文档库 最新最全的文档下载
当前位置:文档库 › 高数下册知识点

高数下册知识点

高数下册知识点
高数下册知识点

高等数学下册知识点

第八章 空间解析几何与向量代数 (一) 向量及其线性运算

1、 向量,向量相等,单位向量,零向量,向量平行、共线、共面;

2、 线性运算:加减法、数乘;

3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式;

4、 利用坐标做向量的运算:设),,(z y x a a a a =

,),,(z y x b b b b = ,

则 ),,(z z y y x x b a b a b a b a ±±±=±

, )

,,(z y x a a a a λλλλ= ;

5、 向量的模、方向角、投影:

1) 向量的模:

2

22z

y x r ++=

2) 两点间的距离公式:2

12212212)()()(z z y y x x B A -+-+-=

3) 方向角:非零向量与三个坐标轴的正向的夹角γ

βα,,

4) 方向余弦:

r

z

r y r x ===γβαcos ,cos ,cos

1cos cos cos 2

22=++γβα

5) 投影:?cos Pr a a j u

=,其中?

为向量

a

与u

的夹角。

(二) 数量积,向量积

1、

数量积:

θ

cos b a b a

=?

1)2

a

a a =?

2)?⊥b a 0=?b a

z z y y x x b a b a b a b a ++=?

2、 向量积:b a c

?=

大小:

θsin b a ,方向:c b a

,,符合右手规则

1)0

=?a a

2)b a

//?

=?b a

z

y

x

z y x

b b b a a a k

j i

b a

=?

运算律:反交换律 b a a b

?-=?

(三) 曲面及其方程 1、 曲面方程的概念:0),,(:=z y x f S

2、

旋转曲面:

yoz 面上曲线0),(:=z y f C ,

y

轴旋转一周:

0),(2

2=+±z x y f

z

轴旋转一周:0),(2

2

=+±

z y x f

3、

柱面:

0),(=y x F 表示母线平行于

z 轴,准线为?????==0

),(z y x F 的柱面

4、

二次曲面

1)

椭圆锥面:

2

2

22

2z

b

y a

x

=+

2)

椭球面:

12

22

22

2=++c

z b

y a

x

旋转椭球面:

1222

22

2=++c

z a

y a

x

3) 单叶双曲面:

12

22

22

2=-

+c

z b

y a

x

4)

双叶双曲面:

12

22

22

2=-

-

c

z b

y a

x

5)

椭圆抛物面:

z

b

y a

x

=+

2

22

2

6)

双曲抛物面(马鞍面):

z b

y a x

=-

2

222

7)

椭圆柱面:

12222=+

b y a x

8) 双曲柱面:

12

22

2=-

b

y a

x

9) 抛物柱面:ay x

=2

(四) 空间曲线及其方程

1、

一般方程:?????==0

),,(0),,(z y x G z y x F

2、

参数方程:????

???===)

()()(t z z t y y t x x ,如螺旋线:????

???===bt

z t a y t

a x sin cos

3、

空间曲线在坐标面上的投影

?????==0

),,(0

),,(z y x G z y x F ,消去z ,得到曲线在面

xoy 上的投影?????==0

),(z y x H

(五) 平面及其方程 1、

点法式方程:

0)()()(000=-+-+-z z C y y B x x A

法向量:),,(C B A n =

,过点),,(000z y x

2、

一般式方程:

0=+++D Cz By Ax

截距式方程:

1=+

+

c

z b

y a

x

3、

两平面的夹角:),,(1111C B A n = ,),,(2222C B A n =

22

222221

21

21

2

12121cos C

B A

C B A C C B B A A ++?

++++=

θ

?∏⊥∏21 0212121=++C C B B A A

?

∏∏21//

2

12

12

1

C C B B A A =

=

4、

),,(0000

z y x P 到平面0=+++D Cz By Ax 的距离: 2

2

2

000C

B A D

Cz By Ax d +++++=

(六) 空间直线及其方程

1、

一般式方程:?????=+++=+++0

022221111D z C y B x A D z C y B x A

2、

对称式(点向式)方程:

p

z z n

y y m

x x 0

-=

-=

-

方向向量:),,(p n m s =

,过点),,(000z y x

3、

参数式方程:

????

???+=+=+=pt

z z nt y y mt x x 000

4、

两直线的夹角:),,(1111p n m s = ,),,(2222p n m s =

22

222221

21

21

2

12121cos p

n m p n m p p n n m m ++?

++++=

?

?

⊥21L L

0212121=++p p n n m m

?

21//L L

2

12

12

1p p n n m m ==

5、

直线与平面的夹角:直线与它在平面上的投影的夹角,

2

22

2

2

2

sin p

n m

C

B

A Cp

Bn Am ++?++++=

?

?

∏//L

0=++Cp Bn Am ?

∏⊥L

p

C n B m

A ==

第九章 多元函数微分法及其应用 (一) 基本概念 1、 距离,邻域,内点,外点,边界点,聚点,开集,闭集,连通集,区域,闭区域,有界集,无界集。 2、 多元函数:),(y x f z =,图形: 3、

极限:

A

y x f y x y x =→),(lim

)

,(),(00

4、 连续:

),(),(lim

00)

,(),(00y x f y x f y x y x =→

5、

偏导数:

x

y x f y x x f y x f x x ?-?+=→?)

, (), (lim

),(00000

00

y

y x f y y x f y x f y y ?-?+=→?)

,(),(lim

),(00000

00

6、

方向导数:

β

αcos cos y

f x

f l

f ??+

??=

??其中

β

α,为

l

的方向角。

7、

梯度:),(y x f z =,则j y x f i y x f y x gradf y x

),(),(),(000000+=。

8、

全微分:设

),(y x f z =,则d d d z z z x y

x

y

??=

+

??

(二) 性质 1、

函数可微,偏导连续,偏导存在,函数连续等概念之间的关系:

2、

闭区域上连续函数的性质(有界性定理,最大最小值定理,介值定理) 3、 微分法

1)

定义:

u

x

2) 复合函数求导:链式法则

z

(,),(,),(,)z f u v u u x y v v x y ===,则 v

y

z

z u z v x u x v x

?????=?+??????,

z

z u z v y u y v y ?????=?+??????

3) 隐函数求导:两边求偏导,然后解方程(组)

(三) 应用

1、 极值

1)

无条件极值:求函数

),(y x f z =的极值

解方程组 ?????==00

y

x f f 求出所有驻点,对于每一个驻点),(00y x ,令 ),(00y x f A xx =,),(00y x f B xy =,)

,(00y x f C yy =,

① 若

02

>-B AC ,0>A ,函数有极小值,

02

>-B AC ,0

<-B AC ,函数没有极值; ③ 若02=-B AC ,不定。

2)

条件极值:求函数

),(y x f z =在条件0),(=y x ?下的极值

充分条件

令:

),(),(),(y x y x f y x L λ?+= ——— Lagrange 函数

解方程组 ????

