文档库 最新最全的文档下载
当前位置:文档库 › 第二章 信源编码习题

第二章 信源编码习题

第二章 信源编码习题
第二章 信源编码习题

1、设英文字母E出现的概率为0.105,X出现的概率为0.002,试求E和X的信息量。

2、某离散信源输出x1、x2、…、x8共8个不同的消息,符号速率为2400B,其中四个消息出现的概率为P(x1)=P(x2)=1/16,P(x3)=1/8,P(x4)=1/4,其他消息等概率出现。

①求该信源的平均信息速率;

②求传送一小时的信息量。

3、设一离散信源分别以概率P A、P B、P C、P D发送四个消息A、

B、C、D,每个消息的出现是相互独立的,试根据条件完成以下计算:

①如果P A=1/4,P B =1/8,P C =1/8,P D=1/2,试计算该信源的熵;

②对于传输的每一消息用二进制脉冲编码,00代表A,01代表B,11代表C,10代表D,每个脉冲宽度为5ms,如果不同的消息等可能出现,试计算传输的平均信息速率;

③如果P A=1/5,P B=1/4,P C=1/4,P D=3/10,试用Huffman 编码算法对该信源进行编码,并计算编码效率。

4、设A系统以2000bps的比特率传输2PSK调制信号的带宽为2000Hz,B系统以2000bps的比特率传输4PSK调制信号的带宽

为1000Hz。试问:哪个系统更有效?

5、设某四进制数字传输系统的每个码元的持续时间(宽度)为833×10-6s,连续工作1h后,接收端收到6个错码,且错误码元中仅发生1bit的错码。

①求该系统的码元速率和信息速率;

②求该系统的误码率和误信率。

6、设某数字传输系统传送二进制码元的速率为1200B,试求该系统的信息速率;若该系统改为传送八进制信号码元,码元速率不变,则这时系统的信息速率为多少?

7、设输入抽样器的信号为门函数G(t),宽度为τ=20ms,若忽略其频谱第10个零点以外的频率分量,试求其最小抽样频率。

8、已知信号f(t)=6.4×sin(800πt),按Nyquist速率进行抽样后,进行64个电平均匀量化编码,采用自然二进制码。

①求量化间隔;

②求码元传输速率。

信源编码的基本原理及其应用..

信源编码的基本原理及其应用 课程名称通信原理Ⅱ 专业通信工程 班级******* 学号****** 学生姓名***** 论文成绩 指导教师***** ******

信源编码的基本原理及其应用 信息论的理论定义是由当代伟大的数学家美国贝尔实验室杰出的科学家香农在他1948 年的著名论文《通信的数学理论》所定义的,它为信息论奠定了理论基础。后来其他科学家,如哈特莱、维纳、朗格等人又对信息理论作出了更加深入的探讨。使得信息论到现在形成了一套比较完整的理论体系。 信息通过信道传输到信宿的过程即为通信,通信中的基本问题是如何快速、准确地传送信息。要做到既不失真又快速地通信,需要解决两个问题:一是不失真或允许一定的失真条件下,如何提高信息传输速度(如何用尽可能少的符号来传送信源信息);二是在信道受到干扰的情况下,如何增加信号的抗干扰能力,同时又使得信息传输率最大(如何尽可能地提高信息传输的可靠性)。这样就对信源的编码有了要求,如何通过对信源的编码来实现呢? 通常对于一个数字通信系统而言,信源编码位于从信源到信宿的整个传输链路中的第一个环节,其基本目地就是压缩信源产生的冗余信息,降低传递这些不必要的信息的开销,从而提高整个传输链路的有效性。在这个过程中,对冗余信息的界定和处理是信源编码的核心问题,那么首先需要对这些冗余信息的来源进行分析,接下来才能够根据这些冗余信息的不同特点设计和采取相应的压缩处理技术进行高效的信源编码。简言之,信息的冗余来自两个主要的方面:首先是信源的相关性和记忆性。这类降低信源相关性和记忆性编码的典型例子有预测编码、变换编码等;其次是信宿对信源失真具有一定的容忍程度。这类编码的直接应用有很大一部分是在对模拟信源的量化上,或连续信源的限失真编码。可以把信源编码看成是在有效性和传递性的信息完整性(质量)之间的一种折中有段。 信源编码的基本原理: 信息论的创始人香农将信源输出的平均信息量定义为单消息(符号)离散信源的信息熵: 香农称信源输出的一个符号所含的平均信息量为 为信源的信息熵。 通信原理中对信源研究的内容包括3个方面: (1)信源的建模 信源输出信号的数学描述已有成熟的理论——随机过程,一般的随机过程理∑=-=L i i i x p x p x H 12) (log )()()(x H

马尔可夫过程在信源编码中的应用

河南城建学院 马尔科夫过程在信源编码中的应用 信 息 论 基 础 姓名:王坤 专业名称:电子信息工程 专业班级:0934121 指导老师:贺伟 所在院系:电气与信息工程学院 2014年12月20日

摘要 首先主要讲述了马尔科夫过程,对马尔科夫过程进行了简介,介绍了马尔科夫过程的数学描述方法并对马尔科夫过程的发展历史进行了简述。 在第二章节对马尔科夫过程在信源编码中的应用进行了简单的论述及讲解。信息论中的编码主要包括信源编码和信道编码。信源编码的主要目的是提高有效性,通过压缩每个信源符号的平均比特数或降低信源的码率来提高编码效率;信道编码的主要目标是提高信息传输的可靠性,在信息传输率不超过信道容量的前提下,尽可能增加信源冗余度以减小错误译码概率。研究编码问题是为了设计出使通信系统优化的编译码设备 随机过程是与时间相关的随机变量,在确定的时刻它是随机变量。随机过程的具体取值称作其样本函数,所有样本函数构成的集合称作随机过程的样本函数空间,所有样本函数空间及其统计特性即构成了随机过程。

