文档库 最新最全的文档下载
当前位置:文档库 › 初等方法建模5习题一--数学建模案例分析

初等方法建模5习题一--数学建模案例分析

初等方法建模5习题一--数学建模案例分析

数学建模案例分析

数学建模习题一

1、某厂生产2mm厚钢带,由机械缠绕成卷状出厂。若每卷钢带的内半径为50cm,外半径为80cm,试求每卷钢带的长度。(钢带卷是“紧密”的,不考虑空隙)

2、越江隧道内既是交通拥挤地段,又是事故易发地段。为了保证安全,交通部门规定,隧道内的车距d正比于速度v(公里/小时)的平方与车身长(米)的乘积,且最小车距不得小于半个车身长。假设车身长均为l(米),当车速为60(公里/小时)时,车距为1.44个车身长。在交通繁忙时,应规定怎样的车速,可使隧道内的车流量最大。

3、某房地产开发公司对一投资开发项目作可行性研究。据分析有以下数据可供参考:征地、拆迁等前期费用约合每亩60万元,拆迁周期约半年。每亩地可建1000平方米商品住宅,住宅建设费用约950元/平方米,其中8%为设计费用,设计周期约三个月,其余部分为造价,大致可分三期支付,其中50%开工时支付,30%半年后支付,20%竣工时结算,施工周期约需9个月。所建的商品房可在施工图出来后,即动工时开始预售,这时的价格约为2000元/平方米,以后可望逐月递增5%,并可望在正式竣工交付时售完。假设税金等其他开支为售价的20%,每个月售出面积相同。试问该项目每亩可获利多少?并计算投资回报率(总利润和实际投入资金之比,而后期施工费用已无需垫支),银行贷款利率月息1.5%(按单利计)。

4、股票交易的开盘价是这样决定的:每天开盘前由投资者填报某种股票的意向买价或意向卖价以及相应的意向股数,然后由计算机根据这些数据确定适当的价格,使得在该价位上能够成交的股数最多。试根据以下数据,确定该种股票的开盘价以及能即时成交的股数。(注:当卖方意向价低于开盘价以及买方意向价高于开盘价时即可成交。)

5

码(其尾数)如下:

97年98年

特等奖400656

一等奖877175 963639

二等奖50725 20460 07594

三等奖2463 5502 7655 6839 4754

四等奖626 090 433 803 796 624

五等奖84 9

纪念奖 3

试问:(1)哪一年获奖的概率大?(2)若不考虑97年的纪念奖和98年的五等奖,这两年的获奖概率相差多少?

一些经典初等数学模型

初等数学模型 本章重点是:雨中行走问题、动物的身长与体重、实物交换、代表名额的分配与森林救火模型的建立过程和所使用的方法 复习要求 1.进一步理解基本建模过程,掌握类比法、图示法以及问题分析、合理假设的内涵。 2.进一步理解数学模型的作用与特点。 类比法是建立数学模型的一个常见而有力的方法.作法是把问题归结或转化为我们熟知的模型上去给以类似的解决:这个问题与我们熟悉的什么问题类似?如果有类似的问题曾被解决过,我们的建模工作便可省去许多麻烦.实际上,许多来自不同领域的问题在数学模型上看确实具有相类似的甚至相同的结构. 利用几何图示法建模.有不少实际问题的解决只要从几何上给予解释和说明就足以了,这时,我们只需建立其图模型即可,我们称这种建模方法为图示法.这种方法既简单又直观,且其应用面很宽. 1.雨中行走问题 雨中行走问题的结论是: (1)如果雨是迎着你前进的方向落下,即2 0π θ≤ ≤,那么全身被淋的雨水总量为 ? ? ? ??++=++= +=h v hr dr pwD v r h dr v pwD C C C θθθθcos sin )] cos (sin [21 这时的最优行走策略是以尽可能大的速度向前跑. (2)如果雨是从你的背后落下,即πθπ≤≤2 . 令απθ+=2 ,则2 0π α<<. 那么全身被淋 的雨水总量为 ?? ? ??+-=h v rh rd Dpw v C ααθsin cos ),( 这时你应该控制在雨中行走的速度,使得它恰好等于雨滴下落速度的水平分量. 从建模结果看,“为了少些淋雨,应该快跑”,这个一般的“常识”被基本上否定,那么根据何在?由此提出了建模目的:减少雨淋程度. 而为减少雨淋程度,便自然提出“被淋在身上的雨水量”这个目标函数C ,而C =C (v ),于是问题便归结为确定速度v ,使C (v )最小——本模型的关键建模步骤便得以确定。 有了确定的建模目的,自然引出与C (v )有关的量的设定与简化假设. 一般地,开始时不要面面俱到地把所有相关量都涉及到,往往只需考虑几个主要量,甚至暂时舍弃某个主要量,以求尽快建立模型.尤其对初学者,这样做有助于建模信心的增强.自不必说建模过程往往如此,更有模型尚有的进一步修改和推广的主要步骤.而一旦建立起简单模型后,其进一步的改善也相对容易多了.这就是本模型只所以建立了两个模型的原因,是符合人们的认识规律的. 另外,为了检验所建模型的合理性,建模后用较为符合实际的几组数据对模型加以检验是重要的,它既是对所建模型是否基本符合实际的检测,也是进一步完善模型的需要. 例1 在某海滨城市附近海面有一台风.据监测,当前台风中心位于城市O (如

