文档库 最新最全的文档下载
当前位置:文档库 › 化学化工专业英语样卷

化学化工专业英语样卷

化学化工专业英语样卷
化学化工专业英语样卷

27) o-phthalic anhydride 28) propionic acid

29) formaldehyde 30) p-methoxybenzaldehyde

II. Give the English name for each of the following compounds (15 points):

1) H2SO42) Al2O3

3) KH2PO44) SO3

5) CH2=CH-CH36) (CH3)3CCl

7) CF3COOH 8) H2NCH2CH2NH2

9) (CH3)2CHOH 10) p-F-C6H4-OH

11) CH3-CH(CH3)-CH2-CO-CH3 12) CH3-CH=CH-CHO

13) CH3-CH(OH)-COOH 14) CH3CO-CH2COOC2H5

15) CH3(CH2)3C N

III. For the following descriptions or definitions, determine true or false for each statement based on principles in chemistry (10 points):

1) The oxidized and reduced species that appear in an ion-electron equation are

may be non-reactants.

2) Standard enthalpy of formation is the heat of formation of one mole of a

compound by combination of its elements in their standard states at a specified temperature.

3) Enantiomers are pairs of molecules with the same formula that rotate

plane-polarized light in opposite directions.

4) A nucleophile is an electron deficient atom or group that will bond with an atom

that has a available electron pair

5) Theoretical yield is the maximum amount of a product that can be formed

according to a balanced chemical equation

1

3

化学专业英语试卷B答案

, 每小题2分,共

20分) 1、 NaCN Sodium cyanide 2、 Ba(OH)2 Barium hydroxide 3、 KMnO 4 Potassium permanganate 4、 H 2SO 4 Sulfuric acid 5、 ZnSO 4 zinc sulfate or zinc sulphate 6、 FeS Iron (II) sulfide or Ferrous sulfide 7、 H 3PO 4 phosphoric acid 8、 H 2SO 3 Sulfurous acid 9、 HClO 4 Perchloric acid 10、FeCl 3 iron (III) chloride or ferric chloride 二、给下列有机化合物的英语名称(共5小题, 每小题4分,共20分) 1. 甲乙醚 ethyl methyl ether 2. 对甲基苯酚 4-methyl phenol 3. 苯乙烯 styrene 4. CH 3CH =C(CH 2CH 3) CH 2 OH 2-ethyl-2-buten-1-ol 5. (CH 3)3CCH 2CH 2OH 4,4-dimethyl-1-butanol or 4,4-dimethyl butanol 三、英译汉(共10小题, 每小题4分,共40分) 1、 Carbon-sodium and carbon-potassium bonds are largely ionic in character; carbon-lead, carbon-tin, carbon-thallium and carbon-mercury bonds are essentially covalent. 碳-钠键和碳-钾键有较大的离子性,碳-铅键,碳-锡键,碳-铊键和碳-汞键基本上属于共价键。 2、 The reactivity of organometallic compounds increases with the percent ionic character of the carbon-metal bond. 金属有机化合物的反应活性随着碳金属键中离子性所占的百分数的增大而增强。 3、 Organometallic compounds of lithium and magnesium are of great importance in organic synthesis. 锂和镁的金属有机化合物在有机合成上有重大的意义。

化学专业英语翻译1

01.THE ELEMENTS AND THE PERIODIC TABLE 01元素和元素周期 表。 The number of protons in the nucleus of an atom is referred to as the atomic number, or proton number, Z. The number of electrons in an electrically neutral atom is also equal to the atomic number, Z. The total mass of an atom is determined very nearly by the total number of protons and neutrons in its nucleus. This total is called the mass number, A. The number of neutrons in an atom, the neutron number, is given by the quantity A-Z. 原子核中的质子数的原子称为原子序数,或质子数,卓电子数的电中性的原子也等于原子序数Z,总质量的原子是非常接近的总数量的质子和中子在原子核。这被称为质量数,这个数的原子中的中子,中子数,给出了所有的数量 The term element refers to, a pure substance with atoms all of a single kind. To the chemist the "kind" of atom is specified by its atomic number, since this is the property that determines its chemical behavior. At present all the atoms from Z = 1 to Z = 107 are known; there are 107 chemical elements. Each chemical element has been given a name and a distinctive symbol. For most elements the symbol is simply the abbreviated form of