目录 1引言 (1) 2马尔科夫过程 (2) 3马尔科夫过程在信源编码中的应用 (4) 4参考文献 (13)

1 引言 随着现代科学技术的发展,特别是移动通信技术的发展,信息的传输在社会科学进步的地位越来越重要。因此如何更加高效的传输信息成了现代科技研究的重要目标。马尔可夫过程是一类非常重要的随机过程。很多在应用中出现的马氏过程模型的研究受到越来越多的重视。在现实世界中,有很多过程都是马尔可夫过程,马尔可夫过程在研究质点的随机运动、自动控制、通信技术、生物工程等领域中有着广泛的应用。我们可以通过对马尔可夫过程的研究来分析马尔可夫信源的特性。由于 研究马尔科夫过程在信源编码中的作用,可以利用马尔科夫模型减少信息传输的冗余,提高信息传输的效率。 马尔可夫信源是一类有限长度记忆的非平稳离散信源,信源输出的消息是非平稳的随机序列,它们的各维概率分布可能会随时间的平移而改变。由于马尔可夫信源的相关性及可压缩性,它已成为信息领域的热点问题。

信源编码与信道编码解析

信源编码与信道编码解析 摘要:衡量一个通信系统性能优劣的基本因素是有效性和可靠性,有效性是指信道传输信息的速度快慢,可靠性是指信道传输信息的准确程度。在数字通信系统中,信源编码是为了提高有效性,信道编码是为了提高可靠性,而在一个通信系统中,有效性和可靠性是互相矛盾的,也是可以互换的。我们可以用降低有效性的办法提高可靠性,也可以用用降低可靠性的办法提高有效性。本文对信源编码和信道编码的概念,作用,编码方式和类型进行了解析,以便于更好的理解数字通信系统的各个环节。 关键字:信源编码信道编码 Abstract: the measure of a communication system the basic factor is quality performance efficiency and reliability, effectiveness refers to channel to transfer information machine speed, reliability is to point to the accuracy of the information transmission channel. In digital communication system, the source coding is in order to improve the effectiveness, channel coding is in order to improve the reliability, and in a communication system, effectiveness and reliability is contradictory, is also can be interchanged. We can use to reduce the availability of improving the reliability, also can use to improve the effectiveness of reduces reliability. In this paper, the source coding and channel coding concept, function, coding mode and the types of analysis, in order to better understand all aspects of digital communication systems. Key words: the source coding channel coding 中图分类号:TN911.21 文献标识码:A 文章编号: 1引言 数字通信系统: 信源是把消息转化成电信号的设备,例如话筒、键盘、磁带等。 信源编码的基本部分是压缩编码。它用于减小数字信号的冗余度,提高数字信号的有效性,如果是模拟信源,则它还包括数模转换功能,在某些系统中,信源编码还包括加密功能。

信源编码和信源解码

信源编码和信源解码 字、符号、图形、图像、音频、视频、动画等各种数据本身的编码通常称为信源编码,信源编码标准是信息领域的基础性标准。无论是数字电视、激光视盘机,还是多媒体通信和各种视听消费电子产品,都需要音视频信源编码这个基础性标准。 大家用电脑打字一定很熟悉,当你用WORD编辑软件把文章(DOC文件)写完,存好盘后,再用PCTOOLS工具软件把你的DOC文件打开,你一定能看到你想象不到的东西,内容全是一些16进制的数字,这些数字叫代码,它与文章中的字符一一对应。现在我们换一种方法,用小画板软件来写同样内容的文章。你又会发现,用小画板软件写出来的BMP文件,占的内存(文件容量)是DOC文件的好几十倍,你知道这是为什么?原来WORD编辑软件使用的是字库和代码技术,而小画板软件使用的是点阵技术,即文字是由一些与坐标位置决定的点来组成,没有使用字库,因此,两者在工作效率上相差几十倍。[信源]->[信源编码]->[信道编码]->[信道传输+噪声]->[信道解码]->[信源解码]->[信宿] 目前模拟信号电视机图像信号处理技术就很类似小画板软件使用的点阵技术,而全数字电视机的图像信号处理技术就很类似WORD编辑软件使用的字库和代码技术。实际上这种代码传输技术在图文电视中很早就已用过,在图文电视机中一般都安装有一个带有图文字库的译码器,对方发送图文信号的时候只需发送图文代码信息,这样可以大大地提高数据传输效率。 对于电视机,显示内容是活动图像信息,它哪来的“字库”或“图库”呢?这个就是电视图像特有的“相关性”技术问题。原来在电视图像信号中,90%以上的图像信息是互相相关的,我们在模拟电视机中使用的Y/C(亮度信号/彩色信号)分离技术,就是利用两行图像信号的相关性,来进行Y/C分离。如果它们之间内容不相关,Y/C信号则无法进行分离。全数字信号电视也一样,如果图像内容不相关,则图像信号压缩也就要免谈。如果图像内容有相关性,那么上一幅图像的内容就相当于下一幅图像的“图形库”,或一幅图像中的某部分就是另一部分的“图形库”,因此,下一幅图像或图像中某一个与另一个相关的部分,在发送信号时,只需发送一个“代码”,而传送一个“代码”要比送一个“图形库”效率高很多,显示时也只需把内容从“图形库”中取出即可,这就是MPEG图像压缩的原理。 利用电视信号的相关性,可以进行图像信号压缩,这个原理大家已经明白,但要找出图像相关性的内容来,那就不是一件很容易的事情,这个技术真的是太复杂了。为了容易理解电视图像的相关性,我们不妨设想做一些试验,把图像平均分成几大块,然后每一块,每一块的进行比较,如果有相同的,我们就定义它们有相关性;如果没有相同的,我们继续细分下去,把每大块又分成几小块,一直比较下去,最后会发现,块分得越细,相同块的数目就越多,但分得太细需要的代码也增多,所以并不是分得越细越好。我们在看VCD的时候经常发现,如果VCD读光盘数据出错,就会在图像中看到“马赛克”,这些“马赛克”就是图像分区时的最小单位,或把数码相片进行放大,也可以看到类似“马赛克”的小区,这就是数码图像的最小“图形库”,每个小“图形库”都要对应一个“代码”。 在单幅图像中找出相关性的几率并不是很大的,所以对单幅图像的压缩率并不很大,这个通过观察数码相片的容量就很容易明白,如果把寻找相关性的范围扩大到两幅图像,你就会发现,具有相关性的内容太多了,这是因为运动物体对于人的眼睛感觉器官来说,是很慢

