文档库 最新最全的文档下载
当前位置:文档库 › 黄酮标准曲线绘制的实验报告

黄酮标准曲线绘制的实验报告

黄酮标准曲线绘制的实验报告
黄酮标准曲线绘制的实验报告

黄酮标准曲线绘制的实验报告

1.总黄酮的测定

1.1 实验仪器

电子天平AR2140;

紫外可见分光光度计UV2754;

型数控超声波清洗器KQ3200DB;

超级恒温槽;

Rotavapor R200 旋转蒸发仪 ;

FD21C250 冷冻干燥机2

1.2 试剂及药品

芦丁标准品

硝酸铝国产分析纯(配成5 %)

亚硝酸钠国产分析纯(配成10 %)

氢氧化钠国产分析纯配成(配成1mol/L)

95%乙醇,无水乙醇国产分析纯(配成60%乙醇 50%乙醇)

DPPH·(2,2-diphenyl-1-picrylhydrazyl,二苯代苦味肼基自由基)

Vc(Ascrobic acid,维生素 C,抗坏血酸)

没食子酸对照品:基准纯。

大青叶子采摘于海南大学东坡湖畔

1.3实验步骤:

1.3.1准备工作及波长的确定

样品60℃烘干粉碎机粉碎,过20目筛,装入试剂瓶中备用。根据查阅文献总黄酮在波长为510nm处吸收值最大。

1.3.2参照品芦丁标准溶液的制备

精密称取120 ℃干燥至恒重的芦丁标准样品37.5mg置于100mL烧杯中,用60%乙醇溶解后定容至25mL 容量瓶中,摇匀,即可得1.5mg/mL的芦丁标准溶液。

1.3.3标准品的测量及绘制标准曲线

精密吸取芦丁标准溶液0.0、1.0、2.0、3.0、4.0、5.0、6.0mL ,分别置于10mL 容量瓶中,并定容至刻度线。得到0.0mg/ml、0.15mg/ml、0.3mg/ml、

0.45mg/ml、0.6mg/ml、0.75mg/ml、0.9mg/ml的标准品溶液,分别取1ml到试管中各加5 %亚硝酸钠溶液0.3mL 摇匀,放置6min ,加10%硝酸铝溶液0.3mL 摇匀,放置6min ,加1mol /L氢氧化钠溶液4mL ,再用60%乙醇溶液稀释至刻度,放置15min 后,分别在510nm 处测定其吸光度(Tai,Cai&Dai,2011)。(以试剂空白做参比)

以吸光度A 为纵坐标,浓度c为横坐标,绘制标准曲线。用最小二乘法进行线性拟合,得c与A 的线性回归方程以及相关系数R2。

序号浓度(ug/ml)吸光度

1 0 0

2 15 0.180

3 30 0.349

4 4

5 0.546

5 60 0.727

6 75 0.884

7 90 1.063

表1-1:芦丁标准曲线测定数据

图1-2:芦丁标准曲线

1.3.5样品的测试

根据查阅文献总黄酮在波长为510nm处吸收值最大。取黄酮提取液,取提液2ml至10ml的比色管中用60%的乙醇定容至刻度线则稀释5倍。取稀释好的溶液4份1ml置入10ml的比色管中,其中一份用60%的乙醇定容,作为参比溶液。其余各份各加5%亚硝酸钠溶液0.3mL 摇匀,放置6min ,加10%硝酸铝溶液0.3mL 摇匀,放置6min ,加1mol 氢氧化钠溶液4mL ,再用60%乙醇溶液稀释至刻度,放置15min后,分别在510nm处测定其吸光度。代入标准曲线回归方程可得浓

度数据(以芦丁为参比),三次结果取平均值。经换算后得样品中总黄酮含量。

/( V *W)

样品总黄酮含量(mg/g)=X*n*V

1

式中:X—测出的浓度,mg/ mL;(直接代入,不用换算。)

n—稀释倍数,量纲为1;

—样液总体积,mL;

V

I

V—测定时取样体积,mL;

W—样品质量,g。

2.总分含量的测定

2.1 实验仪器

ALZO4型电子分析天平:上海梅特勒一托利多仪器有限公司;

DELA犯O型pH计:上海梅特勒一托利多仪器有限公司;

723可见分光光度计:上海菩华科技仪器有限公司;

DK一512型电热恒温水浴锅:上海森信实验仪器有限公司;

容量瓶(250mL,10OmL,25mL)、比色管管(10mL);

烧杯、移液管、吸耳球。

2.2试剂及药品

没食子酸对照品:基准纯,购于上海分析试剂厂,置50℃真空干燥箱真

空中干燥4 h。乙醇为工业级,蒸馏水,其他试剂均为分析纯。

2.3 Folin—Ciocalteu比色法测定总酚酸含量

3.3.1 Folin—Ciocalteu试剂的配制

称取20 g钨酸钠和5 g钼酸钠于圆底烧瓶中,用140 ml蒸馏水溶解,加入10ml 85%的磷酸溶液和20 ml浓盐酸,文火回流10 h,然后加入3 g硫酸锂及15 ml双氧水,加热沸腾15 min至亮黄色,不得带微蓝和绿色。冷却,移入250 ml容量瓶中,定容,贮于棕色瓶中,4℃冰箱保存。

2.3.2对照品溶液制备

准确称取15.00 mg干燥的没食子酸,加蒸馏水适量,超声溶解,放冷,以蒸馏水定容至50ml,制成0.3mg/mL没食子酸的溶液,作为对照品溶液。

将0.3mg/mL的没食子酸标准溶液分别配制成0.0mg/mL,0.03mg/mL,

0.06mg/mL,0.09mg/mL,0.12mg/mL,0.15mg/mL、0.18mg/mL、0.21mg/mL的溶液,分别取1mL置于10mL的容量瓶中,加入2 ml福林试剂,充分摇匀,加入0.75ml 7.5%

碳酸钠溶液.混匀,以蒸馏水稀释至刻度。振荡一下,静置2h (Guo&Wei,2011)。同时制作空白管。为消除供试品溶液本身颜色的干扰,同时制作不加显色剂的对照管。于765 nm 波长处测定吸光度值。 2.3.3标准曲线的制备

以吸光度A 为纵坐标,浓度c 为横坐标,绘制标准曲线。用最小二乘法进行线性拟合,得c 与A 的线性回归方程以及相关系数R 2。

表3-1:没食子酸标准曲线测定数据

图3-1:没食子酸标准曲线

2.3.4样品的测定

取提液2ml 至10ml 的比色管中用60%的乙醇定容至刻度线则稀释5倍。取稀释后溶液1ml 四份,分别置于10mL 比色管中,加入2 ml 福林试剂,充分摇匀,加入0.75ml 7.5%碳酸钠溶液.混匀,以蒸馏水稀释至刻度。振荡一下,静置2h 。同时制作空白管。为消除供试品溶液本身颜色的干扰,同时制作不加显色剂的对照管。于765 nm 波长处测定吸光度值。 总酚酸含量计算:

序号

浓度

(ug/ml ) 吸光度(WL765.0) 0 0 0

1 3 0.13

2 2

6 0.284 3

9 0.411 4

12 0.582 5

15 0.712 6

18 0.843 7

21

1.013

多酚含量(mg/100g )=

100g 0.5X(mg)???)