化工专业英语lesson4翻译汇编

仅供参考 Introduction to Organic Chemistry 1. Sources of Organic Compounds The major sources of organic chemicals are coal, petroleum, and agricultural products. Both coal and petroleum were formed through the geologic processes of changing animal and plant remains into carbon-containing residues. About one-third of all organic chemicals are derived from coal and about one-half from the petroleum industry 有机化合物的来源 有机化学药品的主要来源是煤、石油和农产品。动植物的遗体通过地质作用变成含碳残基然后形成煤和石油。三分之一的所有有机化合物品是从煤中得到的,一般来自于石油工业。 2. The Methods and Objectives of Organic Chemistry Because of the tremendous number of organic compounds known, and of the many more being synthesized daily, the study of organic chemistry is not the study of individual compounds, it is the study of groups or families of compounds all closely related to each other. Obviously, the former approach would be prohibitive[prE5hibitiv]. Once the structural relationships of certain typical members of a particular group or family of compounds are understood, these structural features are understood for any one of the many members of the family, even though some may not be known compounds. 因为已知的有机化合物的数目庞大,而且还在逐日合成更多的品种,所以有机化学不是研究单个的化合物,而是把彼此密切相关的化合物按类或族来研究。显然,以前的方法是不可取的,一旦典型的一类特殊化合物被认识,这些结构特征将适用于这类化合物,甚至是一些未知的化合物, For each group or family of compounds often called homologous series of compounds, structural features are important. In studying organic chemistry, it is not enough to know the identities of the elements and how many atoms of each element are present in a given molecule. More importantly, the order in which these atoms are linked together to form

化学化工专业英语(课本内容)

第二章科技英语构词法 词是构成句子的要素,对词意理解的好坏直接关系到翻译的质量。 所谓构词法即词的构成方法,即词在结构上的规律。科技英语构词特点是外来语多(很多来自希腊语和拉丁语);第二个特点是构词方法多,除了非科技英语中常用的三种构词法—转化、派生及合成法外,还普遍采用压缩法、混成法、符号法和字母象形法。 2.1转化法(Conversion) 由一种词类转化成另一种词类,叫转化法。例如: water(n.水)→water(v.浇水) charge(n.电荷) →charge(v.充电) yield(n.产率) →yield(v.生成) dry(a.干的) →dry(v.烘干) slow(a.慢的) →slow(v.减慢) back(ad.在后、向后) →back(v.使后退、倒车) square(n.正方形) →square(a.正方形的) 2.2派生法(Derivation) 通过加前、后缀构成一新词。派生法是化工类科技英语中最常用的构词法。 例如“烷烃”就是用前缀(如拉丁或希腊前缀)表示分子中碳原子数再加上“-ane”作词尾构成的。若将词尾变成“-ane”、“-yne”、“-ol”、“-al”、“-yl”,则分别表示“烯”、“炔”、“醇”、“醛”、“基”、等。依此类推,从而构成千成种化学物质名词。常遇到这样的情况,许多化学化工名词在字典上查不到,全若掌握这种构词法,能过其前、后缀分别代表的意思,合在一起即是该词的意义。下面通过表1举例说明。需要注意的是,表中物质的数目词头除前四个另有名称外,其它均为表上的数目词头。 本书附录为化学化工专业常用词根及前后缀。此外还可参阅《英汉化学化工词汇》(第三版)附录中的“英汉对照有机基名表”、“西文化学名词中常用的数止词头”及“英汉对照有机词尾表”。 据估计,知道一个前缀可帮助人们认识450个英语单词。一名科技工作者至少要知道近50个前缀和30个后缀。这对扩大科技词汇量,增强自由阅读能力,提高翻译质量和加快翻译速度都是大有裨益的。 2.3合成法(Composition) 由两个或更多的词合成一个词,叫合成法。有时需加连字符。 如副词+过去分词well-known 著名的 名词+名词carbon steel 碳钢 rust-resistance 防锈 名词+过去分词computer-oriented 研制计算机的 介词+名词by-product 副产物 动词+副词makeup 化妆品 check-up 检查 形容词+名词atomic weight 原子量 periodic table 周期表 动词+代词+副词pick-me-up 兴奋剂 副词+介词+名词out-of-door 户外 2.4压缩法(Shortening) (1)只取词头字母 这种方法在科技英语中较常用。

