锥入深度,对于100g锥应控制在5mm以下;对于76g锥应控制在2mm以下。 2.将备好的土样搅拌均匀,分层装入盛图杯,压密,使空气逸出。 3.将装好的土样的试杯放在联合测定仪的升降坐上,待锥尖与土样刚好接触,锥体下落, 5s时度数的锥入深度h1。 4.改变锥尖与土的接触位置,测得锥入深度h2,h1与h2允许误差0.5mm,否则应重做, 取h1,h2平均值作为该点的锥入深度h。 5.去掉锥尖处的凡士林,取10g以上的土样两个,测定其含水率,计算含水率平均值ω。 6.重复上述步骤,对其他两个含水率土样经行试验,测其锥入深度与含水率。 结果整理方法: 1.在双对数坐标纸上,以含水率为横坐标,锥入深度为纵坐标,点绘啊a,b,c三点,连 此3点应成一条直线,如3点不在同一条直线上,要过a点与b,c两点连两条直线,根据液限在hp-ω1图上查得hp,以此hp再在h-ω图的ab,ac两直线上求出相应的两个含水率,当两个含水率的差值小于2%时,以该两点含水率的平均值与a点连成一条直线,当两个含水率差值大于2%时,应重做试验。 2.在h-ω图上,对于100g锥,查得纵坐标入土深度h=20mm所对应的含水率为液限,若 采用76g锥,则在h-ω图上,查的纵坐标入土深度h=17mm所对应的横坐标的含水率位土样的液限 3.100g锥塑限应根据液限,通过hp-ω1关系曲线,查的hp,再由h-ω图求出入土深度为 hp时所对应的含水率限为塑限。 4.对于76g锥,通过其锥土的深度h与含水率ω的关系曲线,查的锥入深度为2mm所对 应的含水率即为该土的塑限。

实验三--液限和塑限试验

图4-1锥式液限仪(单位:mm ) 1-锥身;2-手柄;3-平衡装置;4-试杯;5-底座 实验三 液限和塑限试验 钟耀田 10332040 一、概述 粘性土的状态随着含水率的变化而变化,当含水率不同时,粘性土可分别处于固态、半固态、可塑状态及流动状态,粘性土从一种状态转到另一种状态的分界含水率称为界限含水率。土从流动状态转到可塑状态的界限含水率称为液限 L w ;土从可塑状态转到半固体状态的界限含水率称为塑限p w ;土由半固体状态不断蒸发水分,则体积逐渐缩小,直到体积不再缩小时的界限含水率称为缩限 s w 。 土的塑性指数 p I 是指液限与塑限的差值,由于塑性指数在一定程度上综合 反映了影响粘性土特征的各种重要因素,因此,粘性土常按塑性指数进行分类。 界限含水率试验要求土的颗粒粒径小于0.5mm ,且有机质含量不超过5%,且宜采用天然含水率试样,但也可采用风干试样,当试样含有粒径大于0.5mm 的土粒或杂质时,应过0.5mm 的筛。 二、液限试验 液限是区分粘性土可塑状态和流动状态的界限含水率,测定土的液限主要有圆锥仪法、碟式仪法等试验方法,也可采用液塑限联合测定法测定土的液限。这里介绍圆锥仪液限试验。 圆锥仪液限试验 圆锥仪液限试验就是将质量为76g 圆锥仪轻放在试样的表面,使其在自重作用下沉入土中,若圆锥体经过5s 恰好沉入土中10mm 深度,此时试样的含水率就是液限。 1、仪器设备 (1)圆锥液限仪(图4-1),主要有三个部 分:①质量为76g 且带有平衡装置的圆锥,锤 角30°,高25mm ,距锥尖10mm 处有环状刻度;②用金属材料或有机玻璃制成的试样杯,直径不小于40mm ,高度不小于20mm ;③硬木或金属制成的平稳底座; (2)称量200g 、最小分度值0.01g 的天平; (3)烘箱、干燥器;