建立数学建模案例分析

§15.4锁具装箱问题 [学习目标] 1.能表述锁具装箱问题的分析过程; 2.能表述模型的建立方法; 3.会利用排列组合来计算古典概型; 4.会利用Mathematica求解锁具装箱问题。 一、问题 某厂生产一种弹子锁具,每个锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}6个数(单位从略)中任取一数。由于工艺及其它原因,制造锁具时对5个槽的高度有两个要求:一是至少有3个不同的数;二是相邻两槽的高度之差不能为5。满足上述两个条件制造出来的所有互不相同的锁具称为一批。销售部门在一批锁具中随意地抽取,每60个装一箱出售。 从顾客的利益出发,自然希望在每批锁具中不能互开(“一把钥匙开一把锁”)。但是,在当前工艺条件下,对于同一批中两个锁具是否能够互开,有以下实验结果:若二者相对应的5个槽的高度中有4个相同,另一个槽的高度差为1,则可能互开;在其它情况下,不可能互开。 团体顾客往往购买几箱到几十箱,他们会抱怨购得的锁具中出现互开的情形。现请回答以下问题: 1.每批锁具有多少个,能装多少箱? 2.按照原来的装箱方案,如何定量地衡量团体顾客抱怨互开的程度(试对购买一、二箱者给出具体结果)。 二、问题分析与建立模型 因为弹子锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}这6个数中任取一数,且5个槽的高度必须满足两个条件:至少有3个不同的数;相邻两槽的高度之差不能为5。所以我们在求一批锁具的总数时,应把问题化为三种情况,即5个槽的高度由5个不同数字组成、由4个不同数字组成、由3个不同数字组成,分别算出各种情况的锁具个数,然后相加便得到一批锁具的总个数。在分别求这三种情况锁具个数的时候,先求出满足第1个条件的锁具个数再减去不满足第2个条件的锁具个数。在求这三种情况锁具个数的时候,主要依靠排列组合的不尽相异元素的全排列公式。 下面用一个5元数组来表示一个锁具: Key=(h1,h2,h3,h4,h5) 其中h i表示第i个槽的高度,i=1,2,3,4,5。此5元数组表示一把锁,应满足下述条件: 条件1:h i∈{1,2,3,4,5,6},i = 1,2,3,4,5。

基于层次分析法的数学建模

基于层次分析法研究云南烟草品牌竞争力 摘要 与国外知名烟草品牌相比,国内的烟草品牌存在着品牌集中度不够,品牌多、杂、散、小;品牌定位模糊,市场占有率低;品牌形象乱,品牌美誉度低,消费者购买行为习惯化导致忠诚度差等问题,因此,本文采用层次分析法对在中国烟草行业中有着举足轻重地位的云南省烟草品牌竞争力进行了评价研究,分析云南烟草业品牌现状,提出品牌竞争力的影响因素,对提高云南烟草业的品牌竞争力、解决烟草业存在的问题提供一定的帮助。 关键词:烟草品牌云南烟草品牌竞争力层次分析法 一、问题重述 近年来,我国一直推进实施卷烟工业的整合重组、卷烟品牌的淘汰和优化。但是,由于之前的卷烟品牌众多;截止到 2009 年底我国的烟草企业有 30 家,卷烟品牌 138 个,所以目前我国烟草企业之间的竞争非常激烈,行业内有众多势均力敌的竞争对手。当今卷烟产品差异化日渐缩小,消费者购买时会更看重品牌价值和品牌文化,使烟草行业内部面临着激烈的竞争,以具有代表性的云烟为实证,分析云南烟草企业的品牌竞争力及影响品牌竞争力的主要因素,并提出提高云烟品牌竞争力的对策建议。

二、问题分析 (1)云南卷烟近年情况分析 图1为云产卷烟在全国各地区的销量情况,有颜色部分为云南卷烟销量均超过15.58万箱,在全国卷烟销售中占有很大份额。2008 年卷烟品牌为16个,比2003年的36个减少了 20个。作为全国卷烟产销量最大的省份,2009 年云南的产销量达到 3667.9 亿支。在卷烟产量增幅较小的情况下,2008 年云南烟草工业税利为 577 亿元,比2003 年的 330 亿元增加了 247 亿元。因此,分析云南卷烟品牌竞争力有助于对云南卷烟品牌做出适当的规划调整,很大程度上能够促进云南经济的发展。(数据为云南中烟系统中2015年 云产卷烟销量数据) 图1

初等数学建模方法示例

第2章初等数学建模方法示例 公平的席位分配问题 席位分配在社会活动中经常遇到,如:人大代表或职工学生代表的名额分配和其他物质资料的分配等。通常分配结果的公平与否以每个代表席位所代表的人数相等或接近来衡量。目前沿用的惯例分配方法为按比例分配方法,即:某单位席位分配数 = 某单位总人数比例总席位如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。这种分配方法公平吗下面来看一个学院在分配学生代表席位中遇到的问题: 某学院按有甲乙丙三个系并设20个学生代表席位。它的最初学生人数及学生代表席位为 系名甲乙丙总数 学生数 100 60 40 200 学生人数比例 100/200 60/200 40/200 席位分配 10 6 4 20 后来由于一些原因,出现学生转系情况,各系学生人数及学生代表席位变为: 系名甲乙丙总数 学生数 103 63 34 200 学生人数比例 103/200 63/200 34/200

