文档库 最新最全的文档下载
当前位置:文档库 › 纤维素衍生物接枝聚乙二醇单甲醚生物材料的制备

纤维素衍生物接枝聚乙二醇单甲醚生物材料的制备

纤维素衍生物接枝聚乙二醇单甲醚生物材料的制备
纤维素衍生物接枝聚乙二醇单甲醚生物材料的制备

《生物产品降解纤维素功效评价技术规范》

《生物产品降解纤维素功效评价技术规范》 编制说明 (征求意见稿) 《生物产品降解纤维素功效评价技术规范》 国家标准起草工作小组 二〇一九年一月

目录 一、任务来源 (1) 二、目的和意义 (1) 三、标准制定依据和原则 (2) 四、标准主要技术内容 (3) 五、主要工作过程 (3) 六、与有关的现行法律、法规和强制性国家标准的关系 (4) 七、标准属性的建议 (4) 八、贯彻国家标准的要求和措施建议 (4)

《生物产品降解纤维素功效评价技术规范》国家标准 编制说明 (征求意见稿) 一、任务来源 本国家标准的制定任务列入国家标准化管理委员会《国家标准委关于下达2018年第二批国家标准制修订计划的通知》(国标委综合〔2018〕41号),项目编号“20180932-T-424”。本项任务由中国标准化研究院提出并归口,定于2019年完成。本标准起草工作组由中国标准化研究院、浙江工商大学、合肥工业大学等单位共同组成。 二、目的和意义 植物纤维素是地球上最古老、最丰富的天然高分子,是取之不尽用之不竭的,人类最宝贵的天然可再生资源。纤维素的分子式(C6H10O5)n,是由葡萄糖组成的大分子多糖,不溶于水及一般有机溶剂。纤维素是植物细胞壁的主要成分,占植物干重35%-60%,主要成分是是葡萄糖的高分子聚合物。纤维素是世界上最丰富的天然有机物,占植物界碳含量的50%以上。棉花的纤维素含量接近100%,为天然的纤维素来源。一般木材中,纤维素占40~50%,还有10~30%的半纤维素和20~30%的木质素。此外,麻、麦秆、稻草、甘蔗渣等,都是纤维素的丰富来源。 纤维素在一定条件下可以被纤维素酶或者特定微生物降解成单糖,单糖再通过微生物发酵生产各种有用的产品,如燃料、化工原料、饲料、食品、药品等,并且可取代目前的淀粉原料发酵生产的各种产品,以及由化工燃料合成生产的部分有机产品。 目前我国没有相应的国家及行业标准,用于评价生物产品降解植物纤维素的效果。这不仅阻碍了纤维素及相关降解技术的应用,更在一定程度上限制了我国纤维素相关产业的发展,因此建立生物产品降解植物纤维素功效评价技术规范具有十分重要的理论和现实意义。

纤维素生物乙醇生产关键技术

纤维素生物酒精生产关键技术简要分析 李 明 姚 珺 翁 伟 吴 彬 吴 畏 湖南农业大学工学院 摘 要:全球气候变暖和自然资源的枯竭,纤维素生物酒精研究是热点之一。纤维素生物质作为生产生物酒 精的原料,转化技术难度大,尚不成熟。该文主要对纤维素生物质生物酒精生产过程进行了分析, 提出有待解决的问题,并讨论关键技术。得出生物质机械化收集方式能有效保证生物质原料的数量 和减少原料成本;通过基因工程途径构建生产纤维素酶提高酶适应性和活性,加快水解效率和增强 耐热性能;开发节能精馏装置和注重转化后废物利用。农业工程、生物化学、基因工程等多学科的 综合发展将实现纤维素生物酒精工业化。 关键词:生物能源,生物酒精,生物质,纤维素,生产过程 0 引 言 由于温室气温排放导致全球气温变暖,自然石化资源短缺,生物能源成为世界上研究热点。中国是世界上消耗石油第二的国家,大约占全世界总量的6%[1]。国际能源中心(IEA)估计中国到2030年每天消耗1.4×107桶汽油;随着汽车工业的发展和普及,2020年,汽车的使用量从2004年大约2.4×107台增加到90-140×107台,运输所需的能源从现在比例约33%发展到57%左右,每天的所需量从目前的1.6×107桶到5.0×107桶。因此,到2030年,温室排放气体将增长至7.14Gt/年[2]。对石油的需求导致中国更加依赖进口石油,2030年,75%的石油将依靠进口[2]。因此,中国面临能源需求、国家能源安全和环境污染的挑战。中国作为发展中发展最快,世界上人口最多的国家,在经济快速发展和国际地位大幅提升的基础,应该发挥其主导作用,制定研究政策和目标,开发利用可持续“中性碳”能源,其中包括生物酒精的生产和使用[3]。 纤维素生物质转化成生物酒精是世界上生物能源发展的热点研究之一[4-8]。纤维素生物质主要包括农业残渣(水稻、玉米等秸秆)、森林残渣(树枝、锯末)、废弃物(废纸)、草本植物(芦竹)和木质植物(麻疯树、杨树),资源非常丰富,中国仅秸秆一年约有8.4 亿吨[9],林木废弃物约2亿吨[10];到2030年,每年农作物残渣量达5.53EJ;森林残渣达0.9EJ(3/4来自木材加工,1/4来自森林残枝残叶);加上生物质能源种植(每公顷平均产量15吨干,10%的土地可以作为种植面积[10]),统计计算,每年可以提供约23EJ的能源,相当于6000亿升的石油。而根据IEA的预测,2030年中国需要12.4EJ 的交通运输液体能源[1]。如果能够充分利用木质纤维素生物质,提高转化技术,生成酒精,中国可以足够满足运输能源的需求。通过转化生成生物酒精使用是中性碳排放过程,减少温室气体排放,有利于环境和资源的平衡利用。 世界上纤维素生物质转化生物酒精的技术基本上处于研究阶段[11-15]。我国在纤维素生物质转化生物酒精的技术方面起步较晚,还是处于初步研究阶段[16-17]。本文主要对纤维素生物质生物酒精生产过程中关键技术进行简要分析,指出存在的难点和可能性的解决方法以便进一步深入研究。 1 纤维素生物酒精生产 1.1 纤维素生物质作为生物酒精原料的特征 糖类和淀粉转化酒精的工程通过发酵,在世界上已经实用化;草本纤维素和木材纤维素转化酒精正处于实用化过程研究阶段。从生物质转化为生物酒精的容易程度来比较可以得出:糖类 > 淀粉 > 草本纤维素 > 木材纤维素[4] 。 淀粉:葡萄糖分子同序排列 纤维素:葡萄糖分子交错排列 图1 淀粉和纤维素分子简图