???===0

),(00y x L L y x ? 2、 几何应用

1)

曲线的切线与法平面

曲线

???????===Γ)

()()(:t z z t y y t x x ,则Γ上一点),,(000z y x M

(对应参数为0

t )处的

切线方程为:

)

()

()

(000000

t z z z t y y y t x x x '-=

'-=

'-

法平面方程为:0))(())(())((000000=-'+-'+-'z z t z y y t y x x t x

2) 曲面的切平面与法线

曲面

0),,(:=∑z y x F ,则∑上一点),,(000z y x M 处的切平面方程为:

0))(,,())(,,())(,,(000000000000=-+-+-z z z y x F y y z y x F x x z y x F z y x

法线方程为:)

,,()

,,()

,,(000000000000

z y x F z z z y x F y y z y x F x x z y x -=

-=

-

第十章 重积分 (一) 二重积分

1、 定义:

∑??=→?=n

k k

k k D

f y x f 1

),(lim d ),(σηξσ

λ

2、 性质:(6条)

3、 几何意义:曲顶柱体的体积。

4、 计算: 1)

直角坐标

?

?????≤≤≤≤=b x a x y x y x D )()(),(21??,

21()

()

(,)d d d (,)d b x a

x D

f x y x y x f x y y

φφ=

??

??

?

?????≤≤≤≤=d y c y x y y x D )()(),(21φφ,

21()

()

(,)d d d (,)d d y c

y D

f x y x y y f x y x ??=

??

?

?

2)

极坐标

?

?

?

???≤≤≤≤=βθαθρρθρθρ)()(),(21D

21()()

(,)d d (cos ,sin )d D

f x y x y d f β

ρθα

ρθθρθρθρρ

=

??

??

(二) 三重积分

1、 定义: ∑

???

=→Ω

?=n

k k

k k k v f v z y x f 1

),,(lim

d ),,(ζηξλ

2、 性质:

3、 计算:

1)

直角坐标

???

???=Ω

D

y x z y x z z z y x f y x v z y x f ),()

,(21d ),,(d d d ),,( -------------“先一后二”

??

?

???

=

Ω

Z

D b

a

y

x z y x f z v z y x f d d ),,(d d ),,( -------------“先二后一”

2)

柱面坐标

????

???===z

z y x θρθ

ρsin cos ,

(,,)d (cos ,sin ,)d d d f x y z v f z z

ρθρθρρθΩ

Ω

=

???

???

3)

球面坐标

????

???===?

θ?θ?cos sin sin cos sin r z r y r x

2

(,,)d (sin cos ,sin sin ,cos )sin d d d f x y z v f r r r r r φθφθφφφθ

Ω

Ω

=

???

???

(三) 应用

曲面

D y x y x f z S ∈=),(,),(:的面积:

y x y

z x

z A D

d d )

(

)(

12

2

??

??+??+=

第十一章 曲线积分与曲面积分 (一) 对弧长的曲线积分

1、 定义:0

1

(,)d lim

(,)n

i i i

L

i f x y s f s λξη→==??∑

?

2、

性质:

1)

[(,)(,)]d (,)d (,)d .L

L

L

f x y x y s f x y s

g x y s αβαβ+=+?

??

2)

1

2

(,)d (,)d (,)d .L

L L f x y s f x y s f x y s =

+

?

?

?

).(21L L L +=

3)在

L

上,若

),(),(y x g y x f ≤,则(,)d (,)d .L L

f x y s

g x y s ≤??

4)l s L

=?

d ( l 为曲线弧 L 的长度)

3、

计算:

),(y x f 在曲线弧L 上有定义且连续,L 的参数方程为)

(),

(),(βαψ?≤≤????

?==t t y t x ,其中

)(),(t t ψ?在

],[βα上具有一阶连续导数,且0)()(22≠'+'t t ψ?,则

(,)d [(),( ,

()

L

f x y s f t t t β

α

φψαβ=

?

(二) 对坐标的曲线积分

1、

定义:设 L 为

xoy 面内从 A 到

B 的一条有向光滑弧,函数

),(y x P ,),(y x Q 在 L 上有界,定义

∑?

=→?=n

k k

k k L

x P x y x P 1

),(lim d ),(ηξλ,

∑?

=→?=n

k k

k k L

y Q y y x Q 1

),(lim d ),(ηξλ.

向量形式:?

?

+=

?L

L

y

y x Q x y x P r F d ),(d ),(d

2、 性质:

-

L

表示

L

的反向弧 , 则

??

?-=?-

L

L

r

y x F r y x F d ),(d ),(

3、 计算:

),(,),(y x Q y x P 在有向光滑弧L 上有定义且连续,

L

的参数方程为

):(),

(),

(βαψ?→????

?==t t y t x ,其中

)(),(t t ψ?在],[βα上具有一阶连续导数,且0)()(22≠'+'t t ψ?,

(,)d (,)d {[(),()]()[(),()]()}d L

P x y x Q x y y P t t t Q t t t t β

αφψφφψψ''+=

+?

?

4、

两类曲线积分之间的关系:

设平面有向曲线弧为

????

?==)

()

( t y t x L ψ?:,L

上点)

,(y x 处的切向量的方向角为:

β

α,,

)

()()(cos 2

2

t t t ψ??α'+''=

,)

()()(cos 2

2

t t t ψ?ψβ'+''=

则d d (cos cos )d L

L

P x Q y P Q s αβ+=+?

?.

(三) 格林公式

1、格林公式:设区域 D 是由分段光滑正向曲线 L 围成,函数),(,),

(y x Q y x P 在

D 上具有连续一阶偏导数, 则有

???

+=???

? ????-??L

D

y Q x P y x y P x Q d d d d

2、

G

为一个单连通区域,函数

),(,),(y x Q y x P 在G

上具有连续一阶偏导数,则

y

P x

Q ??=

?? ?曲线积分

d d L

P x Q y +?在G

内与路径无关

?曲线积分

d d 0L

P x Q y +=?

?

y y x Q x y x P d ),(d ),(+在G 内为某一个函数),(y x u 的全微分

(四) 对面积的曲面积分

1、

定义:

设∑为光滑曲面,函数),,(z y x f 是定义在∑上的一个有界函数,

定义 i i i i n

i S f S z y x f ?=∑??

=→∑

),,(lim d ),,(1

ζηξλ

2、

计算:———“一单二投三代入”

),(:y x z z =∑,xy D y x ∈),(,则

y x y x z y x z y x z y x f S z y x f y x D y

x d d ),(),(1)],(,,[d ),,(2

2++=??

??

(五) 对坐标的曲面积分

1、 预备知识:曲面的侧,曲面在平面上的投影,流量

2、 定义:

∑为有向光滑曲面,函数

)

,,(),,,(),,,(z y x R z y x Q z y x P 是定义在

上的有界函数,定义

1

(,,)d d lim (,,)()n

i i i i xy i R x y z x y R S λξηζ∑

→==?∑??

同理,

1

(,,)d d lim (,,)()n

i i i i yz i P x y z y z P S λξηζ∑

→==?∑??