矿粉在商品混凝土应用中之必读六点

矿粉在商品混凝土应用中之必读六点 掺加矿粉的混凝土具有后期强度得到提高,耐久性在很大程度上得到改善,相应减少水泥用量,降低生产成本等优点,使得矿粉广泛应用于商品混凝土中。为了更好地发挥矿粉在混凝土中应用的优势,减少问题,避免事故,以下是在商品混凝土应用过程中的几点建议,供大家参考。 1、加强矿粉复检工作,严格控制矿粉的细度 一旦矿粉细度大幅度降低,会给混凝土带来很多问题,如:粘聚性下降,出现离析和泌水;凝结时间延长;早期强度降低,甚至28d强度也会不同程度降低等。大型立磨矿渣粉生产线生产工艺先进,生产的矿粉的细度非常稳定。但球磨机生产矿粉的细度难以长期稳定。因此,在使用球磨矿粉时应加强检测,严格控制矿粉的细度。 矿粉一般需复检活性指数与流动度比,但这两项指标与检验用的水泥有很大的关系,同一矿粉采用不同对比水泥时,检验出的结果会有很大的不同;即使采用同一水泥,由于批次不同,结果有可能也不同。所以商品混凝土企业应该用实际使用的水泥作对比,并且多试验多分析,特别是在选用不同厂家生产的水泥前,必须先用该水泥作对比水泥进行试验。 2、注意矿粉掺量 矿粉掺量对混凝土凝结时间和混凝土粘聚性有着重要影响,过大的掺量在实际应用中会产生很多问题,应根据工程进度、强度等级、结构特点、气候状况等的不同,合理地确定矿粉掺量。 单掺矿粉时,以30%~40%为宜。大体积混凝土可增至50%以上,以达到明显降低水化热的目的。 复掺时,总取代量不宜超过50%。粉煤灰控制在20%以内,矿粉控制在30%以内。

初期使用时,最好粉煤灰控制在10%以内,矿粉控制在20%以内,大体积混凝土可适当放宽。 3、复掺时,针对不同等级粉煤灰,选择合适的复合比例 矿粉在商品混凝土搅拌站使用时,常与粉煤灰复合使用。这是因为粉煤灰比矿粉更为廉价,单掺矿粉对混凝土成本不利。虽然单掺粉煤灰可以大幅度降低成本,但掺量受到较大限制;另外,矿粉和粉煤灰复配时能充分利用二者的“优势互补”,改善混凝土性能。 矿粉与II级粉煤灰复合:矿粉与II级粉煤灰复合使用时,粉煤灰的取代量宜控制在15%以内,矿粉宜控制在30%以内。II级粉煤灰的质量稳定性很差,给配制混凝土带来很多不便。而矿粉的质量稳定性远好于II级粉煤灰,在条件允许的情况下,应尽可能多用矿粉,降低II级粉煤灰质量波动给混凝土带来的不利影响。另外,由于II级粉煤灰和矿粉同样具有增加混凝土粘度的趋势,因此不宜配制高强混凝土。 矿粉与I级粉煤灰复合:粉煤灰可控制在20%以内,矿粉可以控制在40%以内,它们之间的比例可以根据不同强度等级,不同技术要求进行调整。 4、注意矿粉(或矿粉和粉煤灰复掺)混凝土的养护 当养护温度适宜、湿度较大时,混凝土中水分蒸发少,水化充分,孔隙率及孔隙平均尺寸减小。同时由于水化产物阻隔了水分子通道,使得开口孔隙数量减少,可发挥“储备”作用的闭合孔数量增加。因此,建立良好的养护制度有利于提高混凝土的抗冻性能。 矿粉(或矿粉和粉煤灰复掺)混凝土对养护条件要求更为苛刻。因此商品混凝土搅拌站技术人员应加强与施工方沟通,确保混凝土的养护条件。受施工进度、结构形式、养护手段和人员素质等方面因素的影响,混凝土的养护经常得不到重视。特别是竖向结构,如剪力墙、柱等,由于不

CBR试验以及液塑限试验的目的及适用范围

液、塑限试验 ——液、塑限联合测定法 一、目的 细粒土由于含水率不同,分别处于流动状态,可塑状态、半固体状态和固体状态。液限是细粒土呈可塑状态的上限含水率,塑限是细粒土呈可塑状态的下限含水率。本试验是测定细粒土的液限和塑限含水率,用作计算土的塑性指标和液性指数,以划分土的工程类别和确 定土的状态。 二、试验方法 1、含水率:采用烘干法测定。将土在105℃~110℃下烘至恒量,所失去的水质量与干 土质量的比值,即为土的含水率,用百分比表示。 2、液、塑限:采用液、塑限联合测定法测定。用光电式液限、塑限联合测定仪(见图1-1)测定土在三种不同含水率时的圆锥入土深度,在双对数坐标纸上绘成圆锥入土深度与含水率的关系直线。在直线上查得圆锥入土深度为17mm(水利规范、土工试验方法国标GB/T50123-1999)或10mm(建筑地基基础设计规范)处相应含水率为液限,入土深度为 2mm处的相应含水率为塑限。 三、仪器设备 1、光电式液限、塑限联合测定仪,由装有透明光学微分尺的圆锥仪、电磁铁、显示屏、控制开关和试样杯组成。圆锥质量76克,锥角30度,光学微分尺精确分度为0.1mm。试 样杯:内径不小于40mm,杯高不小于30mm。 2、天平,称量200g,最小分度值0.01g。 3、其它:烘箱、铝盒、调土刀、刮土刀、蒸馏水滴瓶、凡士林等。