简析环保生物处理技术

环境生物技术是指将生物科学与工程技术应用于水、大气、土壤等环境污染治理、污染预防、生物修复、环境监测等。 广义上讲:凡是涉及环境污染控制的一切与生物技术有关的工程技术。 狭义上讲:直接或间接利用生物或生物体的某些组成部分或某些机能,建立降低或消除污染物产生的生产工艺或者能够高效净化环境污染,同时又能生产有用物质的工程技术。 生物技术已是环境保护中应用最广的、最为重要的单项技术,其在水污染控制、大气污染治理、清洁可再生能源的开发、环境监测和污染严重的工业企业的清洁生产等环境保护的各个方面,发挥着极为重要的作用。 接下来我们具体来看看有哪些具体的环境生物技术和应用: 01 污水的生物净化我国的水污染十分严重,高浓度有机物废水的处理是我国水污染治理的重点难题。 污水中有毒物质的成分十分复杂,包括各种酚类、氰化物、重金属、有机磷、有机汞、有机酸、醛、醇及蛋白质等等。微生物通过自身的生命活动可以解除污水的毒害作用,从而使污水中的有毒物质转化为有益的无毒物质,使污水得到净化。 该部分主要包含:①活性污泥法;②生物膜法;③厌氧生物处理法;④自然生物处理法。 举例看,比如微生物高效菌能够将氰化物(氰化钾、氰氢酸、氰化亚铜等)分解成二氧化碳和氨;利用专门分解硫化物的微生物可以从废水中回收硫磺;利用能够降解石油烃的超级菌以清除油对水质的污染等。 还可以将大量的微生物高效菌凝聚在泥粒上形成活性污泥,用来分解和吸附废水中的有毒物质,污水净化后沉积的污泥中存在丰富的氮、磷、钾等元素,是很好的有机肥料。 02 固体废物的生物降解固体废物的生物降解在众多的处理方法中(如堆肥、焚烧、热处理等),生物处理具有成本低、运行费用低、操作简单、易管理等优点。城市垃圾的“生物反应堆”理论就是其中的一种,它与传统的卫生填埋相

合成聚乙二醇单甲醚甲基丙烯酸酯大分子单体的一步法新途径

合成聚乙二醇单甲醚甲基丙烯酸酯大分子单体的一步 法新途径 田金强,胡学一 江南大学化学与材料工程学院,江苏无锡 (2141221) E-mail: tianjinqiang2008@https://www.wendangku.net/doc/af15294643.html, 摘要:探索了一种合成大分子单体聚乙二醇单甲醚甲基丙烯酸酯(PEGMEMA)的一步法新途径:在无机Al/Mg基复合催化剂催化下用环氧乙烷嵌入甲基丙烯酸甲酯合成PEGMEMA 大分子单体,经红外光谱鉴定得到了预期产物,通过紫外分光光度法测定其产率。实验考察了催化剂及阻聚剂的种类、反应温度的影响,并尝试用该大分子单体合成聚羧酸型减水剂。通过测定合成的聚羧酸型减水剂的水泥净浆流动性从侧面考察所合成的PEGMEMA大分子单体的适用性。与传统合成聚乙二醇单醚(甲基)丙烯酸酯的方法相比,该合成路线是原子经济性反应,不生成副产物,是一条具有工业化前景的合成PEGMEMA大分子单体的原子经济性绿色化学途径。 关键词:嵌入反应;聚乙二醇单甲醚甲基丙烯酸酯;一步法;大分子单体 1.引言 聚乙二醇单醚(甲基)丙烯酸酯是合成新型功能材料的一类重要大分子单体,该单体参与共聚得到的两亲性梳状聚合物可用于合成高效水泥减水剂、聚合物电解质、药物载体、环保涂料等多种用途[1-5]。以聚乙二醇单醚(甲基)丙烯酸酯为原料的第三代高效水泥减水剂的代表——聚羧酸系减水剂具有掺量低、减水率大、不离析、保坍性能好等优点,已成为国内外的研究和应用热点[6-7]。该类大分子单体的传统制备工艺是以甲醇或乙醇为起始剂,在高温、金属钠催化条件下与环氧乙烷加成制得聚乙二醇单醚,然后再与(甲基)丙烯酸或(甲基)丙烯酸甲酯反应。该传统工艺操作步骤较为繁琐,成本较高,生产过程中需耗用等摩尔量的金属钠并释放出氢气,消耗大量酸用于中和,生成水醇等副产物,需加入带水剂等,这些工艺缺陷限制了该产品的推广应用[8]。本实验室成功开发了催化脂肪酸甲酯[9]、油脂[10]、乙酸乙酯[11,12]等酯类原料与环氧乙烷或环氧丙烷嵌入加成的催化剂。且利用合成的聚乙二醇单乙醚乙酸酯为中间体,与甲基丙烯酸乙酯进行酯-酯交换得到了聚乙二醇单乙醚甲基丙烯酸酯[13]。如果能够实现以类似催化原理催化甲基丙烯酸甲酯与环氧乙烷嵌入合成聚乙二醇单甲醚甲基丙烯酸酯的一步反应,就能够避开因使用金属钠带来的诸多缺陷;不生成水、醇等副产物,成为原子利用率100%,零排放的绿色化学工艺。但获得具有催化活性的催化剂和筛选合适阻聚剂是从事该项开发研究的技术难点。 本研究探索了无机Al/Mg基复合催化剂催化环氧乙烷嵌入甲基丙烯酸甲酯合成聚乙二醇单甲醚甲基丙烯酸酯的反应催化活性;筛选了较为合适的复合阻聚剂。并尝试用该大分子单体合成聚羧酸型减水剂,通过测定合成的聚羧酸性减水剂的水泥净浆流动性反馈指导改进PEGMEMA大分子单体的合成工艺。该方法使传统工艺需要四步的反应一步完成,缩短了流程,节约了能源,且生产过程几乎不对设备造成腐蚀。