《信息论与信源编码》实验报告

《信息论与信源编码》实验报告 1、实验目的 (1) 理解信源编码的基本原理; (2) 熟练掌握Huffman编码的方法; (3) 理解无失真信源编码和限失真编码方法在实际图像信源编码应用中的差异。 2、实验设备与软件 (1) PC计算机系统 (2) VC++6.0语言编程环境 (3) 基于VC++6.0的图像处理实验基本程序框架imageprocessing_S (4) 常用图像浏览编辑软件Acdsee和数据压缩软件winrar。 (5) 实验所需要的bmp格式图像(灰度图象若干幅) 3、实验内容与步骤 (1) 针对“图像1.bmp”、“图像2.bmp”和“图像3.bmp”进行灰度频率统计(即计算图像灰度直方图),在此基础上添加函数代码构造Huffman码表,针对图像数据进行Huffman编码,观察和分析不同图像信源的编码效率和压缩比。 (2) 利用图像处理软件Acdsee将“图像1.bmp”、“图像2.bmp”和“图像 3.bmp”转换为质量因子为10、50、90的JPG格式图像(共生成9幅JPG图像),比较图像格式转换前后数据量的差异,比较不同品质因素对图像质量的影响; (3) 数据压缩软件winrar将“图像1.bmp”、“图像2.bmp”和“图像3.bmp”分别生成压缩包文件,观察和分析压缩前后数据量的差异; (4) 针对任意一幅图像,比较原始BMP图像数据量、Huffman编码后的数据量(不含码表)、品质因素分别为10、50、90时的JPG文件数据量和rar压缩包的数据量,分析不同编码方案下图像数据量变化的原因。 4、实验结果及分析 (1)在VC环境下,添加代码构造Huffman编码表,对比试验结果如下: a.图像1.bmp:

第10讲 信源编码的性能指标

第10讲 信源编码的性能指标 1. 无失真信源编码的冗余度压缩原理 为了压缩冗余度,必须改造信源输出符号的统计特性。一方面要尽量提高任一时刻输出符号的概率分布的均匀性,另一方面要尽量消除前后输出符号的统计相关性。因此,无失真信源编码的实质是将信源尽可能地改造为均匀分布的无记忆信源。这种信源的通信效率是最大的。改造后的新信源是由原信源和编码器共同组成的,称为编码后的信源。设f 是信源S 的一个编码,X 是编码后的信源,则三者之间的关系表示如下 f S X ??→ 信源编码f 所用的码元可以与信源S 的符号不同,一般是某个信道的输入符号。 从数据处理这个角度来看,编码f 是一个数据处理器,输入信源S 的数据,输出信源X 的数据。从通信的角度看,编码f 是一个信道,输入信源S 的数据,输出信源X 的数据。 无失真信源编码的目的是无损压缩,即用尽可能少的数据表示数据中的所有信息,不能破坏数据原有信息。这相当于提高信息传输效率,使之接近于1。因此,度量无失真编码的压缩性能可以看编码后信息传输效率,称为编码效率。编码效率越接近于1,无损压缩性能越好。下面介绍信源编码的5个性能指标,包括平均码长、码率、编码效率、编码冗余度和压缩率。 2. 平均码长 平均码长是信源编码的一个关键的性能指标。在已知信源熵的前提下,根据平均码长,可以计算出无损压缩编码的码率和编码效率。 定义2.1 设f 是一个N-分组码,各码字的码长分别记为,1i l i q ≤≤,对应的N 长分组的概率为i p ,则f 的平均码长定义为 11(/ q i i i L p l N ==∑码元信源) 注:在有的教材中,当平均码长的单位转化为“比特/信源”时,称为编码速率。本课程用不到这个概念。 讨论:用平均码长估计编码后的数据长度 设S 是一个离散无记忆信源,:f S C →是信源S 的一个编码,其平均码长为L 。令12n s s s s =?是一个信源序列。假设用f 对该数据进行编码,试估计编码后码元序列的长度。 对于信源数据12n s s s s =?,我们令L i 表示信源符号s i 所对应的码字f (s i )的长度,则编码后的数据长度为12+++n L L L 。我们把L i 视为随机变量,则对于任何i ,我们有[]i E L L =。 因为S 是离散无记忆的,所以{L i }是独立同分布随机序列。根据辛钦大数定理,我们有