按比例分配席位 20 按惯例席位分配 10 6 4 20 由于总代表席位为偶数,使得在解决问题的表决中有时出现表决平局现象而达不成一致意见。为改变这一情况,学院决定再增加一个代表席位,总代表席位变为21个。重新按惯例分配席位,有 系名 甲 乙 丙 总数 学生数 103 63 34 200 学生人数比例 103/200 63/200 34/200 按比例分配席位 21 按惯例席位分配 11 7 3 21 这个分配结果出现增加一席后,丙系比增加席位前少一席的情况,这使人觉得席位分配明显不公平。这个结果也说明按惯例分配席位的方法有缺陷,请尝试建立更合理的分配席位方法解决上面代表席位分配中出现的不公平问题。 模型构成 先讨论由两个单位公平分配席位的情况,设 单位 人数 席位数 每席代表人数 单位A 1p 1n 1n 单位B 2p 2n 2n 要公平,应该有=1n 2n , 但这一般不成立。注意到等式不成立时有 若21n n >,则说明单位A 吃亏(即对单位A 不公平 ) 若21n n <,则说明单位B 吃亏 (即对单位B 不公平 ) 因此可以考虑用算式2 211n p n p p -= 来作为衡量分配不公平程度,不过此公式

数学建模案例分析--对策与决策方法建模6决策树法

§6 决策树法 对较为复杂的决策问题,特别是需要做多个阶段决策的问题,最常用的方法是决策树法。决策树法是把某个决策问题未来发展情况的可能性和可能结果所做的预测用树状图画出来。其步骤如下: 1、用方框表示决策点。从决策点画出若干条直线或折线,每条线代表一个行动方案,这样的直线或折线称为方案枝。 2、在各方案枝的末端画一个园圈,称为状态点,从状态点引出若干直线或折线,每条线表示一个状态,在线的旁边标出每个状态的概率,称为概率枝。 3、把各方案在各个状态下的损益期望值算出标记在概率枝的末端。 4、把计算得到的每个方案的损益期望值标在状态点上,然后通过比较,选出损益期望值最小的方案为最优方案。 例1某厂准备生产一种新产品,产量可以在三种水平n1、n2、n3中作决策。该产品在市场上的销售情况可分为畅销、一般和滞销三种情况,分别为S1、S2、S3。通过调查,预测市场处于这三种情况的概率分别为0.5、0.3、0.2。三种决策在各种不同市场情况下的利润见下表: 表1 基于各种决策的各种市场情况的利润表(万元) 我们可以计算每种决策下利润的期望值: 实行在水平n1下生产的利润的期望值为:90×0.5+30×0.3-60×0.2=42 实行在水平n2下生产的利润的期望值为:60×0.5+50×0.3-10×0.2=43 实行在水平n3下生产的利润的期望值为:10×0.5+9×0.3-6×0.2=6.5 由于在水平n2下生产利润的期望值最大,因而应选择产量水平n2生产。 可以应用决策树帮助解决这样的决策问题,把各种决策和情况画在图1上: 图1

图中的方框(□)称为决策点,圆圈(○)称为状态点,从方框出发的线段称为对策分支,表示可供选择的不同对策。在圆圈下面的线段称为概率分支,表示在此种对策下可能出现的各种情况。在概率分支上注明了该情况出现的概率。在每一个概率分支的末端注明了对应对策和对应情况下的收益(利润)。在计算时,我们把相应的期望值写在相应的状态点旁边,再由比较大小后选择最优决策,在图上用∥表示舍弃非最优的对策,并在决策点上注明最优决策所对应的期望利润。 图2 利用决策树还可以解决多阶段的决策问题。 例2 某公司在开发一种新产品前通过调查推知,该产品未来的销售情况分前三年和后三年两种情况。因此生产该产品有两种可供选择的方案:建造大厂和建造小厂。如果建造大厂,投资费用5000万元,当产品畅销时,每年可获利2000万元,当产品滞销时,每年要亏损120万元。如果建造小厂,投资费用1000万元,当产品畅销时,每年可获利300万元,当产品滞销时,每年仍可获利150万元。若产品畅销可考虑在后三年再扩建,扩建投资需2000万元,随后三年每年可获利1000万元;也可不再扩建。预测这六年该产品畅销的概率为0.6,滞销的概率为0.4。试分析该公司开发新产品应如何决策? 根据问题的各种情况可以画出决策树如下:这是一个两阶段的决策问题。注意到图中有两个决策点,反映建小厂的方案中可以分成前三年和后三年两个阶段,并在后三年还要做出一次决策。 图3 把各种数据填到图适当的位置后,由后向前计算获利的期望值。由图可见应采用决策:建造大厂。 500 900 1000*3=3000 300*3=900 6.5

层次分析报告法数学建模范例

2011高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话):A甲0616 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:2011 年8 月20 日

