文档库 最新最全的文档下载
当前位置:文档库 › 高考数学解题方法与解题思想总结(1)

高考数学解题方法与解题思想总结(1)

高考数学解题方法与解题思想总结(1)
高考数学解题方法与解题思想总结(1)

以下是高中数学的全部解题方法,对于在高考中的数学复习有很大的帮助,希望能为广大的高三学子尽一些微薄之力

目录

前言 (2)

第一章高中数学解题基本方法 (3)

一、配方法 (3)

二、换元法 (7)

三、待定系数法 (14)

四、定义法 (19)

五、数学归纳法 (23)

六、参数法 (28)

七、反证法 (32)

八、消去法………………………………………

九、分析与综合法………………………………

十、特殊与一般法………………………………

十一、类比与归纳法…………………………

十二、观察与实验法…………………………

第二章高中数学常用的数学思想 (35)

一、数形结合思想 (35)

二、分类讨论思想 (41)

三、函数与方程思想 (47)

四、转化(化归)思想 (54)

第三章高考热点问题和解题策略 (59)

一、应用问题 (59)

二、探索性问题 (65)

三、选择题解答策略 (71)

四、填空题解答策略 (77)

附录………………………………………………………

一、高考数学试卷分析…………………………

二、两套高考模拟试卷…………………………

三、参考答案……………………………………

前言

美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。

高考试题主要从以下几个方面对数学思想方法进行考查:

①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消

去法等;

②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等;

③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类

比、归纳和演绎等;

④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化

归)思想等。

数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。

数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。

可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。

为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。

在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,

起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

第一章高中数学解题基本方法

一、配方法

配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。

最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。

配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式,如:

a2+b2=(a+b)2-2ab=(a-b)2+2ab;

a2+ab+b2=(a+b)2-ab=(a-b)2+3ab=(a+b

2

)2+(

3

2

b)2;

a2+b2+c2+ab+bc+ca=1

2

[(a+b)2+(b+c)2+(c+a)2]

a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=(a+b-c)2-2(ab-bc-ca)=…

结合其它数学知识和性质,相应有另外的一些配方形式,如:

1+sin2α=1+2sinαcosα=(sinα+cosα)2;

x2+1

2

x

=(x+

1

x

)2-2=(x-

1

x

)2+2 ;……等等。

Ⅰ、再现性题组:

1. 在正项等比数列{a

n }中,a

1

?a

5

+2a

3

?a

5

+a

3

?a

7

=25,则 a

3

+a

5

_______。

2. 方程x2+y2-4kx-2y+5k=0表示圆的充要条件是_____。

A. 1

4

4

或k>1 C. k∈R D. k=1

4

或k=1

3. 已知sin4α+cos4α=1,则sinα+cosα的值为______。

A. 1

B. -1

C. 1或-1

D. 0

4. 函数y=log

1

2

(-2x2+5x+3)的单调递增区间是_____。

A. (-∞, 54]

B. [54,+∞)

C. (-12,54]

D. [5

4,3) 5. 已知方程x 2+(a-2)x+a-1=0的两根x 1、x 2,则点P(x 1,x 2)在圆x 2+y 2=4上,则实数a =_____。

【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2,将已知等式左边后配

方(a 3+a 5)2易求。答案是:5。

2小题:配方成圆的标准方程形式(x -a)2+(y -b)2=r 2,解r 2>0即可,选B 。

3小题:已知等式经配方成(sin 2α+cos 2α)2-2sin 2αcos 2α=1,求出sin αcos α,然后求出所求式的平方值,再开方求解。选C 。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D 。

5小题:答案3-11。 Ⅱ、示范性题组: 例1. 已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。

A. 23

B. 14

C. 5

D. 6

【分析】 先转换为数学表达式:设长方体长宽高分别为x,y,z ,则211

424()()xy yz xz x y z ++=++=??

? ,而欲求对角线长x y z 222++,将其配凑成两已知式的组合形式可得。

【解】设长方体长宽高分别为x,y,z ,由已知“长方体的全面积为11,其12

条棱的长度之和为24”而得:211

424()()xy yz xz x y z ++=++=???。

长方体所求对角线长为:x y z 222++=()()x y z xy yz xz ++-++22=

6112-=5

所以选B 。

【注】本题解答关键是在于将两个已知和一个未知转换为三个数学表示式,观察和分析三个数学式,容易发现使用配方法将三个数学式进行联系,即联系了已知和未知,从而求解。这也是我们使用配方法的一种解题模式。

例2. 设方程x 2+kx +2=0的两实根为p 、q ,若(p q )2+(q

p

)2≤7成立,求

实数k 的取值范围。

【解】方程x 2+kx +2=0的两实根为p 、q ,由韦达定理得:p +q =-k ,pq =2 ,

(p q )2+(q p )2=p q pq 442+()=()()p q p q pq 2222222+-=[()]()p q pq p q pq +--2222222=()k 2248

4

--≤7, 解得k ≤-10或k ≥10 。

又 ∵p 、q 为方程x 2+kx +2=0的两实根, ∴ △=k 2-8≥0即k ≥22或k ≤-22

综合起来,k 的取值范围是:-10≤k ≤-22 或者 22≤k ≤10。 【注】 关于实系数一元二次方程问题,总是先考虑根的判别式“Δ”;已知方程有两根时,可以恰当运用韦达定理。本题由韦达定理得到p +q 、pq 后,观察已知不等式,从其结构特征联想到先通分后配方,表示成p +q 与pq 的组合式。假如本题不对“△”讨论,结果将出错,即使有些题目可能结果相同,去掉对“△”的讨论,但解答是不严密、不完整的,这一点我们要尤为注意和重视。

例3. 设非零复数a 、b 满足a 2+ab +b 2=0,求(a

a b +)1998+(b a b

+)1998 。

【分析】 对已知式可以联想:变形为(a b )2+(a b )+1=0,则a

b

=ω (ω为

1的立方虚根);或配方为(a +b)2=ab 。则代入所求式即得。

【解】由a 2+ab +b 2

=0变形得:(a b )2+(a b

)+1=0 ,

设ω=a b ,则ω2+ω+1=0,可知ω为1的立方虚根,所以:1ω

=b

a ,ω3=

ω3=1。

又由a 2+ab +b 2=0变形得:(a +b)2=ab ,

所以 (a a b +)1998+(b a b +)1998

=(a ab 2)999+(b ab

2)999=(a b )999+(b a )999=ω

999

+ω999=2 。

【注】 本题通过配方,简化了所求的表达式;巧用1的立方虚根,活用ω的性质,计算表达式中的高次幂。一系列的变换过程,有较大的灵活性,要求我们善于联想和展开。

【另解】由a 2+ab +b 2=0变形得:(a b )2+(a b )+1=0 ,解出b a =

-±132

i

后,化成三角形式,代入所求表达式的变形式(a b )999+(b

a

)999后,完成后面的运

算。此方法用于只是未-±132

i

联想到ω时进行解题。

假如本题没有想到以上一系列变换过程时,还可由a 2+ab +b 2=0解出:a =-±132

i

b ,直接代入所求表达式,进行分式化简后,化成复数的三角形式,利用棣莫佛定理完成最后的计算。 Ⅲ、巩固性题组:

1. 函数y =(x -a)2+(x -b)2 (a 、b 为常数)的最小值为_____。

A. 8

B. ()a b -2

2 C. a b 222

+ D.最小值不存在

2. α、β是方程x 2-2ax +a +6=0的两实根,则(α-1)2 +(β-1)2的最小值是_____。 A. -49 B. 8 C. 18 D.不存在

3. 已知x 、y ∈R +,且满足x +3y -1=0,则函数t =2x +8y 有_____。 A.最大值22 B.最大值

22

C.最小值22 B.最小值

22

4. 椭圆x 2-2ax +3y 2+a 2-6=0的一个焦点在直线x +y +4=0上,则a =_____。

A. 2

B. -6

C. -2或-6

D. 2或6 5. 化简:218-sin +228+cos 的结果是_____。

A. 2sin4

B. 2sin4-4cos4

C. -2sin4

D. 4cos4-2sin4 6. 设F 1和F 2为双曲线x 2

4

-y 2=1的两个焦点,点P 在双曲线上且满足∠F 1PF 2

=90°,则△F 1PF 2的面积是_________。

7. 若x>-1,则f(x)=x 2+2x +11

x +的最小值为___________。

8. 已知π2

〈β<α〈34

π,cos(α

-β)=1213

,sin(α+β)=-35,求

sin2α的

值。(92年高考题)

9. 设二次函数f(x)=Ax 2+Bx +C ,给定m 、n (m

① 解不等式f(x)>0;

② 是否存在一个实数t ,使当t ∈(m+t,n-t)时,f(x)<0 ?若不存在,说出理由;若存在,指出t 的取值范围。

10. 设s>1,t>1,m ∈R ,x =log s t +log t s ,y =log s 4t +log t 4s +m(log s 2t +log t 2s), ① 将y 表示为x 的函数y =f(x),并求出f(x)的定义域; ② 若关于x 的方程f(x)=0有且仅有一个实根,求m 的取值范围。

二、换元法

解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。

它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。

三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+1-x的值域时,易

发现x∈[0,1],设x=sin2α,α∈[0,π

2

],问题变成了熟悉的求三角函数值

域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。

均值换元,如遇到x+y=S形式时,设x=S

2

+t,y=

S

2

-t等等。

我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小

也不能扩大。如上几例中的t>0和α∈[0,π

2 ]。

Ⅰ、再现性题组:

1.y=sinx2cosx+sinx+cosx的最大值是_________。

2.设f(x2+1)=log

a

(4-x4) (a>1),则f(x)的值域是_______________。

3.已知数列{a

n }中,a

1

=-1,a

n+1

2a

n

=a

n+1

-a

n

,则数列通项a

n

___________。

4.设实数x、y满足x2+2xy-1=0,则x+y的取值范围是___________。

5.方程13

13

+

+

-x

x

=3的解是_______________。

6.不等式log

2(2x-1) 2log

2

(2x+1-2)〈2的解集是_______________。

【简解】1小题:设sinx+cosx =t ∈[-2,2],则y =t 2

2

+t -12,对称

轴t =-1,当t =2,y max =1

2

+2;

2小题:设x 2+1=t (t ≥1),则f(t)=log a [-(t-1)2+4],所以值域为(-∞,log a 4];

3小题:已知变形为11a n +-1a n =-1,设b n =1

a n

,则b 1=-1,b n =-1+(n

-1)(-1)=-n ,所以a n =-1

n

4小题:设x +y =k ,则x 2-2kx +1=0, △=4k 2-4≥0,所以k ≥1或k ≤-1;

5小题:设3x =y ,则3y 2+2y -1=0,解得y =1

3

,所以x =-1;

6小题:设log 2(2x -1)=y ,则y(y +1)<2,解得-2

(log 25

4

,log 23)。

Ⅱ、示范性题组:

例1. 实数x 、y 满足4x 2-5xy +4y 2=5 ( ①式) ,设S =x 2+y 2,求

1

S m a

x +1S min

的值。(93年全国高中数学联赛题) 【分析】 由S =x 2+y 2联想到cos 2α+sin 2α=1,于是进行三角换元,设

x S y S ==??

???cos sin α

α

代入①式求S max 和S min 的值。 【解】设x S y S ==?????cos sin α

α

代入①式得: 4S -5S 2sin αcos α=5

解得 S =10

852-sin α

∵ -1≤sin2α≤1 ∴ 3≤8-5sin2α≤13 ∴ 1013≤1085-sin α≤10

3

∴ 1S max +1

S min

=310+1310=1610=85

此种解法后面求S最大值和最小值,还可由sin2α=810

S

S

-

的有界性而求,

即解不等式:|810

S

S

-

|≤1。这种方法是求函数值域时经常用到的“有界法”。

【另解】由S=x2+y2,设x2=S

2

+t,y2=

S

2

-t,t∈[-

S

2

S

2

],

则xy=±S

t

2

2

4

-代入①式得:4S±5

S

t

2

2

4

-=5,

移项平方整理得 100t2+39S2-160S+100=0 。

∴ 39S2-160S+100≤0 解得:10

13

≤S≤

10

3

1

S

max

1

S

min

3

10

13

10

16

10

8

5

【注】此题第一种解法属于“三角换元法”,主要是利用已知条件S=x2+y2与三角公式cos2α+sin2α=1的联系而联想和发现用三角换元,将代数问题转化为三角函数值域问题。第二种解法属于“均值换元法”,主要是由等式S=

x2+y2而按照均值换元的思路,设x2=S

2+t、y2=S

2

-t,减少了元的个数,问

题且容易求解。另外,还用到了求值域的几种方法:有界法、不等式性质法、分离参数法。

和“均值换元法”类似,我们还有一种换元法,即在题中有两个变量x、y时,可以设x=a+b,y=a-b,这称为“和差换元法”,换元后有可能简化代数式。

本题设x=a+b,y=a-b,代入①式整理得3a2+13b2=5 ,求得a2∈[0,5

3 ],

所以S=(a-b)2+(a+b)2=2(a2+b2)=10

13

20

13

a2∈[

10

13

,

10

3

],再求

1

S

max

1

S

min

的值。

例2.△ABC的三个内角A、B、C满足:A+C=2B,

1

cos A

1

cos C

=-

2

cos B

求cos A C

-

2

的值。(96年全国理)

【分析】 由已知“A +C =2B ”和“三角形内角和等于180°”的性质,可得 A C B +=??

?12060°=°;由“A +C =120°”进行均值换元,则设A C =°α

=°-α6060+???

,再代入可求cos α即cos A C

-2

【解】由△ABC 中已知A +C =2B ,可得 A C B +=???12060°

=°

,由A +C =120°,设

A C =°α=°-α

6060+??