聚乙二醇单甲醚

第一章聚乙二醇单甲醚MPEG概念 1.1 MPEG的定义及分类 1.2 MPEG的应用 1.3 MPEG产业链 第二章中国聚乙二醇单甲醚MPEG运行环境分析2.1 宏观环境 2.2 化工行业运行状况 2.2.1市场供需 2.2.2 价格走势 2.2.3 投资及经济效益 2.3 生态及政策环境 2.3.1 节能减排政策 2.3.2 其他政策 第三章中国聚乙二醇单甲醚MPEG行业概述 3.1 发展现状 3.2 市场供需 3.3 竞争格局 3.4 价格走势 3.5 发展前景及建议 第四章中国聚乙二醇单甲醚MPEG上游产业分析4.1 乙烯 4.1.1 产业布局 4.1.2 市场供需 4.1.3 价格走势 4.1.4 全球乙烯生产对国内产业的影响 4.2 环氧乙烷 4.2.1 产业布局 4.2.2 市场供需 4.2.3 价格走势 4.3 甲醇 4.3.1 产业布局 4.3.2 市场供需 4.3.2 价格走势 第五章中国聚乙二醇单甲醚MPEG下游产业分析5.1 聚羧酸系高性能减水剂行业 5.1.1 发展现状 5.1.2 市场供需 5.2 日用化妆与护肤品行业 5.2.1 发展现状 5.2.2 市场供需 5.3 医药行业 5.4 洗涤用品行业 第六章重点企业介绍 6.1 陶氏化学

6.1.1 公司简介 6.1.2 陶氏化学在中国 6.1.3 经营现状 6.2 科莱恩 6.2.1 公司简介 6.2.2 科莱恩在中国 6.2.3 经营现状 6.3 中石化 6.3.1 公司简介 6.3.2 主要化工产品 6.3.3 经营现状 6.4 韩国湖南石化 6.4.1 公司简介 6.4.2 湖南石化在中国 6.4.3 公司聚乙二醇单甲醚产品 6.4.4 经营现状 6.5 辽宁奥克 6.5.1 公司简介 6.5.2 公司主营产品 6.5.3 经营现状 6.6 德美化工 6.6.1 公司简介 6.6.2 公司主营产品 6.6.3 经营现状 6.7 辽宁科隆 6.7.1 公司简介 6.7.2 公司聚氧乙烯醚类产品 6.7.3 经营现状 6.8 上海台界 6.8.1公司简介 6.8.2 公司主营产品 6.8.3 经营现状 6.9 浙江皇马 6.9.1 公司简介 6.9.2 公司聚氧乙烯醚类产品 6.9.3 经营现状 图:MPEG上下游产业链结构 图:2007-2010年第一季度中国GDP增长率变化 表:2007-2009年中国大宗化工产品产量及增长率变化(单位:万吨) 表:2009年中国大宗化学产品均价及价格变化(元/吨) 图:2006-2009年化学原料及化学制品制造业营业收入、利润总额及毛利润变化(单位:十亿元) 图:2006-2009年基础化学原料制造业营业收入、利润总额及毛利润变化(单位:

聚乙二醇二甲醚资料

南京化学工业(集团)公司研究院以环氧乙烷与甲醇为原料合成出聚乙二醇二甲醚,将该产品制备技术转让江苏省清江石油化工厂所建装置实现工业化生产。早就不做了 聚乙二醇二甲醚 一、产品介绍: 1、主要物理性质: 结构式:CH3O(CH2CH2O)nCH3,其中n=2---9; 凝固点-22~-29℃; 蒸气压(25℃)0.0933254Pa 密度(25℃)1.032g/cm3; 分子量280~310; 闪点151℃; pH值6~8;气味:无恶臭;毒性:无毒 2、产品指标 外观淡黄色透明液体 活性物含量≥% 99.0 水份≤% 1.0 PH值(8:2)6~8 四、五、六乙二醇二甲醚含量≥% 75.0 相对平均分子量250~270 二、产品用途: 酸性气体(如H2S、CO2)的脱除、增塑剂、粘结剂的复配物、抗静电剂、印刷材料及印刷设备清洗剂、印刷行业的制备特种油墨及胶印显影剂、工业清洗、日用洗涤剂、油漆溶剂、涂漆剂和消泡剂。