WCDMA技术的信源编码和信道编码

WCDMA技术的信源编码和信道编码 WCDMA网络是全球商用时间最长,技术成熟、可演进性最好的,全球第一个3G商用网络就是采用WCDMA制式。我国采用了全球广泛应用的WCDMA 3G技术,目前已全面支持HSDPA/HSUPA,网络下载理论最高速率达到14.4Mbps。2G无线宽带的最高下载速度约为150Kbps,我国的WCDMA网络速度几乎是2G网络速度的100倍。支持业务最广泛,基于WCDMA成熟的网络和业务支撑平台,其所能实现的3G业务非常丰富。无线上网卡、手机上网、手机音乐、手机电视、手机搜索、可视电话、即时通讯、手机邮箱、手机报等业务应用可为用户的工作、生活带来更多的便利和美妙享受。终端种类最多,截至2008年底,支持WCDMA商用终端的款式数量超过2000款,全球主要手机厂商都推出了为数众多的WCDMA手机。国内覆盖广泛,截至2009年9月28日,联通3G网络已成功在中国大陆285个地市完成覆盖并正式商用,新覆盖的城镇数量还在不断增长中,联通3G网络和业务已经覆盖了中国绝大部分的人口和地域。开通国家最广,可漫游的国家和地区最多,截至2008年底,全球已有115个国家开通了264个WCDMA网络,占全球3G商用网络的71.3%。截至2009年9月28日,中国联通已与全球215个国家的395个运营商开通了。 WCDMA的优势明显,技术成熟,在WCDMA物理层来看,信源编码和信道编码是WCDMA技术的基础,信源编码是采用语音编码技术,AMR语音编码技术是由基于变速率多模式语音编码技术发展而来,主要原理在于:语音编码器模型由一系列能提供多种编码输出速率与合成质量的声码器构成AMR支持八种速率。鉴于不同信源比特对合成语音质量的影响不同AMR 语音编码器输出的话音比特在传输之前需要按照它们的主观重要性来排序分类,分别采用不同保护程度的信道编码对其进行编码保护。 信源编码AMR模式自适应选择编码器模式以更加智能的方式解决信源和信道编码的速率匹配问题,使得无线资源的配置和利用更加灵活和高效。实际的语音编码速率取决于信道条件,它是信道质量的函数。而这部分工作是解码器根据信道质量的测量参数协助基站来完成,选择编码模式,决定编码速率。原则上在信道质量差时采用低速率编码器,就能分配给信道编码更多的比特冗余位来实现纠错,实现更可靠的差错控制。在信道质量好、误比特率较低时采用高速率编码器,能够提高语音质量。在自适应过程中,基站是主要部分,决定上下行链路采用的速率模式。 信源编码AMR编码器原理,WCDMA系统的AMR声码器共有八种编码模式,它们的输出比特速率不同。为了降低成本和复杂度,八种模式都采用代数码本激励线性预测技术,它们编码的语音特征参量和参量提取方法相同,不同的是参量的量化码本和量化比特数。AMR语音编码器根据实现功能大致可分为LPC分析、基音搜索、代数码本搜索三大部分。其中LPC分析完成的主要功能是获得10阶LPC滤波器的-.个系数,并将它们转化为线谱对参数,并对LSF进行量化;基音搜索包括了开环基音分析和闭环基音分析两部分,以获得基音延迟和基音增益这两个参数;代数码本搜索则是为了获得代数码本索引和代数码本增益,还包括了码本增益的量化。

信源编码

信源编码技术 为什么要进行信源编码 通信系统就是将产生的信息传输到目的地。信源有各种不同的形式,
如广播的信源是语音或音乐,电视的信源是活动图像,这些信源的输 出都是模拟信号,称为模拟信源。计算机和存储器件(磁盘或光盘) 输出的是离散信号,称为数字信源。在数字系统中传输的都是数字信 息,不论是模拟信源还是离散信源其输出都必须转化为可以传输的数 字信息,这种转化通常是由信源编码器来完成的。 信源编码在移动通信中也称语音编码。 ? 信源编码的作用是用信道能传输的符号来表示信源发出的信息,在不 失真或一定失真的条件下用尽可能少的符号传送信源消息,提高信息 传输率。信源编码(如语音)对数字传输非常重要,而且对无线通信
来说显得尤其重要。
PDF created with pdfFactory Pro trial version https://www.wendangku.net/doc/ac14260516.html,

?
随着数字电话和数据通信容量日益增长的迫切要求,而又 不希望明显降低传送话音信号的质量,除了提高通信带宽之外, 对话音信号进行压缩是提高通信容量的重要措施。
?在移动通信中,稀少而又昂贵的无线信道更一定要和必 须要对传输的各种信号源进行压缩,以提高通信容量。
PDF created with pdfFactory Pro trial version https://www.wendangku.net/doc/ac14260516.html,

模拟信源(语音)编码的种类
波形编码、参量编码、混合编码 一般来说,波形编码器的话音质量高,但数据率也很高;参量编码器的数据 率很低,产生的合成话音的音质有待提高;混合编码器同时使用参量编译码技 术和波形编译码技术,数据率和音质介于它们之间。 (1)波形编码 波形编码比较简单,编码前采样定理对模拟语音信号进行量化,然后进行 幅度量化,再进行二进制编码。解码器作数/模变换后再由低通滤波器恢复出现 原始的模拟语音波形,这就是最简单的脉冲编码调制(PCM),也称为线性 PCM。可以通过非线性量化,前后样值的差分、自适应预测等方法实现数据压 缩。波形编码的目标是让解码器恢复出的模拟信号在波形上尽量与编码前原始波 形相一致,也即失真要最小。波形编码的方法简单,数码率较高,在64kbit/s至 32kbit/s之间音质优良,当数码率低于32kbit/s的时候音质明显降低,16 kbit/s时 音质非常差。
PDF created with pdfFactory Pro trial version https://www.wendangku.net/doc/ac14260516.html,