四、试验步骤 1、本次试验原则上应采用天然含水率的土样进行,也允许用风干土制备土样,土样过0.5mm筛后,喷洒配制一定含水率的土样,然后装入密闭玻璃广口瓶内,润湿一昼夜备用 (土样制备工作实验室已预先做好)。 2、将已制备好的土样取出,放在搪瓷碗中加水或电吹风吹干并调匀后,密实地装入试样杯中(土中不能有孔洞),高出试样杯口的余土,用刮土刀刮平,随即将试样杯放在升降 底座上。 3、接通电源,按下“开”按钮,把装有透明光学微分尺的圆锥仪,在锥体上抹以薄层凡士林,使电磁铁吸稳固锥仪。并使光学微分尺垂直于光轴(可从屏幕上观察,刻度线清晰, 并在屏幕居中位置)。 4、调节零点,使读数屏幕上的零线与光学微分尺影像零线重合,按下“手”(即手动) 按钮,使仪器处于备用状态。 5、转动升降座,待试样杯上升到土面刚好与圆锥仪锥尖接触时,“接触”蓝灯亮,按

矿渣粉在砼中的应用

矿渣粉在砼中的应用 一、矿渣粉及其在国内外的应用情况 矿渣粉是水淬粒化高炉矿渣经粉磨后达到规定细度的一种粉体材料。自从1862年德国人发现水淬粒化高炉矿渣具有潜在活性后,矿渣长期作为水泥混合材使用。2000年以前,矿渣在作为水泥混合材使用上国内外存在差异,国外除将矿渣和水泥熟料混磨生产矿渣水泥外,还有将矿渣单独磨细,然后与磨细后的熟料混合,生产矿渣水泥,而国内只是通过混磨生产矿渣水泥。由于矿渣较熟料难磨细,混磨时水泥中矿渣的细度较熟料小的多,水泥细度控制在300m2/kg左右的情况下,矿渣粉的细度仅能达到200~250m2/kg左右,因而不但水泥中矿渣粉的活性不能充分发挥,而且矿渣用过高时,使混凝土的粘聚性很差,混合料容易离析和泌水,混凝土抗渗性能降低。这样矿渣在水泥中的掺量受到了较大限制,一般不超过30%。 随着国际上对矿粉研究的不断深入和大规模的开发利用,我国20世纪80 年代改革开发的力度不断加大,预拌混凝土的崛起与发展以及政府日益注重环境保护,自20世纪90年代起,我国开始了矿粉的特点及应用研究。清华大学对矿粉在高强混凝土的应用进行了研究,在其编写的《高强混凝土结构设计与施工指南》一书中,特别提出矿粉在配制高强混凝土方面的巨大潜力。冶金部建筑研究总院在搜集大量国内外有关资料,尤其是在日本资料的基础上,立项进行矿粉成套技术的开发研究工作,在产品性能、矿粉混凝土性能等方面获得了大量数据,完成了“宝钢高炉矿渣微粉在混凝土中应用研究”课题的第一阶段工作,上海建筑材料科学研究院和上海宝钢企业开发总公司共同完成了该课题。此课题的完成为1998年上海市地方标准《混凝土和砂浆用粒化高炉矿渣微粉》,1999年《粒化高炉矿渣微粉在混凝土中应用技术规程》的制定颁布创造了条件。2000年国家标准《用于水泥和混凝土的粒化高炉矿渣粉》(GB18046-2000)颁布实施。 随着矿渣磨细技术的不断发展,矿渣被磨至相应细度的能耗越来越低,并且细度也很容易达到400m2/kg以上,为矿渣粉的大量应用打下了良好基础。2000年11月上海宝钢率先从日本引进的年产60万吨矿粉立磨生产线投产。随后的几年内,武钢、鞍钢、宝钢二线、唐钢、首钢、安徽朱家桥等大型矿粉立磨生产线