我国于20世纪80年代在筛选溶剂研究过程中,找到了脱硫、脱碳的聚乙二醇二甲醚最佳溶剂组成,命名为NHD。 三、产品概论 聚乙二醇二甲醚(简写DMPE)时20世纪60年代美国联合化学公司开发的酸性气体物理吸收溶剂,其商品命名为Selexol。 聚乙二醇二甲醚一般指有一定同系物分布的混合物,其结构式CH3O(CH2CH2O)nCH3,聚合度n不同,有不同的物性,n≤10时为无色或淡黄色透明液体,随着n的不断增大,粘度增加,直至为白色或土灰色固体。聚乙二醇二甲醚为非质子极性物质,化学性质稳定,不易发生化学反应,其液体有较强的溶解能力,表现出多方面的适应性,有着多种用途。 1990年鲁南化学工业集团引进杭州化工研究所的小试技术,国内首次开发建设聚乙二醇二甲醚的工业化生产装置,规模为100t/a,1992年5月投产。由于NHD产品在化肥行业并未推广开来,1995年之前装置处于停车状态。1996年开始推广,产品开始供不应求,公司经过4次扩建产能达到2000t/a。兖矿鲁南化工科技发展有限公司于2006年3月申请了生产聚乙二醇二甲醚方法的专利技术。 全国NHD生产厂家至少7家,兖矿鲁化2000t/a,江苏宜兴天音化工股份有限公司2000t/a,江苏靖江石油化工厂1000t/a,安徽绩溪天池化工厂1000t/a,河北唐山朝阳化工厂500t/a,河北藁城溶剂厂300t/a,黑龙江齐齐哈尔黑龙精细化工厂300t/a, 由于NHD本身一种节能产品,也是一种低消耗产品,使用过程中

纤维素基吸附剂的研究进展

纤维素基吸附剂的研究进展 Q U R J 曲荣君1,2*,孙向荣1,王春华1,孙昌梅1,成国祥1,2 (1.烟台师范学院化学与材料科学学院,山东烟台264025; 2.天津大学材料科学与工程学院,天津370002) 摘 要: 纤维素作为自然界中储量最大的天然高分子材料,具有价廉易得、易被微生物降解、不会给环境带 来第二次污染等特点,长期以来对其开发利用一直是科技工作者研究的热点。本文主要综述了近年来纤维素 基吸附剂的研究进展,并简要介绍了其作为金属离子吸附剂、特殊用途吸附剂等的结构性能特点,展望了其发 展前景。 关键词: 纤维素基吸附剂;吸附 中图分类号:T Q 352 文献标识码:A 文章编号:0253-2417(2004)03-0102-05 PROGRESS IN ST U DIES ON PREPARA T ION AN D PROPERT IES OF CELLU LO SE BASED ADSORBENT S QU Rong jun 1,2,SUN Xiang rong 1,WANG Chun hua 1,SU N Chang mei 1,CHENG Guo x iang 1,2 (1.School of Chemistry and Materials Science,Yantai Normal University ,Yantai 264025,China; 2.School o f Materials Science and Engineer ing ,Tianj in University ,Tianj in 370002,China) Abstract:As one of the most abundant renewable natural polymers on earth,cellulose is readily available and inexpensive.Also it can be biodegraded easily w ithout pollution on environment.M any inv est igators have done w orks on the development and utilization of cellulose for a long time.I n this paper,the preparation of adsorbents based on cellulose is review ed.T he structures and properties of t he modified cellulose as metal ion adsorbents and special adsorbents are introduced.T he long term potential development of cellulose based adsorbents is mentioned. Key words:cellulose based adsorbent;adsorption 纤维素是无水葡萄糖残基通过 -1,4糖苷键连接的立体规整性高分子,是自然界中最为丰富的可再生资源。纤维素分子内含有许多亲水性的羟基基团,是一种纤维状、多毛细管的高分子聚合物,具有多孔和比表面积大的特性,因此具有亲和吸附性,但天然纤维的吸附(如吸水、吸油、吸重金属等)能力并不很强,必须通过化学改性使其具有更强或更多的亲水基团,才能成为性能良好的吸附材料。 纤维素吸附剂的研究和应用早在20世纪50年代初就已开始,近年来,随着生命科学的飞速发展和人们对纯天然化工产品的需求日益扩大,纤维素作为天然高分子材料用来作吸附剂使用愈来愈广泛;同 收稿日期:2003-10-13 基金项目:国家自然科学基金资助项目(29906008);山东省自然科学基金资助项目(Q99B15);中国博士后科学基 金(2003034330);山东省中青年学术骨干学术带头人基金资助项目(无编号) 作者简介:曲荣君(1963-),男,山东荣城人,教授,博士后,主要研究方向:功能高分子。 第24卷第3期 2004年9月林 产 化 学 与 工 业Chemistry and Industry of Forest Products Vol.24No.3 Sept.2004

有机废气生物处理技术

1生物法的概念 生物法净化有机废气是在已成熟的采用微生物处理废水的基础上发展起来的,生物净化实质上是一种氧化分解过程:附着在多孔、潮湿介质上的活性微生物以废气中有机组分作为其生命活动的能源或养分,转化为简单的无机物(CO2、H20)或细胞组成物质。 与废水生物处理过程的最大区别在于:废气中的有机物质首先要经过由气相到液相(或固体表面液膜)的传质过程,然后溶解于液相中的有机成分在浓度差的推动下,进一步扩散至介质周围的生物膜,进而被其中的微生物捕捉吸收;在此条件下,进入微生物体内的污染物在其自身的代谢过程中作为能源和营养物质被分解,产生的代谢物一部分溶入液相,一部分作为细胞物质或细胞代谢能源,还有一部分,(如CO2)则析出到空气中,废气中的有机物通过上述过程不断减少,从而被净化。 2生物法处理有机废气机理 对于生化法处理废气的机理研究尽管已做了不少的工作,当至今仍没有统一理论。目前在世界上公认影响较大的是荷兰学者,依据传统的双模理论提出额生物膜理论。另外一种是PEDERSEN、孙佩石等根据吸附理论提出的吸附-生物膜理论所为生物膜及是由微生物群体在固体载体表面构成的粘性膜结构。润湿环境下,微生物以废气中有机物为能源,将其氧化分解过程中,得以生长、繁殖并形成具有一定厚度的膜。这种生物膜尤其在处理浓度或生物可降解性强的废气时,

