文档库 最新最全的文档下载
当前位置:文档库 › 离散映射混沌系统的关联耦合同步

离散映射混沌系统的关联耦合同步

Logistic映射是一维离散混沌系统

1基于混沌的序列密码加密方法 1.1混沌系统的特点 混沌现象是在非线性动力学系统中出现的确定性的、类随机的过程,这种过程非周期、不收敛但有界,并且对初始状态具有极其敏感的依赖性,即初始状态只有微小差别的两个同构混沌系统在较短的时间后就会产生两组完全不同的、互不相关的混沌序列值。混沌信号具有天然的随机性,特别是经过一定处理后的混沌信号具有非常大的周期和优良的随机性,完全可以用来产生符合安全性要求的序列密码。更重要的是,通过混沌系统对初始状态和参数的敏感依赖性,可以提供数量众多的密钥。根据混沌系统的上述特点,可以用其产生序列密码。经过合理设计的混沌序列密码加密算法不会随着对符合要求的密钥流数量的提高而复杂化。 1.2 基于Logistic映射的混沌序列密码加密算法 Logistic映射是一维离散混沌系统,运算速度快,方程反复迭代可以产生较好的混沌序列。产生的混沌序列对初始状态和系统参数极其敏感。Logistic映射的定义为: X(n) = F[x(n-1)] = u*x(n-1)*(1-x(n-1)) 其中,控制参数u介于(0,4),x(n)在(0,1)之间,Logistic映射的大量研究已经表明,当u达到极限值,即u=3.5699456时,系统的稳态解周期为∞。当3.5699456

1.3 混沌序列产生 定义XML字符串长度记为|X|,系统交互次数为N。S为|X|及N变为小数后得乘积。例如|X|=352,N=8,则S=0.352*0.8 u=3.569946+S/2 (保证u<4); X0=S 多次迭代F[x(n-1)]式,就得到一个序列值X i(i=0,1,2,3,4…n),取X i小数点后第j到j+k 位,就可以得到一个n*(k+1)位的加密密钥。

典型的混沌系统

典型的混沌系统 (1) 1.1 一维混沌系统 (1) §1.1.1 Logistic 映射 (1) §1.1.2 Chebyshev 映射 (2) §1.1.3 Logistic 映射与Chebyshev 映射 (3) §1.1.4 概率密度函数PDF 的作用 (3) 1.2二维混沌系统(≠超混沌系统) (3) §1.2.1 Henon 映射 (4) 典型的混沌系统 混沌现象是在非线性动力系统中表现的确定性、类随机的过程,这种过程既非周期又不收敛,并且对于初始值具有敏感的依赖性。 按照动力学系统的性质,混沌可以分成四种类型: ? 时间混沌; ? 空间混沌; ? 时空混沌; ? 功能混沌; 1.1 一维混沌系统 一个一维离散时间非线性动力学系统定义如下: )(1k k x x τ=+ 其中,x k ∈V , k=0,1,2,3…,我们称之为状态。 而τ: V →V 是一个映射,将当前状态xk 映射到下一个状态xk+1。如果我们从一个初始值x0 开始,反复应用 τ , 就得到一个序列{ xk ; k=0,1,2,3…..}。这一序列称为该离散时间动力系统的一条轨迹。 原始的虫口模型方程是(37文): k k ax x =+1 体现了两代虫子的数量关系。 将此方程推导一下,可以得到如下方程: 0x a x k k = 可以得到第n 代虫子和第0代虫子的数量关系。 但是,从中不能表现自然的虫子变换关系,因为虫子的增长变化不是恒定的(考虑到很多负面影响,如虫子太多时,由于食物有限和生存空间有限,还由于疾病等多种原因,使得虫口数量减少),所以这个线性模型完全不能反映虫口的变化规律。 §1.1.1 Logistic 映射 一类非常简单却被广泛研究的动力系统是logistic 映射,它起源于虫口模型。其定义有