2011高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

对学生建模论文的综合评价分析 摘要 本文研究的是五篇建模论文的评价和比较问题。首先,研读分析了五篇论文,并写出评语。其次,进行综合量化评价,主要运用的方法是层次分析法和模糊综合评判。最后,依据所得权重大小对论文排序。 针对问题一,我们对论文进行了横向比较和纵向分析。依据数学建模竞赛论文评分基本原则,首先,在研读论文的基础上,对论文分块进行了横向比较,并按照优、良、中、差四个等级作出评价。其次,采取纵向分析的方法,找到论文的优点与不足,写出每篇论文的评语。最后,结合横向比较和纵向分析对论文综合评价。 针对问题二,在建立数学模型时,首先从建模理念的应用意识、数学建模、创新意识出发利用模糊评判的二级评判模型把所给论文的建模摘要、模型与求解、模型评价与推广、其他作为第一级因素集,把问题描述等作为第二级因素集。在用模糊综合评判方法时,确定评估数据(评判矩阵)和权重分配是两项关键性的工作,求权重分配时,我们通过往年评分标准确定数据后用层次分析法计算出二级权重和一级权重;对于评判矩阵,我们通过对五篇论文进行评阅打分(用平均分数作为每项得分),用每一项得分占五篇论文该项得分的比重(商值法),建立评价矩阵。 最终,我们通过matlab编程处理得出的综合量化比较结果是所给5篇论文由好到差依次为论文4,论文2,论文1,论文5,论文3。并在模型结束时付上了对五篇论文的评语。

数学建模案例分析

案例分析1: 自行车外胎的使用寿命 问题: 目前,自行车在我国是一种可缺少的交通工具。它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换? 分析: 分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断。若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。 产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。如换成自行车的路程寿命来比较,就好得多。产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。 弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。 自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。当然我们由于是站在用户角度上来考虑的,相对地就可忽略一些次要的影响因素。 这样的数学模型面对着两个主要问题。一、自行车使用寿命与外胎厚度的关系,二、外胎能够抵御小石子破坏作用的最小厚度。后者可处理得相对简略些(如只考虑一块具有一般特征的小石子对外胎的破坏作用),而重点(也是难点)是第一个问题。车重、人重、轮胎性质(力学的、热学的、甚至化学的)和自行车使用频率等都左右着它们的关系。这么多相关因素,不必一一都加以考虑(用户是不会在意这么多的),有些因素,可以先不考虑,在模型的改进部分再作修改,采取逐步深入的方法,如:摩擦损耗有滑动摩擦和滚动摩擦损耗两种,由于滚动摩擦占用的时间(或路程)显然占绝对优势,因此可重点考虑。但滑动摩擦造成的一次损坏又比滚动摩擦大,在刹车使用过频的情况下,就不能不考虑了。 最后,需对得出的结果用简单清晰的文字进行说明,以供用户参考。 案例分析2:城市商业中心最优位置分析 问题: 城市商业中心是城市的基本构成要素之一。它的形成是一个复杂的定位过程。商业中心的选址涉及到各种因素制约,但其中交通条件是很重要的因素之一。即商业中心应位于城市“中心”,如果太偏离这一位置,极有可能在城市“中心”地带又形成一个商业区,造成重复建设。 某市对老商业中心进行改建规划,使居民到商业中心最方便。如果你是规划的策划者,如何建立一个数学模型来解决这个问题。

(完整版)数学建模之层次分析法

层次分析法 层次分析法是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。 缺点: (1)层次分析法的主观性太强,模型的搭建,判断矩阵的输入都是决策者的主观判断,往往会因为决策者的考虑不周、顾此失彼而造成失误。 (2)层次分析法模型的内部结构太过理想化,完全分离、彼此独立的层次结构在实践中很难做到。 (5)层次分析法只能从给定的决策方案中去选择,而不能给出新的、更优的策略。 1.模型的应用 用于解决多目标的复杂问题的定性与定量相结合的决策分析。 (1)公司选拔人员, (2)旅游地点的选取, (3)产品的购买等, (4)船舶投资决策问题(下载文档), (5)煤矿安全研究, (6)城市灾害应急能力, (7)油库安全性评价, (8)交通安全评价等。 2.步骤 ①建立层次结构模型 首先明确决策目标,再将各个因素按不同的属性从上至下搭建出一个有层次的结构模型,模型如下图所示。

目标层 准则层 方案层 目标层:表示解决问题的目的,即层次分析要达到的总目标。通常只有一个总目标。 准则层:表示采取某种措施、政策、方案等实现预定总目标所涉及的中间环节。 方案层:表示将选用的解决问题的各种措施、政策、方案等。通常有几个方案可选。 注意: (1)任一元素属于且仅属于一个层次;任一元素仅受相邻的上层元素的支配,并不是任一元素与下层元素都有联系; (2)虽然对准则层中每层元素数目没有明确限制,但通常情况下每层元素数最好不要超过 9 个。这是因为,心理学研究表明,只有一组事物在 9 个以内,普通人对其属性进行判别时才较为清楚。当同一层次元素数多于 9 个时,决策者对两两重要性判断可能会出现逻辑错误的概率加大,此时可以通过增加层数,来减少同一层的元素数。 ②构造判断(成对比较)矩阵 以任意一个上一层的元素为准则,对其支配的下层各因素之间进行两两比 a重要程度的衡量用Santy的1—9较。得到判断矩阵,再求出各元素的权重。 ij 标度方法给出。即