?,代入已知等式得:1

cos A +1cos C =160cos()?+α+160cos()?-α=1

1232cos sin αα-+1

123

2

cos sin αα

+=cos cos sin ααα143422-=cos cos α

α234-=-

22, 解得:cos α=

22, 即:cos A C -2=2

2

【另解】由A +C =2B ,得A +C =120°,B =60°。所以1cos A +1cos C =-2

cos B

=-22,设

1

cos A =-2+m ,1cos C =-2-m , 所以cosA =12-+m ,cosC =1

2--m

,两式分别相加、相减得:

cosA +cosC =2cos A C +2cos A C -2=cos A C -2=22

22m -,

cosA -cosC =-2sin A C +2sin A C -2=-3sin A C -2=22

2m

m -,

即:sin A C -2=-2322m m ()-,=-2222m -,代入sin 2A C -2+cos 2A C -2=1整理得:3m 4-16m -12=0,解出m 2=6,代入cos

A C -2=222

2m -=2

2。 【注】 本题两种解法由“A +C =120°”、“1

cos A +1cos C

=-22”分别

进行均值换元,随后结合三角形角的关系与三角公式进行运算,除由已知想到均值换元外,还要求对三角公式的运用相当熟练。假如未想到进行均值换元,也可

由三角运算直接解出:由A +C =2B ,得A +C =120°,B =60°。所以1

cos A +

1cos C

=-

2

cos B =-22,即cosA +cosC =-22cosAcosC ,和积互化得: 2cos A C +2cos A C -2=-2[cos(A+C)+cos(A-C),即cos A C -2=22

2cos(A-C)=

22

-2(2cos 2A C -2-1),整理得:42cos 2A C -2+2cos A C -2

-32=0,

解得:cos A C -2=2

2

例3. 设a>0,求f(x)=2a(sinx +cosx)-sinx 2cosx -2a 2的最大值和最小值。

【解】 设sinx +cosx =t ,则t ∈[-2,2],由(sinx +cosx)2=1+2sinx 2cosx 得:sinx 2cosx =t 212- ∴ f(x)=g(t)=-12(t -2a)2+1

2

(a>0),t ∈[-2,2]

t =-2时,取最小值:-2a 2

-22a -12

当2a ≥2时,t =2,取最大值:-2a 2+22a -1

2

当0<2a ≤2时,t =2a ,取最大值:1

2

∴ f(x)的最小值为-2a 2

-22a -12

,最大值为

12022

22212222

()()<<-+-≥??

???

??a a a a 。 【注】 此题属于局部换元法,设sinx +cosx =t 后,抓住sinx +cosx 与sinx 2cosx 的内在联系,将三角函数的值域问题转化为二次函数在闭区间上的值域问题,使得容易求解。换元过程中一定要注意新的参数的范围(t ∈[-2,2])与sinx +cosx 对应,否则将会出错。本题解法中还包含了含参问题时分类讨论的数学思想方法,即由对称轴与闭区间的位置关系而确定参数分两种情况进行讨论。

一般地,在遇到题目已知和未知中含有sinx 与cosx 的和、差、积等而求三角式的最大值和最小值的题型时,即函数为f(sinx ±cosx ,sinxcsox),经常用到这样设元的换元法,转化为在闭区间上的二次函数或一次函数的研究。

例 4. 设对所于有实数x ,不等式x 2log 241()a a ++2x log 221

a

a ++

log 2()a a

+142

2

>0恒成立,求a 的取值范围。(87年全国理) 【分析】不等式中log 241()a a +、 log 221a a +、log 2()a a +142

2

三项有何联系?

进行对数式的有关变形后不难发现,再实施换元法。

【解】 设log 221a a +=t ,则log 241()a a +=log 2812()a a +=3+log 2a a

+1

2=3

-log 221a a +=3-t ,log 2()a a +142

2

=2log 2a a +12=-2t ,

代入后原不等式简化为(3-t )x 2+2tx -2t>0,它对一切实数x 恒成立,所以:

3048302

->=+-

t t t t ?(),解得t t t <<>???306或 ∴ t<0即log 221a

a +<0 0<21

a a +<1,解得0

换元及如何设元,关键是发现已知不等式中log 241()a a +、 log 221

a

a +、

log 2()a a

+142

2

三项之间的联系。在解决不等式恒成立问题时,使用了“判别式法”。另外,本题还要求对数运算十分熟练。一般地,解指数与对数的不等式、方程,有可能使用局部换元法,换元时也可能要对所给的已知条件进行适当变形,发现它们的联系而实施换元,这是我们思考解法时要注意的一点。

例5. 已知sin θx =cos θy ,且c o s 22θx +sin 22

θ

y =10322()x y + (②式),求

x y 的值。

【解】 设sin θx =cos θ

y

=k ,则sin θ=kx ,cos θ=ky ,且sin 2θ+cos 2

θ=k 2

(x 2

+y 2

)=1,代入②式得: k y x 222+k x y

222=10

322()x y +=1032k 即:

y x 22+x y

22

=10

3

设x y

22=t ,则t +1t =103 , 解得:t =3或1

3 ∴x y =±3或±33

【另解】 由x y =sin cos θθ=tg θ,将等式②两边同时除以cos 22

θ

x ,再表示成

含tg θ的式子:1+tg 4θ=()()

110

31122+?+tg tg θθ

=103tg 2θ,设tg 2θ=t ,则

3t 2—10t +3=0,

∴t =3或1

3, 解得x y

=±3或±33。

【注】 第一种解法由sin θx =cos θ

y

而进行等量代换,进行换元,减少了变

量的个数。第二种解法将已知变形为x y =sin cos θ

θ

,不难发现进行结果为tg θ,再

进行换元和变形。两种解法要求代数变形比较熟练。在解高次方程时,都使用了换元法使方程次数降低。

例6. 实数x 、y 满足()x -192+()y +116

2

=1,若x +y -k>0恒成立,求k 的范

围。

【分析】由已知条件()x -192+()y +116

2

=1,可以发现它与a 2+b 2=1有相似

之处,于是实施三角换元。

【解】由()x -192+()y +116

2

=1,设x -13=cos θ,y +14=sin θ,

即:x y =+=-+???

1314cos sin θθ 代入不等式x +y -k>0得:

3cos θ+4sin θ-k>0,即k<3cos θ+4sin θ=5sin(θ+ψ) 所以k<-5时不等式恒成立。

【注】本题进行三角换元,将代数问题(或者是解析几何问题)化为了含参三角不等式恒成立的问题,再运用“分离参数法”转化为三角函数的值域问题,从而求出参数范围。一般地,在遇到与圆、椭圆、双曲线的方程相似的代数式时,或者在解决圆、椭圆、双曲线等有关问题时,经常使用“三角换元法”。

等式ax +by +c>0 (a>0)所表示的区域为直线ax +by +c =0含x 轴正方向的一部分。此题不等式恒成立问题化为图

形问题:椭圆上的点始终位于平面上x +y -k>0的区域。即当直线x +y -k =0在与椭圆下部相切的切线之下时。当直线与椭圆相切时,方程组16191144022()()x y x y k -++=+-=??

?