液塑限试验方法

液塑限试验方法 (一)概述 细粒土随着土中含水量的不同,分别处于各种不同的状态。1911年瑞典农学家阿太堡将土从液态过渡到固态的过程分为五个阶段,规定了各个界限含水量,称为阿大堡限度。土的界限含水量和土的机械组成、土粒的矿物成分,比表面积、表面电荷强度等一系列因素有关,是这些因素的综合反映。塑性高表示土中胶体粘粒含量大,同时也表示粘土中可能含有蒙脱石或其他高活性的胶体粘粒较多。因此,界限含水量尤其是液限、较好地反映出土的某些物理力学特性,如压缩性、胀缩性等,对工程来说,有实用意义的主要是土的液限、塑限和缩限。液限是土可塑状态的上限含水量,塑限是土可塑状态的下限含水量。含水量低于缩限,水分蒸发时土体积不再缩小。事实上,上从粘滞流动状态到可塑状态、从可塑状态到半固体状态的性质和直观变化都是渐变的。因此,在两者之间建立确定的界限都带有一定的任意性。也就是说,其他的物质例如水从液态变到气态或从液态变到固态有直观的温度临界点,而上随含水量的变化从一状态到另一状态元明显可见的含水量临界点,这就促使各国、各行业土木工程人员实行行业约定和规范,先后发展用碟式仪法。圆锥仪法、搓条法以及联合测定法来区分和测定土的界限含水量。我国通用圆锥仪法测土的液限含水量,搓条法测土的塑限含水量,或联合法测土的液限和塑限含水量。但各行业间由于历史原

因,用同样方式测试时,所采用的仪器的具体尺寸、质量和测试标准不相同,这是测试工作者和应用人员必须注意的问题。 (二)液限塑限联合测定法 1.仪器设备 LP-100型液塑限联合测定仪;锥质量为100g锥角为300,读数显示形式宜采用光电式、游标式、百分表式。 2.试验主要步骤 取有代表性的天然含水量或风干土样进行试验。如上中含有大于0.5mm的土粒或杂物时,应将风干土样用带橡皮头的研杵研碎或用木棒在橡皮板上压碎,过0.5m的筛。取代表性上样200g,分开放人三个盛上皿中,加不同数量的蒸馏水,使土样的含水量分别控制在液限(a点)、略大于塑限(c点)和二者的中间状态b点)附近。用调土刀调匀,密封放置18h以上。 将制备好的土样充分搅拌均匀,分层装人盛土杯中,试杯装满后,刮成与杯边齐平。 给圆锥仪锥尖涂少许凡士林,将装好土样的试杯放在联合测定仪上,使锥尖与土样表面刚好接触,然后按动落锥开关,测记经过5s锥的人土深度h。

超细粉在砼中应用

超细粉在砼中的应用 一、超细粉及其在国内外的应用情况 矿渣粉是水淬粒化高炉矿渣经粉磨后达到规定细度的一种粉体材料。自从1862年德国人发现水淬粒化高炉矿渣具有潜在活性后,矿渣长期作为水泥混合材使用。2000年以前,矿渣在作为水泥混合材使用上国内外存在差异,国外除将矿渣和水泥熟料混磨生产矿渣水泥外,还有将矿渣单独磨细,然后与磨细后的熟料混合,生产矿渣水泥,而国内只是通过混磨生产矿渣水泥。由于矿渣较熟料难磨细,混磨时水泥中矿渣的细度较熟料小的多,水泥细度控制在300m2/kg左右的情况下,矿渣粉的细度仅能达到200~250m2/kg左右,因而不但水泥中矿渣粉的活性不能充分发挥,而且矿渣用过高时,使混凝土的粘聚性很差,混合料容易离析和泌水,混凝土抗渗性能降低。这样矿渣在水泥中的掺量受到了较大限制,一般不超过30%。 随着国际上对矿粉研究的不断深入和大规模的开发利用,我国20世纪80 年代改革开发的力度不断加大,预拌混凝土的崛起与发展以及政府日益注重环境保护,自20世纪90年代起,我国开始了矿粉的特点及应用研究。清华大学对矿粉在高强混凝土的应用进行了研究,在其编写的《高强混凝土结构设计与施工指南》一书中,特别提出矿粉在配制高强混凝土方面的巨大潜力。冶金部建筑研究总院在搜集大量国内外有关资料,尤其是在日本资料的基础上,立项进行矿粉成套技术的开发研究工作,在产品性能、矿粉混凝土性能等方面获得了大量数据,完成了“宝钢高炉矿渣微粉在混凝土中应用研究”课题的第一阶段工作,上海建筑材料科学研究院和上海宝钢企业开发总公司共同完成了该课题。此课题的完成为1998年上海市地方标准《混凝土和砂浆用粒化高炉矿渣微粉》,1999年《粒化高炉矿渣微粉在混凝土中应用技术规程》的制定颁布创造了条件。2000年国家标准《用于水泥和混凝土的粒化高炉矿渣粉》(GB18046-2000)颁布实施。 随着矿渣磨细技术的不断发展,矿渣被磨至相应细度的能耗越来越低,并且细度也很容易达到400m2/kg以上,为矿渣粉的大量应用打下了良好基础。2000年11月上海宝钢率先从日本引进的年产60万吨矿粉立磨生产线投产。随后的几年内,武钢、鞍钢、宝钢二线、唐钢、首钢、安徽朱家桥等大型矿粉立磨生产线相继投产,另外还有不少生产线在建。这样矿粉的应用已在全国范围内广泛展开。