数字通信中的信源编码和信道编码

数字通信中的信源编码和信道编码 摘要:如今社会已经步入信息时代,在各种信息技术中,信息的传输及通信起着支撑作用。而对于信息的传输,数字通信已经成为重要的手段。本论文根据当今现代通信技术的发展,对信源编码和信道编码进行了概述性的介绍. 关键词:数字通信;通信系统;信源编码;信道编码 Abstract:Now it is an information society. In the all of information technologies, transmission and communication of information take an important effect. For the transmission of information, Digital communication has been an important means. In this thesis we will present an overview of source coding and channel coding dep ending on the development of today’s communication technologies. Key Words:digital communication; communication system; source coding; channel coding 1.前言 通常所谓的―编码‖包括信源编码和信道编码。编码是数字通信的必要手段。使用数字信号进行传输有许多优点, 如不易受噪声干扰, 容易进行各种复杂处理, 便于存贮, 易集成化等。编码的目的就是为了优化通信系统。一般通信系统的性能指标主要是有效性和可靠性。所谓优化,就是使这些指标达到最佳。除了经济性外,这些指标正是信息论研究的对象。按照不同的编码目的,编码可主要分为信源编码和信道编码。在本文中对此做一个简单的介绍。 2.数字通信系统 通信的任务是由一整套技术设备和传输媒介所构成的总体——通信系统来完成的。电子通信根据信道上传输信号的种类可分为模拟通信和数字通信。最简单的数字通信系统模型由信源、信道和信宿三个基本部分组成。实际的数字通信系统模型要比简单的数字通信系统模型复杂得多。数字通信系统设备多种多样,综合各种数字通信系统,其构成如图2-l所示。 图2-1 数字通信系统模型 信源编码是以提高通信有效性为目的的编码。通常通过压缩信源的冗余度来实现。采用的一般方法是压缩每个信源符号的平均比特数或信源的码率。 信道,通俗地说是指以传输媒质为基础的信号通路。具体地说,信道是指由有线或无线电线路提供的信号通路。信道的作用是传输信号,它提供一段频带让信号通过,同时又给信号加以限制和损害。 信道编码是以提高信息传输的可靠性为目的的编码。通常通过增加信源的冗余度来实现。采用的一般方法是增大码率或带宽。与信源编码正好相反。在计算机科学领域,信道编码

关于相关信源的码率界限及其编码的评述

关于相关信源的码率界限及其编码的评述 摘要 随着多媒体移动通信技术的快速发展,人们对信息可靠且有效的传输需求日益增长,但是由于受到无线带宽资源和多径衰落等因素的影响,很难实现高速可靠的数据传输。要解决这一矛盾我们必须采用全新的通信理论及技术。本文从信息论的角度对相关信源编码的相关理论进行了介绍,包括单符号信源编码的理论基础,相关信源的编码理论和码率界限和其编码。 关键字:信源编码,相关信源编码,分布式信源编码,Slepian-Wolf编码理论, Abstract With the development of multimedia mobile communication technologies, the demand for reliable and efficient transmission of information is growing. However, due to the impact of limited wireless bandwidth resources, multipath fading and other factors, it is difficult to achieve high-speed and reliable data transmission. To solve this problem we must adopt some new communication theories and technologies.This article makes an introduction to the related theories of correlated source coding fromthe perspective of information-theoretic security, including the basic theory of single symbol source coding and correlated source coding. KEYWORD:Source Coding,Correlated Source Coding,Distributed Source Coding,CodingTheory of Slepian-Wolf 1.引言 信源编码是一种以提高通信有效性为目的而对信源符号进行的变换,或者说为了减少或消除信源冗余度而进行的信源符号变换。具体说,就是针对信源输出符号序列的统计特性来寻找某种方法,把信源输出符号序列变换为最短的码字序列,使后者的各码元所载荷的平均信息量最大,同时又能保证无失真地恢复原来的符号序列。信源编码的作用之一是设法减少码元数目和降低码元速率,即通常所说的数据压缩;作用之二是将信源的模拟信号转化成数字信号,以实现模拟信号的数字化传输。最原始的信源编码就是莫尔斯电码,另外还有ASCII码和电报码都是信源编码。但现代通信应用中常见的信源编码方式有:Huffman编码、算术编码、L-Z编码,这三种都是无损编码,另外还有一些有损的编码方式。信源编码的目标就是使信源减少冗余,更加有效、经济地传输,最常见的应用形式就是压缩。 而相关信源编码与传统信源编码不同。它一般采用信道码编码技术得以实现,因而可以看作是一种联合信源-信道编码技术。虽然分布式编码理论早在二十多年前就已经提出,但Slepian-Wolf理论[1]和Wyner-Ziv理论[2]只给出了信源编码的理论根据,并没有给出一种具体的实现方法,因此这方面的进展并不显著。直到