有相等的一组实数解,消元后由△=0可求得k =-3,所以k<-3时原不等式恒成立。

Ⅲ、巩固性题组:

1. 已知f(x 3)=lgx (x>0),则f(4)的值为_____。

A. 2lg2

B. 13

lg2 C. 23

lg2 D. 23

lg4

2. 函数y =(x +1)4+2的单调增区间是______。

A. [-2,+∞)

B. [-1,+∞) D. (-∞,+∞)

C. (-∞,-1] 3. 设等差数列{a n }的公差d =12

,且S 100=145,则a 1+a 3+a 5+……+a 99的

值为_____。

A. 85

B. 72.5

C. 60

D. 52.5 4. 已知x 2+4y 2=4x ,则x +y 的范围是_________________。 5. 已知a ≥0,b ≥0,a +b =1,则a +

12

b +

12

的范围是____________。

6. 不等式

x >ax +

32

的解集是(4,b),则a =________,b =_______。

7. 函数y =2x +x +1的值域是________________。

8. 在等比数列{a n }中,a 1+a 2+…+a 10=2,a 11+a 12+…+a 30=12,求a 31

+a 32+…+a 60。

9. 实数m 在什么范围内取值,对任意实数x ,不等式sin 2x +2mcosx +4m -1<0恒成立。

10. 已知矩形ABCD ,顶点C(4,4),A 点在曲线x 2+y 2=2 (x>0,y>0)上移动,且AB 、AD 始终平行x 轴、y 轴,求矩形ABCD 的最小面积。

x

x +y -k>0

k 平面区域

x

三、待定系数法

要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)≡g(x)的充要条件是:对于一个任意的a值,都有f(a)≡g(a);或者两个多项式各同类项的系数对应相等。

待定系数法解题的关键是依据已知,正确列出等式或方程。使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。

使用待定系数法,它解题的基本步骤是:

第一步,确定所求问题含有待定系数的解析式;

第二步,根据恒等的条件,列出一组含待定系数的方程;

第三步,解方程组或者消去待定系数,从而使问题得到解决。

如何列出一组含待定系数的方程,主要从以下几方面着手分析:

①利用对应系数相等列方程;

②由恒等的概念用数值代入法列方程;

③利用定义本身的属性列方程;

④利用几何条件列方程。

比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。

Ⅰ、再现性题组:

1.设f(x)=x

2

+m,f(x)的反函数f-1(x)=nx-5,那么m、n的值依次为_____。

A. 5

2

, -2 B. -

5

2

, 2 C.

5

2

, 2 D. -

5

2

,-2

2.二次不等式ax2+bx+2>0的解集是(-1

2

,

1

3

),则a+b的值是_____。

A. 10

B. -10

C. 14

D. -14

3. 在(1-x 3)(1+x )10的展开式中,x 5的系数是_____。 A. -297 B.-252 C. 297 D. 207

4. 函数y =a -bcos3x (b<0)的最大值为32,最小值为-1

2

,则y =-4asin3bx

的最小正周期是_____。

5. 与直线L :2x +3y +5=0平行且过点A(1,-4)的直线L ’的方程是_______________。

6. 与双曲线x 2

-y 24

=1有共同的渐近线,且过点(2,2)的双曲线的方程是

____________。

【简解】1小题:由f(x)=x

2+m 求出f -1(x)=2x -2m ,比较系数易求,选C ;

2小题:由不等式解集(-12,13),可知-12、1

3

是方程ax 2+bx +2=0的两

根,代入两根,列出关于系数a 、b 的方程组,易求得a +b ,选D ;

3小题:分析x 5的系数由C 105与(-1)C 102

两项组成,相加后得x 5的系数,选D ; 4小题:由已知最大值和最小值列出a 、b 的方程组求出a 、b 的值,再代入求

得答案23

π

5小题:设直线L ’方程2x +3y +c =0,点A(1,-4)代入求得C =10,即得2x +3y +10=0;

6小题:设双曲线方程x 2-y 24=λ,点(2,2)代入求得λ=3,即得方程x

23

y 2

12

=1。 Ⅱ、示范性题组:

例1. 已知函数y =mx x n

x 22431

+++的最大值为7,最小值为-1,求此函数式。

【分析】求函数的表达式,实际上就是确定系数m 、n 的值;已知最大值、最小值实际是就是已知函数的值域,对分子或分母为二次函数的分式函数的值域易联想到“判别式法”。

【解】 函数式变形为: (y -m)x 2-43x +(y -n)=0, x ∈R, 由已知得y -m ≠0

∴ △=(-43)2-4(y -m)(y -n)≥0 即: y 2-(m +n)y +(mn -12)≤0 ①

不等式①的解集为(-1,7),则-1、7是方程y 2-(m +n)y +(mn -12)=0的两根,

代入两根得:1120

497120+++-=-++-=???()()m n mn m n mn 解得:m n ==???51或m n ==???

15

∴ y =5431122x x x +++或者y =x x x 22435

1

+++

此题也可由解集(-1,7)而设(y +1)(y -7)≤0,即y 2-6y -7≤0,然后与不等

式①比较系数而得:m n mn +=-=-???

6

127,解出m 、n 而求得函数式y 。

【注】 在所求函数式中有两个系数m 、n 需要确定,首先用“判别式法”处理函数值域问题,得到了含参数m 、n 的关于y 的一元二次不等式,且知道了它的解集,求参数m 、n 。两种方法可以求解,一是视为方程两根,代入后列出m 、n 的方程求解;二是由已知解集写出不等式,比较含参数的不等式而列出m 、n 的方程组求解。本题要求对一元二次不等式的解集概念理解透彻,也要求理解求函数值域的“判别式法”:将y 视为参数,函数式化成含参数y 的关于x 的一元二次方程,可知其有解,利用△≥0,建立了关于参数y 的不等式,解出y 的范围就是值域,使用“判别式法”的关键是否可以将函数化成一个一元二次方程。

例2. 设椭圆中心在(2,-1),它的一个焦点与短轴两端连线互相垂直,且此焦点与长轴较近的端点距离是10-5,求椭圆的方程。

【分析】求椭圆方程,根据所给条件,确定几何数据a 、b 、c 之值,问题就全部解决了。设a 、b 、c 后,由已知垂直关系而联想到勾

股定理建立一个方程,再将焦点与长轴较近端点的距离转

化为a -c 的值后列出第二个方程。

【解】 设椭圆长轴2a 、短轴2b 、焦距2c ,则|BF ’|

=a

∴ a b c

a a

b a

c 222

2222105=++=-=-????

?() 解得:a b ==???

?

?105 ∴ 所求椭圆方程是:x 210+y 2

5

=1

也可有垂直关系推证出等腰Rt △BB ’F ’后,由其性质推证出等腰Rt △B ’O ’F ’,

再进行如下列式: b c a c a b c

=-=-=+???