1

(,,)d d lim (,,)()n

i i i i zx i Q x y z z x R S λξηζ∑

→==?∑??

3、 性质:

1)21∑+∑=∑

,则

1

2

d d d d d d d d d d d d d d d d d d P y z Q z x R x y

P y z Q z x R x y P y z Q z x R x y

∑∑++=+++++??

????

2)-

∑表示与∑取相反侧的有向曲面 , 则d d d d R x y R x y -

=-??

??

4、

计算:——“一投二代三定号”

),(:y x z z =∑,xy D y x ∈),(,),(y x z z =在xy

D 上具有一阶连续偏导数,

),,(z y x R 在∑上连续,则

(,,)d d [,,(,)]d d x y

D R x y z x y R x y z x y x y ∑

=±??

??

,∑为上侧取“ + ”, ∑为下侧取“ - ”.

5、

两类曲面积分之间的关系:

()S

R Q P y x R x z Q z y P d cos cos

cos d d d d d d ????

++=

++γβα

其中

γ

βα,,为有向曲面∑在点),,

(z y x 处的法向量的方向角。

(六) 高斯公式 1、

高斯公式:设空间闭区域Ω由分片光滑的闭曲面∑所围成, ∑的方向取外侧, 函数,

,P Q R 在Ω上有连续的一阶偏

导数, 则有

??

???∑

Ω++=???

?

????+??+??y

x R x z Q z y P z y x z

R

y Q x P d d d d d d d d d

或()?????∑

Ω++=???

?

????+??+??S R Q P z y x z R y Q x

P d cos cos cos d d d γβα

2、

通量与散度

通量:向量场

),,(R Q P A =

通过曲面∑指定侧的通量为:??

++=

Φy

x R x z Q z y P d d d d d d

散度:z

R

y Q x P A div ??+??+??=

(七) 斯托克斯公式 1、

斯托克斯公式:设光滑曲面 ∑ 的边界 Γ是分段光滑曲线, ∑ 的侧与 Γ 的正向符合右手法则,

),,(),,,(),,,(z y x R z y x Q z y x P 在包含∑ 在内的一个空间域内具有连续一阶偏导数, 则有

???Γ∑++=???? ????-??+???? ????-??+???? ?

???-??z R y Q x P y x y P x Q x z x R z P z y z Q y R d d d d d d d d d 为便于记忆, 斯托克斯公式还可写作:

?

??

Γ

++=

??????z

R y Q x P R

Q

P

z y x y x x z z

y d d d d d d d d d

2、

环流量与旋度

环流量:向量场

),,(R Q P A =

沿着有向闭曲线Γ的环流量为?Γ

++z

R y Q x P d d d

旋度:???

?

????-????-????-??=y P x Q x R z P z Q y R A rot , ,

第十二章 无穷级数 (一) 常数项级数 1、

定义:

1)无穷级数:

+++++=∑∞

=n n n

u u u u u

3211

部分和:

n n

k k n u u u u u S ++++==∑= 3211

正项级数:

∑∞

=1n n

u

,0≥n

u

交错级数:∑∞

=-1

)1(n n

n

u ,0≥n

u

2)级数收敛:若

S

S n n =∞

→lim 存在,则称级数

∑∞

=1

n n

u

收敛,否则称级数

∑∞

=1

n n

u

发散

3)条件收敛:

∑∞

=1

n n

u

收敛,而

∑∞

=1

n n

u

发散;

绝对收敛:∑∞

=1

n n

u

收敛。

2、 性质:

1)

改变有限项不影响级数的收敛性;

2) 级数

∑∞

=1n n

a

∑∞

=1

n n

b

收敛,则

∑∞

=±1

)(n n n

b a

收敛;

3) 级数

∑∞

=1

n n

a

收敛,则任意加括号后仍然收敛;

4) 必要条件:级数

∑∞

=1

n n

u

收敛

?

0lim =∞

→n n u .(注意:不是充分条件!)

3、

审敛法

正项级数:

∑∞

=1

n n

u

,0≥n

u

1) 定义:

S

S n n =∞

→lim 存在;

2)

∑∞

=1

n n

u

收敛

?{}n

S 有界;

3) 比较审敛法:

∑∞

=1n n

u

∑∞

=1

n n

v

为正项级数,且),3,2,1( =≤n v u n n

∑∞

=1n n

v

收敛,则

∑∞

=1n n

u

收敛;若

∑∞

=1

n n

u

发散,则

∑∞

=1

n n

v

发散.

4)

比较法的推论:

∑∞

=1

n n

u

∑∞

=1

n n

v

为正项级数,若存在正整数

m

,当

m

n >时,n n

kv u ≤,而∑∞

=1

n n

v 收敛,

∑∞

=1

n n

u

收敛;若存在正整数

m

,当

m

n >时,n n kv u ≥,而∑∞

=1

n n

v 发散,则

∑∞

=1

n n

u

发散.

5) 比较法的极限形式:

∑∞=1

n n

u ,∑∞=1

n n

v

为正项级数,若)0( lim

+∞<≤=∞

→l l v u n

n n ,

而∑∞=1

n n

v 收敛,则

∑∞

=1

n n

u

收敛;若0lim

>∞

→n

n n v u 或+∞=∞

→n

n n v u lim

,而∑∞

=1

n n

v 发散,则

∑∞

=1

n n

u

发散.

6) 比值法:

∑∞

=1

n n

u

为正项级数,设l

u u n

n n =+∞

→1lim

,则当1

时,级数∑∞

=1

n n

u 收敛;则当1>l

时,级数∑∞

=1

n n

u 发散;当1=l

时,级数∑∞

=1

n n u 可能收敛也可能发散.

7) 根值法:

∑∞

=1

n n

u

为正项级数,设

l u n

n n =∞

→lim ,则当1

=1

n n u 收敛;则当1>l 时,级数∑∞

=1

n n

u 发散;当1=l

时,级数∑∞

=1n n u 可能收敛也可能发散.

8) 极限审敛法:

∑∞

=1

n n

u

为正项级数,若

0lim >?∞

→n n u n 或+∞=?∞

→n n u n lim ,则级数∑∞

=1

n n

u 发散;若存在

1>p ,使得)0( lim +∞<≤=?∞

→l l u n n p

n ,则级数∑∞

=1

n n u 收敛.

交错级数:

莱布尼茨审敛法:交错级数:

∑∞

=-1

)

1(n n

n

u ,0≥n

u 满足:),3,2,1( 1 =≤+n u u n n ,且0lim =∞

→n n u ,则

级数

∑∞

=-1

)1(n n

n

u 收敛。

任意项级数:

∑∞

=1

n n

u

绝对收敛,则

∑∞

=1

n n

u

收敛。

常见典型级数:几何级数:?????≥<∑∞

=1 1 0q q aq n n

发散,

收敛, p -级数:???

?

?≤>∑∞

=1p 1 1

1发散,

收敛,p n n p

(二) 函数项级数

1、 定义:函数项级数

∑∞

=1

)(n n

x u

,收敛域,收敛半径,和函数;

2、

幂级数:∑∞

=0

n n

n

x a

收敛半径的求法:ρ=+∞

→n

n n a a 1lim

,则收敛半径

???