总酚酸称样量(稀释倍数

3.清除 DPPH ·的能力的测定 3.1.实验仪器、药品及试剂

2.1.1 实验仪器

ALZO4型电子分析天平:上海梅特勒一托利多仪器有限公司; DELA 犯O 型pH 计:上海梅特勒一托利多仪器有限公司; 723可见分光光度计:上海菩华科技仪器有限公司; DK 一512型电热恒温水浴锅:上海森信实验仪器有限公司; 容量瓶(250mL ,10OmL ,25mL)、比色管(10mL); 烧杯、移液管、吸耳球。 3.1.2试剂及药品

DPPH·(2,2-diphenyl-1-picrylhydrazyl ,二苯代苦味肼基自由基); Vc (Ascrobic acid ,维生素 C ,抗坏血酸)为分析纯; 无水乙醇,蒸馏水

3.2.1配制DPPH 溶液

配制0.06mMDPPH 试剂,放入冰箱4℃进行冷藏,以备用。

3.2.2参照品Vc 标准溶液的制备

准确称取17.6mgVc 到100mL 的烧杯中用无水乙醇溶解后,置于50mL 的容量

瓶中定容至刻度线及可以得到2mmol/L 的母液,分别量1、2、3、4、5、6ml 至10ml 的比色管中用无水乙醇定容至刻度线,则可以得到0.2mmol/L 、0.4mmol/L 、0.6mmol/L 、0.8mmol/L 、1mmol/L 、1.2mmol/L 的溶液。从以上比色管中分别取0.1ml 溶液置于试管中再加入3.9ml 的DPPH ,反应30min,在517nm 测出吸光值(Thoo&Ho,2010),用无水乙醇代替待测液作为对照,用无水乙醇作空白,重复三组。

清除率=[(Ac-Ai)/Ac]×100%

式中,Ac :0.1 mL 无水乙醇加 3.9mL DPPH 溶液的吸光度;

Ai :0.1 mL 待测液加 3.9mLDPPH 溶液的吸光度。

3.2.3标准曲线的绘制 3.2.2测试数据及标准曲线的绘制

表3-1:VC 标准曲线测定数据

以吸光度A 为纵坐标,浓度c 为横坐标,绘制标准曲线。用最小二乘法进行线性拟合,得c 与A 的线性回归方程以及相关系数R 2

图3-1:VC 含量与吸光度的关系

图3-1:VC 含量与清除率的关系

序号 C (mmol/L )

吸光度 清除率/% 0 0 0 1 0.2 0.529 14.92 2 0.4 0.424 30.90 3 0.6 0.32 46.73 4 0.8 0.209 63.62 5 1 0.11 78.69 6

1.2

0.02

92.39

3.2.4样品的测定

取提液4ml至10ml的比色管中用60%的乙醇定容至刻度线则稀释2.5倍。取稀释后溶液0.1mL三份,分别置于10mL 试管中,再分别加入配置好的DPPH溶液3.9mL,摇匀,反应30min后,分别在517nm处测定其吸光度。代入标准曲线回归方程可得浓度数据(以Vc为参比),三次结果取平均值。经换算后得样品自由基清除率。

4. 清除ABTS+自由基能力的测定

4.1ABTS+自由基的配制

准确称取0.19215gABTS于50mL的容量瓶中,用无水乙醇定容,摇匀,浓度7mmol/L;7mmol/LABTS+.与2.45mmol/L的高硫酸钾等体积混合,在室温、避光黑暗的条件下静置过夜反应12~16h,形成ABTS+自由基储备液。该储备液在室温,避光的条件下稳定。用前用无水乙醇稀释成工作液,于波长734nm处测得其吸光度为0.7000(±0.02),再装入棕色试剂瓶中,放入冰箱4℃进行冷藏,以备用。

4.2标准曲线的绘制

4.2.1参照品Vc标准溶液的制备及测试

准确称取8.8.mgVc到100mL的烧杯中用无水乙醇溶解后,置于50mL的容量瓶中用无水乙醇定容至刻度线及可以得到1mmol/L的母液,分别量1、2、3、4、5、6、7、8ml至10ml的比色管中用无水乙醇定容至刻度线,则可以得到0.1mmol/L、0.2mmol/L、0.3mmol/L、0.4mmol/L、0.5mmol/L、0.6mmol/L、0.7mmol/L、0.8mmol/L 的溶液。从以上比色管中分别取0.1ml溶液置于试管中再加入3.9ml的DPPH,反应30min,在517nm测出吸光值,用无水乙醇代替待测液作为对照(Zhu&Lian,2011),用无水乙醇作空白,重复三组。

清除率=[(Ac-Ai)/Ac]×100%

式中,Ac:0.1 mL 无水乙醇加 3.9mL ABTS+自由基溶液的吸光度;

Ai:0.1 mL 待测液加 3.9mL ABTS+自由基溶液的吸光度。

4.2.2测试数据及标准曲线的绘制

序号C(mmol/l)吸光度清除率/%

1 0 0.00

2 0.1 0.57 12.04

3 0.2 0.493 23.92

4 0.3 0.422 34.88

5 0.4 0.351 45.83

6 0.5 0.276 57.41

7 0.6 0.2 69.14

8 0.7 0.118 81.79

9 0.8 0.035 94.60

表4-1:Vc浓度与吸光值和清除率的数据

图4-1Vc浓度与其吸光值的关系

图4-2:Vc浓度与其清除ABTS能力的关系

5.还原能力的测定

5.1实验试剂

磷酸盐缓冲溶液(配成PH6.6 0.2mol/l);

K3Fe(CN)6溶液(配成1%);

三氯乙酸(配成10%);

FeCl3(配成0.1%);

没食子酸

无水乙醇

5.2标准曲线的绘制

5.2.1试剂的配制

磷酸盐缓冲溶液(pH6.6 0.2mol/L):准确称取7.16g的磷酸氢二钠至100mL 的烧杯中用蒸馏水溶解后,置于100mL的容量瓶中用蒸馏水定容,即可得到0.2mol/L的磷酸氢二钠,同样的方法配制0.2mol/L的磷酸二氢钠。准确量取37.5mL的0.2mol/L磷酸氢二钠溶液和62.5mL的0.2mol/L磷酸二氢钠溶液至烧杯中,用pH校正既可以得到磷酸盐缓冲溶液(pH6.6 0.2mol/L)。

5.2.2标准溶液的配制及测试

用没食子酸做标准曲线其浓度范围在50—300ug/ml,准确称取50mg没食子酸到100mL烧杯中用无水乙醇溶解后,置于容量瓶中用无水乙醇定容至刻度线,得到0.5mg/ml的母液,在分别取1mL、2mL、3mL、4mL、5mL、6mL至10mL的容量瓶中用无水乙醇定容至刻度先,得到50ug/ml、100ug/ml、150ug/ml、200ug/ml、250ug/ml、300ug/ml的溶液,取不同浓度的待测液或样品1ml于试管中,依次加入PH6.6磷酸盐缓冲溶液(0.2mol/l)2.5ml和1% K3Fe(CN)6溶液2.5ml后混合均匀,混合液于50℃水浴20min,再加入10%的三氯乙酸 2.5ml。于(3000r/min)离心10min,取2.5ml的上清液再依次加2.5ml蒸馏水和0.1%的FeCl3 0.5ml混合均匀,静置10min在700nm处测定吸光值,通过在700nm下的

的计算是吸吸收值来测量提取物的还原能力,吸光值越高表明还原力越强,EC

50

光值为0.5时的浓度(Roy&Laskar,2011)。

5.2.3测试数据及标准曲线的绘制

表5-1

:没食子酸的质量浓度和吸光值的数据

图5-1:没食子酸的质量浓度与其吸光值的关系

Test set

gallic acid concentration

ug/ml

Absorbency 1 0 0 2 50 0.59 3 100 1.1 4 150 1.527 5 200 2.073 6 250 2.579 7

300

3.1

6.超氧自由自测定

6.1实验试剂

1实验试剂

Tris-Hcl缓冲液(配制PH8.20 50mmol/L)

邻苯三酚(配制3mmol/L)

VC

无水乙醇

6.2标准曲线的绘制

6.2..1试剂的配制

Tris-HCl(pH8.2 50mmol/L)缓冲溶液:取0.6057g三羟甲基氨基甲烷(Tris),蒸馏水溶解定容至50mL容量瓶;取0.309mL分析纯盐酸溶液至100mL 的容量瓶中用蒸馏水定容至刻度,即得0.1mol/L盐酸溶液;分别取配置好的Tris50mL和0.1mol/L盐酸溶液22.9mL于100mL容量瓶中,蒸馏水定容至刻度,用pH计进行校正即可以得到Tris-HCl(pH8.2 50mmol/L)缓冲溶液。邻苯三酚:配制10mmol/L的稀盐酸,取0.310mL分析纯盐酸溶液至1000mL的容量瓶中用蒸馏水定容至刻度线;取焦性没食子酸0.0095g,至25mL的容量瓶中用10mmol/L 的稀盐酸溶液定容至刻度线。