??105222 ,更容易求出a 、b 的值。

【注】 圆锥曲线中,参数(a 、b 、c 、e 、p )的确定,是待定系数法的生动体现;如何确定,要抓住已知条件,将其转换成表达式。在曲线的平移中,几何数据(a 、b 、c 、e )不变,本题就利用了这一特征,列出关于a -c 的等式。

x

F’

B

一般地,解析几何中求曲线方程的问题,大部分用待定系数法,基本步骤是:设方程(或几何数据)→几何条件转换成方程→求解→已知系数代入。

例 3. 是否存在常数a 、b 、c ,使得等式1222+2232+…+n(n +1)2=n n ()

+112

(an 2+bn +c)对一切自然数n 都成立?并证明你的结论。 (89年全国高考题)

【分析】是否存在,不妨假设存在。由已知等式对一切自然数n 都成立,取特殊值n =1、2、3列出关于a 、b 、c 的方程组,解方程组求出a 、b 、c 的值,再用数学归纳法证明等式对所有自然数n 都成立。

【解】假设存在a 、b 、c 使得等式成立,令:n =1,得4=1

6

(a +b +c);n

=2,得22=1

2

(4a +2b +c);n =3,得70=9a +3b +c 。整理得:

a b c a b c a b C ++=++=++=?????2442449370,解得a b c ===???

?

?31110, 于是对n =1、2、3,等式1222+2232+…+n(n +1)2

=n n ()+112

(3n 2+11n

+10)成立,下面用数学归纳法证明对任意自然数n ,该等式都成立:

假设对n =k 时等式成立,即1222+2232+…+k(k +1)2=k k ()

+112

(3k 2+

11k +10);

当n =k +1时,1222+2232+…+k(k +1)2+(k +1)(k +2)2

=k k ()+112

(3k 2

+11k +10) +(k +1)(k +2)2=k k ()

+112

(k +2)(3k +5)+(k +1)(k +2)2=

()()k k ++1212(3k 2+5k +12k +24)=()()

k k ++1212[3(k +1)2+11(k +1)+10],

也就是说,等式对n =k +1也成立。

综上所述,当a =8、b =11、c =10时,题设的等式对一切自然数n 都成立。 【注】建立关于待定系数的方程组,在于由几个特殊值代入而得到。此种解法中,也体现了方程思想和特殊值法。对于是否存在性问题待定系数时,可以按照先试值、再猜想、最后归纳证明的步骤进行。本题如果记得两个特殊数列13+23+…+n 3、12+22+…+n 2求和的公式,也可以抓住通项的拆开,运用数列求和公式而直接求解:由n(n +1)2=n 3+2n 2+n 得S n =1222+2232+…+n(n

+1)2

=(13

+23

+…+n 3

)+2(12

+22

+…+n 2

)+(1+2+…+n)=

n n 22

14

()+

+23n n n

()()

++

121

6

n n()

+1

2

n n()

+1

12

(3n2+11n+10),综上所述,当a=8、

b=11、c=10时,题设的等式对一切自然数n都成立。

例4. 有矩形的铁皮,其长为30cm,宽为14cm,要从四角上剪掉边长为xcm 的四个小正方形,将剩余部分折成一个无盖的矩形盒子,问x为何值时,矩形盒子容积最大,最大容积是多少?

【分析】实际问题中,最大值、最小值的研究,先由已知条件选取合适的变量建立目标函数,将实际问题转化为函数最大值和最小值的研究。

【解】依题意,矩形盒子底边边长为(30-2x)cm,底边宽为(14-2x)cm,高为xcm。

∴盒子容积 V=(30-2x)(14-2x)x=4(15-x)(7-x)x ,

显然:15-x>0,7-x>0,x>0。

设V=4

ab

(15a-ax)(7b-bx)x (a>0,b>0)

要使用均值不等式,则

--+=

-=-=?

?

?

a b

a ax

b bx x

10

157

解得:a=1

4

, b=

3

4

, x=3 。

从而V=64

3

(

15

4

x

4

)(

21

4

3

4

x)x≤

64

3

(

15

4

21

4

3

+

)3=

64

3

327=576。

所以当x=3时,矩形盒子的容积最大,最大容积是576cm3。

【注】均值不等式应用时要注意等号成立的条件,当条件不满足时要凑配系

数,可以用“待定系数法”求。本题解答中也可以令V=4

ab

(15a-ax)(7-x)bx 或

4

ab

(15-x)(7a-ax)bx,再由使用均值不等式的最佳条件而列出方程组,求出三项该进行凑配的系数,本题也体现了“凑配法”和“函数思想”。

Ⅲ、巩固性题组:

1.函数y=log

a

x的x∈[2,+∞)上恒有|y|>1,则a的取值范围是_____。

A. 2>a>1

2且a≠1 B. 0

2

或12

或0

2

2.方程x2+px+q=0与x2+qx+p=0只有一个公共根,则其余两个不同根

之和为_____。

A. 1

B. -1

C. p+q

D. 无法确定

3. 如果函数y =sin2x +a 2cos2x 的图像关于直线x =-π8

对称,那么a =

_____。

A. 2

B. -2

C. 1

D. -1

4. 满足C n 0+12C n 1+22C n 2+…+n 2C n n

<500的最大正整数是_____。 A. 4 B. 5 C. 6 D. 7

5. 无穷等比数列{a n }的前n 项和为S n =a -12

, 则所有项的和等于_____。

A. -12

B. 1

C. 12

D.与a 有关

6. (1+kx)9=b 0+b 1x +b 2x 2+…+b 9x 9,若b 0+b 1+b 2+…+b 9=-1,则k =______。

7. 经过两直线11x -3y -9=0与12x +y -19=0的交点,且过点(3,-2)的直线方程为_____________。

8. 正三棱锥底面边长为2,侧棱和底面所成角为60°,过底面一边作截面,使其与底面成30°角,则截面面积为______________。

9. 设y =f(x)是一次函数,已知f(8)=15,且f(2)、f(5)、(f14)成等比数列,求f(1)+f(2)+…+f(m)的值。

10. 设抛物线经过两点(-1,6)和(-1,-2),对称轴与x 轴平行,开口向右,直线y =2x +7和抛物线截得的线段长是410, 求抛物线的方程。

四、定义法

高考数学选择题满分八个快速解题思维技巧

高考数学选择题满分八个快速解题思维技 巧 高考数学选择题满分八个快速解题思维技巧 选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。选择题的解题思想,渊源于选择题与常规题的联系和区别。它在一定程度上还保留着常规题的某些痕迹。而另一方面,选择题在结构上具有自己的特点,即至少有一个答案(若一元选择题则只有一个答案)是正确的或合适的。因此可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支。选择题中的错误支具有两重性,既有干扰的一面,也有可利用的一面,只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速作出判断。 高考选择题占高考分数比重十分可观,750分中约有320分为选择题,占总分的45%左右。其中数学选择题的分数为60分,而且单项分数很高,两道选择题的分数等于一道大题的分数。学生的在选择题这类题型上,又普遍失分严重,据不完全统计,400分左右的学生,选择题丢分高达150~240分。500分左右的学生选择题丢分80~150分。所以,一直以来,选择题是拉开同学们分数距离的一条屏障,老师总是利用选择题的特点,让高考的选拔形成梯度。如果选择题不丢