2.10常用信源编码

2.10常用信源编码 信源编码也称为有效性编码,通过编码的方式,压缩信源的冗余度,从而提高了了通信的有效性。 2.10.1山农—费诺编码 山农—费诺编码是一种常见的信源编码,其编码的步骤如下: (1)将信源的符号按其概率从大到小排列。 (2)将这一列符号分成尽可能概率接近或相同的两组。 (3)上面一组符号编为0,下面一组符号编为1,或反之。 (4)已分的组再按(2)、(3)步骤重复做,直至不能再分组。 (5)自左至右写出各码字。 [例2.10.1]有一单符号离散无记忆信源X如下,要求进行山农—费诺编码

因为信源有8个符号,其理论最大熵为lb8=3比特/符号,而实际熵为2.55比特/符号,如采用三位二进制等长编码,则效率η=2.55/3 = 85%,或者说采用定长编码效率较低。如采用山农—费诺编码,则效率会提高不少。 2.10.2哈夫曼编码 哈夫曼编码是效率比较高的又一种无失真信源编码,二进制哈夫曼编码步骤如下: (1) 把信源符号按概率从大到小排成一列; (2) 把概率最小的两个分成一组,上面一个编为0,下面一个编为1,并将这两个符号的概率加起来,其结果再和尚未处理过的符号重新按大小排序; (3) 重复步骤2,直到所有信源符号都处理完。 (4) 从右向左依据编码路径返回,就得到各码字。 [例2.10.2]同前例,编码过程见下图2.10.2:(PPT 001第四章)

第五节香农编码 ? 设离散无记忆信源 ? 二进制香农码的编码步骤如下:?将信源符号按概率从大到小的顺序排列,为方便起见,令p (x 1)≥p (x 2)≥…≥p (x n )?令p (x 0)=0,用p a (x j ),j =i +1表示第i 个码字的累加概率,则: ?确定满足下列不等式的整数k i ,并令k i 为第i 个码字的长度?-log 2p (x n )≤k i <-log 2p (x n )+1 ? 将p a (x j ) 用二进制表示,并取小数点后k i 位作为符号x i 的编码。 1 ()(),1,2,,j a j i i p x p x j n -== =∑ 121 12,,,,,,()1 (), (), , (), , ()()n i n i i i n x x x x X p x p x p x p x p x P X =????==? ???????∑ 2.10.3冗余位编码 冗余的信息完全可以不全部传送(压缩掉),从而提高了传输效率。 1.L —D 编码 现在来讨论一种由林绪(Lynch )和达维生(Davission )分别独立提出的冗余位编码法,称为L —D 编码。 例如有一二元序列,其中的一串000100000001000共二进制15位,其余的也可分割成15位一串,称为一帧。现在研究压缩冗余的方法。显然对该帧可确切描述为: (1) 帧长为15。

信源编码及其发展动态方河仅

信源编码及其发展动态 班级:通信112班 姓名:方河仅 学号:201110404233

摘要:在传统通信系统中,信源编码与传输中抵抗信道损耗的保护技术(信道编码)是分别考虑的。但是,在实际中发现,用某种特定方法连接起来的最优信源编码器和信道编码器,并不一定能够成最佳通信系统。因此出现了实现通信系统整体优化的信源信道联合编码理论。本文给出的信源信道编码理论及其发展动向。实验表明在高噪信道使用联合编码器进行图像传输,性能改善效果非常明显。 关键词:信源编码发展数字信源与信道编码 1.引言 为了减少信源输出符号序列中的剩余度、提高符号的平均信息量,对信源输出的符号序列所施行的变换。具体说,就是针对信源输出符号序列的统计特性来寻找某种方法,把信源输出符号序列变换为最短的码字序列,使后者的各码元所载荷的平均信息量最大,同时又能保证无失真地恢复原来的符号序列。 2.信源编码 信源编码的作用 信源编码的作用之一是设法减少码元数目和降低码元速率,即通常所说的数据压缩;作用之二是将信源的模拟信号转化成数字信号,以实现模拟信号的数字化传输。 信源编码方式 最原始的信源编码就是莫尔斯电码,另外还有ASCII码和电报码都是信源编码。但现代通信应用中常见的信源编码方式有:Huffman编码、算术编码、L-Z编码,这三种都是无损编码,另外还有一些有损的编码方式。信源编码的目标就是使信源减少冗余,更加有效、经济地传输,最常见的应用形式就是压缩。 另外,在数字电视领域,信源编码包括通用的MPEG—2编码和H.264(MPEG—Part10 AVC)编码等 相应地,信道编码是为了对抗信道中的噪音和衰减,通过增加冗余,如校验码等,来 提高抗干扰能力以及纠错能力。 为了减少信源输出符号序列中的剩余度、提高符号的平均信息量,对所施行的变换。具体说,就是针对信源输出符号序列的统计特性来寻找某种方法,把信源输出符号序列变换为最短的码字序列,使后者的各码元所载荷的平均信息量最大,同时又能保证无失真地恢复原来的符号序列。 一般来说,减少信源输出符号序列中的剩余度、提高符号平均信息量的基本途径有两个:①使序列中的各个符号尽可能地互相独立;②使序列中各个符号的出现概率尽可能地相等。前者称为解除相关性,后者称为概率均匀化。 信源编码的一般问题可以表述如下:

信源编码1

摘要 本课题基于信源符号之间存在分布不均匀喝相关性,使得信源存在冗余度,而信源编码的主要任务就是减少冗余,提高编码效率。具体说就是针对信源输出符号序列的的统计特性,寻找一定的方法把信源输出符号序列变换为最短码字序列的方法。 信源编码的基础是信息论中的两个编码定理:无失真编码定理和限失真编码定理,前者是可逆编码的基础。可逆是指当信源符号转换成代码后,可从代码无失真的恢复原信源符号。熵作为理论上的平均信息量,即编码一个信源符号所需的二进制位数,在实际的压缩编码中的码率很难达到熵值,不过熵可以作为衡量一种压缩算法的压缩比好坏的标准,码率越接近熵值,压缩比越高。算术编码将整个要编码的数据映射到一个位于[0,1)的实数区间中。并且输出一个小于1同时大于0 的小数来表示全部数据。利用这种方法算术编码可以让压缩率无限的接近数据的熵值。 关键字:信源编码、算术编码、符号。