液塑限联合测定法塑限确定方法的探讨

液塑限联合测定法塑限确定方法的探讨 大家好!我是《土木工程试验检测技术研究》及《细集料含泥量与含粉量的试验研究》的作者韦汉运,群共享有《土木工程试验检测技术研究》及《细集料含泥量与含粉量的试验研究》的内容简介,如有兴趣,可到群共享下载。 下面我从《土木工程试验检测技术研究》(共48篇论文)中摘录“液塑限联合测定法塑限确定方法的探讨”与大家分享,如有欠妥之处,欢迎到“工程试验交流千人群(207135730)”继续交流、探讨。 土的塑限是土物理性质的一个重要技术指标,“液限大于50%、塑性指数大于26、含水量不适宜直接压实的细粒土,不得直接作为路堤填料”(备注:摘自JTG F10—2006《公路路基施工技术规范》第4.1.2-3条),其中的塑性指数,即为土的液限与塑限之差值,因此,塑限也是决定土样是否可以用于路基填筑的一个重要因素。 现行《公路土工试验规程》(JTG E40—2007)TO118-2007“液限和塑限联合测定法”(备注:下简称“TO118-2007试验”)按如下方法确定土样的塑限:“根据本试验4.2.1求出的液限,通过76g锥入土深度h与含水率w的关系曲线(图TO118-1),查得锥入土深度为2mm时所对应的含水率即为该土样的塑限Wp”(备注:摘自TO118-2007试验第4.3.1条)、 与塑限入土深度hp的关系曲线(图TO118-2),“根据本试验4.2.2求出的液限,通过W L 查得hp,再由图TO118-1求出入土深度为hp时所对应的含水率,即为该土样的塑限Wp。 关系图时,须先通过简易鉴别法及筛分法把砂类土与细粒土区别开来,再按这两查hp-W L 种土分别采用相应的hp-W 关系曲线;对于细粒土,用双曲线确定hp值;对于砂类土,则 L 用多项式曲线确定hp值”(备注:摘自TO118-2007试验第4.3.2条)。 根据TO118-2007试验第4.3.1条,当采用76g锥进行液塑限试验时,在h-w图上查得固定入土深度hp=2mm时所对应的含水率,即为该土样的塑限;根据TO118-2007试验第4.3.2条,当采用100g锥进行液塑限试验时,hp值是一个变数,在h-W图上查得该变数hp值所对应的含水率,即为该土样的塑限。 以本论文集“液塑限联合测定法试样制备方法的探讨”中的表1为例,同一方法制备的同一个土样,当分别采用100g锥与76g锥进行液塑限试验时,两种试锥测定的液限几乎一致,但是,100g锥测定的塑限为23.8%,76g锥测定的塑限为28.5%,塑限值相差达4.7%(备注:28.5%-23.8%=4.7%)。 众所周知,同一个土样不可能有两个截然不同的塑限。因此,要么100g锥测定的塑限是正确的,要么76g锥测定的塑限是正确的,两者必有一错。

磨细石粉在混凝土中的应用

磨细石粉在混凝土中的应用

磨细石粉在混凝土中的应用 本文着重研究了磨细石粉作为掺合料在混凝土中的应用,结果表明:磨细石粉并非一种惰性材料,其代替粉煤灰应用于混凝土中时,混凝土的工作性能、抗压强度明显提高,收缩和抗渗等耐久性指标也明显改善。尤其在应用于低水胶比、高强度混凝土时,可显著降低混凝土的粘度,提升混凝土的流动性能。 [关键词]磨细石粉;混凝土;工作性;耐久性 前言 近年来随着国家经济的快速发展,基础建设力度不断加大,作为混凝土优质掺合料的粉煤灰和矿粉日益短缺。由于市场需求大、利润丰厚,许多不法商家供应的粉煤灰和矿粉都存在以次充好的情况,向粉煤灰和矿粉中掺入了大量的不明来源的工业废渣,导致粉煤灰和矿粉的质量波动大。由于粉煤灰和矿粉自身的化学体系较为复杂,难以通过便捷的方法迅速地检定其质量,因此给混凝土的质量控制带来了较大难度。 磨细石粉(石粉)主要是石灰岩经机械加工后小于0.16mm的微细粒,在国外已经应用多年,近年来受到了国内混凝土学界的热捧。本公司试验人员也对其展开了深入的研究,并尝试找出一条便捷的快速检测方法,为未来更好地控