更显示了优越性。 3生物法的工艺特点 由于微生物对各种污染物均有较强、较快的适应性,并可将其作为代谢底物而降解、转化、因此,与传统的废气处理技术相比,生物处理技术具有效果好、投资及运行费用低,安全性好,无二次污染,易于管理等优点。同时,由于废气生物处理系手机的再生可直接通过吸收剂中微生物的作用来实现,而不需要先理化吸收和吸附那样的专门设备,从而简化了工艺流程和工业设备,降低运行操作费用,所以,生物处理技术已逐渐成为世界研究的热点课题之一。 4主要工艺及对比 4.1生物过滤床 生物过滤床是一种在其中填入具有吸附性滤料(如泥炭、土壤、活性炭等物质)的净化装置。挂生物膜前,在过滤床中渗入PH缓冲剂和N、P、K等营养元素(如NH4NO3和K2HPO3),当具有一定温度的废气进入生物滤床,通过约0.5-1m厚的生物活性填料层时,滤料中的微生物(主要是细菌、放线菌、原生动物、藻类等)即可通过接触而捕获废气中的哟机务并将其作为自身生长的碳源。因此,废气通过生物过滤床后即可被净化,而滤料层中的微生物在生化降解污染物的过程中不断生长繁殖,从而使生物滤池的操作得以持续进行,滤料使用一年后一半呈酸性,要定期进行维护和保养。 生物过滤床中的水只是滞留在微生物膜的表面和内层中,没有形

纤维素研究综述(DOC)

纤维素水解研究综述 1.1生物质的转化与利用 生物质是指一切直接或间接利用植物光合作用形成的有机物质。包括除化石燃料外的植物、动物和微生物及其排泄与代谢物等。从能源的角度,生物质的能量来源于太阳能,是太阳能的一种储存形式;从资源的角度,生物质是地球上唯一可再生的碳资源。 在人类漫长的历史长河中,生物质扮演了重要的角色,它不仅是人类赖以生存的食物来源,而且为人类发展提供了必需的物质基础,包括:织物、建材、纸张、酒精、木炭等材料和燃料。直到今天,生物质仍然是一些发展中国家的主要能源和材料来源,而一些发达国家也将生物质作为重要的能源补充,例如:在瑞典和芬兰生物质占到其总能源消费的17.5%和20.4%。 进入工业革命以后,随着煤炭、石油和天然气开采和利用技术的成熟,化石资源逐渐取代生物质,成为了人类社会发展所依赖的原料基础,极大地促进了人类社会的进步。19世纪中期,美国90%的燃料供给来自于生物质,而到19世纪末20世纪初,这一局面彻底改变了,化石资源占据了绝对主导地位。 另一方面,化石资源的肆意开采和大量使用不仅造成了化石资源的短缺,更加剧了生态环境的日益恶化。人类在享受社会进步成果的同时也在承受着工业文明的“后遗症”。 进入二十一世纪,资源的枯竭和环境的恶化迫使人类重新回到可持续的发展道路上,并且将目光重新投向曾经赖以生存和发展的生物质资源。然而原始的粗放式的生物质利用方式已经无法满足当前人类发展的需求,我们必须以现有的生物质资源为研究对象,借鉴化石资源利用的成功经验,提出生物质综合利用的可行性路线,发展新型高效的生物质利用技术,从而实现生物质替代化石资源促进人与自然和谐发展的美好愿景。 1.1.1生物燃料简介 生物燃料顾名思义就是指由生物质转化得到的燃料,包括:生物乙醇、生物柴油、生物丁醇、生物质热解油、生物质颗粒、木炭、沼气、H2、合成气(CO+H2)以及由合成气制备的甲醇、高级脂肪醇、二甲醚和烷烃等。 按照生物燃料生产原料的来源划分,可以将其分为第一代生物燃料和第二代生物燃料。第一代生物燃料以粮食作物为原料生产燃料,最典型代表为玉米乙醇;而第二代生物燃料则是以农作物废弃物为原料,如纤维素乙醇、微藻生物柴油。很明显,第二代生物燃料较其前辈在化学组成和燃料使用方面并没有区别,但是原料的选择却决定了第二代生物燃料不会产生“与人争粮,与粮争地”的困境,是未来生物燃料发展的正确方向。必须指出的是目前第二代生物燃料仍然停留在实验室和示范工厂阶段,并没有真正的进入燃料市场,要实现第二代生物燃料的大规模工业化生产还有许多的技术瓶颈需要突破。 目前,面向车用燃料生产发展的生物燃料技术主要包括:生物乙醇技术、生物柴油技术、直接液化技术和间接液化技术。 以粮食为原料生产乙醇是一项传统的技术,工艺上已相当成熟,但其生产受到粮食安全等社会因素的制约。目前,我国燃料乙醇的生产能力达132万吨/年,成为世界上继巴西、美国之后第三大生物燃料乙醇生产国,国内的乙醇生产基本上都是利用淀粉和糖蜜等为原料。利用农作物秸秆为代表的各类木质纤维类生物质原料替代粮食资源的燃料乙醇技术,被认为是未来解决燃料乙醇原料来源问题