化学专业英语试卷A答案

2012—2013学年度第一学期 应用化学专业《专业英语》课程试卷(A ) 注意事项:1. 考生务必将自己姓名、学号、专业名称写在指定位置; 2. 密封线和装订线内不准答题。 一、词汇填空 (写出下列每个词汇对应的英 汉单词)(共20小题,每空1分,共20分) 1、化学性质 (chemical property ) 2、物理性质 (physical property ) 3、溶解度 (solubility ) 4、密度 (density ) 5、沸点 (boiling point ) 6、熔点 (melting point ) 7、反应 (reaction ) 8、无机的 (inorganic ) 9、有机的 (organic ) 10、化合物 (c ompound ) 11、烷烃 (alkane ) 12、乙醇 (ethanol ) 13、烯烃 (alkene ) 14、炔烃 (alkyne ) 15、ester ( 酯 ) 16、ether ( 醚 ) 17、acetone ( 丙酮 ) 18、formaldehyde ( 甲醛 ) 19、ammonia ( 氨 )

20、benzene ( 苯 ) 二、给下列无机化合物的英语名称(共10小题, 每小题2分,共20分) 1、CaO calcium oxide 2、HClO 4 perchloric acid 3、CuSO 4 copper sulfate 4、NaBr sodium bromide 5、NaCl sodium chloride 6、HNO 3 nitric acid 7、HNO 2 nitrous acid 8、Al 2O 3 aluminum oxide 9、KNO 3 potassium nitrate 10、FeBr 3 ferric bromide 三、给下列有机化合物的英语名称(共5小题, 每小题4分,共20分) 1.辛烷 octane 2.CH 2=CHCH 2CH 3 1-butene 3.CH 3CH 2CH 2CH 2OH butanol 4.CH 3CH 2OCH 3

《化学工程与工艺专业英语》课文翻译 完整版

Unit 1 Chemical Industry 化学工业 1.Origins of the Chemical Industry Although the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries. Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking. It will be noted that these are all inorganic chemicals. The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin‘s discovery if the first synthetic dyestuff—mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia. The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time. The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds (ammonium salts for fertilizers and nitric acid for explosives manufacture) with the outbreak of world warⅠin 1914. This initiated profound changes which continued during the inter-war years (1918-1939). 1.化学工业的起源 尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。可以认为它起源于工业革命其间,大约在1800年,并发展成为为其它工业部门提供化学原料的产业。比如制肥皂所用的碱,棉布生产所用的漂白粉,玻璃制造业所用的硅及Na2CO3. 我们会注意到所有这些都是无机物。有机化学工业的开始是在十九世纪六十年代以William Henry Perkin 发现第一种合成染料—苯胺紫并加以开发利用为标志的。20世纪初,德国花费大量资金用于实用化学方面的重点研究,到1914年,德国的化学工业在世界化学产品市场上占有75%的份额。这要归因于新染料的发现以及硫酸的接触法生产和氨的哈伯生产工艺的发展。而后者需要较大的技术突破使得化学反应第一次可以在非常高的压力条件下进行。这方面所取得的成绩对德国很有帮助。特别是由于1914年第一次世界大仗的爆发,对以氮为基础的化合物的需求飞速增长。这种深刻的改变一直持续到战后(1918-1939)。 date bake to/from: 回溯到 dated: 过时的,陈旧的 stand sb. in good stead: 对。。。很有帮助