6.2.2标准溶液的配置及测试

精密称取Vc标准样品0.0300g置于100mL烧杯中,用纯净水溶解后定容至100mL 容量瓶中,即可得0.3mg/mL的Vc标准溶液。

将0.3mg/mL的Vc标准溶液分别配制成0.0mg/mL,0.03mg/mL,0.06mg/mL,0.09mg/mL,0.12mg/mL,0.15mg/mL,0.18 mg/mL,0.21 mg/mL,0.24 mg/mL,0.27 mg/mL,0.3 mg/mL的溶液,分别加入4.5mL的Tris-HCl(pH8.2 50mmol/L)缓冲溶液于10mL的试管中,再加入1mL不同浓度样品或待测液,25℃反应10min,再加入25℃预热的邻苯三酚0.1mL(3mmol/L用10mmol/L的盐酸配制),迅速摇匀,于325nm出测定,加入邻苯三酚即开始计时,每隔30s读取一次,至5min,做好记录。邻苯三酚的自氧化速率以无水乙醇代替样品,Tris-HCl缓冲溶液作空白。

清除率%=[(△Ac-△Ai)/△Ac]×100%

式中,△Ac :邻苯三酚自氧化速率;

△Ai :加入待测液后邻苯三酚自氧化速率。 6.2.3测试数据及标准曲线的绘制

表6-1:Vc 的质量浓度与吸光值和抑制率的的数据

图6-1:Vc 的质量浓度与其清除超氧自由基关系

吸光值 自氧化速率 抑制率 序号 时间min 1st 5th

邻苯三酚0.1ml 0.142 0.411 0.06725 1 浓度ug/ml 0

0 0 0 0 2 30 0.032 0.246 0.05350 20.45 3 60 0.015 0.179 0.04100 39.03 4 90 0.012 0.13 0.02950 56.13 5 120 0.007 0.074 0.01675 75.09 6

150

0.006

0.025

0.00475

92.94

2010大一暑假实验报告提取分离试验

10年7月18日星期日雨 按照陈老师说的,我们今天开始做黄酮分离的预试实验,大家每人各取20g粉碎过的蕨菜,包扎好放在干燥的索氏提取器中。接好在铁架台上,最上面接冷凝管,中间接所氏提取器,下面接平底烧瓶,接口一定要配套,是磨口的。蕨菜粉末袋要包好装在连通管顶的下端,以便于每次冷凝下来的水都能覆盖满粉末,从而充分浸泡,脱色。然后在冷凝管进水雨出水管口接上橡皮管,进水管橡皮管另一端套紧水龙头管口,等水浴锅温度上升到近50度才打开水龙头放水。 接下来迅速往烧瓶里倒入其2/3~3/4的乙醚,我快速倒了乙醚。那刺鼻味简直让人窒息,加之有毒,易爆炸,使人麻醉,我是百般小心,才避免了它的危害。倒完乙醚立刻将烧瓶接好,乙醚瓶要立刻盖紧,以防挥发。 脱脂装置开始正常运行了,注意水浴锅内水不能过少,温度保持

原样。只要等着其流出液体变为无色即可。过了好几个小时,终于完了,关掉水浴锅,取下装置,将乙醚包紧,留着处理。滤纸包仍置于所氏提取器中,放在空气流通的地方让其干燥。 中文名称: 旋转蒸发器 英文名称: rotary evaporator 定义: 一种快速液体样品浓缩的装置。样品在球形的玻璃容器中加热、减压,并不断地旋转增大蒸发表面积,加快蒸发速度。 所属学科: 生物化学与分子生物学(一级学科) ;方法与技术(二级学科) 普通蒸馏最大的不同就是通过旋转,增大溶剂的蒸发面积,使蒸发更加顺畅! 现在的旋转蒸发仪也可以进行减压蒸馏,通过减压,还可以补充蒸发的液体而不需要用方法: 1.高低调节:手动升降,转动机柱上面手轮,顺转为上升,逆转为下降. 电动升降,手触上升键主机上升,手触下降键主机下降. 2.冷凝器上有两个外接头是接冷却水用的,一头接进水,另一头接出水,一般接自来水,冷凝水温度越低效果越好.上端口装抽真空接头,接真空泵皮管抽真空用的. 3.开机前先将调速旋钮左旋到最小,按下电源开关指示灯亮,然后慢慢往右旋至所需要的转速,一般大蒸发瓶用中,低速,粘度大的溶液用较低转速.烧瓶是标准接口24号,随机附500ml,1000ml两种烧瓶,溶液量一般不超过50%为适宜. 注意事项: 1.玻璃零件接装应轻拿轻放,装前应洗干净,擦干或烘干. 2.各磨口,密封面密封圈及接头安装前都需要涂一层真空脂. 3.加热槽通电前必须加水,不允许无水干烧. 4.RE-52B必须使(19)拧入保险孔内保险,以免损坏烧瓶. 5.如真空抽不上来需检查 (1)各接头,接口是否密封 (2)密封圈,密封面是否有效 (3)主轴与密封圈之间真空脂是否涂好 (4)真空泵及其皮管是否漏气 7月19日星期一晴 天气好转,经过一夜的烘干,我的蕨菜包是完全干了。所以可以重新组装装置进行提纯。重新找了一个冷凝管和圆底烧瓶,用橡皮

标准实验报告模板

实验报告 实验名称 课程名称___电子技术基础实验 院系部: 专业班级:学生姓名:学号:同组人:实验台号:指导教师:成绩:实验日期: 华北电力大学

实验报告要求: 一、实验目的及要求 二、仪器用具 三、实验原理 四、实验步骤(包括原理图、实验结果与数据处理) 五、讨论与结论(对实验现象、实验故障及处理方法、实验中存在的问题等进行分析和讨论,对实验的进一步想法或改进意见。) 六、实验原始数据

一、实验目的及要求: 1. 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2. 掌握放大器电压放大倍数和最大不失真输出电压的测试方法。 3. 悉常用电子仪器及模拟电路实验设备的使用。 二、仪器用具:略 三、实验原理 图1.2.1为电阻分压式工作点稳定单管放大器实验电路图。 图1.2.1 共射极单管放大器实验电路 在图1.2.1电路中,当流过偏置电阻1B R 和2B R 的电流远大于晶体管VT 的基极电流B I 时(一般5~10倍),则它的静态工作点可用下式估算: CC B2B1B1B U R R R U +≈ U CE =U CC -I C (R C +R F1 + R E ) 电压放大倍数: 1)1( // F R β++-=be L C V r R R β A 其中r be =200+26 (1+β)/I E 输入电阻:R i =R B1 // R B2 // [r be +(1+β)R F1] 输出电阻:R O ≈R C 四、实验方法与步骤: 1. 调试静态工作点 接通+12V 电源、调节R W ,使U E =2.0V ,测量U B 、U E 、U C 、R B2值。记入表1.2.1。 E U BE = U B - U E =0.665V ,U CE = U C - U E =5.8V,I C ≈I E = U E /R E =2/(1.1)=1.82mA 实验数据显示,Q 点的值满足放大电路的静态工作点要求,BJT 处于放大区。 2. 测量不同负载下的电压放大倍数 C E BE B E I R U U I ≈+-≈1 F R

标准实验报告模板

标准实验报告模板

实验报告 实验名称 课程名称___电子技术基础实验 院系部: 专业班级: 学生姓名:学号: 同组人:实验台号: 指导教师:成绩: 实验日期: 华北电力大学

一、实验目的及要求: 1. 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2. 掌握放大器电压放大倍数和最大不失真输出电压的测试方法。 3. 悉常用电子仪器及模拟电路实验设备的使用。 二、仪器用具:略 三、实验原理 图1.2.1为电阻分压式工作点稳定单管放大器实验电路图。