聚乙二醇在新型药物制剂中的应用

聚乙二醇在新型药物制剂中的应用 【摘要】:聚乙二醇具有良好的生物相容性和两亲性,在生物医药领域中有着广泛的应用,卒文就聚乙二醇在新型药物制剂中的应用进行综述,主要包括纳米给药系统、蛋白质药物修饰和疏水性药物的前药等。 【Abstract】Poly (ethylene glycol) excellent biocompatibility and amphiphilic in biological pharmaceutical sector has the widespread application, jailer. Wen.Poly (ethylene glycol) in new drug preparation applications were reviewed, mainly including nano dosing system, protein drugs modified and hydrophobic medicine Things before medicine, etc. 【关键词】:聚乙二醇;纳米给药系统;修饰;蛋白质药物;前药 【Key words】:Polyethylene glycol, Nano dosing system, Modify, Protein drugs, Before medicine 聚乙二醇(polyethylene glycol,PEG),是由环氧乙烷与水或乙二醇逐步加成聚合而得到的一类分子量较低的水溶性聚醚,作为一种两亲性聚合物,PEG既可溶于水,又可溶于绝大多数的有机溶剂,且具有生物相容性好、无毒、免疫原性低等特点,可通过肾排出体外,在体内不会有积累。此外,PEG具有一定的化学惰性,但在端羟基进行活化后又易于和蛋白质等物质进行键合,键合后,PEG可将其许多优异性能赋予被修饰的物质。作为表面修饰材料,聚乙二醇在体循环中的优点还有能防止与血液接触时血小板在材料表面的沉积,有效延长被修饰物在体内的半衰期,提高药物传递效果[1,2]。 PEG获得了FDA的认可,被中、美、英等许多国家药典收载作为药用辅料。长期以来,PEG在 软(乳)膏剂、栓剂、滴丸剂、硬胶囊、滴眼剂、注射剂、片剂等各种药剂中有着广泛应用。从上个世纪90年代开始,PEG在新型药物制剂中的应用的研究越来越多。本文主要综述PEG在纳米给药系统、蛋白质药物及疏水性药物的前药等几种新型药物制剂中的应用。 1 PEG修饰的纳米给药系统 纳米给药系统,也称纳米控释系统,包括纳米微球(Nanospheres)和纳米胶(Nanocapsules),它们是直径在10~500nm之间的固状胶态粒子,活性组分(药物和生物

高效生物处理技术

高效生物处理技术作为有机废水二级处理的重要手段,广泛应用在工业废水处理和生活污水处理工艺中。随着研究的深入和新工艺、新技术的不断引入,废水生物处理的发展方向也逐渐明朗。江苏瑞达科技致力于为客户提供从清洁化生产、“三废”治理、资源综合利用等方面的项目规划,提供系统、实用的解决方案。江苏瑞达科技给大家介绍一下高效生物处理技术。 高效生物处理技术主要是利用微生物的代谢作用除去废水中有机污染物的一种方法,分需氧生物处理法和厌氧生物处理法两种。好氧处理包括:稳定塘(氧化塘),土地处理,生物滤池,生物转盘,氧化沟工艺,活性污泥工艺等。厌氧处理包括:UASB、厌氧接触法、升流式厌氧污泥床、档板式厌氧法、厌氧生物滤池、厌氧膨胀床和流化床,以及第三代厌氧工艺EGSB和IC厌氧反应器等。 在同一反应器中复合好氧和厌氧生化过程,并使微生物的悬浮生长和附着生长相结合,

可维持反应器内微生物的多样性,提高生物处理法去除有机污染物的效率。 开发具有高密度生物群、高传质速度的生物反应器,比如深井曝气法等,与传统工艺相比有机负荷可增加到几十倍,提高了设备处理有机物的负荷能力。 发展各种耐水量、水质、毒物、酸碱冲击能力强的工艺,提高出水水质的稳定性,比如AB工艺、SBR 工艺和固定化微生物法等,都在耐冲击负荷能力方面有大的改进。 开发生物处理的细菌系列,对不同污染物寻求高效特性菌,在组合工艺中每一阶段培植特征菌,尽可能提高设备中主体单元的菌浓度,是实施生物处理法的关键所在。 与物理化学方法相结合发展多元组合工艺,比如活性炭生物膜法、生物絮凝法、A/O 工艺和活性生物滤池等,在去除难降解物质和生物脱氮方面都有比较理想的效果。 设备发展的新理念主要体现在传统设备的改进、新材料的应用、设备的集成化和自动控制技术的提高等方面,新设备在结构上有很多的突破,在关键的部件上应用了许多新材料,并且各类设备在自动控制技术方面具有极大的提高,在新型设备中应用各种流量计、浓度计、粒度测量仪和各种传感器,使设备成为动态仪器化处理装置,大大提高了设备的自动化程度和工作效率。在许多关键设备上以小型高效设备取代传统大型设备,还使微生物处理、加药混合化学处理、凝聚与沉降、浓缩和过滤成为一体,用小巧紧凑的模块式组合设备取代传统设备用于水处理中。 由于生物处理工艺的内容和范围很广,而且发展也很迅速,国内外许多行业开发出生物处理工艺新技术和新产品,尤其是研究开发了对高浓度有机废水、生物难降解物质、氮磷营养物质等能够实现有效去除的新工艺和新方法,是当今废水处理领域的热点。生物处理技术因其独特的优点,将在今后进一步得以充实和完善。