化学化工专业英语15 Extractive and Azeotropic Distillation

15 Extractive and Azeotropic Distillation Extractive and azeotropic distillation have the common feature that a substance not normally present in the mixture to be separated is deliberately introduced into the system in order to increase the difference in volatility of the most hard to separate components. Extractive distillation can be defined as distillation in the presence of a substance which is relatively non-volatile compared to the components to be separated, and which, therefore, is charged continuously near the top of the fractionating tower, so that an appreciable concentration is maintained on all plates in the tower below its entry. Azeotropic distillation can be defined as distillation in which the add ed substance forms an azeotrope with one or more of the components in the feed, and by virtue of this are present on most of the plates in the tower above its entry at an appreciable level of concentration. These separation methods find their principal applications in the separation of mixtures whose components boil too close together for the economical use of simple fractionating equipment. These separation methods are particularly applicable when the components to be separated differ in chemical type. The theoretical principles involved are well documented, and will not be further considered here. The processes diff er in the means used to maintain be desired solvent concentration on the plates of the tower. In extractive distillation the high concentration of solvent is maintained by virtue of its non-volatility, and by the fact that it is charged at a high point in the tower. The solvent is, necessarily, removed from the base of the principal tower. In azeotropic distillation, most of the solvent is taken off from overhead, with relatively small amounts (ideally, none) drawn off with the bottoms. Extractive distillation is generally more flexible than azeotropic distillation, a greater variety of solvents and a wider range of operation conditions are available; and the concentration of solvent may be controlled by heat and material balances rather than by the accident of azeotrope composition. Furthermore, since vaporization of the solvent is not required beat loads are usually considerably less. It has been mainly used for the separation of toluene, not benzene. But it is mentioned here for

化学化工专业英语试卷及答案

化学化工专业英语试卷 及答案 标准化管理部编码-[99968T-6889628-J68568-1689N]

2011年春季学期应用化学专业 《08级化学化工专业英语试卷答案》 1. state-of-the-industry 中文:工业发展水平(1分) 2. alkyl ether sulfate中文:烷基醚硫酸盐(酯)(分) 3. W/O 英文: water in oil,(oil emulsion) ;中文:油乳胶(油包水)(分) 4. 2,6-Dimethy-2,7-octadien-6-ol 画出结构式: (4分) 5. The inherent tendency of the whole or a part of a molecule to pass out of or not to penetrate into a water phase. 英文: Hydrophoby ;中文:疏水性(亲油性)分) 6. A substance which, when introduced in a liquid, increases its wetting tendency. 英文: Wetting agent ;中文:润湿剂分) 7. The process by which soil is dislodged from the substrate and bought into a state of solution or dispersion. 英文: Detergency ;中文:去污性(力)分) 8. An attribute which is related to benefit not directly but through association or suggestion. 英文: Signal attribute ;中文:信号属性分) 9. A colorless gas with a characteristic pungent odor, consisting of nitrogen and hydrogen.