混沌与分数阶混沌系统同步控制研究及其电路仿真

混沌与分数阶混沌系统同步控制研究及其电路仿真 文章来源:伟智论文服务中心 [打印] 【摘要】混沌作为一种复杂的非线性运动行为,在物理学、化学、信息技术以及工程学等领域得到了广泛的研究。由于混沌对初值的极端敏感性、内在的随机性、连续宽谱等特点,使其特别适用于保密通信、信号处理、图象加密等领域,因此,混沌同步成为混沌应用的关键技术。在参阅大量文献的基础上,本文利用理论证明,数值模拟以及电路仿真相结合的方法,对混沌系统同步、分数阶超混沌系统同步、以及非自治超混沌系统进行了研究。本文的主要研究内容如下:1.基于Lyapunov稳定性理论,利用自适应控制方法,以不确定单模激光Lorenz系统作为驱动系统,将不确定单涡旋混沌系统作为响应系统,设计了非线性反馈控制器及参数识别器,使响应系统的所有状态变量严格地按函数比例跟踪驱动系统的混沌轨迹,并辨识出包括非线性项在内的驱动系统和响应系统的不确定参数,利用四阶龙格库塔仿真模拟,结果表明了该方法的有效性。2.应用驱动-响应方法、反馈线性化方法以及基于Lyapunov方程的Backstepping 控制方法,研究了分数阶超混沌L(u|¨)系统同步问题。其次,针对上述分数阶混沌系统同步方法中存在的不足,基于分数阶系统的稳定性理论,提出了分数 阶超混沌系...更多统的自适应同步方法,用两个控制器与两个驱动变量实现 了不确定分数阶超混沌L(u|¨)系统的自适应同步,给出了自适应同步控制器和参数自适应率,辨识出系统的不确定参数。最后,结合Active控制技术,实现了异结构分数阶超混沌系统的同步。理论证明、数值模拟以及电路仿真证实了上述同步方法的有效性和可行性。3.采用调节连续信号频率的方法,将外界控制信号引入到超混沌系统中,设计了一个新四维非自治超混沌系统。通过精确地调节模拟输入信号的频率,观察和验证新系统的非线性动力学特性,具体为 周期轨、二维环面、混沌和超混沌现象。通过Lyapunov指数图,分岔图来解释系统的动力学特性,并且给出了设计的实验电路及其观测的结果,进一步从物 理实现上验证仿真结果的准确性。最后利用单变量耦合反馈控制方法,通过电路实验实现了非自治超混沌系统的同步。还原 【Abstract】 Chaotic systems are well known for their complex nonlinear systems, and have been intensively studied in various fields such as physics, chemistry, information technology and engineering. In virtue of its characteristics of chaos such as hyper sensitivity to initial conditions, high randomicity and board spectra for its Fourier transform, chaos can be especially applied to secure communications, signal processing and image encryption and so on. Thus chaos synchronization has become the key process in the application of chaos. The research has studied the relative problems of chaos synchronization, synchronization of fractional-order hyper-chaotic systems and analysis of a new four-dimensional non-autonomous hyper-chaotic system, using

实验报告:混沌同步控制与图像加密

混沌同步控制与图像加密 ――― 《混沌实验教学平台的设计与实现》中期期报告 (华南师范大学物理与电信工程学院指导老师:李军学生:王龙杰、张丹伟、杨土炎)摘要:基于混沌系统的某些独特性质,如初值敏感性,本文讨论了混沌理论的两个重要运用,即基于Lorenz 混沌系统的同步控制和基于Logistic 混沌映射的图像加密。在讨论与分析的基础上,利用MA TLAB 软件进行数值计算与模拟,得到较好的效果。 关键词:Lorenz 混沌系统;同步控制;Logistic 混沌映射;图像加密;MATLAB 基于Lorenz 混沌系统的同步控制 一.引言 混沌是自然界及人类社会中的一种普遍现象,至今为止,在学术界对“混沌”还没有统一的被普遍接受的定义。混沌运动是确定性和随机性的对立统一, 即它具有确定性和随机性, 所谓确定性是指混沌运动是在确定性系统中发生的,可以用动力学方程形式表述, 这与完全随机运动有着本质的区别; 所谓运动具有随机性, 是指不能像经典力学中的机械运动那样由某时刻状态可以预言以后任何时刻的运动状态, 混沌运动倒是像其他随机运动或噪声那样, 其运动状态是不可预言的, 换言之, 混沌运动在相空间中没有确定的轨道。混沌运动对初始状态(条件)具有敏感的依赖性, 只要对系统施加非常微小的扰动,就可能把系统从一个不稳定的周期运动转变到另一个不稳定的周期运动上去,也可能转变到另一稳定的运动状态上, 通 过这个特性, 我们可以利用混沌有意义的一面, 而避其有害的一面。Lorenz 系统作为第一个混沌模型,是混沌发展史上的一个里程碑, 具有举足轻重的地位。对Lorenz 系统的深入研究无疑已经极大地推动了混沌学的发展。 人们发现混沌控制在众多领域中有着广阔的应用前景, 尤其在电子学、电力系统、保密 通信和振荡发生器设计等领域有着巨大的应用前景, 因此引起了广泛的重视。由于混沌行为对初始状态的敏感依赖性, 受到噪声、干扰以及系统不稳定的影响, 特别是在混沌同步中, 实 际系统中很难观测到混沌同步。自从1990 年, Pecora 和Carroll 提出了混沌同步的概念和 方法以后,随着混沌同步研究的不断深入, 混沌控制与同步的研究工作得到了长足的发展, 并 逐渐成为混沌与控制领域研究的热点。对于相近的混沌轨道, 通过相同的非线性系统控制, 最终可能导致完全不相关的状态。但在实际应用中, 往往要求控制得到相关的状态或所需要的同步结果, 本文采用了加入反馈控制量的方法使其耦合, 最终达到所要求的同步。在计算机上的仿真结果显示, 能在短时间内实现耦合同步控制。