纤维素改性材料的发展与应用

纤维素改性材料的发展与应用 前言:本文主要介绍纤维素改性材料的应用。天然纤维素来源丰富、价格低廉、是可再生且环境友好的高分子材料,其改性纤维素技术及其应用越来越受到重视。纤维素改性技术的应用前景广阔,其在环境保护、资源充分利用、生物化工等众多领域都发挥着重要的价值,适应人类充分利用自然资源,与自然环境和谐相处的发展趋势。因此,对纤维素改性材料的研究与应用也是现代科学家研究的重点。 关键字:纤维素;改性材料;应用;发展 主要内容:纤维素是地球上最丰富、可以恢复的天然资源具有价廉、可降解、对环境不产生污染等特点。因此世界各国都十分重视对纤维素的研究与开发。纤维素分子的结构式为(C6H10O5)n 是由很多D-吡喃葡萄糖彼此以B—1—4苷键连接而成的线型分子,每个葡萄糖单元中有3个极性羟基。纤维素这种有大量羟基存在,并于分子链间和分子内部广泛形成氢键的结构,极大地影响了其反应活性。为了使之达到人们所预期的吸附功能,必须对纤维素结构进行改性。通过改性后的纤维素适用范围更大,功能更强。而在对纤维素进行改性之前,由于纤维素本身的特点,通常需要对纤维素进行活化或溶胀处理。 纤维素的改性方法: 纤维素是由许多β-D-葡萄糖分子脱水缩合而成不分枝,β-葡萄糖分子借β-1,4 -糖苷连接纤维素的这一结构特点使得纤维素在经过适当的预处理后,可以通过一系列的化学改性反应制取不同用途的功能高分子材料。按其反应方法不同大致可分为氧化反应,酯化、醚化反应,亲核取代反应,接枝共聚改性和交联5种。 1、氧化反应。纤维素完全氧化的最终产物是二氧化碳和水,但是部分氧化作用可以把新的官能团——醛基、酮基、羧基或烯醇基等引入纤维素大分子,生成不同性质的水溶性或不溶性的氧化物称之为氧化纤维素。其中,以纤维素的选择性氧化反应,如高碘酸盐攻击C2或C3生成高还原性的二醛基的选择性氧化反应受到人们的高度重视。因为二醛纤维素DAC是制备不含葡萄糖环骨架的纤维素衍生物的好原料,利用高分子化学反应,二醛纤维素分子中的醛基可以方便地转变为其他官能团,这样便可得到具有新功能和新用途的纤维素衍生物。将二醛纤维素进一步氧化,可得到羧酸纤维素。羧酸纤维素在氢氧化钠中处理、可转变为-COONa型,呈弱碱性,可用于酸性气体的吸附。此外,作为生物医用高分子材料具有优良的水溶性和抗凝血性,可用于血液透析、血浆分离及人工肾等方面,羧酸纤维素还是一种优良的贵重金属提取分离螯合剂。 2、酯化、醚化反应。纤维素的酯、醚化反应是最为重要的纤维素衍生化反应,纤维素分子链上的羟基可与酸、酸酐、酰卤等发生反应生成酯,与烷基化试剂反应生成纤维素醚,于本世纪五、六十年代相继实现工业化。纤维素酯中,以纤维素硝酸酯、纤维素醋酸酯和纤维素黄原酸酯最为普遍和重要。目前已广泛应用于涂料、日用化工、制药、纺织、塑料、烟草、粘合剂、膜科学等工业部门和研究领域中。在纤维素醚产品中,以羧甲基纤维素(CMC)、羟乙基纤维素(HEC)、羟丙基纤维素(HPC)、羟丙基甲基纤维素(HPMC)等为代表,其产品也已商品化。在纤维素酯、醚的应用研究中,纤维素酯的银盐可作抗菌剂,纤维素酯与聚苯胺复合,可制备透明、高导电性材料。何永炳等人利用棉纤维碱化后与环氧氯丙烷反应进行醚化 再与乙二胺反应制得了含氮纤维素衍生物。 通常根据各取代基的种类、电离性以及溶解度的差异,将纤维素醚分类:取代基种类,分单一醚类,有烷基醚(如甲基纤维素、乙基纤维素)、羟烷基醚(如羟乙基纤维

微生物纤维素的生物合成及其应用前景

微生物纤维素的生物合成及其应用前景 3 周 媛 三峡大学天然产物研究与利用湖北省重点实验室(宜昌443002) 3 基金项目:湖北省教育厅重点项目(2000B14014) 作者简介:周 媛(1956~),女,教授。 一般认为合成纤维素是植物特有的 功能,的确,自然界的纤维素绝大部分是由植物产生的。纤维素是地球上产量最大的天然聚合体,其产量达到1011t/年,广泛存在于各种高级植物中,也存在于一些低等植物、细菌和个别低等动物中,如海洋中生长的一些绿藻和某些海洋低等动物体中也含有纤维素。1 微生物纤维素的性质 传统的食醋酿造过程中,常在醪液表面上生成类似凝胶膜状物,称为菌膜。早在1886年,英国人B rown 等利用化学分析方法确定了这类物质为纤维素。后来,确定了它的组成和结构与植物纤维素没有明显的不同。但是醋酸菌所产生的纤维素是纯净的,即以纯纤维素组成的形式存在,而高等植物产生的纤维素都掺杂着木质素、半纤维素和其他杂质,其存在形式是纤维素、木质素和半纤维素组成的三级立体结构。 因此,醋酸菌产生的纤维素不同于自然界广泛存在的纤维素,醋酸菌纤维素具有独特的性质。1.1 高纯度、高结晶度、高重合度醋酸菌纤维素纯度高、结晶度高、重合度高,并且以单一纤维存在,这样在制备微晶纤维素(m icrocrysta lline cellulo se )时非常便利,微晶纤维素是医药产品制 剂的优良辅料。目前微晶纤维素的生产是将天然细纤维,先用浓碱(17.5%)室温处理,收集不溶部分,再用浓盐酸煮沸,去除其中的无定形部分,余下结晶部分经干燥、粉碎得到的聚合度约200的微晶纤维素。这一处理过程环境污染严重。当然,醋酸菌纤维素无须用浓碱和浓酸如此处理。 1.2 极强的水结合性 微生物纤维素的纤维直径在0.01μm ~0.1μm 之间,它的表面积是植物纤维素的300倍,因此它就具有比植物纤维更强的吸水性、粘稠性,它能结合比自身干重大60~700倍的水,而棉花或其他木植物纤维素要达到这一水平就需要经过一系列的工序加以改造后才能实现,因此成本也大幅度提高。 1.3 极佳的抗撕强度和形状维持能力 微生物纤维素的弹性模数为一般纤维的数倍至10倍以上,并且抗撕强度高。微生物纤维素膜的抗撕能力比聚乙烯膜和聚氯乙烯膜要强5倍。日本北海道大学地球环境科研所的Nobuo Sakairi,H isash i A sano,M asto O gawa 等人在《木醋杆菌连续培养过程中微生物纤维素直接收获法》一文中报道,该培养法获得的纤维素再经处理,其杨氏模量最大为106g /den ie r,它们的平均值为90.4g /