求均不高,检测迅速。虽然这两种方法并不能区分CaCO3和MgCO3,但由于CaCO3和MgCO3对混凝土强度和和易性的影 响差异并不明显,所以这种快速检测方法对于混凝土的质量 控制非常实用。 表1 粉料化学成分分析 % 原料Loss SiO2Al2O3Fe2O3CaO MgO SO3石灰石42.59 1.80 0.61 0.23 54.93 0.32 -水泥-28.33 3.31 3.93 57.32 3.12 2.38 粉煤灰 1.5 47.9 9.37 6.82 6.96 0.75 -矿粉-31.55 5.45 2.34 45.77 6.3 - 2、试验方法 胶砂强度试验:按 GB /T17671—1999《水泥胶砂强度检验方法(ISO法)》标准进行测试,参照GB/T1596—2005 《用 于水泥和混凝土中的粉煤灰》检测粉煤灰和磨细石粉的活 性。 混凝土拌合物性能试验:按 GB/T50080—2002 《普通混凝 土拌合物性能试验方法》标准进行测试。 混凝土力学性能试验:按 GB/T50081—2002 《普通混凝土力学性能试验方法》标准进行测试。

液限和塑限试验报告

3 1 2 4 5 实验三 液限和塑限试验 实验人: 学号: 一、概述 粘性土的状态随着含水率的变化而变化,当含水率不同时,粘性土可分别处于固态、半固态、可塑状态及流动状态,粘性土从一种状态转到另一种状态的分界含水率称为界限含水率。土从流动状态转到可塑状态的界限含水率称为液限 L w ;土从可塑状态转到半固体状态的界限含水率称为塑限p w ;土由半固体状态不断蒸发水分,则体积逐渐缩小,直到体积不再缩小时的界限含水率称为缩限 s w 。 土的塑性指数p I 是指液限与塑限的差值,由于塑性指数在一定程度上综合反映了影响粘性土特征的各种重要因素,因此,粘性土常按塑性指数进行分类。 界限含水率试验要求土的颗粒粒径小于,且有机质含量不超过5%,且宜采用天然含水率试样,但也可采用风干试样,当试样含有粒径大于的土粒或杂质时,应过的筛。 二、液限试验 液限是区分粘性土可塑状态和流动状态的界限含水率,测定土的液限主要有圆锥仪法、碟式仪法等试验方法,也可采用液塑限联合测定法测定土的液限。这里介绍圆锥仪液限试验。 圆锥仪液限试验 圆锥仪液限试验就是将质量为76g 圆锥仪轻放在试样的表面,使其在自重作 用下沉入土中,若圆锥体经过5s 恰好沉入土中 10mm 深度,此时试样的含水率就是液限。 1、仪器设备 (1)圆锥液限仪(图4-1),主要有三个部 分:①质量为76g 且带有平衡装置的圆锥,锤

角30°,高25mm,距锥尖10mm处有环状刻度;②用金属材料或有机玻璃制成的试样杯,直径不小于40mm,高度不小于20mm;③硬木或金属制成的平稳底座; (2)称量200g、最小分度值的天平; (3)烘箱、干燥器; (4)铝制称量盒、调土刀、小刀、毛玻璃板、滴管、吹风机、孔径为标准筛、研体等设备。 2、操作步骤 (1)选取具有代表性的天然含水率土样或风干土样,若土中含有较多大于的颗粒或夹有多量的杂物时,应将土样风干后用带橡皮头的研杵研碎或用木棒在橡皮板上压碎,然后再过的筛。 (2)当采用天然含水率土样时,取代表性土样250g,将试样放在橡皮板上用纯水将土样调成均匀膏状,然后放入调土皿中,盖上湿布,浸润过夜。 (3)将土样用调土刀充分调拌均匀后,分层装入试样杯中,并注意土中不能留有空隙,装满试杯后刮去余土使土样与杯口齐平,并将试样放在底座上。 (4)将圆锥仪擦拭干净,并在锥尖上抹一薄层凡士林,两指捏住圆锥仪手柄,保持锥体垂直,当圆锥仪锥尖与试样表面正好接触时,轻轻松手让锥体自由沉入土中。 (5)放锥后约经5s,锥体入土深度恰好为10mm的圆锥环状刻度线处,此时土的含水率即为液限。 (6)若锥体入土深度超过或小于10mm时,表示试样的含水率高于或低于液限,应该用小刀挖去粘有凡士林的土,然后将试样全部取出,放在橡皮板或毛玻璃板上,根据试样的干、湿情况,适当加纯水或边调边风干重新拌和,然后重复(3)~(5)试验步骤。 (7)取出锥体,用小刀挖去粘有凡士林的土,然后取锥孔附近土样约10~15g,放入称量盒内,测定其含水率。 3、成果整理 按式(4-1)计算液限:

矿粉液限和塑限测定法和安定性

公路工程试验培训测试题 部门姓名分数 1. 试述矿粉塑性指数试验的操作步骤。 答:①取0.5mm筛下的代表性土样200g,分开放入三个盛土皿中,加不同数量的蒸馏水,土样的含水率分别控制在液限(a点),略大于塑限(c点)和二者的中间状态(b点),用调土刀调匀,放置18h以上,测定a点锥入深度为20(±0.2)mm,测定c点锥入深度在5mm以下。 ②将制备的土样搅拌均匀,分层装入盛土杯,压密,使空气逸出。 ③将装好土样的试杯放在联合测定仪的升降座上,待锥尖与土样刚好接触,锥体下落,5s时读数得锥人深度h1。 ④改变锥尖与土接触位置,测得锥入深度h2,h1与h2允许误差为 0.5mm,否则应重做,取h1、h2平均值作为该点的锥入深度h。 ⑤去掉锥尖处的凡士林,取10g以上的土样两个,测定其含水率,计算含水率平均值w。 ⑥重复上述步骤,对其他两个含水率土样进行实验,测其锥入深度与含水率。 2. 试述矿粉液限、塑限的确定方法以及塑性指数的计算方法(以100g锥为例)。答:①在双对数坐标纸上,以含水率为横坐标,锥入深度为纵坐标,点绘a、b、c三点,连此3点应呈一条直线,如3点不在同一直线上,要过a点与b、c两点连成两条直线,根据液限在h p-w L图上查得h p,,以此h p再在h-w图的ab、ac两直线上求出相应的两个含水率。当两个含水率的差值小于2%时,以该两点含水率的平均值与a点连成一

条直线;当两个含水率差值大于2%时,应重做实验。 ②在h-w图上,查得纵坐标入土深度h=20mm所对应的横坐标的含水率为液限w L。 ③根据液限,通过h p-w L关系曲线,查得h p,再由h-w图求出入土深度为h p时所对应的含水率即为塑限w P。值得注意的是,查h p-w L关系图时,需要区分砂类土和细粒土:细粒土用双曲线确定h p值;砂类土用多项式曲线确定h p值。 ④塑性指数I P=w L-w P,要求不大于4。 3. 试述矿粉加热安定性试验的目的与适用范围。 答:1)矿粉的加热安定性是矿粉在热拌过程中受热而不产生变质的性能。 2)矿粉的加热安定性用于评价矿粉(除石灰石粉、磨细生石灰粉、水泥外)易受热变质的成分的含量。 4. 试述矿粉加热安定性试验的步骤。 答:1)称取矿粉100g,装入蒸发皿或坩埚中,摊开。 2)将盛有矿粉的蒸发皿或坩埚置于煤气炉或电炉火源上加热,将温度计插入矿粉中,一边搅拌石粉,一边测量温度,加热到200℃,关闭火源。 3)将矿粉在室温中放置冷却,观察石粉颜色的变化。