分,同学们的总分就可以大幅度的提升,快速跨越当前的局限。 解答高考选择题既要求准确破解,又要快速选择,正如《考试说明》中明确指出的,应“多一点想的,少一点算的”。我们都会有算错的时候,怎样才不会算错呢?“不算就不会算错” 因此,在解答时应该突出一个"选"字,尽量减少书写解题过程,在对照选择支的同时,多方考虑间接解法,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取。我们不要给任何“方法”做出限定,重要的是这种解答的思想方式。 下面略举数例加以说明: 快速解题思维一:利用题目中的已知条件和选项的特殊性。 对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。 大家看题目,就可以看到所有选项都是数值。并且这个数值正是我们所求的k1k2的值。这么说来,无论任何情况下,都能满足这个条件。于是我们可以令A、B分别为椭圆的长轴上的两个顶点,C为短轴上的一个顶点,那么就极大地简化了计算过程,省去了“标准答案”中提供的设置未知数,产生庞大的计算量。通过特殊图形的构建,就能简化整个计算

高考数学复数知识点总结及解题思路方法

高考数学复数知识点总结及解题思路方法 考试内容: 复数的概念. 复数的加法和减法. 复数的乘法和除法. 数系的扩充. 考试要求: (1)了解复数的有关概念及复数的代数表示和几何意义. (2)掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、除法运算. (3)了解从自然数系到复数系的关系及扩充的基本思想. §15. 复数知识要点 1. ⑴复数的单位为i,它的平方等于-1,即1 =. i2- ⑵复数及其相关概念: ①复数—形如a + b i的数(其中R ,); b a∈ ②实数—当b = 0时的复数a + b i,即a; ③虚数—当0≠b时的复数a + b i; ④纯虚数—当a = 0且0≠b时的复数a + b i,即b i. ⑤复数a + b i的实部与虚部—a叫做复数的实部,b叫做虚部(注意 a,b都是实数) ⑥复数集C—全体复数的集合,一般用字母C表示. ⑶两个复数相等的定义:

00==?=+∈==?+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且. ⑷两个复数,如果不全是实数,就不能比较大小. 注:①若21,z z 为复数,则 1若021 z z +,则21z z - .(×)[21,z z 为复数,而不是实数] 2若21z z ,则021 z z -.(√) ②若C c b a ∈,,,则0)()()(222=-+-+-a c c b b a 是c b a ==的必要不充分条件. (当22)(i b a =-, 0)(,1)(22=-=-a c c b 时,上式成立) 2. ⑴复平面内的两点间距离公式:21z z d -=. 其中21z z ,是复平面内的两点21z z 和所对应的复数,21z z d 和表示间的距离. 由上可得:复平面内以0 z 为圆心,r 为半径的圆的复数方程: ) (00 r r z z =-. ⑵曲线方程的复数形式: ①00z r z z 表示以=-为圆心,r 为半径的圆的方程. ②2 1 z z z z -=-表示线段21z z 的垂直平分线的方程. ③21212 1202Z Z z z a a a z z z z ,)表示以且( =-+-为焦点,长半轴长为 a 的椭 圆的方程(若212z z a =,此方程表示线段21Z Z ,). ④ ), (2121202z z a a z z z z =---表示以21Z Z ,为焦点,实半轴长为a 的 双曲线方程(若212z z a =,此方程表示两条射线). ⑶绝对值不等式: 设21z z ,是不等于零的复数,则 ① 2 12121z z z z z z +≤+≤-.

高中数学解题思想之分类讨论思想

分类讨论思想方法 在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。 引起分类讨论的原因主要是以下几个方面: ①问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。 ②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。 ③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。 另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。 进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。 解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。 Ⅰ、再现性题组: 1.集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R},若A?B,那么a的范围是_____。 A. 0≤a≤1 B. a≤1 C. a<1 D. 00且a≠1,p=log a (a3+a+1),q=log a (a2+a+1),则p、q的大小关系是 _____。 A. p=q B. pq D.当a>1时,p>q;当0

2018上海高考数学大题解题技巧

上海高考数学大题解题技巧 一、立体几何题 1.证明线面位置关系,一般不需要去建系,更简单; 2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系; 3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。 二、三角函数题 注意归一公式、二倍角公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!),正弦定理,余弦定理的应用。 三、函数(极值、最值、不等式恒成立(或逆用求参)问题) 1.先求函数的定义域,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号); 2.注意最后一问有应用前面结论的意识; 3.注意分论讨论的思想; 4.不等式问题有构造函数的意识; 5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法); 四、圆锥曲线问题 1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法; 2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等; 3.战术上整体思路要保10分,争12分,想16分。 五、数列题 1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用数列的单调性(或者放缩法);如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3.如果是新定义型,一定要严格的套定义做题(仔细理解新定义)。 4.战术上整体思路要保10分,争12分,想16分。

高中数学解题八个思维模式和十个思维策略

高中数学解题八种思维模式 和十种思维策略 引言 “数学是思维的体操” “数学教学是数学(思维)活动的教学。” 学习数学应该看成是学习数学思维过程以及数学思维结果这二者的综合,因而可以说数学思维是动的数学,而数学知识本身是静的数学,这二者是辩证的统一。作为思维载体的数学语言简练准确和数学形式具有符号化、抽象化、结构化倾向。 高中数学思维中的重要向题 它可以包括: 高中数学思维的基本形式 高中数学思维的一般方法 高中数学中的重要思维模式 高中数学解题常用的数学思维策略 高中数学非逻辑思维(包括形象思维、直觉思维)问题研究; 高中数学思维的指向性(如定向思维、逆向思维、集中思维和发散思维等)研究; 高中数学思维能力评估:广阔性、深刻性、灵活性、敏捷性、批判性、创造性 高中数学思维的基本形式 从思维科学的角度分析,作为理性认识的人的个体思维题可以分成三种:逻辑思维、形象思维、直觉思维 一数学逻辑思维的基本形式1、概念是逻辑思维的最基本的思维形式,数学概念间的逻辑关系,a同一关系b从属关系c交叉关系以及d对立关系e矛盾关系12、判断是逻辑思维在概念基础上的发展,它表现为对概念的性质或关系有所肯定或否定,是认识概念间联系的思维形式。3、推理是从一个或几个已知判断推出另一个新判断的思维形式,是对判断间的逻辑关系的认识。 二数学形象思维的基本形式1图形表象是与外部几何图形的形状相一致的脑中示意图,2图式表象是与外部数学式子的结初关系相一致的模式形象。3形象识别直感是用数学表象这个类象(普遍形象)的特征去比较数学对象的个象,根据形象特征整合的相似性来判别个象是否与类象同质的思维形式。4模式补形直感是利用主体已在头脑中建构的数学表象模式1,对具有部分特征相同的数学对象进行表象补形,实施整合的思维形式。5形象相似直感是以形象识别直感和模式补形直感为基础基础的复合直感。6 象质转换直感是利用数学表象的变化或差异来判别数学在对象的质变或质异的形象特征判断。7图形