层次分析数学建模案例

基于层次分析法的护岸框架最优方案选择 【摘要】长期以来,四面六边透水框架在河道整治等工程中,因其取材方便、自身稳定性、透水性、阻水性好、适合地形变化等特性优点而被广泛的应用。但是,在抛投和使用过程中,存在被水流冲击而翻滚移位、结构强度的不足、难以合理互相钩连的问题,使框架群不能达到理想的堆砌效果。本文主要探讨如何合理设计改进现有护岸框架,以最大程度减少框架群被水流冲击翻滚移位的情况,增加框架群在使用过程中互相钩连程度和结构强度,达到减速促淤效 群间易钩连程度、生产成本及易生产、施工简易度六个因素指标为准则层,选取原有护岸框架和本文设计的三个框架模型作为方案层,运用Matlab软件计算比较,最后得出结论为:模型二(六面九边带触脚框架模型)为最优护岸框架模型。 【关键词】护岸框架层次分析法立体图形触脚设计 Matlab 一、问题重述 在江河中,堤岸、江心洲的迎水区域被水流长期冲刷侵蚀。在河道整治工程中,需要在受侵蚀严重的部位设置一些人工设施,以减弱水流的冲刷,促进

该处泥沙的淤积,以保护河岸形态的稳定。 现在常用的设施包括四面六边透水框架等。这是一种由钢筋混泥土框杆相互焊接而成的正四面体结构,常见的尺寸为边长约1m,框杆截面约0.1×0.1m,将一定数量的框架投入水中,在水中形成框杆群,可以使水流消能减速,达到减弱冲击,防冲促淤的效果。 对四面六边透水框架在抛投时和在使用过程中,可能被水流冲击而翻滚移位,使框架群不能达到理想的堆砌效果,对功能有不利影响。为了使框架在水中互相钩连,需要设计新的形状。但已有的多数设计方案都存在问题,主要集中在两个方面:结构强度不足,以及虽然原则上能够互相钩连,但依然不清楚最终堆砌而成的形状是否合理。请你建立合理的数学模型,设计一个良好的框 发挥四面六边透水框架群的优势,并尽量弥补四面六边透水框架群在结构强度、易钩连程度、翻滚移位程度上的不足,并综合考虑设计后的框架结构在架空程度、经济生产成本、施工的难易程度等指标,通过机理分析,确定出参数关系,从而设计出四面六边带触脚框架模型(模型一)、六面九边带触脚框架模型(模型二)和双四面六边透水框架群(模型三)然后,我们利用Matlab软件[2],建立框架群层次分析模型[3](模型四)通过建立目标层、决策层和方案层,可以选取施工时架空率接近4-6的程度、结构强度、易翻滚程度、易钩连程度、生产成本、施工简易度六个指标对模型一、模型二、模型三所设计的改价护岸框架和四面六边透水框架群原型进行综合分析评价,以确立出最优的新型护岸框架方案。 三、模型假设 1. 护岸框架焊接牢固。

初等数学建模方法示例

第2章初等数学建模方法示例 2.1公平的席位分配问题 席位分配在社会活动中经常遇到,如:人大代表或职工学生代表的名额分配和其他物质资料的分配等。通常分配结果的公平与否以每个代表席位所代表的人数相等或接近来衡量。目前沿用的惯例分配方法为按比例分配方法,即:某单位席位分配数= 某单位总人数比例 总席位如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。这种分配方法公平吗?下面来看一个学院在分配学生代表席位中遇到的问题: 某学院按有甲乙丙三个系并设20个学生代表席位。它的最初学生人数及学生代表席位为 系名甲乙丙总数 学生数100 60 40 200 学生人数比例100/200 60/200 40/200 席位分配10 6 4 20 后来由于一些原因,出现学生转系情况,各系学生人数及学生代表席位变为:系名甲乙丙总数 学生数103 63 34 200 学生人数比例103/200 63/200 34/200 按比例分配席位10.3 6.3 3.4 20 按惯例席位分配10 6 4 20

由于总代表席位为偶数,使得在解决问题的表决中有时出现表决平局现象而达不成一致意见。为改变这一情况,学院决定再增加一个代表席位,总代表席位变为21个。重新按惯例分配席位,有 系名 甲 乙 丙 总数 学生数 103 63 34 200 学生人数比例 103/200 63/200 34/200 按比例分配席位 10.815 6.615 3.57 21 按惯例席位分配 11 7 3 21 这个分配结果出现增加一席后,丙系比增加席位前少一席的情况,这使人觉得席位分配明显不公平。这个结果也说明按惯例分配席位的方法有缺陷,请尝试建立更合理的分配席位方法解决上面代表席位分配中出现的不公平问题。 模型构成 先讨论由两个单位公平分配席位的情况,设 单位 人数 席位数 每席代表人数 单位A 1p 1n 1n 单位B 2p 2n 2n 要公平,应该有=1n 2n , 但这一般不成立。注意到等式不成立时有 若21n n >,则说明单位A 吃亏(即对单位A 不公平 ) 若21n n <,则说明单位B 吃亏 (即对单位B 不公平 ) 因此可以考虑用算式2 211n p n p p -= 来作为衡量分配不公平程度,不过此公式有不足之处(绝对数的特点),如: 某两个单位的人数和席位为 1021==n n ,1201=p ,1002=p , 算得 2=p 另两个单位的人数和席位为 1021==n n ,10201=p ,10002=p , 算得 2=p