?

?

????=∞++∞

=+∞<<=0 , ,00 ,1

ρρρρR

3、 泰勒级数

n

n n x x n x f

x f )

(!

)

()(00

0)

(-=∑

=

?

0)

(!

)1()

(lim

)(lim 1

0)

1(=-+=++∞

→∞

→n n n n n x x n f

x R ξ

展开步骤:(直接展开法) 1)

求出

,3,2,1 ),()

(=n x f

n ;

2) 求出

,2,1,0 ),(0)

(=n x f

n ;

3) 写出

n

n n x x n x f

)

(!

)

(00

0)

(-∑

=;

4)

验证

0)

(!

)1()

(lim )(lim 1

0)

1(=-+=++∞

→∞

→n n n n n x x n f

x R ξ是否成立。

间接展开法:(利用已知函数的展开式)

1)),( ,!

1

+∞-∞∈=

∑∞

=x x n e n n

x

2)

),( ,!

)12(1)

1(sin 01

21

+∞-∞∈+-=∑

=++x x

n x n n n ;

3)

),( ,)!

2(1)

1(cos 0

21

+∞-∞∈-=∑

=+x x

n x n n

n ;

4)

)1 ,1( ,11

0-∈=-∑

=x x x n n

; 5)

)1 ,1( ,)1(110

-∈-=

+∑

=x x x

n n

n

6)

]1 ,1( ,1

)

1()1ln(0

1

-∈+-=+∑

=+x x

n x n n n

7)

)1 ,1( ,)1(11

22

-∈-=

+∑

=x x

x

n n

n

8)

)

1 ,1( ,!

)

1()1(1)1(1

-∈+--+

=+∑

=x x n n m m m x n n

m

4、 傅里叶级数 1)

定义:

正交系: nx nx x x x x cos ,sin ,,2cos ,2sin ,cos ,sin ,1函数系中任何不同的两个函数的乘积在区间

] ,[ππ-上积分为零。

傅里叶级数:

)sin cos (2

)(1

0nx b nx a

a x f n n

n ++

=

∑∞

=

系数:

???

????====?

?--)

,3,2,1(d sin )(1)

,2,1,0(d cos )(1 n x nx x f b n x nx x f a n n π

π

π

π

ππ

2)

收敛定理:(展开定理)

设 f (x ) 是周期为2π的周期函数,并满足狄利克雷( Dirichlet )条件: 1) 在一个周期内连续或只有有限个第一类间断点; 2) 在一个周期内只有有限个极值点, 则 f (x ) 的傅里叶级数收敛 , 且有

()??

???+=++-

+∞

=∑为间断点

为连续点x x f x f x x f nx b nx a a n n n ,2)()( ),(sin cos 210

3) 傅里叶展开:

①求出系数:

???

????

====?

?--)

,3,2,1(d sin )(1)

,2,1,0(d cos )(1 n x nx x f b n x nx x f a n n π

π

π

π

ππ;

②写出傅里叶级数

)sin cos (2

)(1

0nx b nx a

a x f n n

n ++

=

∑∞

=;

③根据收敛定理判定收敛性。

高数下册总复习知识点归纳(1)

第八、九章向量代数与空间解析几何总结

或 n (f x(X o,y。),f y(x°,y°), 1) 法“线“方程: x x g y y g z z g f x(X°,y°) f y (x g, y g) 1 第十章总结 重积分 积分类型计算方法典型例题 重积分利用直角坐标系 b 2(X) X —型f (x, y)dxdy dx 1 (x) D a Y—型f(x, y)dxdy d 2( y) dy 1( y) D c f(x,y)dy f(x,y)dx P141—例1、例3 I f x,yd D 平面薄片的质 量 质量=面密度面 积使用原则 (1) 积分区域的边界曲线易于用极坐标方程表示(含圆弧,直线段); (2) 被积函数用极坐标变量表示较简单(含(x2y2),为实数) P147—例5 f( cos , sin ) d d f ( cos , sin ) d (1) (2)利用极坐标系 4 D 2()

0 2 0 (3)利用积分区域的对称性与被积函数的奇偶性 当D 关于y 轴对称时,(关于x 轴对称时,有类似结论) f (x, y)对于x 是奇函数, 即口 x,y) f (x,y) I 2 f(x,y)dxdy f(x, y)对于 x 是偶函数, D 1 即f( x, y) f(x,y) 。1是。的右半部分 P141—例 2 应用该性质更方便 计算步骤及注意事项 画出积分区域 选择坐标系 3. 4. 确定积分限 确定积分次序 标准:域边界应尽量多为坐标轴,被积函数 关 于坐标变量易分离 原则:积分区域分块少,累次积分好算为妙 方法:图示法 先积一条线,后扫积分域

同济六版高等数学(下)知识点整理

第八章 1、向量在轴上的投影: 性质:?cos )(a a u =(即Prj u ?cos a a =),其中?为向量a 与u 轴的夹角; u u u b a b a )()()( +=+(即Prj u =+)(b a Prj u a + Prj u b ); u u a a )()( λλ=(即Prj u λλ=)(a Prj u a ). 2、两个向量的向量积:设k a j a i a a z y x ++=,k b j b i b b z y x ++=,则 =?b a x x b a i y y b a j z z b a k =1 1) 1(+-y y b a z z b a i +21)1(+-x x b a z z b a j +3 1) 1(+- x x b a y y b a k =k b a b a j b a b a i b a b a x y y x z x x z y z z y )()()(-+-+- 注:a b b a ?-=? 3、二次曲面 (1) 椭圆锥面:222 22z b y a x =+; (2) 椭圆抛物面:z b y a x =+22 22; (旋转抛物面:z a y x =+2 22(把把xOz 面上的抛物线z a x =22 绕z 轴旋转)) (3) 椭球面:1222222=++c z b y a x ; (旋转椭球面:122 2 22=++c z a y x (把xOz 面上的椭圆122 22=+c z a x 绕z 轴旋转)) (4) 单叶双曲面:1222222=-+c z b y a x ; (旋转单叶双曲面:122 222=-+c z a y x (把 xOz 面上的双曲线122 22=-c z a x 绕z 轴旋转))

高等数学大一上学期知识要点

高数总复习(上) 一、求极限的方法: 1、利用运算法则与基本初等函数的极限; ①、定理 若lim (),lim ()f x A g x B ==, 则 (加减运算) lim[()()]f x g x A B +=+ (乘法运算) lim ()()f x g x AB =g (除法运算) ()0,lim ()f x A B g x B ≠=若 推论1: lim (),lim[()][lim ()]n n n f x A f x f x A === (n 为正整数) 推论2: lim ()[lim ()]cf x c f x = ②结论