非线性系统中混沌的控制及同步及其应用前景_一_

第1 6 卷第1 期物理学进展o l.16, N o. 1 V 1996 年 3 月PRO GR E S S I N PH Y S I C S M ac r ch , 1996 非线性系统中混沌的控制与同步 Ξ 及其应用前景(一) 方锦清 ( 中国原子能科学研究院, 北京102413) 提要 全文系统地综述了非线性科学中一个富有挑战性及具有巨大应用前景的重大课题——非线性系统中混沌的控制与同步及其应用的主要进展, 包括了作者关于超混沌同步及其控制等方面的研究成果。我们对现有的各种混沌的控制方法和混沌的同步原理提出了分类和评述。概述了实验与应用的现状, 指出了发展前景, 全文分为( 一) ( 二) 两篇, 第( 一) 篇以混沌控制的机理和方法为主要论题展开广泛的讨论; 第(二) 篇以混沌的同步、超混沌的同步及其控制为论题, 同时包括众多的实验应用的研究, 进行较详尽的综述和分析评论, 比较完整地概括了迄今国内外该课题的发展现状和主要趋势。 总论 混沌, 当今举世瞩目的前沿课题及学术热点, 它揭示了自然界及人类社会中普遍存在的复杂性, 有序与无序的统一, 确定性与随机性的统一, 大大拓广了人们的视野, 加深了对客观世界的认识。它在自然科学及社会科学等领域中, 覆盖面之大、跨学科之广、综合性之强, 发展前景及影响之深远都是空前的。国际上誉称混沌的发现, 乃是继本世纪相对论与量子力学问世以来的第三次物理学大革命, 这场革命正在冲击和改变着几乎所有科学和技术领域, 向我们提出了巨大的挑战ΞΞ。 混沌的发现已过而立之年。首要的问题是, 混沌究竟有什么应用和发展前景? 这是摆在人们面前的一个重大课题及普遍关注的问题。特别是, 在我国改革开放和振兴经济的大潮面前, 这类提问和呼声更为强烈, 这确实也是深入开展混沌研究的巨大推动力。由于混沌的奇异特性, 特别是对初始条件极其微小变化的高度敏感性及不稳定性, 所 谓“差之毫厘失之千里”的缘故, 长期以来有些人总觉得混沌是不可控的、不可靠的, 因而 Ξ 本课题是国家留学回国人员重大科技资助项目、国家核科学工业基金资助项目及I A EA 科研合同课题。 ΞΞ 混沌发现的重要性论述请参阅: 詹姆斯·格莱克著,“混沌开创新科学”( 张淑誉译, 郝柏林校) , 1990, 上海译文出版社。

典型混沌系统和混沌同步的简介

2典型混沌系统和混沌同步的简介 2.1典型混沌系统的介绍 混沌从表述形式上大体包括两大类:以微分方程表述的时间连续函数和以状态方程表述的时间离散函数。时间离散系统多用于扩频通信,而时间连续函数多见于保密通信之中。介于本文主要考虑连续系统在保密通信之中的应用,这里就重点介绍连续时间混沌系统中的典型模型:Lorenz 系统、蔡氏电路、统一混沌系统。 2.1.1 Lorenz 系统 混沌的最早实例是由美国麻省理工学院的气象学家洛伦兹在1963年研究大气运动时描述的。他提出了著名的Lorenz 方程组: () ??? ????----cz xy y xz bx y x y a x =z==。。 。 (2-1) 这是一个三阶常微分方程组。它以无限平板间流体热对流运动的简化模型为基础,由于它的变量不显含时间t ,一般称作自治方程。式中x 表示对流强度,y 表示向上流和向下流在单位元之间的温度差,z 表示垂直方向温度分布的非线性强度,-xz 和xy 为非线性项,b 是瑞利数,它表示引起对流和湍流的驱动因素 (如贝纳对流上下板的温度差△T)和抑制对流因素 (如(Prandtl)数粘性)之比,是系统 (2-1)的主要控制参数。k v a =是普朗特数(v 和k 分别为分子粘性系数和热传导系数),c 代表与对流纵横比有关的外形比,且a 和c 为无量纲常数。在参数范围为)1/()3(--++?>c a c a a b 时,Lorenz 系统均处于混沌态。 在混沌区域内选择系统参数a=10, b=28,c=8/3,取系统的初始状态为[x(0), y(0), z(0)]=[10, 10, 10],此时,系统为一混沌系统,系统的三维吸引子如图2.1所示,二维吸引子如图2.3所示,图2.2所示分别为分量x 、y 随时间t 的变化情况。 图2.1 Lorenz 系统的吸引子

相关文档