数学建模案例分析-- 插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段 多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。 根据地图的比例,18 mm 相当于40 km 。

(完整版)高中常见数学模型案例

高中常见数学模型案例 中华人民共和国教育部2003年4月制定的普通高中《数学课程标准》中明确指出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容”,“数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力。”教材中常见模型有如下几种: 一、函数模型 用函数的观点解决实际问题是中学数学中最重要的、最常用的方法。函数模型与方法在处理实际问题中的广泛运用,两个变量或几个变量,凡能找到它们之间的联系,并用数学形式表示出来,建立起一个函数关系(数学模型),然后运用函数的有关知识去解决实际问题,这些都属于函数模型的范畴。 1、正比例、反比例函数问题 例1:某商人购货,进价已按原价a 扣去25%,他希望对货物订一新价,以便按新价让利销售后仍可获得售价25%的纯利,则此商人经营者中货物的件数x 与按新价让利总额y 之间的函数关系是___________。 分析:欲求货物数x 与按新价让利总额y 之间的函数关系式,关键是要弄清原价、进价、新价之间的关系。 若设新价为b ,则售价为b (1-20%),因为原价为a ,所以进价为a (1-25%) 解:依题意,有25.0)2.01()25.01()2.01(?-=---b a b 化简得a b 45=,所以x a bx y ??==2.0452.0,即+∈=N x x a y ,4 2、一次函数问题 例2:某人开汽车以60km/h 的速度从A 地到150km 远处的B 地,在B 地停留1h 后,再以50km/h 的速度返回A 地,把汽车离开A 地的路x (km )表示为时间t (h )的函数,并画出函数的图像。 分析:根据路程=速度×时间,可得出路程x 和时间t 得函数关系式x (t );同样,可列出v(t)的关系式。要注意v(t)是一个矢量,从B 地返回时速度为负值,重点应注意如何画这两个函数的图像,要知道这两个函数所反映的变化关系是不一样的。 解:汽车离开A 地的距离x km 与时间t h 之间的关系式是:?? ???∈--∈∈=]5.6,5.3(),5.3(50150]5.3,5.2(,150]5.2,0[,60t t t t t x ,图略。 速度vkm/h 与时间t h 的函数关系式是:?? ???∈-∈∈=)5.6,5.3[,50)5.3,5.2[,0)5.2,0[,60t t t v ,图略。 3、二次函数问题 例3:有L 米长的钢材,要做成如图所示的窗架,上半部分为半圆,下半部分为六个全等小矩形组成的矩形,试问小矩形的长、宽比为多少时,窗所通过的光线最多,并具体标出窗框面积的最大值。

层次分析法数学建模范例

对学生建模论文的综合评价分析 摘要 本文研究的是五篇建模论文的评价和比较问题。首先,研读分析了五篇论文,并写出评语。其次,进行综合量化评价,主要运用的方法是层次分析法和模糊综合评判。最后,依据所得权重大小对论文排序。 针对问题一,我们对论文进行了横向比较和纵向分析。依据数学建模竞赛论文评分基本原则,首先,在研读论文的基础上,对论文分块进行了横向比较,并按照优、良、中、差四个等级作出评价。其次,采取纵向分析的方法,找到论文的优点与不足,写出每篇论文的评语。最后,结合横向比较和纵向分析对论文综合评价。 针对问题二,在建立数学模型时,首先从建模理念的应用意识、数学建模、创新意识出发利用模糊评判的二级评判模型把所给论文的建模摘要、模型与求解、模型评价与推广、其他作为第一级因素集,把问题描述等作为第二级因素集。在用模糊综合评判方法时,确定评估数据(评判矩阵)和权重分配是两项关键性的工作,求权重分配时,我们通过往年评分标准确定数据后用层次分析法计算出二级权重和一级权重;对于评判矩阵,我们通过对五篇论文进行评阅打分(用平均分数作为每项得分),用每一项得分占五篇论文该项得分的比重(商值法),建立评价矩阵。 最终,我们通过matlab编程处理得出的综合量化比较结果是所给5篇论文由好到差依次为论文4,论文2,论文1,论文5,论文3。并在模型结束时付上了对五篇论文的评语。 关键词:层次分析法;模糊综合评判;统计分析:matlab编程;论文评价 一、问题重述 数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题、解决问题的能力的必备手段之一。 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体步骤大致可见下图。

数学建模之层次分析法

层次分析法 层次分析法就是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。 缺点: (1)层次分析法的主观性太强,模型的搭建,判断矩阵的输入都就是决策者的主观判断,往往会因为决策者的考虑不周、顾此失彼而造成失误。 (2)层次分析法模型的内部结构太过理想化,完全分离、彼此独立的层次结构在实践中很难做到。 (5)层次分析法只能从给定的决策方案中去选择,而不能给出新的、更优的策略。 1、模型的应用 用于解决多目标的复杂问题的定性与定量相结合的决策分析。 (1)公司选拔人员, (2)旅游地点的选取, (3)产品的购买等, (4)船舶投资决策问题(下载文档), (5)煤矿安全研究, (6)城市灾害应急能力, (7)油库安全性评价, (8)交通安全评价等。 2、步骤 ①建立层次结构模型 首先明确决策目标,再将各个因素按不同的属性从上至下搭建出一个有层次的结构模型,模型如下图所示。