目录 1 课题描述 (1) 2设计原理 (1) 2.1 算术编码算法 (1) 2.2 编码 (3) 2.3解码 (4) 2.3 算术编码特点 (4) 3设计过程 (4) 3.1软件介绍 (4) 3.2 设计程序 (6) 总结 (13) 参考文献 (14)

1 课题描述 本课题基于信源编码的基本思想,深刻理解算术编码方法的基本过程与特点,运用C语言对一已知信源符号进行算术编码,算术编码要求进行无限精度的实数运算,这在仅能进行有限精度运算的计算机系统上是无法进行的。编码实质上是对信源的原始符号按一定规则进行的一种变换。编码可分为信源编码和信道编码。信源编码:以提高通信有效性为目的的编码。通常通过压缩信源的冗余度来实现。采用的一般方法是压缩每个信源符号的平均比特数或信源的码率。即同样多的信息用较少的码率传送,使单位时间内传送的平均信息量增加,从而提高通信的有效性。 信源编码理论是信息论的一个重要分支,其理论基础是信源编码的两个定理。 –无失真信源编码定理:是离散信源/数字信号编码的基础; –限失真信源编码定理:是连续信源/模拟信号编码的基础。 ?信源编码的分类: –离散信源编码:独立信源编码,可做到无失真编码; –连续信源编码:独立信源编码,只能做到限失真信源编码; –相关信源编码:非独立信源编码。 信源编码的作用之一是设法减少码元数目和降低码元速率,即通常所说的数据压缩:作用之二是将信源的模拟信号转化成数字信号,以实现模拟信号的数字化传输。 2设计原理 2.1算术编码算法 算术编码在图像数据压缩标准中扮演了重要的角色,是无损压缩的一种算术编码中用0和1之间的实数进行编码,该编码用到两个基本的参数Α 符号的概率和它的编码间隔。 信源符号的概率决定了压缩编码的效率,也决定了编码过程中信源符号间

信源编码

摘要 由于信源符号之间存在分布不均匀喝相关性,使得信源存在冗余度,信源编码的主要任务就是减少冗余,提高编码效率。具体说就是针对信源输出符号序列的的统计特性,寻找一定的方法把信源输出符号序列变换为最短码字序列的方法。 信源编码的基础是信息论中的两个编码定理:无失真编码定理和限失真编码定理,前者是可逆编码的基础。可逆是指当信源符号转换成代码后,可从代码无失真的恢复原信源符号。 关键字:算术编码,符号序列,码字。

目录 1 课题描述 (1) 2设计原理 (1) 2.1 编码 (2) 2.2解码 (2) 3设计过程 (2) 3.1算术编码过程简述 (2) 3.2算术编码的特点 (3) 3.3 设计程序 (3) 图一算术编码结果 (8) 总结 (9) 参考文献 (10)

1 课题描述 编码实质上是对信源的原始符号按一定规则进行的一种变换。编码可分为信源编码和信道编码。信源编码:以提高通信有效性为目的的编码。通常通过压缩信源的冗余度来实现。采用的一般方法是压缩每个信源符号的平均比特数或信源的码率。即同样多的信息用较少的码率传送,使单位时间内传送的平均信息量增加,从而提高通信的有效性。 信源编码理论是信息论的一个重要分支,其理论基础是信源编码的两个定理。 –无失真信源编码定理:是离散信源/数字信号编码的基础; –限失真信源编码定理:是连续信源/模拟信号编码的基础。 ?信源编码的分类: –离散信源编码:独立信源编码,可做到无失真编码; –连续信源编码:独立信源编码,只能做到限失真信源编码; –相关信源编码:非独立信源编码。 信源编码的作用之一是设法减少码元数目和降低码元速率,即通常所说的数据压缩:作用之二是将信源的模拟信号转化成数字信号,以实现模拟信号的数字化传输。 最原始的信源编码就是莫尔斯电码,另外还有ASCII码和电报码都是信源编码。但现代通信应用中常见的信源编码方式有:Huffman编码、算术编码、L-Z编码,这三种都是无损编码,另外还有一些有损的编码方式。信源编码的目标就是使信源减少冗余,更加有效、经济地传输,最常见的应用形式就是压缩。 开发工具:Visual C++6.0 2设计原理 信源编码提高信息传输有效性的基本思想就是针对信源编码输出符号序列的统计特性,通过概率匹配的编码方法,将出现概率大的信源符号尽可能编为短吗,从而使信源输出的符号序列变为最短的码字序列。其目的是为了提高传输的

MATLAB程序 信源编码

计算信源熵的MATLAB源程序 function H=entropy(P,r) if (length(find(P<=0))~=0) error('Not a prob.vector,negative component'); end if(abs(sum(P)-1)>10e-10) error('Not a prob.vector,component do not add up to 1'); end H=(sum(-P.*log2(P)))/(log2(r)+eps); 香农编码的MATLAB源程序 function [s,L,q]=shannon(p) %if(length(find(p<=0))~=0) % error('Not a prob.vector,negative component'); %end %if(abs(sum(p)-1)>10e-10) % error('Not a prob.vector,component do not add up to 1') %end n=length(p); x=1:n; [p,x]=array(p,x); l=ceil(-log2(p)); P(1)=0; n=length(p); for i=2:n P(i)=P(i-1)+p(i-1); end for i=1:n for j=1:l(i) temp(i,j)=floor(P(i)*2); P(i)=P(i)*2-temp(i,j); end end s=[]; for i=1:n for j=1:l(i) t=temp(i,j);