图1.2.1 共射极单管放大器实验电路 在图1.2.1电路中,当流过偏置电阻1 B R 和2 B R 的电流远大于晶体管VT 的基极电流B I 时(一般5~10倍),则它的静态工作点可用下式估算: CC B2 B1B1 B U R R R U +≈ U CE =U CC -I C (R C +R F1 + R E ) 电压放大倍数: 1 )1( // F R β++-=be L C V r R R β A 其中r be = 200+26 (1+β)/I E 输入电阻:R i =R B1 // R B2 // [r be +(1+β)R F1] 输出电阻:R O ≈R C 四、实验方法与步骤: 1. 调试静态工作点 接通+12V 电源、调节R W ,使U E =2.0V ,测量U B 、U E 、U C 、R B2值。记入表1.2.1。 表1.2.1 U E =2.0V 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2 (KΩ) U BE (V ) U CE (V ) I C (mA ) 2.665 2.0 7.8 53 0.865 5.2 2.0 根据表格测量数据,计算得到: U BE = U B - U E =0.665V ,U CE = U C - U E =5.8V,I C ≈I E = U E /R E =2/(1.1)=1.82mA C E BE B E I R U U I ≈+-≈1 F R

银杏叶黄酮提取及含量测定

银杏叶黄酮提取及含量测定 一、实验目的 1、掌握银杏叶中黄酮的提取方法 2、了解银杏叶中黄酮的含量测定 二、实验原理 近几年来,随着对黄酮类化合物研究的日益深入与重视,黄酮类化合物提取技术的发展也得到了促进。目前提取黄酮类化合物的方法主要包括有机溶剂浸提法、超声波提取法、超临界流体萃取法、微波提取法和酶提取法等。 1.1有机溶剂浸提法 目前国内外使用最广泛的银杏叶中黄酮的提取方法就是有机溶剂提取法,一般可用乙酸乙酯、丙酮、乙醇、甲醇或某些极性较大的混合溶剂,如甲醇-水(1+1)溶液。由于甲醇的毒性、挥发性较大,因此一般采用乙醇作为提取剂。银杏叶干燥粉碎后用有机溶剂浸泡、提取、过滤,滤液中的溶剂经减压蒸馏除去后得银杏叶浸膏粗提物。徐桂花等[1]提取银杏叶中黄酮类化合物时,采用乙醇(70+30)溶液为提取剂,提取温度为70℃,料液质量浓度比为1g比40mL,提取时间为4h。由于乙醇提取工艺在安全性、溶剂成本、效率及杂质酚酸去除等方面都不能应对日益严酷的市场竞争,张林涛等[1]提出了以硼砂- 氢氧化钙碱水为溶剂提取银杏叶黄酮,其黄酮提取率与文献值相近,但提取工艺时间缩短为1h。 1.2超声波提取法 超声波提取法是利用搅拌作用、强烈的振动和空间效应、高的加速度等使药物有效成分进入溶剂,从而提高提取率,缩短提取时间,并能消除高温对提取成分影响的一种提取法。刘晶芝等[2]运用了超声波技术与水浸提取相结合的方法得出超声波提取的最佳工艺条件为:超声频率40kHz,超声处理时间55min,料液质量比1比100,提取温度35℃,静置3h,提取率为81.9%。郭国瑞等[3]以水为介质,超声波提取银杏叶中黄酮苷,与常规水浸提法比较,超声波提取效率大大提高,确定超声波提取的最佳工艺为:超声处理时间55min,料液质量比1比30,提取温度50℃,提取率为82.3%。 1.3超临界流体萃取法 超临界流体萃取法是一种以超临界流体代替常规有机溶剂对有效成分进行萃取和分离的新技术。可作为超临界流体的物质很多,其中二氧化碳临界温度(TC=31.3℃)接近室温,且具有无色、无毒、无味、不易燃、化学惰性、价廉、易制成高纯气体等优点而被广泛应用,特别在中药材及其制剂中更显示出其独特、简便、快速、具有较高的选择性、提取杂质少、可直接进样分析的优点。邓启焕等[4]探讨了超临界萃取银杏叶有效成分的影响因素,最佳条件为萃取压力20MPa、时间90min、粒度3.9mm、温度40℃,经测定银杏叶黄酮的质量分数为28%,高于国际公认标准。 1.4微波提取法 微波提取法是利用分子或离子在微波场中的导电效应直接对物质进行加热从而提取植物细胞内耐热物质的新工艺。曾里等[5]的研究表明以乙醇溶液作溶剂比以水作溶剂的效果好,最佳条件为以乙醇 (60+40)溶液为提取剂,解冻处理20min。张鹏等[6]对微波法提取银杏叶中黄酮类物质进行了研究,最佳提取条件为以乙醇(50+50)溶液

实验报告标准范本_4

报告编号:LX-FS-A55866 实验报告标准范本 The Stage T asks Completed According T o The Plan Reflect The Basic Situation In The Work And The Lessons Learned In The Work, So As T o Obtain Further Guidance From The Superior. 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

实验报告标准范本 使用说明:本报告资料适用于按计划完成的阶段任务而进行的,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想的汇报,以取得上级的进一步指导作用。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 一、实验目的及要求: 本实例是要创建边框为1像素的表格。 二、仪器用具 1、生均一台多媒体电脑,组建内部局域网,并且接入国际互联网。 2、安装windows xp操作系统;建立iis服务器环境,支持asp。 3、安装网页三剑客(dreamweaver mx;flash mx;fireworks mx)等网页设计软件; 4、安装acdsee、photoshop等图形处理与制作软件;

5、其他一些动画与图形处理或制作软件。 三、实验原理 创建边框为1像素的表格。 四、实验方法与步骤 1) 在文档中,单击表格“”按钮,在对话框中将“单元格间距”设置为“1”。 2) 选中插入的表格,将“背景颜色”设置为“黑色”(#0000000)。 3) 在表格中选中所有的单元格,在“属性”面版中将“背景颜色”设置为“白色”(#ffffff)。 4) 设置完毕,保存页面,按下“f12”键预览。 五、实验结果 六、讨论与结论 本实验主要通过整个表格和单元格颜色的差异来衬托出实验效果,间距的作用主要在于表现这种颜色

荧光定量PCR之绝对定量分析——标准曲线的绘制

荧光定量PCR之绝对定量分析——标准曲线的绘制 1. 绝对定量定义 绝对定量是用已知浓度的标准品绘制标准曲线来推算未知样品的量。 将标准品稀释至不同浓度,作为模板进行PCR反应。以标准品拷贝数的对数值为横坐标,以测得的CT值为纵坐标,绘制标准曲线,对未知样品进行定量时,根据未知样品的CT值,即可在标准曲线中得到样品的拷贝数。 * Log(起始浓度)与循环数呈线性关系,通过已知起始拷贝数的标准品可作出标准曲线,即得到该扩增反应存在的线性关系 * 由样品CT值,就可以计算出样品中所含的模板量 2. 绝对定量标准品 标准品的一些标准 * 必须用与扩增目的基因相同的引物进行扩增,并且扩增效率相同 * 标准品必须是经过准确定量的(我们通常用的是ASP-3700紫外光/可见光微量分光光度计) * 标准品必须是标准化的(例如,同一化的细胞数) * 在每组实验时,必须用相同的阈值设定来确定CT值