准则层 目标层 方案层 目标层:表示解决问题的目的,即层次分析要达到的总目标。通常只有一个总目标。 准则层:表示采取某种措施、政策、方案等实现预定总目标所涉及的中间环节。 方案层:表示将选用的解决问题的各种措施、政策、方案等。通常有几个方案可选。 注意: (1)任一元素属于且仅属于一个层次;任一元素仅受相邻的上层元素的支配,并不就是任一元素与下层元素都有联系; (2)虽然对准则层中每层元素数目没有明确限制,但通常情况下每层元素数最好不要超过 9 个。这就是因为,心理学研究表明,只有一组事物在 9 个以内,普通人对其属性进行判别时才较为清楚。当同一层次元素数多于 9 个时,决策者对两两重要性判断可能会出现逻辑错误的概率加大,此时可以通过增加层数,来减少同一层的元素数。 ②构造判断(成对比较)矩阵 以任意一个上一层的元素为准则,对其支配的下层各因素之间进行两两比较。得到判断矩阵,再求出各元素的权重。ij a 重要程度的衡量用Santy 的1—9标度方法给出。即 设各元素C 1,C 2,… , C n 对目标O 两两比较后的重要性 ,(),ij i j ij n n a C A a ?==0,1ij ji ij a a a >=,则得到比较矩阵

数学建模案例分析--灰色系统方法建模2灰色预测模型GM(1-1)及其应用

§2 灰色预测模型GM(1,1)及其应用 蠕变是材料在高温下的一个重要性能。处于高温状态下的材料长期受到载荷作用时,即使其载荷较低,并且在短时间的高温拉伸试验中材料不发生变形,但在此情况下仍会有微小的蠕变,极端的情况下,甚至会使材料发生破坏。高温材料多应用于各种车辆的发动机及冶金厂中各种设备上,如果因蠕变引起破坏,可能造成很大的事故。 为了保证设备的安全可靠,在某一使用温度下,预先知道该材料对不同载荷应力下断裂的时间是很重要的。过去,人们都是通过蠕变试验测量断裂时间。而做蠕变试验时,需要很长时间才能得到结果,即使通过试验得出的数据,也只是对某几个具体试样而言,存在很大的偶然性,不能代表普遍的规律。如果将实测的数据用灰色系统理论来处理,可以预测在某一温度下的任何载荷应力的断裂时间。 一、灰色预测模型GM (1,1) 建模步骤如下: (1)GM (1,1)代表一个白化形式的微分方程: u aX dt dX =+)1() 1( (1) 式中,u a ,是需要通过建模来求得的参数;) 1(X 是原始数据) 0(X 的累加生成(AGO )值。 (2)将同一数据列的前k 项元素累加后生成新数据列的第k 项元素,这就是数据处理。表示为: ∑==k n n X k X 1 )0() 1()()( (2) 不直接采用原始数据) 0(X 建模,而是将原始的、无规律的数据进行加工处理,使之变得较有规 律,然后利用生成后的数据列来分析建模,这正是灰色系统理论的特点之一。 (3)对GM (1,1),其数据矩阵为 ???? ?? ? ? ?+--+-+-=1)]()1([5.01)]3()2([5.01)]2()1([5.0)1()1()1()1()1()1(N X N X X X X X B (3) 向量T N N X X X Y )](,),3(),2([)0()0()0( = (4)作最小二乘估计,求参数u a , N T T Y B B B u a 1)(?-=??? ? ??=α (4) (5)建立时间响应函数,求微分方程(1)的解为 a u e a u X t X at +-=+-))1(()1(?)0()1( (5)

层次分析法数学建模范例

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话):A甲0616 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期: 2011 年 8 月20 日

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

对学生建模论文的综合评价分析 摘要 本文研究的是五篇建模论文的评价和比较问题。首先,研读分析了五篇论文,并写出评语。其次,进行综合量化评价,主要运用的方法是层次分析法和模糊综合评判。最后,依据所得权重大小对论文排序。 针对问题一,我们对论文进行了横向比较和纵向分析。依据数学建模竞赛论文评分基本原则,首先,在研读论文的基础上,对论文分块进行了横向比较,并按照优、良、中、差四个等级作出评价。其次,采取纵向分析的方法,找到论文的优点与不足,写出每篇论文的评语。最后,结合横向比较和纵向分析对论文综合评价。 针对问题二,在建立数学模型时,首先从建模理念的应用意识、数学建模、创新意识出发利用模糊评判的二级评判模型把所给论文的建模摘要、模型与求解、模型评价与推广、其他作为第一级因素集,把问题描述等作为第二级因素集。在用模糊综合评判方法时,确定评估数据(评判矩阵)和权重分配是两项关键性的工作,求权重分配时,我们通过往年评分标准确定数据后用层次分析法计算出二级权重和一级权重;对于评判矩阵,我们通过对五篇论文进行评阅打分(用平均分数作为每项得分),用每一项得分占五篇论文该项得分的比重(商值法),建立评价矩阵。 最终,我们通过matlab编程处理得出的综合量化比较结果是所给5篇论文由好到差依次为论文4,论文2,论文1,论文5,论文3。并在模型结束时付上了对五篇论文的评语。 关键词:层次分析法;模糊综合评判;统计分析:matlab编程;论文评价