结论2: ()f x 是基本初等函数,其定义区间为D ,若0x D ∈,则 2、利用等价无穷小代换及无穷小的性质; ①定义1: 若0 lim ()0x x f x →=或(lim ()0x f x →∞ =) 则称 ()f x 是当0x x → (或x →∞)时的无穷小. 定义2: ,αβ是自变量在同一变化过程中的无穷小: 若lim 1β α =, 则称α与β是等价无穷小, 记为 αβ:. ②性质1:有限个无穷小的和也是无穷小. 性质2: 有界函数与无穷小的乘积是无穷小. 推论1: 常数与无穷小的乘积是无穷小. 推论2: 有限个无穷小的乘积也是无穷小. 定理2(等价无穷小替换定理) 设 ~,~ααββ'',

且lim βα'' 存在, 则 (因式替换原则) 常用等价无穷小: 3、利用夹逼准则和单调有界收敛准则; ①准则I(夹逼准则)若数列,,n n n x y z (n=1,2,…)满足下列条件: (1)(,,,)n n n y x z n ≤≤=123L ; (2)lim lim n n n n y z a →∞ →∞ ==, 则数列n x 的极限存在, 且lim n n x a →∞ =. ②准则II: 单调有界数列必有极限. 4、利用两个重要极限。

高数下册总复习知识点归纳

第八、九章 向量代数与空间解析几何总结 向量代数 定义 定义与运算的几何表达 在直角坐标系下的表示 向量 有大小、有方向. 记作a 或AB u u u r a (,,)x y z x y z a i a j a k a a a =++= ,,x x y y z z a prj a a prj a a prj a ===r r r 模 向量a 的模记作a a 222x y z a a a =++ 和差 c a b =+ c a b =- =+c a b {},,=±±±x x y y z z a b a b a b 单位向量 0a ≠,则a a e a = a e 2 2 2 (,,)= ++x y z x y z a a a a a a 方向余弦 设a 与,,x y z 轴的夹角分别为αβγ,,,则方向余弦分别为cos αβγ,cos ,cos cos y x z a a a a a a αβγ===r r r ,cos ,cos cos a e αβγ=(,cos ,cos ) 222cos 1αβγ+=+cos cos 点乘(数量积) θcos b a b a =?, θ为向量a 与b 的夹 角 z z y y x x b a b a b a ++=?b a 叉乘(向量积) b a c ?= θsin b a c = θ为向量a 与b 的夹角 向量c 与a ,b 都垂直 z y x z y x b b b a a a k j i b a =? 定理与公式 垂直 0a b a b ⊥??= 0x x y y z z a b a b a b a b ⊥?++= 平行 //0a b a b ??= //y z x x y z a a a a b b b b ?== 交角余弦 两向量夹角余弦b a b a ?=θcos 222222 cos x x y y z z x y z x y z a b a b a b a a a b b b θ++= ++?++ 投影 向量a 在非零向量b 上的投影 cos()b a b prj a a a b b ∧?== 2 2 2 x x y y z z b x y z a b a b a b prj a b b b ++= ++ 平面 直线 法向量{,,}n A B C = 点),,(0000z y x M 方向向量{,,}T m n p = 点),,(0000z y x M 方程名称 方程形式及特征 方程名称 方程形式及特征 一般式 0=+++D Cz By Ax 一般式 ?? ?=+++=+++0 022221111D z C y B x A D z C y B x A

_《高等数学》(下)复习提纲(本科)

《高等数学》(下册)复习提纲 复 习 题 1.求与平面230x +y +z +=1π:及2310x +y z +=-2π:都平行且过点(1,0,1)P -的直线方程。 2.求与直线240,:2320. x +y z +=l x +y +z =-?? -?垂直,且过点P(-1,0,1)的平面方程。 3.函数) 1ln(4)2arcsin(2 2 2 y x y x x z ---+ =的定义域为 。 4.求极限:xy xy y x 42lim +- →→。 5.证明极限 2 (,)(0,) lim x y x y x →- 0不存在。 6.计算偏导数:(1)x y z arcsin =,求 2 2 z x ??; (2)设 ),(2 x y x f y z =,求 z z x y ????,。 7.求x y e z =在点(1,2)的全微分。 8.设y z z x ln =,求 , z z x y ????。 9.求曲面3=+-xy z e z 在点)0,1,2(处的切平面及法线方程。 10.求曲线22230, 23540.x y z x x y z ?++-=?-+-=? 在点)1,1,1(处的切线和法平面方程。 11.求函数222u x y z =++在曲线32 , ,t z t y t x ===点)1,1,1(处沿曲线在该点的切线正向的 方向导数。 12.求(,,)sin()f x y z xyz xyz =的梯度。 13.求椭圆2225160x xy y y ++-=到直线80x y +-=的最短距离。 14.交换积分次序:? ?-2 2 1 0 ),(y y dx y x f dy 。 15.计算积分:(1)sin D x dxdy x ?? ,其中D 是由直线y x =及抛物线2 y x =所围成的区域; (2)dxdy y x D ?? +2 2,D :}2|),{(2 2 y y x y x ≤+; (3)???Ω +dv z x )(, Ω:球面2224x y z ++=与抛物面22 3x y z +=所围成的区域。 16.设)(x f 连续,2)(10 =?dx x f ,求??10 1 )()(x dy y f x f dx 。 17 .求曲面2z =-2 2 y x z +=所围的立体体积。 18.计算积分:(1)?+L ds y x )(2 2 ,L 为下半圆周21x y --=; (2)dy y x dx y xy L )()(2 2++-?,L 为抛物线2 x y =从(0,0)到(1,1)的一段有向弧; (3)dy x y e dx y x y e x L x )cos ()sin (-+--?,其中L 是在圆周2 2x x y -= 上由点 (2,0)到(0,0)的一段弧。

(完整版)高数_大一_上学期知识要点

总复习(上) 一、求极限的方法: 1、利用运算法则与基本初等函数的极限; ①、定理 若lim (),lim ()f x A g x B ==, 则 (加减运算) lim[()()]f x g x A B +=+ (乘法运算) lim ()()f x g x AB =g (除法运算) ()0,lim ()f x A B g x B ≠=若 推论1: lim (),lim[()][lim ()]n n n f x A f x f x A === (n 为正整数) 推论2: lim ()[lim ()]cf x c f x = ②结论 结论2: ()f x 是基本初等函数,其定义区间为D ,若0x D ∈,则 0lim ()()x x f x f x →= 2、利用等价无穷小代换及无穷小的性质; ①定义1: 若0 lim ()0x x f x →=或(lim ()0x f x →∞ =) 则称 ()f x 是当0x x → (或x →∞)时的无穷小. 定义2: ,αβ是自变量在同一变化过程中的无穷小: 若lim 1β α =, 则称α与β是等价无穷小, 记为 αβ:. ②性质1:有限个无穷小的和也是无穷小. 性质2: 有界函数与无穷小的乘积是无穷小. 推论1: 常数与无穷小的乘积是无穷小. 推论2: 有限个无穷小的乘积也是无穷小.