标准品可以是含有目的基因的线性化的质粒DNA,也可以是比扩增片段长的纯化后的PCR产物,当然也可以是基因组DNA,甚至cDNA,但前提是所有的作为标准品的核酸都必须保证稳定。 3. 标准品的制备 一般一条标准曲线取四到五个点,浓度范围要能覆盖样品的浓度区间,以保证定量的准确性。一般一个点重复三至五次,对于常期稳定使用的标准品可以适当减少重复的次数。倍比梯度稀释方法: 1v原液(标准品i)+9v稀释缓冲液,得标准品ii 1v标准品ii+9v稀释缓冲液,得标准品iii 1v标准品iii+9v稀释缓冲液,得标准品iv 1v标准品iv+9v稀释缓冲液,得标准品v 依次倍比稀释 拷贝数的计算:详见核酸拷贝数的计算 4. 实例 标准品的制作:将标准品依次进行10倍稀释,ASP-3700 测得其拷贝数1.55×108copy /ul 标准曲线的绘制(1cycle=1min)

模拟曲线测设实验报告PDF.pdf

工程测量学 实验报告 (2013—2014学年第2学期) 实验名称:模拟曲线测设 实验时间:2014年5月10日 实验地点:临潼校区 指导教师:段虎荣 专业班级:测绘工程1102 姓名:张少博杨勋杜少鹏武兴盛陈小亮谷金杨庆玲学号:1110020221 222 223 224 235 207 208 西安科技大学测绘学院测绘系(教研室) 二〇一四年五月

目录

一、实验目的 掌握缓和曲线主点测设的基本方法 二、实验内容 已知某基本型线路曲线交点(JD)里程为DK8+449.140,转向角α右=40°18′40″,圆曲线半径R=100m,缓和曲线长20m,进行曲线主点测设。 三、实验要求 (1)在校园内15号公寓楼西北方向空地上定义JD点,坐标为(0,200),ZH点切向上点,测设转向角,确定一点,使得,测设精度<15″。 (2)计算曲线要素及主点里程,详细叙述(并绘制草图)ZH、HZ、QZ点的测设步骤。 (3)按切线支距法及偏角法放样HY、YH点。两者差异<5cm. 四、仪器设备 全站仪一套 五、实验步骤 1、曲线要素计算 1.1、常数计算 缓和曲线切线角 切垂距

内移距 1.2、基本型曲线要素计算 切线长 曲线全长 外矢距 切曲差 1.3、主点里程计算 ZH里程= +449.140-46.76263 = +402.37737 HY里程= +402.37737+20 = +422.37737 QZ里程= +422.37737+(90.35463/2-20) = +447.554685 YH里程= +402.37737+90.35463-20 = +472.732 HZ里程= +472.732+20 = +492.732

溶剂提取法提取银杏叶中得黄酮实验报告

溶剂提取法提取银杏叶中得黄酮实验报告 小组成员:周璟、胡静、左兵华、刘云飞 2014年5月一、实验目的 ⅰ)掌握传统的溶剂提取法并对银杏中的黄酮进行提取 ⅱ)掌握紫外分光光度计的应用,以及origin软件绘图的基本操作ⅲ)学会自主设计实验,培养团队合作精神 二、实验原理 ⑴关于黄酮:银杏中最具药用价值的成分,有提高人体免疫力的作用;并且抗衰老、调节内分泌,还具有抗炎、抗真菌的作用; ⑵实验需设置空白参比液,由文献资料可知芦丁标准液的最大波长大概为510nm; ⑶本实验采用硝酸铝(氯化铝)法测定银杏叶总黄酮的质量浓度,因 为黄酮类化合物可以与铝盐发生络合显色反应。 其主要原理为:在中性或弱碱性及亚硝酸钠存在的条件下,黄酮类化合物与铝盐发生螯合反应,加入氢氧化钠溶液后,溶液显橙红色,在510nm(左右)处有吸收峰,且符合定量分析的朗伯—比尔定律(即A=kbc)一般与芦丁标准溶液比较定量。先用亚硝酸钠还原黄酮类化合物,再加铝盐络合,最后加氢氧化钠溶液使黄酮类化合物开环,生成2-羟基查尔酮而显色。显色原理发生在黄酮醇类邻位无取代的邻二

酚羟基部位,不具有邻位无取代的邻二酚羟基的黄酮类成分加入上述试剂时是不显色的。(如二氢黄酮类化合物就不发生该显色反应) 三、实验药品及仪器 ⑴药品:银杏叶(阴干碾碎储藏备用),芦丁,无水乙醇,亚硝酸钠,氯化铝和氢氧化钠; ⑵仪器:电子天平,旋转蒸发仪,索氏提取器,uv-1800型紫外分光光度计,研钵,比色皿,容量瓶(10ml*6,50ml*1,100ml*2),移液管,量筒,烧杯,玻璃棒。 四.实验步骤 Ⅰ)配制60%的乙醇溶液(黄酮同时具有水溶和油溶性)。 Ⅱ)准确称取10g银杏叶粉末置于索氏提取器中,加入60%的乙醇溶液10ml,回流提取3h,然后用旋转蒸发仪浓缩并回收乙醇溶液,抽滤得到银杏叶黄酮粗提物。再用60%的乙醇定容到100ml。 Ⅲ)芦丁标准液的配置:准确称取芦丁标准品0.005g,用60%的乙醇溶液加热溶解,并转移到50ml容量瓶内用乙醇溶液定容,摇匀,得质量浓度为0.1mg/ml的芦丁标准液。 Ⅳ)分别吸取上部配制的母液0.0,1.0,2.0,3.0,4.0,5.0ml于6只10ml容量瓶中摇匀,先加入5%的亚硝酸钠0.5ml摇匀,静置6min,再加入10%的氯化铝溶液0.31ml,摇匀,静置6min,再加入4%的氢氧化钠溶液4ml,用60%的乙醇溶液定容到10ml,放置20min。其中,加入

标准实验报告

标准实验报告 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

实验报告 实验名称 课程名称___电子技术基础实验 院系部: 专业班级: 学生姓名:学号: 同组人: 实验台号: 指导教师:成绩: 实验日期: 华北电力大学 实验报告要求: 一、实验目的及要求 二、仪器用具 三、实验原理 四、实验步骤(包括原理图、实验结果与数据处理) 五、讨论与结论(对实验现象、实验故障及处理方法、实验中存在的问题等进行分析和讨论,对实验的进一步想法或改进意见。) 六、实验原始数据 一、实验目的及要求:

1. 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2. 掌握放大器电压放大倍数和最大不失真输出电压的测试方法。 3. 悉常用电子仪器及模拟电路实验设备的使用。 二、仪器用具:略 三、实验原理 图1.2.1为电阻分压式工作点稳定单管放大器实验电路图。 图1.2.1 共射极单管放大器实验电路 在图1.2.1电路中,当流过偏置电阻1B R 和2B R 的电流远大于晶体管VT 的基极电流B I 时(一般5~10倍),则它的静态工作点可用下式估算: CC B2B1B1B U R R R U +≈ U CE =U CC -I C (R C +R F1 + R E ) 电压放大倍数: 1 )1( // F R β++-=be L C V r R R β A 其中r be =200+26 (1+β)/I E 输入电阻:R i =R B1 调试静态工作点 接通+12V 电源、调节R W ,使U E =,测量U B 、U E 、U C 、R B2值。记入表1.2.1。 表1.2.1 U E = 根据表格测量数据,计算得到: U BE = U B - U E =,U CE = U C - U E =,I C ≈I E = U E /R E =2/= 实验数据显示,Q 点的值满足放大电路的静态工作点要求,BJT 处于放大区。 2. 测量不同负载下的电压放大倍数 输入信号u i 为1KHz ,U i ≈10mV 的正弦信号,同时用示波器观察放大器输出电压u O 波形,在波形不失真的条件下测量下述两种情况下的U O 值,并观察u i 与u O 的相位关系,记入表1.2.2。 C E BE B E I R U U I ≈+-≈1 F R