化学工程与工艺专业英语Unit 2

Unit 2 Research and Development 研究和开发 Research and development, or R&D as it is commonly referred to, is an activity which is carried out by all sectors of manufacturing industry but its extent varies considerably, as we will see shortly. Let us first understand, or at least get a feel for, what the terms mean. Although the distinction between research and development is not always clear-cut, and there is often considerable overlap, we will attempt to separate them. In simple terms research can be thought of as the activity which produces new ideas and knowledge whereas development is putting those ideas into practice as new process and products. To illustrate this with an example, predicting the structure of a new molecule which would have a specific biological activity and synthesizing it could be seen as research whereas testing it and developing it to the point where it could be marketed as a new drug could be described as the development part. 研究和开发,或通常所称R&D是制造业各个部门都要进行的一项活动。我们马上可以看到,它的内容变化很大。我们首先了解或先感觉一下这个词的含义。尽管研究和开发的定义总是分得不很清楚,而且有许多重叠的部分,我们还是要试着把它们区分开来。简单说来,研究是产生新思想和新知识的活动,而开发则是把这些思想贯彻到实践中得到新工艺和新产品的行为。可以用一个例子来描述这一点,预测一个有特殊生物活性的分子结构并合成它可以看成是研究而测试它并把它发展到可以作为一种新药推向市场这一阶段则看作开发部分。 1.Fundamental Research and Applied Research In industry the primary reason for carting out R&D is economic and is to strengthen and improve the company?s position and profitability. The purpose of R&D is to generate and provide information and knowledge to reduce uncertainty, solve problems and to provide better data on which management can base decisions. Specific projects cover a wide range of activities and time scales, from a few months to 20 years. 1.基础研究和应用研究 在工业上进行研究和开发最主要的原因是经济利益方面,是为了加强公司的地位,提高公司的利润。R&D的目的是做出并提供信息和知识以减低不确定性,解决问题,以及向管理层提供更好的数据以便他们能据此做出决定。特别的项目涵盖很大的活动范围和时间范围,从几个月到20年。 We can pick out a number of areas of R&D activity in the following paragraphs but if we were to start with those which were to spring to the mind of the academic, rather than the industrial, chemist then these would be basic, fundamental (background) or exploratory research and the synthesis of new compounds. This is also labeled “blue skies” research. 我们可以在后面的段落里举出大量的R&D活动。但是如果我们举出的点子来源于研究院而不是工业化学家的头脑,这就是基础的或探索性的研究 Fundamental research is typically associated with university research. It may be carried out for its own intrinsic interest and it will add to the total knowledge base but no immediate applications of it in the “real world” well be apparent. Note that it will provide a valuable

《化学工程与工艺专业英语》课文翻译Unit 21 Chemical Industry and Environment

Unit 21 Chemical Industry and Environment 化学工业与环境 How can we reduce the amount of waste that is produced? And how we close the loop by redirecting spent materials and products into programs of recycling? All of these questions must be answered through careful research in the coming years as we strive to keep civilization in balance with nature. 我们怎样才能减少产生废物的数量?我们怎样才能使废弃物质和商品纳入循环使用的程序?所有这些问题必须要在未来的几年里通过仔细的研究得到解决,这样我们才能保持文明与自然的平衡。 1.Atmospheric Chemistry Coal-burning power plants, as well as some natural processes, deliver sulfur compounds to the stratosphere, where oxidation produces sulfuric acid particles that reflect away some of the incoming visible solar radiation. In the troposphere, nitrogen oxides produced by the combustion of fossil fuels combine with many organic molecules under the influence of sunlight to produce urban smog. The volatile hydrocarbon isoprene, well known as a building block of synthetic rubber, is also produced naturally in forests. And the chlorofluorocarbons, better known as CFCs, are inert in automobile air conditioners and home refrigerators but come apart under ultraviolet bombardment in the mid-stratosphere with devastating effect on the earth’s stratospheric ozone layer. The globally averaged atmospheric concentration of stratospheric ozone itself is only 3 parts in 10 million, but it has played a crucial protective role in the development of all biological life through its absorption of potentially harmful shout-wavelength solar ultraviolet radiation. 1.大气化学 燃煤发电厂像一些自然过程一样,也会释放硫化合物到大气层中,在那里氧化作用产生硫酸颗粒能反射入射进来的可见太阳辐射。在对流层,化石燃料燃烧所产生的氮氧化物在阳光的影响下与许多有机物分子结合产生都市烟雾。挥发的碳氢化合物异戊二烯,也就是众所周知的合成橡胶的结构单元,可以在森林中天然产生含氯氟烃。我们所熟悉的CFCs,在汽车空调和家用冰箱里是惰性的,但在中平流层内在紫外线的照射下回发生分解从而对地球大气臭氧层造成破坏,全球大气层中臭氧的平均浓度只有3ppm,但它对所有生命体的生长发育都起了关键的保护作用,因为是它吸收了太阳光线中有害的短波紫外辐射。 During the past 20 years, public attention has been focused on ways that mankind has caused changes in the atmosphere: acid rain, stratospheric zone depletion, greenhouse warming, and the increased oxidizing capacity of the atmosphere. We have known for generations that human activity has affected the nearby surroundings, but only gradually have we noticed such effects as acid rain on a regional then on an intercontinental scale. With the problem of ozone depletion and concerns about global warming, we have now truly entered an era of global change, but the underlying scientific facts have not yet been fully established. 在过去的二十年中,公众的注意力集中在人类对大气层的改变:酸雨、平流层臭氧空洞、温室现象,以及大气的氧化能力增强,前几代人已经知道,人类的活动会对邻近的环境造成影响,但意识到像酸雨这样的效应将由局部扩展到洲际范围则是慢慢发现的。随着臭氧空洞问题的出现,考虑到对全球的威胁,我们已真正进入到全球话改变的时代,但是基本的