矿粉在混凝土中的应用

矿粉在商品混凝土中的应用 2008-12-26 06:04:42| 分类:混凝土理论知识| 标签:|字号大中小订阅 矿粉在商品混凝土中的应用 钮明琴 [摘要] 本文介绍了矿粉在商品混凝土中的试验和应用情况,并分析了矿粉对混凝土性能的影响,说明采用矿粉取代部分水泥,可改善混凝土拌合物性能、保证中长期力学性能、提高抗渗性能。同时介绍了矿粉在商品混凝土应用过程中应注意的问题。 [关键词] 商品混凝土;抗压强度;矿粉;活性指数 0 前言 近年来,随着东园西区创建、房地产开发以及城市基础设施建设的全面发展,苏州市商品混凝土行业快速发展,但竞争非常激烈。要想在这一市场中占得一席之地,第一,必须确保混凝土的质量并提供优质的服务,树立企业品牌形象,扩大市场影响力;第二,在保证质量的前提下,控制产品的成本,理论上可通过使用高效减水剂和矿物掺合料降低单方水泥用量。但就目前情况而言,聚羧酸盐类等高效减水剂价格昂贵,且商品混凝土中C25~C40中低强度等级占绝大多数,使用后成本反而提高;粉煤灰的应用技术已经非常成熟,但其强度发展慢,在掺量上又有严格的限制,很难再有潜力可挖,而矿粉胶凝系数高、强度发展比粉煤灰快,可改善混凝土拌合物性能和长期性能,同时,矿粉与水泥存在一定的价差,等量取代后经济效益是显而易见的。因此,矿粉已成为理想的掺合料逐渐被广大混凝土企业采用。我们在矿粉的应用方面作了一些试验工作,并通过工程应用得到一些体会,本文就此方面情况作以介绍。 1 试验用原材料 1.1 矿粉:南京梅宝新型建材有限公司生产,S95级,其性能见表1 表1 矿粉性能 1.2 水泥:苏州天山水泥有限公司生产,普通4 2.5级,其性能见表2 表2 水泥主要物理性能 1.3 粉煤灰:苏州望电粉煤灰分选厂生产Ⅰ级灰,其主要性能见表3 表3 粉煤灰性能 1.4 砂:天然河砂,其主要性能见表4 表4 砂的主要性能

矿渣粉在商品混凝土应用中应注意的问题

矿渣粉在商品混凝土应用中应注意的问题(1)使用球磨矿渣粉时应加强检测,严格控制矿渣粉的细度 使用立磨生产的矿渣粉,由于设备先进,矿渣粉质量稳定,其比表面积均控制在400~500m2/kg的范围内。使用球磨生产的矿渣风比表面积很难达到 400m2/kg以上,虽然通过延长粉磨时间勉强可以超过400m2/kg,但很难长期 稳定。一旦矿渣粉比表面积降低,会给商品混凝土生产带来一系列的问题,如:混凝土黏聚性下降,保水性变差,出现泌水,甚至离析;混凝土凝结时间延长,早期强度降低,甚至会影响到28天强度。因此,在使用球磨工艺生产的矿渣粉时应加强检测,严格控制矿粉的比表面积。 (2)注意矿粉的掺量 在商品混凝土生产中,很少单独使用矿渣粉,但有时其他掺合料供应不足,需要单掺矿渣粉时,以30%~40为宜,生产大体积混凝土时可以提高掺量至50%。在与粉煤灰复合使用时,总的取代量不宜超过50%,矿渣粉掺量宜控制在30%以内,且随着混凝土强度的提高逐步提高矿渣粉的使用比例。在初期使用矿渣粉时,矿渣粉掺量尽量控制在20%以内,熟悉其性能。 尽管在实验室试配时,矿渣粉掺量超过50%对混凝土强度不会产生影响, 但在生产时会存在很多不可预见的问题。一是矿渣粉掺量过高,对于薄壁构件混凝土散热快,很快与外界环境温度一致,混凝土凝结时间会延长,不利于施工。二是混凝土黏度问题,随着混凝土强度等级的提高,混凝土的胶凝材料用量也逐步增加,混凝土的黏聚性增大,降低混凝土黏度,改善工作性。比表面积在 400m2/kg以上的矿渣粉很可能会增加混凝土黏度,因此,在配制高标号混凝土时,也需要限制矿渣粉的掺量。 (3)针对粉煤灰质量的差异,选择差异的矿渣粉掺量 商品混凝土搅拌站在使用矿渣粉时,常常与粉煤灰单独使用,这是因为粉煤灰比矿渣粉廉价,单掺矿渣粉不利于混凝土成本的降低,同时也会产生一些不利于混凝土耐久性的因素。虽然单掺粉煤灰可以有效降低混凝土成本,但掺加粉煤灰以后,混凝土早期强度低,大大限制了其掺量。矿渣粉和粉煤灰复合使用有利于二者“优势互补”,改善混凝土性能。 矿渣粉与II级粉煤灰复合使用时,总取代量不宜超过40%;矿渣粉与I级 粉煤灰复合使用时,总取代量不宜超过50%。二者的复掺比例应根据混凝土强 度等级、工程部位、环境气候等多种因素综合考虑,选择合适的比例。 (4)应加强混凝土施工养护工作

相关文档