标准曲线绘制

标准曲线绘制 calfstone 任何科学实践必须有科学理论的支撑。在这个意义上讲,经验有时候是一种误导。在寻求某个困扰自己的问题答案的时候,我提倡用理论支撑的观点来表达自己和说服自己。任何的盲从和权威都是不可取的。标准曲线的做法问题也是如此。 1、标准曲线的本质。标准曲线是标准物质的物理/化学属性跟仪器响应之间的函数关系。建立标准曲线的目的是推导待测物质的理化属性。如果有不需要标准曲线的方法,比如绝对校正,我想大家都会高兴。 2、标准曲线的适用性。这是做标准曲线的重要前提,这个问题实际很简单,就是这样一个问题:我的样品的仪器响应能否用我们所建立的标准曲线来推导其理化属性?答案建立在仪器响应的特异性和标准系列和样品的匹配性上面。一方面我们总是力求仪器的响应对于标准和样品是一视同仁;同时我们也要求我的样本跟标准基体匹配。所以最好的标准是基体匹配标准,最好的标准曲线是工作曲线。这样,我们也很好理解为什么大多数分析要求标准曲线和样品同批测定(除非经过实验,标准曲线的变化不大),同样的道理也可以理解为什么我们在做大批量检测的时候要插入QC检验样本,以考察仪器的稳定性。即使在任何信息未知的情况下,我们还是要做我们的分析测试的(要不,我们都失业了),因为大家都是用同样的方法做,要错大家一起错;同时也因为我们相信伴随科学的进步,我们所测试的结果的准确性就越接近真理。 3、简单的标准曲线----单点校正。对于分析成本高的测试,单点校正是不得以的选择。现在应用最多的是色谱分析,很多国家标准或国际标准都采用单点校正,实际是建立在色谱分析的高选择性上面:我们的空白一般都很小,我们的线性一般都很好。在有这么多验前概率的支撑下,色谱分析中大量的单点校正不失为一个合理的选择。但单点校正要丢失很多的信息量,这个信息量就是不确定度。 4、标准曲线的点的分布。从不确定度理论推算样本的不确定度时,有二个重要的结论:一、标准曲线的重心点处,所查出来的样品不确定度最小。二、标准的点数越多,样品的不确定度越小。基于这两个结论的标准曲线的做法应该是:在样品浓度的附近尽量的多布标准点。点做多做少,点分布如何,影响的是标准曲线所查出来的样品的理化属性的不确定度。好的测量应该是不确定度小的测量,这在判断样品的结果是否超标或符合限值的时候至关重要。 bingfan56 国标方法的话一般是五个点(不包括零浓度); 一般以检出限的5~10倍为第一个点,以后根据1倍(或接近一倍)递增,最高浓度是最低浓度的10~20倍为宜。当然,要根据仪器的灵敏度来调整。 一般方法要求线性大于0.99,其实〉0.99是判断是否为线性相关的一个标准,实际应用中线性〉0.999才是比较理想的。线性在0.99到0.999之间的监测结果只用接近最高浓度一半(中间浓度)的位置才比较准确,如果线性大于0.999的话,在整个线性范围内都会有一个比较满意的结果。 如果检测的线性不好,可以减少标准的覆盖范围,将标准的浓度调整到待测样品浓度附近,这样结果也是非常准确的。例如,样品的浓度约20ppb,但在0~50ppb范围建立标准曲线,但线性非常不理想,这时可以将标准范围调整到15~25ppb之间,作五个标准。 loacao 1.范围:如前面的朋友们所说不能跨度太大,因为标准曲线的高浓度延长线通常是曲线,那样定量会不准。最小点当然可以从LOQ开始。

黄酮实验报告

学院:化学化工学院 专业:生物工程 学生姓名:张文实 目录 摘要 (2)

1 绪论 (3) 2 实验原理 (3) 3 实验仪器和药品 (4) 3.1 实验仪器 (4) 3.2 实验药品 (4) 4 实验过程 (4) 4.1 侧柏叶中黄酮的提取及定性分析 (4) 4.2 侧柏黄酮洗发香波的配制及性能定 (6) 4.3 侧柏黄酮雪花膏的配制及性能测定 (7) 5 结果与讨论 (7) 5.1 侧柏叶中黄酮的含量 (7) 5.2 侧柏叶黄酮提取物的紫外—可见分析 (8) 5.3 洗发香波和雪花膏的性能测定 (9) 6 结论 (10) 参考文献 摘要

采用超声波法和索氏提取法从侧柏叶中提取黄酮类化合物。芦丁中也含有黄酮类化合物,根据不同溶度的黄铜提取液对应不同的吸光度,作出标准曲线,得出吸光度关于浓度的方程,然后再测得侧柏提取液的吸光度,根据方程计算黄酮类化合物的含量。黄酮类化合物主要用于激活毛母细胞和促进血液循环,使毛发生长能力衰退的毛囊复活和促进血液循环后补充营养成分而发挥出养发、生发的作用。去屑止痒的机理在于抑制头发表皮细胞蜕化的速度,延迟脱落,减少脂溢性皮肤病的产生。因此,广泛应用于洗发香波的制备中。同时它还有很好的美白效果,可添加到雪花膏中。 关键词:侧柏;黄酮类化合物;洗发香波;雪花膏 1 绪论

侧柏(Platycladus orientalis)系柏科侧柏属常绿乔木,别名扁柏、香柏、片柏、片松。喜生于湿润肥沃的山坡[1],分布于全国大部分地区。现代医学研究证明,侧柏叶对肺炎双球菌、金黄色葡萄球菌、宋内氏痢疾杆菌有明显的抑制作用,能缩短出血和凝血时间,对肺炎、痢疾、高血压等多种疾病有一定的疗效。侧柏叶的疗效作用主要是通过存在其中的黄酮类物质起作用的。 黄酮类化合物(flavonoids)是一类存在于自然界的、具有2-苯基色原酮(flavone)结构的化合物。它们分子中有一个酮式羰基,第一位上的氧原子具碱性,能与强酸成盐,其羟基衍生物多具黄色,故又称黄碱素或黄酮。黄酮类化合物在植物体中通常与糖结合成苷类,小部分以游离态(苷元)的形式存在。绝大多数植物体内都含有黄酮类化合物,它在植物的生长、发育、开花、结果以及抗菌防病等方面起着重要的作用。最初,这类物质的粗制品仅作为染料应用,20世纪20年代,国外把槲皮素、芦丁用于临床后,才引起人们的关注。60年代末,人们发现黄酮类化合物有抗炎、抗病毒、利胆、强心、镇静和镇痛等作用。到70年代,又发现它们有抗氧化、抗衰老、免疫调节和抗肿瘤等作用。 此外,黄酮还有明显的美白功效,其美白功效的药理作用主要在于抑制酪氨酸酶的活性,从而抑制黑色素的合成。侧柏叶总黄酮作为美容护肤化妆品的添加剂,具有药性稳定,药力持久,对皮肤作用温和、刺激性小、安全性高、疗效显著等特点。将其制成水包油型的乳化产品,安全性好,使肌肤自然、美白亮泽[2]。且成本低廉,原料易得,又不会产生副作用,顺应了国际化妆品天然化、营养化、疗效化的发展趋势,具有广阔的市场前景。在雪花膏中加入侧柏叶提取液组分,与表面活性剂等配制成美白雪花膏,是一种兼具美白、保湿功效和调理性能的天然植物功能性雪花膏。同时,黄酮类化合物主要用于激活毛母细胞和促进血液循环,使毛发生长能力衰退的毛囊复活和促进血液循环后补充营养成分而发挥出养发、生发的作用[3]。广泛用于洗发香波的生产中。 2 实验原理

自动控制原理标准实验报告

电子科技大学自动化工程学院标准实验报告 (实验)课程名称自动控制原理 电子科技大学教务处制表

电子科技大学 实验报告 学生姓名:音学学号:2014070902029 指导教师:实验地点:C2 507 实验时间: 实验室名称: 实验项目名称:系统认识与系统测试 实验学时:4 实验原理:实验原理图如下: 被测试系统是指:由控制部分,电动机,反馈电位器组成的部分。 在该实验中要求:1 测试输入(外部、计算机)信号与输出角度信号之间的关系(曲线)。 2 测试反馈电位器的输出电压与角度信号之间的关系(曲线)。