% if(temp(i,j)==0) % W(i,j)=48; s=[s num2str(t)]; %else %W(i,j)=49; % end end s=[s ' ']; end L=sum(p.*l); H=entropy(p,2); q=H/L; for i=1:n B{i}=i; end s0='很好!输入正确,编码结果如下:'; s1='Shannon 编码所得码字W:'; s2='Shannon 编码平均码字长度L:'; s3='Shannon 编码的编码效率q:'; disp(s0); disp(s1),disp(B),disp(s); disp(s2),disp(L); disp(s3),disp(q); 费诺编码的MATLAB源程序 function[W,L,q]=fano(P) if(length(find(P<=0))~=0) error('Not a prob.vector,negative component'); end if(abs(sum(P)-1)>10e-10) error('Not a prob.vector,component do not add up to 1'); end n=length(P); x=1:n; [P,x]=array(P,x); for i=1:n current_index=i; j=1; current_P=P;

论信源编码与信道编码

论信源编码与信道编码 李希夷 201110404107 摘要: 如今社会已经步入信息时代,在各种信息技术中,信息的传输及通信起着支撑作用。而对于信息的传输,数字通信已经成为重要的手段。而在数字通信系统中,信源编码和信道编码在信息的传送过程中起到了至关重要的作用,这要求我们对信源编码和信道编码的了解和认识有更高的层次。 关键词: 信息传输数字通信信源编码信道编码 正文: 一.信源编码和信道编码的发展历程 信源编码: 最原始的信院编码就是莫尔斯电码,另外还有ASCII码和电报码都是信源编码。但现代通信应用中常见的信源编码方式有:Huffman编码、算术编码、L-Z 编码,这三种都是无损编码,另外还有一些有损的编码方式。信源编码的目标就是使信源减少冗余,更加有效、经济地传输,最常见的应用形式就是压缩。相对地,信道编码是为了对抗信道中的噪音和衰减,通过增加冗余,如校验码等,来提高抗干扰能力以及纠错能力。 信道编码: 1948年Shannon极限理论 →1950年Hamming码 →1955年Elias卷积码 →1960年 BCH码、RS码、PGZ译码算法 →1962年Gallager LDPC(Low Density Parity Check,低密度奇偶校验)码→1965年B-M译码算法 →1967年RRNS码、Viterbi算法 →1972年Chase氏译码算法 →1974年Bahl MAP算法 →1977年IMaiBCM分组编码调制 →1978年Wolf 格状分组码 →1986年Padovani恒包络相位/频率编码调制 →1987年Ungerboeck TCM格状编码调制、SiMonMTCM多重格状编码调制、WeiL.F.多维星座TCM →1989年Hagenauer SOVA算法

信源编码定理

§3.3信源编码定理 由于信源具有渐进等分割性这一很有意义的性质,这使得它在数据压缩及图像压缩中发挥了巨大作用,下面我们引入信源编码定理。 设u = {u 1,u 2,u 3…u n }是服从分布p(u)的无记忆信源产生的n 长序列,我们总是希望找到一种有效的编码方法来描述这些序列,使得编码以后码子数长尽可能少,但又要使从码字复原原序列的错误概率尽可能小。 一个行之有效的方法是将║χ║n 个序列序列分成典型序列与非典型序列两部分,对u ∈)(n W ε的每一个序列u 赋予一个编号,称每个编号为一个码字,码字集合I = {1,2,…,M },M = ║)(n W ε║,对于那些序列u ∈)(n W ε,统一编号为字母α,这样,在从编码后的码字复制原序列时,如果收到码字是i ∈I,则可唯一的复原成某个u ∈)(n W ε,否则如果收到的 是α,则原序列无法正确复制。我们记这种编码的码率为M n log 1 (bit),其误差概率为e P = p{u ∈)(n W ε}。 为了给出信源编码正定理,我们作以下预备。 设N 长信源序列集合为S ,典型序列集合为)(n W ε,则 1 = ∑∈s u u p )(≥ ∑ ∈ W u p n u ) ()(ε≥ ∑∈ +-W n u U H n ) (2 ] )([ε ε =║)(n W ε║.2 ] )([ε+-U H n , 从而 ║)(n W ε║≤2] )([ε+-U H n 。 又因为 1-δ< p(u)≤║)(n W ε║.max )() (u p W n u ε ∈ ≤║) (n W ε ║.2 ] )([ε--U H n 故有 ║)(n W ε║≥()2] )([1εδ--?-U H n 这样就有 ()2] )([1εδ--?-U H n ≤║) (n W ε ║≤2] )([ε+U H n 。 于是其码率满足()ε-1log 1n +()U H -ε≤ ) (log 1n W n ε ≤()ε+U H 误差概率为 }{ εε <∈=) (n e W u P P 令0→ε,当∞→n 时,码率接近()U H 而0→e P 。 这就是我们所说的信源编码正定理。 相反的,如果我们用少于()U H 比特的码率对信源序列进行压缩编码可否?答案是否。我们可以证明,如果码率小于()δ-U H ,其中δ 0>δ不随∞→n 而改变,则当+∞→n 时,

相关文档
相关文档 最新文档