定理2(等价无穷小替换定理) 设~,~ααββ'', 且lim βα'' 存在, 则 (因式替换原则) 常用等价无穷小: sin ~,tan ~,arcsin ~,arctan ~,x x x x x x x x ()()2 12 1cos ~,1~,11~,ln 1~,x x x e x x x x x μ μ--+-+ 1~ln ,x a x a -()0→x 3、利用夹逼准则和单调有界收敛准则; ①准则I(夹逼准则)若数列,,n n n x y z (n=1,2,…)满足下列条件: (1)(,,,)n n n y x z n ≤≤=123L ; (2)lim lim n n n n y z a →∞ →∞ ==, 则数列n x 的极限存在, 且lim n n x a →∞ =. ②准则II: 单调有界数列必有极限. 4、利用两个重要极限。 0sin lim 1x x x →= 1 0lim(1)x x x e →+= 1lim(1)x x e x →∞+= 5、利用洛必达法则。 未定式为0,,,0,00∞ ∞∞-∞?∞∞ 类型. ①定理(x a →时的0 型): 设 (1)lim ()lim ()0x a x a f x F x →→==; (2) 在某(,)U a δo 内, ()f x 及()F x 都存在且()0F x ≠;

高数下(同济六)知识点知识分享

高等数学下册习题常见类型 题型1 求向量的坐标、模、方向角、方向余弦、数量积、向量积 题型2 由已知条件求平面与直线方程 题型3 计算一阶偏导数及高阶偏导数 题型4 求多元复合函数的偏导数 题型5 求方程所确定的隐函数的偏导数 题型6 求方向导数、梯度、曲线的切线、曲面的切平面 题型7 求极值、利用拉格郎日乘数法求最值 题型8 利用直角坐标计算二重积分 题型9 利用极坐标计算二重积分 题型10 计算带绝对值的二重积分 题型11 利用二重积分证明恒等式 题型12 利用对称性质计算二重积分 题型13 只有一种积分次序可计算的积分 例1、 求 2 421 2x dx dx +? ? 解:(将二次积分交换顺序) 12 212 2421 22211sin sin sin sin (1)sin cos1sin1 x D D y y D D y y dx dx dxdy dxdy y y y y dxdy dy dx y ydy y y πππππ+=+===-=-???????????U 题型14 利用投影法计算三重积分 题型15 利用柱坐标计算三重积分 题型16 利用球坐标计算三重积分 题型17 利用切片法计算三重积分 题型18 利用三重积分计算立体的体积 题型19 计算对弧长的曲线积分 题型20 计算对面积的曲面积分 题型21 计算对坐标的曲线积分 题型22 利用格林公式计算对坐标的曲线积分 题型23 曲线积分与路径无关及全微分求积 题型24 计算对坐标的曲面积分

题型25 利用高斯公式计算对坐标的曲面积分 题型26 可分离变量的微分方程、齐次方程 题型27一阶线性微分方程 题型29 可降阶方程 题型30二阶常系数非齐次线性方程 第八章 向量与解析几何 向量代数 定义 定义与运算的几何表达 在直角坐标系下的表示 向量 有大小、有方向. 记作a 或AB u u u r a (,,)x y z x y z a i a j a k a a a =++= ,,x x y y z z a prj a a prj a a prj a ===r r r 模 向量a 的模记作a a 222x y z a a a =++ 和差 c a b =+ c a b =- =+c a b {},,=±±±x x y y z z a b a b a b 单位向量 0a ≠,则a a e a = a e 2 2 2 (,,)= ++x y z x y z a a a a a a 方向余弦 设a 与,,x y z 轴的夹角分别为αβγ,,,则方向余弦分别为cos αβγ,cos ,cos cos y x z a a a a a a αβγ===r r r ,cos ,cos cos a e αβγ=(,cos ,cos ) 222cos 1αβγ+=+cos cos 点乘(数量积) θcos b a b a =?, θ为向量a 与b 的夹 角 z z y y x x b a b a b a ++=?b a 叉乘(向量积) b a c ?= θsin b a c = θ为向量a 与b 的夹角 向量c 与a ,b 都垂直 z y x z y x b b b a a a k j i b a =? 定理与公式 垂直 0a b a b ⊥??= 0x x y y z z a b a b a b a b ⊥?++= 平行 //0a b a b ??= //y z x x y z a a a a b b b b ?== 交角余弦 两向量夹角余弦b a b a ?= θcos 2 2 2 2 2 2 cos x x y y z z x y z x y z a b a b a b a a a b b b θ++= ++?++ 投影 向量a 在非零向量b 上的投影 cos()b a b prj a a a b b ∧ ?== 2 2 2 x x y y z z b x y z a b a b a b prj a b b b ++= ++

高数下册总复习知识点归纳修订稿

高数下册总复习知识点 归纳 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

第八、九章 向量代数与空间解析几何总结 向量代数 定义 定义与运算的几何表达 在直角坐标系下的表示 向量 有大小、有方向. 记作a 或AB a (,,)x y z x y z a i a j a k a a a =++= ,,x x y y z z a prj a a prj a a prj a === 模 向量a 的模记作a a 222x y z a a a =++ 和差 c a b =+ c a b =- =+c a b {},,=±±±x x y y z z a b a b a b 单位向量 0a ≠,则a a e a = a e 2 2 2 (,,)= ++x y z x y z a a a a a a 方向余弦 设a 与,,x y z 轴的夹角分别为αβγ,,,则方向余弦分别为cos αβγ,cos ,cos cos y x z a a a a a a αβγ= == ,cos ,cos cos a e αβγ=(,cos ,cos ) 222cos 1αβγ+=+cos cos 点乘(数量 积) θcos b a b a =?, θ为向量a 与b 的夹角 z z y y x x b a b a b a ++=?b a 叉乘(向量 积) b a c ?= θsin b a c = θ为向量a 与b 的夹角 向量c 与a ,b 都垂直 z y x z y x b b b a a a k j i b a =? 定理与公式 垂直 0a b a b ⊥??= 0x x y y z z a b a b a b a b ⊥?++= 平行 //0a b a b ??= //y z x x y z a a a a b b b b ? == 交角余弦 两向量夹角余弦b a b a ?=θcos 2 2 2 2 2 2 cos x x y y z z x y z x y z a b a b a b a a a b b b θ++= ++?++ 投影 向量a 在非零向量b 上的投影 cos()b a b prj a a a b b ∧?== 2 2 2 x x y y z z b x y z a b a b a b prj a b b b ++= ++ 平面 直线 法向量{,,}n A B C = 点),,(0000z y x M 方向向量{,,}T m n p = 点),,(0000z y x M 方程名称 方程形式及特征 方程名称 方程形式及特征 一般式 0=+++D Cz By Ax 一般式 ?? ?=+++=+++0 022221111D z C y B x A D z C y B x A