实验电路图 实验目的:1了解开环系统的工作状态,掌握闭环系统反馈极性的判别方法及其影响。 2 掌握系统相关数据的测试方法。 实验容:1 测试输入(外部、计算机)信号与输出角度信号之间的关系(曲线)。 2 测试反馈电位器的输出电压与角度信号之间的关系(曲线)。 实验器材:XZ-IIC型实验仪计算机自动控制原理实验仪万用表 实验步骤: 1 将系统接为单位负反馈系统,适当选取K值(约等于3)。 2 在-5V-+5V围间隔0.5V调整R的输出电压(用万用表监测),读出对应的输出角度值(可用计算机读出)。 3 断开系统输入,用手转动电机,在-150°-+150°间每隔10°选取一测试值用万用表监测反馈电位器的输出电压并作好记录。(用计算机监测给定角度) 实验数据及结果分析:实验机号20054409 计算机的给定电压与系统输出角度的关系: 给定电压-3-2.5-2-1.5-1-0.500.51 1.5 2.03 2.53输出角度-110-90.4-77.2-53.9-39.4-2201735.555.567.890.4107.6 横轴-计算机的给定电压纵轴-系统输出角度 系统输出角度与反馈电压间的关系:

标准曲线的绘制样本

标准曲线绘制 在分析化学实验中, 常见标准曲线法进行定量分析,一般情况下的标准工 作曲线是一条直线。 标准曲线的横坐标(X)表示能够精确测量的变量(如标准溶液的浓度),称为 普通变量,纵坐标(Y)表示仪器的响应值(也称测量值,如吸光度、电极电位 等), 称为随机变量。当X取值为X1, X2,……Xn时,仪器测得的丫值分别为丫1, 丫2,……Yn。将这些测量点Xi, Yi描绘在坐标系中,用直尺绘出一条表示X 与丫之间的直线线性关系,这就是常见的标准曲线法。用作绘制标准曲线的标准物质,它的含量范围应包括试祥中被测物质的含量,标长准曲线不能任意延。用作绘制标准曲线的绘图纸的横坐标和纵坐标的标度以及实验点的大小均不能太 大或太小,应能近似地反映测量的精度。 由于误差不能完全避免,实验点完全落在工作曲线的的情况是极少的,特别是在误差较大时,实验点比较分散,它们一般并不在同一条直线上,这样凭直觉很难判断怎样才能使所连接的直线对于所有实验点来说误差是最小的,当前较好的方法是对实验点(数据)进行回归分析。 研究随机现象中变量之间相关关系的数理统计方法称为回归分析,当自变 量只有一个或X与丫在坐标图上的变化轨迹近似一直线时,称为一元线性回归。 甦2.6.1 —元线性回归方程的求法 确定回归直线的原则是使它与所有测量数据的误差的平方和达到极小值 设回归直线方法为 9 (2 - 15)

式中a表示截距,b表示斜率 9 (2 - 15)

假设Xi和Yi (i=1,2,3, ……,n)是变量X和Y的一组测量数据。对于每一个Xi值,在直线(卩“+^ )上都有一个确定的旳“从X】值。但哲值与X 轴上Xi处的实际测定值Yi是不相等的, 与Yi之差为: 筈厂& +返AY’F-碍(2—佝 上式表示与直线()的偏离程度,即直线的误差程度。如果全部n个测定引起的总偏差用£(节厂印'表示,则偏差平方和s为 (2 - 17) 在所有直线中,偏差平方和s最小的一条直线就是回归直线,即这条直线 的斜率b和截距a应使s值达到最小,这种要使所有数据的偏差平方和达到最小 的求回归直线法称为最小二乘法。 根据数学分析的极值原理,要使s达到最小,对式(2 —17)中的a、b分别 求偏微分后得到 (2 —18) (2 —19) 是所有变量Xi和Yi的平均值。由于计算离均差较麻烦,可将式(2 — 18)变换为 n是测量的次数,也就是坐标图中实验点的数目。 (2 —20)

《数学实验》曲线绘制实验报告

课程名称数学实验成绩评定 实验项目名称曲线绘制 【实验目的】 1.了解曲线的几种表示方式。 2.学习、掌握MA TLAB软件有关的命令。 【实验内容】 绘制下列四种曲线: 1.以直角坐标方程y=sin x,y=cos x表示的正、余弦曲线。 2.以参数方程x=cos t,y=sin t,t∈[0,2π]表示的平面曲线(单位圆)。 3.以参数方程x=e?0.2t cosπ 2t,y=π 2 e?0.2t sin t,z=t,t∈[0,20]表示的空间曲线。 4.作出摆线的图形。 5.做出以参数方程x=e?0.25t cosπ 2t,y=e?0.25t sinπ 2 t,z=t,t∈[0,30]表示的空间曲线。 6.以极坐标方程r=a(1+cos?),a=1,?∈[0,2π]表示的心脏线。 7.绘制极坐标系下曲线 ρ=acos (b+nθ)的图形,讨论参数a、b和n对其图形的影响。8.(曲线族绘制)三次抛物线的方程为y=ax3+cx,讨论参数a和c对其图形的影响。 【实验方法与步骤】 练习1做出函数y=sin x,y=cos x的图形,并观察它们的周期性。 MATLAB代码及结果如下: >> x=0:0.01*pi:4*pi; y1=sin(x); y2=cos(x); plot(x,y1,'b',x,y2,'r'); legend('y=sin(x)','y=cos(x)','location','best'); axis([0 4*pi -1 1]) 绘制结果如下图:

y=sin x,y=cos x的图形如上图,两个函数的周期皆为2π 练习2设y=√3 2e?4t sin(4√3t+π 3 ),要求以0.01秒为间隔,求出y的151个点,绘出y及 其导数的图形。 MATLAB代码及结果如下: dt=0.01; t=0:0.01:1.5; w=4*sqrt(3); %设定频率 y=sqrt(3)/2*exp(-4*t).*sin(w*t+pi/3); Dy=diff(y)/dt; %求导 for i =1:length(t)-1 t1(i)=t(i); end subplot(2,1,1); plot(t,y); xlabel('时间t'); ylabel('y(t)'); grid subplot(2,1,2); plot(t1,Dy); xlabel('时间t'); ylabel('Dy(t)'' '); grid 绘制结果如下图:

天然药物化学实验报告(槲皮素的提取与鉴别)

天然药物化学实验报告 一、实验题目:槐米中槲皮素的提取分离及结构鉴定 二、实验目的: 通过对该选题进行资料查阅、方案设计、试验、结果分析等,让我自己学到一套系统、完整的槐米药效成分芦丁和槲皮素进行基源鉴定、提取、分离和结构鉴定的方法,并通过此项训练,提高自己的动手操作能力及综合运用自己所学知识的能力,培养自己独立思考、分析问题、解决问题的能力。 掌握槐米中槲皮素的提取及提取方法 了解槲皮素的药理作用及应用价值 掌握槲皮素的纯度检测 掌握槲皮素的结构鉴定的方法 三、实验基本原理: 本实验主要利用黄酮类化合物虽然有一定的极性,可溶于水,但却难溶于酸性水,易溶于碱性水,故可用碱性水提取,再将碱水提取液调成酸性,黄酮苷类即可沉淀析出。以槐米为原料,采用煎煮法提取槐米有效成分芦丁,然后酸溶液水解获得槲皮素粗品,乙醇重结晶获得槲皮素精品。 四、实验所用试剂、仪器的型号及生产厂家: (一)实验试剂,见下表: 序号名称数量规格生产厂家 1 95%乙醇溶液25ml 500ml/瓶 AR 天津天力 2 浓H2SO4 12ml 500ml/瓶 AR 天津天力 3 甲醇10ml 500ml/瓶 AR 天津天力 4 无水乙醇43ml 500ml/瓶 AR 天津天力 5 纯净水1500ml 18L/桶万家纯水 6 硅胶GF254 30g 500g/瓶 青岛海浪 薄层层析