层次分析法数学建模

课程设计报告书 题目谈层次分析法在就业中的应用 系数理信息学院专业数学081 班学生孙徐炜余再星马燕燕 指导教师胡金杰 日期2011年7月15日

谈层次分析法在就业中的应用 摘要 近年高校毕业生数量急剧膨胀就业的难题似乎变得更加严峻和突出——全国就业工作座谈会传来消息,2010年应届毕业生规模是本世纪初的6倍,2011年高校毕业生人数为660万人,“十二五”时期应届毕业生年平均规模将达到近700万人。许多大学生处于就业十字路口,茫然不知所措。这种心态下的种种决策难免造成失误,所以需要一种可靠的定量的容易操作的,并且具体的有说服力的方法来帮助做出决策。本文提出了定性和定量相结合的层次分析法步骤,构成了工作满意度的评价指标体系,通过各因素重要程度比较与计算,最终确定出了6个具体指标在该体系下的权重并排序,这样在分析某种工作的满意程度时就可以按此权重进行衡量。为此我们建立了层次结构模型,做成对比较矩阵: 正互反矩阵为?????????? ????? ? ????=wn wn w wn w wn wn w w w w w w w wn w w w w w w w A /......2/1//2........3/22/21/2/1........3/12 /11/1M M M M 通 过 Matlab 等 数 学 工 具 , 得 到 特 征 向 量 T w )083.0,201.0,139.0,154.0,076.0,347.0(1=,且∑==508.6)(max i i nw Aw λ,通过一致 性指标得出1016.0) 1() (max =--=n n CI λ,1.0082.024 .11016 .0<=== RI CI CR , 如果有CI 偏差,那偏差是否在满意的一致性范围,引进平均随机一致性指标 RI 。 平均随机一致性指标RI 数值 通过比较,最后得出一致性检验通过。

数学建模案例――最佳捕鱼方案.(优选)

最佳捕鱼方案 摘要: 本文解决的是一个最佳捕鱼方案设计的单目标线性规划问题,目的是制定每天的捕鱼策略,使得总收益最大。根据题设条件,结合实际情况,我们设计了成本与损失率随天数的增加成反比变化的函数曲线(见图三所示),并导出总收益的表达式: 212121 111i i i i i i i i W w p s q m =====?-?∑∑∑。 由于价格是关于供应量的分段函数(见图一所示),我们引入“0-1”变量法编写程序(程序见附录一),并用数学软件LINGO 求解,得到最大收益(W)为441291.4元,分21天捕捞完毕。其中第1~16天,日捕捞量在1030~1070公斤之间,第17~21天的日捕捞量为1610~1670公斤之间(具体数值见正文)。由结果分析,我们对模型提出了优化方向,例如人工放水来降低成本。 关键词:“0-1”整数规划,单目标线性规划,离散型分布。 一. 问题重述 一个水库,由个人承包,为了提高经济效益,保证优质鱼类有良好的生活环境,必须对水库里的杂鱼做一次彻底清理,因此放水清库。水库现有水位平均为15米,自然放水每天水位降低0.5米,经与当地协商水库水位最低降至5米,这样预计需要二十天时间,水位可达到目标。据估计水库内尚有草鱼二万五千余公斤,鲜活草鱼在当地市场上,若日供应量在500公斤以下,其价格为30元/公斤;日供应量在500—1000公斤,其价格降至25元/公斤,日供应量超过1000公斤时,价格降至20元/公斤以下,日供应量到1500公斤处于饱和。捕捞草鱼的成本水位于15米时,每公斤6元;当水位降至5米时,为3元/公斤。同时随着水位的下降草鱼死亡和捕捞造成损失增加,至最低水位5米时损失率为10%。 承包人提出了这样一个问题:如何捕捞鲜活草鱼投放市场,效益最佳? 二. 模型假设 1.池塘中草鱼的生长处于稳定状态,不考虑种群繁殖以及其体重增减,即在捕 捞过程中草鱼总量保持在25,000公斤不变。 2.第一天捕捞时水位为15m ,每天都在当天的初始水位捕捞草鱼,水库水位每 天按自然放水0.5m 逐渐降低,20天后刚好达到最低要求水位5m 。 3.在水库自然放水的21内将草鱼捕完。 4.在草鱼日供应量未达饱和的之前,市场供应量等于销售量。 5.每天草鱼的捕捞成本随着每天水位的降低呈等差数列递增分布。 6.随着水库水位的下降,草鱼的种群密度逐渐变大,存在着对空间、食物、氧 气的竞争,种群死亡率逐渐升高。题设中给定草鱼死亡及捕捞损失率随着水位的降低而升高,在这里我们假设草鱼损失率是一个统计学概念,即已经综合了因自然死亡和捕捞等其他原因共同造成的损失。 7.草鱼损失率与水库水位成反比关系,每天捕捞量的损失率与当天池塘总鱼量 的损失率是一致的,以每次捕捞时池塘总鱼数为当次基数。 8.捕捞上的草鱼中的死鱼将另行处理,不会放回水库也不会与活鱼一起出售。 9.日供应量在1000---1500公斤时,我们假定草鱼价格为20元每公斤这一常数。

相关文档
相关文档 最新文档