高考数学考试的答题技巧和方法_答题技巧

高考数学考试的答题技巧和方法_答题技巧 一、答题和时间的关系 整体而言,高考数学要想考好,必须要有扎实的基础知识和一定量的习题练习,在此基础上辅以一些做题方法和考试技巧。往年考试中总有许多考生抱怨考试时间不够用,导致自己会做的题最后没时间做,觉得很“亏”。 高考考的是个人能力,要求考生不但会做题还要准确快速地解答出来,只有这样才能在规定的时间内做完并能取得较高的分数。因此,对于大部分高考生来说,养成快速而准确的解题习惯并熟练掌握解题技巧是非常有必要的。 二、快与准的关系 在目前题量大、时间紧的情况下,“准”字则尤为重要。只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。 三、审题与解题的关系 有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量(如“至少”,“a0”,自变量的取值范围等等),从中获取尽可能多的信息,才能迅速找准解题方向。 四、“会做”与“得分”的关系 要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的“跳步”,使很多人丢失1/3以上得分,代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分少得可怜;再如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。只有重视解题过程的语言表述,“会做”的题才能“得分”,高中生物。 五、难题与容易题的关系 拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,如去年理19题就比理20、理21要难,因此在答题时要合理安排时间,不要在某个卡住的题上打“持久战”,那样既耗费时间又拿不到分,会做的题又被耽误了。这几年,数学试题已从“一题把关”转为“多题把关”,因此解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有“咬手”的关卡,看似难做的题也有可得分之处。所以考试中看到“容易”题不可掉以轻心,看到新面孔的“难”题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。 选择题绝大部分是低中档题,所以必须争取多得分或得满分。选择题的答法审题要慢,答题要快。因此对选择题除直接求解外,还要做到不择手段,即小题要小做,小题要尽量巧做。答选择题常用的方法还有:数形结合法(根据题意做出草图,结合图象解决问题);特例检验法(利用特殊情况代替题设中的普遍条件,得出结论);筛选法(根据各选项的不同,从选项中选特殊情况检验是否符合题意);等价转化法(化陌生为熟悉);构造法(如立几中的“割补”思想)。另外,答选择题不要恋战,要学会暂时放弃。

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

高考数学解题方法

一、选择填空题技巧 人生选择,选择人生,用兵之道,奇正相生,数学解题,其理相同。迂回曲径,直捣黄龙,审时度势,天佑功成。 (一)特值法 要点是:从条件中,取一些方便于计算的满足所有已知条件的数值进行验证,从而否定答案。选项不满足特值的 一定排除,满足的特值不一定选。 1. 如果0<x <1,则式子的化简结果是( ) A 、 B 、 C 、 D 、﹣ 2、化简) 4 sin()4cos() 4sin()4cos(x x x x +π++π+π-+π的结果是( ) 。 A 、-tan x B 、tan 2 x C 、 tan2x D 、cot x 3、 已知f( x x +1)= x x x 1 12 2++,则f (x)=( )。 A 、(x +1)2 B 、(x -1)2 C 、x 2 -x +1 D 、x 2 +x +1 4、 在ABC ?中,若 C ∠为钝角,则tgB tgA ?的值( ) A 、等于1 B 、小于1 C 、 大于1 D 、 不能确定 5、 已知{a n }满足a 1=1, a 2= 3 2 ,且n n n a a a 21111=++- (n ≥2),则a n 等于( )。 A 、 12+n B 、(3 2)n -1 C 、(32)n D 、22+n 6、设4 7 10 310()22222()n f n n N +=++++ +∈,则()f n =( ) A 、 2(81)7n - B 、12(81)7n +- C 、32(81)7n +- D 、42 (1)7 n n +-

7、已知数列{a n }的通项公式为a n =2n-1 ,其前n 和为S n ,那么C n 1 S 1+ C n 2 S 2+…+ C n n S n =( ) A 、2n -3n B 、3n -2n C 、5n -2n D 、3n -4n 8、若- 23π≤2α≤2 3π,那么三角函数式α32 cos 2121+化简为( ) A 、sin 3α B 、-sin 3α C 、cos 3α D 、-cos 3 α 9、已知α-β=6 π,tan α=3m , tan β=3-m , 则m 的值是( )。 A 、2 B 、-31 C 、-2 D 、2 1 10、直线x -ay +a 2=0(a >0且a ≠1)与圆x 2 +y 2 =1的位置关系是( ) A 、相交 B 、相切 C 、相离 D 、不能确定 11、若a , b 是任意实数,且a >b ,则( )。 A 、a 2 >b 2 B 、 a b <1 C 、lg(a -b )>0 D 、(21)a <(2 1)b 12、设n ≥2时,数列n n n n n n nC C C C 1 4 n 3 2 1 ) 1(,,4C - ,3 ,2 ,--- 的和是( )。 A 、0 B 、(-1)n 2n C 、1 D 、1 2+n n 13、已知a , b 是两个不等的正数,P =(a + a 1)( b +b 1 ), Q =(ab +ab 1)2, R =(2b a ++b a +2)2, 那么数值最大 的一个是( )。 A 、P B 、Q C 、R D 、与a , b 的值有关 14、已知m >n >1, 0log n a B 、a m >a n C 、a m 0且a ≠1,P =log a (a 3+1),Q =log a (a 2 +1),则P 、Q 的大小关系是( )。 A 、P >Q B 、p

冲刺!高考数学经典题型及解题技巧

冲刺2019!高考数学经典题型及解题技巧2019年高考在即,怎样复习容易提高成绩恐怕是所有考生关心的问题。为了帮助考生在考试中从容应答,小编为大家搜集了 高考数学常考题型,一起来看看吧。 一、排列组合篇 1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。 4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。 5. 了解随机事件的发生存在着规律性和随机事件概率的意义。 6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。 7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。 8. 会计算事件在n次独立重复试验中恰好发生k次的概率.

二、立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2. 判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点; (2)判定定理--证明一个平面内的两条相交直线都平行于另一

高考数学大题题型解答技巧

高考数学大题题型解答技巧 六月,有一份期待,年轻绘就畅想的星海,思想的热血随考卷涌动,灵魂的脉搏应分 数澎湃,扶犁黑土地上耕耘,总希冀有一眼金黄黄的未来。下面就是小编给大家带来 的高考数学大题题型解答技巧,希望大家喜欢! 高考数学大题必考题型(一) 排列组合篇 1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单 的应用问题。 4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。 5.了解随机事件的发生存在着规律性和随机事件概率的意义。 6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件 的概率。 7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事 件的概率乘法公式计算一些事件的概率。 8.会计算事件在n次独立重复试验中恰好发生k次的概率. 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的 课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从 历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是 常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺 少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握

2020年高考数学答题技巧(全套完整精品)