(二)实验仪器,见下表: 序号名称数量型号生产厂家 1 电子天平1台IM-B200 2 余姚市纪铭称量校验设备有 限公司 2 圆底烧瓶1个GG-17 1000ml 蜀牛 3 烧杯1个GG-17 1000ml 蜀牛 4 烧杯1个 GG-17 500ml 环球 5 烧杯1个GG-17 250ml Jing Xing 6 量筒1个100ml BOMEX 7 量筒1个10ml 旌湖 8 直型冷凝 管 1个BOMEX 9 75?弯管1个 10 橡胶管2条 11 移液管1个10ml 12 玻璃棒1个直径7mm 长40cm 高邮亚泰 13 尾接管1个BZ24129 HENG TAJ 14 布氏漏斗1个 15 抽滤瓶1个GG-17 500ml 蜀牛 16 滤纸1张 17 玻璃漏斗1个 18 研钵1套 19 胶头滴管1个 20 薄层板10个 21 展开缸1个P-1 100×100 上海信谊仪器 厂 22 紫外光谱 仪 1台 UV-8三用紫外分 析仪 无锡科达仪器 厂 23 熔点测定 仪 1台 X-6显微熔点测定 仪 北京泰克仪器 有限公司 24 真空泵1台SHD-III型循环水 式多用真空泵 保定高新区阳 光科教仪器厂 25 电热套1台98-1-C型数字控 温电热套 天津市泰斯特 仪器有限公司

如何用EXCEL绘制标准曲线

Excel是Microsoft offices系统的重要组成,它是界于WORD字处理软件与ACCESS数据库软件之间的电子表格工具,功能十分强大,特别适合于日常工作使用。使用得好,完全比目前所有的检验科办公系统优秀。 现就先介绍一下如何使用Excel绘制标准曲线。 首先,将数据整理好输入Excel,并选取完成的数据区,并点击图表向导,如下图所示。 点击图表向导后会运行图表向导如下图,先在图表类型中选“XY散点图”,并选了图表类型的“散点图”(第一个没有连线的)。 点击“下一步”,出现如下图界面。如是输入是如本例横向列表的就不用更改,如果是纵向列表就改选“列”。 如果发现图不理想,就要仔细察看是否数据区选择有问题,如果有误,可以点击“系列”来更改,如下图。 如果是X值错了就点击它文本框右边的小图标,结果如下图: 出现上图后,如图在表上选取正确的数据区域。然后点击“下一步”出现图表选项界面,如下图,上应调整选项,以满足自己想要的效果。 点击“下一步”,现在一张带标准值的完整散点图就已经完成,如下图。 完成了散点图,现在需要根据数据进行回归分析,计算回归方程,绘制出标准曲线。其实这很简单,先点击图上的标准值点,然后按右键,点击“添加趋势线”。如下图。 由于本例是线性关系,在类型中选“线性”如下图 点击“确定”,标准曲线就回归并画好了。 标准曲线是画好了,可是我们怎么知道回归后的方程是什么样呢?这了简单,点击趋势线(也就是我们说的标准曲线)然后按右键,选趋势线格式,如下图: 在显示公式和显示R平方值(直线相关系数)前点一下,勾上。再点确定。好了,现在公式和相关系数都出来了。如图:呵R的平方达0.996,线性相当好。 可是有时候有的项目是成指数增加的,散点图如下图, 从上图看并不值关,除了最大的一个点外其余的几乎都成了直线。这不难理解,对于10000000而言,10与10000都差不了多少。因此我们平时常使用半对数坐标纸画图。对于Excel也可以,先点中Y坐标轴,再按右键,选“坐标轴格式”如下图

离心泵特性曲线实验报告

化工原理实验报告 实验名称:离心泵特性曲线实验报告:克川 专业:化学工程与工艺(石油炼制)班级:化工11203 学号:201202681

离心泵特性曲线实验报告 一、实验目的 1.了解离心泵的结构与特征,熟悉离心泵的使用。 2.测定离心泵在恒定转速下的特征曲线,并确定离心泵的最佳工作围。 3.熟悉孔板流量计的构造与性能以及安装方法。 4.测量孔板流量计的孔流系数C岁雷诺数R e变化的规律。 5.测量管路特性曲线。 二、基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H、功率N及效率η与泵的流量Q之间的关系曲线,它是流体在泵流动规律的宏观表现形式。由于泵部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 2.1扬程H的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:z1+++H=z2+++(1-1) 由于两截面间的管子较短,通常可忽略阻力项,速度平方差也很小,故也可忽略,则有 H=(z1-z2)+=H1+H2(表值)+H3 (1-2)

由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.2轴功率N的测量与计算 N=N电k(w) (1-3) 其中,N电为电功率表显示值,k代表电机传动效率,可取0.90 2.3效率η的计算 泵的效率η是泵的有效功率Ne与轴功率N的比值。有效功率Ne是单位时间流体经过泵时所获得的实际功率,轴功率N是单位时间泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。泵的有效功率Ne可用下式计算: N e=HQ/_D_Dd__________π???_______________ η=^ ^/________________________________ 2.4 转速改变时各参数的换算 泵的特性曲线是在定转速下的实验测定所得。但是,实际上感应电动机在转矩改变时,其转速会有变化,这样随着流量Q的变化,多个实验点的转速n将有所差异,因此在绘制特性曲线之前,须将实测数据换算为某一定转速n′(可取离心泵的额定转速2900rpm)的数据。换算关系如下: 流量(1-6) 程H’=H(1-7)

黄酮规范标准曲线绘制的实验报告

-/ 黄酮标准曲线绘制的实验报告 1.总黄酮的测定 1.1 实验仪器 电子天平AR2140; 紫外可见分光光度计UV2754; 型数控超声波清洗器KQ3200DB; 超级恒温槽; Rotavapor R200 旋转蒸发仪 ; FD21C250 冷冻干燥机2 1.2 试剂及药品 芦丁标准品 硝酸铝国产分析纯(配成5 %) 亚硝酸钠国产分析纯(配成10 %) 氢氧化钠国产分析纯配成(配成1mol/L) 95%乙醇,无水乙醇国产分析纯(配成60%乙醇 50%乙醇) DPPH·(2,2-diphenyl-1-picrylhydrazyl,二苯代苦味肼基自由基) Vc(Ascrobic acid,维生素 C,抗坏血酸) 没食子酸对照品:基准纯。 大青叶子采摘于海南大学东坡湖畔 1.3实验步骤: 1.3.1准备工作及波长的确定 样品60℃烘干粉碎机粉碎,过20目筛,装入试剂瓶中备用。根据查阅文献总黄酮在波长为510nm处吸收值最大。 1.3.2参照品芦丁标准溶液的制备 精密称取120 ℃干燥至恒重的芦丁标准样品37.5mg置于100mL烧杯中,用60%乙醇溶解后定容至25mL 容量瓶中,摇匀,即可得1.5mg/mL的芦丁标准溶液。 1.3.3标准品的测量及绘制标准曲线 精密吸取芦丁标准溶液0.0、1.0、2.0、3.0、4.0、5.0、6.0mL ,分别置于、0.3mg/ml、0.15mg/ml、0.0mg/ml容量瓶中,并定容至刻度线。得到10mL -/ 、0.6mg/ml、0.75mg/ml、0.45mg/ml0.9mg/ml的标准品溶液,分别取1ml到试管中各加5 %亚硝酸钠溶液0.3mL 摇匀,放置6min ,加10%硝酸铝溶液0.3mL 摇匀,放置6min ,加1mol /L氢氧化钠溶液4mL ,再用60%乙醇溶液稀释至刻度,放置15min 后,分别在510nm 处测定其吸光度(Tai,Cai&Dai,2011)。(以试剂空白做参比) 以吸光度A 为纵坐标,浓度c为横坐标,绘制标准曲线。用最小二乘法进行2。R 与A 的线性回归方程以及相关系数线性拟合,得c序号浓度(ug/ml)吸光度

相关文档
相关文档 最新文档