高等数学下册知识点

高等数学下册知识点 《高等数学C2》考试大纲 一、考试内容与重点分布 1、向量代数与空间解析几何 (1) 空间向量的数量积与向量积计算方法(☆); (判断题2分, 计算题6分) ,,cos 是一个数量z z y y x x b a b a b a b a b a ++=?=?θ ,是个向量 注意:两者的运算律要会。 (2) 空间曲面方程的识别; (选择题3分) 几种常见的二次曲面 (3) 平面与直线方程及其求法(☆). (判断2分, 填空题3分, 计算题6分) Ⅰ、平面的几种方程形式: (1)点法式:过点),,(000z y x ,法向量为}C B,A,{=n 的平面方程: k j i x a y a z a x b y b z b =?b a

-+-y B x x A ()(00)()00=-+z z C y ; (2) 一般式:0=+++D Cz By Ax ,其中},,{C B A =n ; (3) 截距式: 1=++c z b y a x ,其中平面与坐标轴交点),0,0(),0,,0(),0,0,(c b a ; (4) 三点式:002020 2010 101000 =---------z z y y x x z z y y x x z z y y x x , 其中),,(000z y x ,),,(111z y x ,),,(222z y x 为平面上不在一条直线上的三点. Ⅱ 、 直线的几种方程形式: (1) 点向式:p z z n y y m x x 000-=-=-,其中),,(000z y x 为 直线上定点,},,{p n m =s 为直线的方向向量; (2) 参数式:?? ???+=+=+=;pt z z nt y y m t x x 000,, (3) 两点式:1 21121121z z z z y y y y x x x x --=--=--, 其中),,(111z y x ,),,(222z y x 为直线上不重合的两点; (4) 一般式:???=+++=+++,0, 02222 1111D z C y B x A D z C y B x A 其中此二平面不平行. 注:线与线、线与面、面与面垂直或平行时直线的方向向量和平面的法向量之间的关系。 2、多元函数的微分学 (1) 二元函数极限求法(☆); (选择题3分, 计算题6分)

大一高数知识点总结

大一高数知识点总结 &初等函数 一、函数的概念 1、函数的定义 函数是从量的角度对运动变化的抽象表述,是一种刻画运动变化中变化量相依关系的数学模型。 设有两个变量x与y,如果对于变量x在实数集合D内的每一个值,变量y按照一定的法则都有唯一的值与之对应,那么就称x是自变量,y是x的函数,记作y=f,其中自变量x取值的集合D叫函数的定义域,函数值的集合叫做函数的值域。 2、函数的表示方法解析法 即用解析式表示函数。如y=2x+1, y=︱x︱,y=lg,y=sin3x等。便于对函数进行精确地计算和深入分析。列表法 即用表格形式给出两个变量之间函数关系的方法。便于差的某一处的函数值。图像法 即用图像来表示函数关系的方法 非常形象直观,能从图像上看出函数的某些特性。 分段函数——即当自变量取不同值时,函数的表达式不一样,如 1??2x?1, x?0?xsin, f?x???y??x

?2x?1,x?0???0 x?0 x?0 隐函数——相对于显函数而言的一种函数形式。所谓显函数,即直接用含自变量的式子表示的函数,如y=x2+2x+3,这是常见的函数形式。而隐函数是指变量x、y之间的函数关系式是由一个含x,y的方程F=0给出的,如2x+y-3=0,e 可得y=3-2x,即该隐函数可化为显函数。 参数式函数——若变量x,y之间的函数关系是通过参数式方程? x?y 而由2x+y-3=0?x?y?0等。 ?x???t?, ?t?T?给出的,??y??t? 这样的函数称为由参数方程确定的函数,简称参数式方程,t称为参数。 反函数——如果在已给的函数y=f中,把y看作自变量,x也是y的函数,则所确定的函数x=∮叫做y=f的反函数,记作x=fˉ1或y= fˉ1. 二、函数常见的性质 1、单调性 2、奇偶性=f;奇:关于y轴对称,f=-f.) 3、周期性

高数重要知识点总结怎么写

高数重要知识点总结怎么写 高数重要知识点总结怎么写 高数指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。高数重要知识点总结怎么写的呢,我们来看看。 高数重要知识点总结怎么写一 1.函数、极限与连续 重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。 2.一元函数微分学 重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。 3.一元函数积分学 重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。 4.向量代数与空间解析几何(数一) 主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平

行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。 5.多元函数微分学 重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。 6.多元函数积分学 重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。 7.无穷级数(数一、数三) 重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。 8.常微分方程及差分方程 重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。此外,数三考查差分方程的基本概念与一介常系数线形方程求解方法。数一还要求会伯努利方程、欧拉公式等。 高数重要知识点总结怎么写二 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积

(完整版)高等数学(下)知识点总结

高等数学(下)知识点 主要公式总结 第八章 空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111C B A n =ρ,),,(2222C B A n =ρ , 22 22 22 21 21 2 1 2 12121cos C B A C B A C C B B A A ++?++++= θ ?∏⊥∏21 0212121=++C C B B A A ;?∏∏21// 2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: 2 2 2 000C B A D Cz By Ax d +++++= (三) 空间直线及其方程

大一上学期高数知识点电子教案

第二章 导数与微分 一、主要内容小结 1. 定义·定理·公式 (1)导数,左导数,右导数,微分以及导数和微分的几何意义 (2) 定理与运算法则 定理1 )(0x f '存在?='- )(0x f )(0x f +' . 定理2 若)(x f y =在点0x 处可导,则)(x f y =在点x 0处连续;反之不真. 定理3 函数)(x f 在0x 处可微?)(x f 在0x 处可导. 导数与微分的运算法则:设)(,)(x v v x u u ==均可导,则 v u v u '±'='±)(, dv du v u d ±=±)( u v v u uv '+'=')(, vdu udv uv d +=)( )0()(2≠'-'='v v v u u v v u , )0()(2≠-=v v udv vdu v u d (3)基本求导公式 2. 各类函数导数的求法 (1)复合函数微分法 (2)反函数的微分法 (3)由参数方程确定函数的微分法 (4)隐函数微分法 (5)幂指函数微分法 (6)函数表达式为若干因子连乘积、乘方、开方或商形式的微分法. 方法:对数求导法(即先对式子的两边取自然对数,然后在等式的两端再对x 求导). (7)分段函数微分法 3. 高阶导数 (1)定义与基本公式

高阶导数公式:a a a n x n x ln )()(= )0(>a x n x e e =)()( )2sin()(sin )(π?+=n kx k kx n n )2cos()(cos )(π ?+=n kx k kx n n n m n m x n m m m x -+-???-=)1()1()()( !)()(n x n n = n n n x n x )! 1()1()(ln 1)(--=- 莱布尼兹公式: (2)高阶导数的求法 ① 直接法② 间接法 4. 导数的简单应用 (1) 求曲线的切线、法线 (2) 求变化率——相关变化率 二、 例题解析 例2.1 设?? ???=≠?=0,00,1sin )(x x x x x f K , (K 为整数).问: (1)当K 为何值时,)(x f 在0=x 处不可导; (2)当K 为何值时,)(x f 在0=x 处可导,但导函数不连续; (3)当K 为何值时,)(x f 在0=x 处导函数连续? 解 函数)(x f 在x=0点的导数: 0lim →x =--0 )0()(x f x f 0lim →x x f x f )0()(-=0lim →x x x x K 1sin )(? = 0lim →x x x K 1sin )(1?-= ? ??>≤101 K K 当,,当发散 即 ? ??>≤='1,01)0(K K f 不存在, 当1>K 时, )(x f 的导函数为: ?????=≠?-?='--0,00,1cos 1sin )(21x x x x x Kx x f K K