2020 年高考数学答题技巧(全套完整精品) 一、考前准备 1.调适心理,增强信心 (1)合理设置考试目标,创设宽松的应考氛围,以平常心对待高考; (2)合理安排饮食,提高睡眠质量; (3)保持良好的备考状态,不断进行积极的心理暗示; (4)静能生慧,稳定情绪,净化心灵,满怀信心地迎接即将到来的考试。 2.悉心准备,不紊不乱 (1)重点复习,查缺补漏。对前几次模拟考试的试题分类梳理、整合,既可按知识分类,也可按数学思想方法分类。强化联系,形成知识网络结构,以少胜多,以不变应万变。 (2)查找错题,分析病因,对症下药,这是重点工作。 (3)阅读《考试说明》,确保没有知识盲点。 (4)回归课本,回归基础,回归近年高考试题,把握通性通法。 (5)重视书写表达的规范性和简洁性,掌握各类常见题型的表达模式,避免“会而不对,对而不全”现象的出现。 (6)临考前应做一定量的中、低档题,以达到熟悉基本方法、典型问题的目的,一般不再做难题,要保持清醒的头脑和良好的竞技状态。 3.入场临战,通览全卷最容易导致心理紧张、焦虑和恐惧的是入场后与答卷前的“临战”阶段,此时保持心态平稳是非常重要的。刚拿到试卷,一般心情比较紧张,不要匆忙作答,可先通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作铺垫,一般可在五分钟之内做完下面几件事: (1)填写好全部考生信息,检查试卷有无问题; (2)调节情绪,尽快进入考试状态,可解答那些一眼就能看得出结论的简单选择或填空题(一旦解出,信心倍增,情绪立即稳定); (3)对于不能立即作答的题目,可一边通览,一边粗略地分为A、B 两类:A 类指题型比较熟悉、容易上手的题目;B 类指题型比较陌生、自我

高考数学解题思维能力是怎样练成的.doc

高考数学解题思维能力是怎样练成的 纵观近几年高考数学试题,可以看出高考数学试题加强了对知识点灵活应用的考察。这就对考生的思维能力要求大大加强,下面是我给大家带来的,希望对你有帮助。 高考数学解题思维能力怎样练成的 第一,从求解(证)入手——寻找解题途径的基本方法遇到有一定难度的考题我们会发现出题者设置了种种障碍。从已知出发,岔路众多,顺推下去越做越复杂,难得到答案,如果从问题入手,寻找要想获得所求,必须要做什么,找到"需知"后,将"需知"作为新的问题,直到与"已知"所能获得的"可知"相沟通,将问题解决。事实上,在不等式证明中采用的"分析法"就是这种思维的充分体现,我们将这种思维称为"逆向思维"——必要性思维。 第二,数学式子变形——完成解题过程的关键解答高考数学试题遇到的第二障碍就是数学式子变形。一道数学综合题,要想完成从已知到结论的过程,必须经过大量的数学式子变形,而这些变形仅靠大量的做题过程是无法真正完全掌握的,很多考生都有这样的经历,在解一道复杂的考题时,做不下去了,而回过头来再看一看答案,才恍然大悟,解法这么简单,后悔莫及,埋怨自己怎么糊涂到没有把式子再这么变一下呢? 其实数学解题的每一步推理和运算,实质都是转换(变形).但是,转换(变形)的目的是更好更快的解题,所以变形的方向必定是化繁为简,化抽象为具体,化未知为已知,也就是创造条件向有利于解题的方向转化.还

必须注意的是,一切转换必须是等价的,否则解答将出现错误。 解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的 桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。寻找差异是变形依赖的原则,变形中一些规律性的东西需要总结。在后面的几章中我们列举的一些思维定势,就是在数学思想指导下总结出来的。在解答高考题中时刻都在进行数学变形由复杂到简单,这也就是转化,数学式子变形的思维方式:时刻关注所求与已知的差异。 第三、回归课本---夯实基础。 1)揭示规律----掌握解题方法高考试题再难也逃不了课本揭示的思维 方法及规律。我们说回归课本,不是简单的梳理知识点。课本中定理,公式推证的过程就蕴含着重要的方法,而很多考生没有充分暴露思维过程,没有发觉其内在思维的规律就去解题,而希望通过题海战术去"悟"出某些道理,结果是题海没少泡,却总也不见成效,最终只能留在理解的肤浅,仅会机械的模仿,思维水平低的地方。因此我们要侧重基本概念,基本理论的剖析,达到以不变应万变。 2)构建网络----融会贯通在课本函数这章里,有很多重要结论,许多学生由于理解不深入,只靠死记硬背,最后造成记忆不牢,考试时失分。 例如: 若f(x+a)=f(b-x)则f(x)关于对称。如何理解?我们令x1=a+x,x2=b-x,则f(x1)=f(x2),x1+x2=a+b,=常数,即两自变量之和是定值,它们对应的函数值相等,这样就理解了对称的本质。结合解析几何中的中点坐标的横坐标为定值,或用特殊函数,二次函数的图像,记忆这个结论就很简单了,

关于高考数学压轴题解题方法

2019年关于高考数学压轴题解题方法 关于高考数学压轴题解题方法压 轴题的解题方法,具体题目还是要具体分析,不能一一而谈,总体来说,思路如下: 1.复杂的问题简单化,就是把一个复杂的问题,分解为一系列简单的问题,把复杂的图形,分成几个基本图形,找相似,找直角,找特殊图形,慢慢求解,高考是分步得分的,这种思考方式尤为重要,能算的先算,能证的先证,踏上要点就能得分,就算结论出不来,中间还是有不少分能拿。 2.运动的问题静止化,对于动态的图形,先把不变的线段,不变的角找到,有没有始终相等的线段,始终全等的图形,始终相似的图形,所有的运算都基于它们,高中政治,在找到变化线段之间的联系,用代数式慢慢求解。 3.一般的问题特殊化,有些一般的结论,找不到一般解法,先看特殊情况,比如动点问题,看看运动到中点怎样,运动到垂直又怎样,变成等腰三角形又会怎样,先找出结论,再慢慢求解。 另外,还有一些细节要注意,三角比要善于运用,只要有直角就可能用上它,从简化运算的角度来看,三角比优于比例式优于勾股定理,中考命题不会设置太多的计算障碍,如果遇上繁难运算要及时回头,避免钻牛角尖。

如果遇到找相似的三角形,要切记先看角,再算边。遇上找等腰三角形同样也是先看角,再看底边上的高(用三线合一),最后才是边。这都是能大大简化运算的。还有一些小技巧,比如用斜边上中线找直角,用面积算垂线等不一而足 具体方法较多,如果有时间,我会举实例进行分析。 最后说一下初中需要掌握的主要的数学思想: 1.方程与函数思想 利用方程解决几何计算已经不能算难题了,建立变量间的函数关系,也是经常会碰到的,常见的建立函数关系的方法有比例线段,勾股定理,三角比,面积公式等 2.分类讨论思想 这个大家碰的多了,就不多讲了,常见于动点问题,找等腰,找相似,找直角三角形之类的。 3.转化与化归思想 就是把一个问题转化为另一个问题,比如把四边形问题转化为三角形问题,还有压轴题中时有出现的找等腰三角形,有时可以转化为找一个和它相似的三角形也是等腰三角形的问题等等,代数中用的也很多,比如无理方程有理化,分式方程整式化等等 4.数形结合思想 高中用的较多的是用几何问题去解决直角坐标系中的函数

高中数学解题方法及解析大全

最全面的高考复习资料 目录 前言 (2) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第一章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和 演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想 等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

高中数学解题的思想方法

高中数学解题的思想方法(经典) 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ① 常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ② 数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③ 数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等; ④ 常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助大家掌握解题的金钥匙,掌握解题的思想方法,咱们就先介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题。 在每一个方法,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。 一、配方法 从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。

相关文档
相关文档 最新文档