化学专业英语-化学专业英语课-期末考试试卷含答案

化学专业英语试卷 学号:姓名:成绩: 一:把下列单词或词组译成英文(本题共30 分,每小题 1 分) 1. Ni(ClO4)2 nickel perchlorate 3. FeCl2 iron(2)chloride 5. Al(NO3)3 aluminum nitrate 7. MnO2 manganese dioxide 9. N2O3 dinatrogen trioxide 11. NaClO sodium hypochloride 13. P2O5 diphosphorous pentaoxide 15. KMnO4 patassium permangate 17. 盐酸hydrochloric acid 19. KCN patassium cyanide 21. 5-甲基-4-丙基壬烷5-methyl-4-propylnonaane 23. 四氯化碳carbon tetrachloride 25. 中和neutralize 27. 比热容specific heat capacity 29. 酸酐anhytride 2. CuSO4 copper sulfate 4. CoCO3 cobalt carbate 6. Ca(C2H3O2)2 calcium acetate 8. H2SO4 10. 六氰合铁(Ⅱ)酸钾 12. Ag2SO3 sliver sulfite 14. 草酸铅lead cyanate 16. Zn(OH)2 zinc hydroxide 18. 磷酸根phosphate 20. 2,3-二甲基戊烷 2,3-dimethylpentane 22. 2,3,7-三甲基-5-乙基辛烷2,3,7-trimethyl-5-ethyloctane 24. 石蕊试纸litmus paper 26. 滴定titration 28. 非电解质electrolyte 30. 配位化合物complex compound 三. 把下列短文译成汉语(本题共40 分,每小题10 分) 1. Without chemistry our lives would be unrecognisable, for chemistry is at work all around us. Think what life would be like without chemistry - there would be no plastics, no electricity and no protective paints for our homes. There would be no synthetic fibres to clothe us and no fertilisers to help us produce enough food. We wouldn’t be able to travel because there would be no metal, rubber or fuel for cars, ships and aeroplane. Our lives would be changed considerably without telephones, radio, television or computers, all of which depend on chemistry for the manufacture of their parts. Life expectancy would be much lower, too, as there would be no drugs to fight disease. 没有化学反应我们的生活将会大变样,化学就在我们周围。没有化学生活会是什么样子——没有塑料,,家里没有电,也没有防护漆。不会给我们合成纤维,没有化肥帮助我们生产足够的食物。我们不能旅行,因为不会有金属、橡胶或燃料汽车、船只和飞机。我们的生活将会大大改变了没有电话、收音机、电视或电脑,所有这些依赖化学生产的部分。没有药物来抵抗疾病,预期寿命将低得多。 2.The first and second laws of thermodynamics and the meaning of entropy will be discussed. and expanded upon in this lesson. It will be shown that energy transformations on a macroscopic scale — that is, between large aggregates of atoms and/or molecules — can be understood in terms of a set of logical principles. Thus thermodynamics provides a model of the behavior of matter in bulk. The power of

相关文档
相关文档 最新文档