高数知识点总结

高数重点知识总结 1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。 3、无穷小:高阶+低阶=低阶 例如:1lim lim 020==+→→x x x x x x x 4、两个重要极限:()e x e x x x x x x x x =?? ? ??+=+=∞ →→→11lim 1lim )2(1 sin lim )1(1 0 经验公式:当∞→→→)(,0)(,0x g x f x x ,[] ) ()(lim ) (0 )(1lim x g x f x g x x x x e x f →=+→ 例如:()33lim 10 031lim -? ? ? ? ?-→==-→e e x x x x x x 5、可导必定连续,连续未必可导。例如:||x y =连续但不可导。 6、导数的定义:()00 00 ') ()(lim ) (') ()(lim x f x x x f x f x f x x f x x f x x x =--=?-?+→→? 7、复合函数求导: [][])(')(')(x g x g f dx x g df ?= 例如:x x x x x x x y x x y ++=++ = +=2412221 1', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx 例如:y x dx dy ydy xdx y x y yy x y x - =?+- =?=+=+22,),2('0'22,),1(1 22左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若?? ?==) ()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[] ) (')('/)('/)/(/22 t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f ??=-?+ 例如:计算 ?31sin

高等数学下册知识点

高等数学下册知识点 第七章 空间解析几何与向量代数 一、填空与选择 1、已知点A (,,)321-和点B (,,)723-,取点M 使MB AM 2=,则向量OM =。 2 已知点A (,,)012和点B =-(,,)110,则AB = 。 3、设向量与三个坐标面的夹角分别为ξηζ,,,则cos cos cos 2 2 2 ξηζ++= 。 4、设向量a 的方向角απ β= 3 ,为锐角,γπβ=-4=,则a = 。 5、向量)5,2,7(-=a 在向量)1,2,2(=b 上的投影等于。 6、过点()121 -,,P 且与直线1432-=-=+-=t z t y t x ,,, 垂直的平面方程为_____________________________. 7、已知两直线方程是13021 1: 1--=-=-z y x L ,11122:2 z y x L =-=+,则过1L 且平行2L 的平面方程为____________________ 8、设直线182511:1+=--=-z y x L ,???=-+=--0320 6:2z y y x L ,则1L 与2L 的夹角为( ) (A ). 6π (B ).4π (C ).3π (D )2 π . 9、平面Ax By Cz D +++=0过x 轴,则( ) (A )A D ==0 (B )B C =≠00, (C )B C ≠=00, (D )B C ==0 10、平面3510x z -+=( ) (A )平行于zox 平面 (B )平行于y 轴(C )垂直于y 轴 (D )垂直于x 轴 11、点M (,,)121到平面x y z ++-=22100的距离为( ) (A )1 (B )±1 (C )-1 (D )1 3 12、与xoy 坐标平面垂直的平面的一般方程为 。 13、过点(,,)121与向量k j S k j i S --=--=21,32平行的平面方程为 。 14、平面0218419=++-z y x 和0428419=++-z y x 之间的距离等于?????? 。 15、过点(,,)024且与平面x z +=21及y z -=32都平行的直线方程为。 16、过点(,,)203-并与x y z x y z -+-=+-+=??? 2470 35210垂直的平面的方程为???????????? 。 二、完成下列各题 1、设)(,82,13-=-=-=λ与 b 是不平行的非零向量,求λ的值,使C B A 、、三点在 同一直线上。 2、已知不平行的两向量a 和b ,求它们的夹角平分线上的单位向量。 3、设点)1,0,1(-A 为矢量,10=与x 轴、y 轴的夹角分别为 45,60==βα,试求: (1)AB 与z 轴的夹角v ;(2)点B 的坐标。 4、求与向量k j i a 22+-=共线且满足18-=?x a 的向量x 。 5、若平面过x 轴,且与xoy 平面成 30的角,求它的方程。 第八章 空间解析几何与向量代数 (一) 向量及其线性运算 1、 向量,向量相等,单位向量,零向量,向量平行、共线、共面;

大学全册高等数学知识点(全)

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

高等数学(下)知识点总结

主要公式总结 第八章空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111 C B A n =ρ ,),,(2222C B A n =ρ , 22 22 22 21 21 21 2 12121cos C B A C B A C C B B A A ++?++++= θ ?∏⊥∏210212121=++C C B B A A ;? ∏∏21//2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: 2 2 2 000C B A D Cz By Ax d +++++= (三) 空间直线及其方程

大一上学期高数复习要点

大一上学期高数复习要点 同志们,马上就要考试了,考虑到这是你们上大学后的第一个春节,为了不影响阖家团圆的气氛,营造以人文本,积极向上,相互理解的师生关系,减轻大家学习负担,以下帮大家梳理本学期知识脉络,抓住复习重点; 1.主要以教材为主,看教材时,先把教材看完一节就做一节的练习,看完一章后,通过看小结对整一章的内容进行总复习。 2.掌握重点的知识,对于没有要求的部分可以少花时间或放弃,重点掌握要求的内容,大胆放弃老师不做要求的内容。 3.复习自然离不开大量的练习,熟悉公式然后才能熟练任用。结合课后习题要清楚每一道题用了哪些公式。没有用到公式的要死抓定义定理! 一.函数与极限二.导数与微分三.微分中值定理与导数的应用四.不定积分浏览目录了解真正不熟悉的章节然后有针对的复习。 一函数与极限 熟悉差集对偶律(最好掌握证明过程)邻域(去心邻域)函数有界性的表示方法数列极限与函数极限的区别收敛与函数存在极限等价无穷小与无穷大的转换夹逼准则(重新推导证明过程)熟练运用两个重要极限第二准则会运用等价无穷小快速化简计算了解间断点的分类零点定理 本章公式: 两个重要极限: 二.导数与微分 熟悉函数的可导性与连续性的关系求高阶导数会运用两边同取对数隐函数的显化会求由参数方程确定的函数的导数

洛必达法则: 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求极限以前,首先要检查是否满足或型,否则滥用洛必达法则会出错.当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限 . ②洛必达法则可连续多次使用,直到求出极限为止. ③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 曲线的凹凸性与拐点: 注意:首先看定义域然后判断函数的单调区间 求极值和最值 利用公式判断在指定区间内的凹凸性或者用函数的二阶导数判断(注意二阶导数的符号) 四.不定积分:(要求:将例题重新做一遍) 对原函数的理解 原函数与不定积分 1 基本积分表基本积分表(共24个基本积分公式) 不定积分的性质 最后达到的效果是会三算两证(求极限,求导数,求积分)(极限和中值定理的证明),一定会取得满意的成绩!

相关文档
相关文档 最新文档