乙二醇单甲醚

乙二醇单甲醚 1 基本信息 中文名称:2-甲氧基乙醇、乙二醇单甲醚、乙二醇一甲醚、甲基溶纤剂、甲氧基乙醇、 羟乙基甲醚 英文名称:2-Methoxyethanol 别名名称:Ethylene glycol Ethylene glycol monomethyl ether Methyl cellosolve Methoxyethanol 分子式:C3H8O2 分子量:76.09 CAS号:109-86-4 MDL号:MFCD00002867 EINECS号:203-713-7 RTECS号:KL5775000 BRN号:1731074 PubChem号:24857158 2 物性数据 性状:无色透明液体 沸点(ºC):124.5 熔点(ºC):-85.1 相对密度(g/mL,20/4ºC):0.9663 相对密度(g/mL,25/4ºC):0.953230 相对蒸汽密度(g/mL,空气=1):2.62 折射率(n20ºC):1.4028 折射率(n25ºC):1.4013 黏度(mPa·s,20ºC):1.72 黏度(mPa·s,25ºC):1.60 闪点(ºC,闭口):43 闪点(ºC,开口):461 燃点(ºC):288 蒸发热(KJ/mol,b.p.):39.48 燃烧热(KJ/mol):1844.7 比热容(KJ/(kg·K),25ºC,定压):2.20 电导率(S/m,20ºC):1.09×10-6 蒸气压(kPa,25ºC):1.3 蒸气压(kPa,27ºC):1.3 蒸气压(kPa,56ºC):6.7

羟丙基甲基纤维素(HPMC)生产工艺

羟丙基甲基纤维素(HPMC)生产工艺 反应原理:羟丙基甲基纤维素的生产采用氯甲烷和环氧丙烷作为醚化剂, 其化学反应方程是: Rcell –OH(精制棉)+ NaOH(片碱、氢氧化钠)+ CH3Cl (氯甲烷)+ CH2OCHCH3(环氧丙烷)→Rcell - O - CH2OHCHCH3 (羟丙基甲基纤维素)+ NaCl (氯化钠)+ H2O (水) 化学结构式为: 工艺流程:精制棉粉碎---化碱---投料---碱化---醚化---溶剂回收及洗涤---离心分离---干燥---粉碎---混料---成品包装1:生产羟丙基甲基纤维素的原料及辅料 主要原料为精制棉,辅助材料为氢氧化钠(片碱)、环氧丙烷、氯甲烷、醋酸、甲苯、异丙醇、氮气。(精制棉粉碎的目的:通过机械能破坏精制棉的聚集态结构,以降低结晶度和聚合度,增加其表面积。) 2:精确计量与原料质量控制 在设备一定的前提下,任何主副原材料的质量及加入量和溶剂的浓度比例都直接影响产品的各项指标。生产过程体系中含有一定量的水,水与有机溶剂并非完全互溶,水的分散度影响碱在体系中分布。若没有充分搅拌,则对纤维素均匀碱化与醚化不利。

3:搅拌与传质传热 纤维素碱化、醚化都是在非均相(利用外力搅拌均匀)条件下进行的。水、碱、精制棉及醚化剂在溶剂体系中的分散与相互接触是否充分均匀,都会直接影响碱化、醚化效果。碱化过程搅拌不匀,会在设备底部产生碱结晶而沉淀,上层浓度低碱化不够充分,结果是醚化结束后体系还存在大量自由碱,但是纤维素本身碱化不够充分,产品取代不均匀,从而导致透明度差,游离纤维多,保水性能差,凝胶点也低,PH值偏高。 4:生产工艺(淤浆法生产过程) (1:)向化碱釜内加入规定量的固体碱(790Kg)、水(系统总水量460Kg),搅拌升温至80度恒温40分钟以上,固态碱完全溶解(2:)向反应釜加入6500Kg的溶剂(溶剂中异丙醇与甲苯的比值为15/85左右);将化好的碱压入反应釜,压碱后向化碱釜喷淋200Kg溶剂以冲洗管道;反应釜降温至23℃,将粉碎精制棉(800Kg)加入,精制棉加入后喷淋600Kg溶剂开始碱化反应。粉碎精制棉加入必须在规定时间(7分钟)内完成(加入时间长短很重要)。精制棉一旦与碱溶液接触,碱化反应就开始了。加料时间太长,会因精制棉进入反应体系的时间不同而使碱化程度有差异,导致碱化不均匀,产品均匀性降低,同时会引起碱纤维素与空气长时间接触发生氧化降解,导致产品粘度下降。为得到不同粘度级别的产品,可在碱化过程中抽真空、充氮,也可加入一定量的抗氧剂(二氯甲烷)。碱化时间控制在120min,温度保持20-23℃ (3:)碱化结束,加入规定量的醚化剂(氯甲烷和环氧丙烷),升温至规定温度并在规定的时间内进行醚化反应。醚化条件:氯甲烷加入量950Kg,环氧丙烷加入量303Kg。加入醚化剂冷搅40分钟后升温,醚化一段温度56℃、恒温时间2.5h,醚化二段温度87℃,恒温2.5h。羟丙基的反应在30℃左右即能进行,50℃时反应速率大大加快,甲氧基化反应在60℃时缓慢,50℃以下更弱。氯甲烷和环氧丙烷的量、比例和时机以及醚化过程的升温控制,直接影响产品结构。

纤维素纳米纤维

纤维素纳米纤维 众所周知,植物的基本组成单位是细胞,其主要结构为纤维素纳米纤维,纤维素纳米纤维是拉伸纤维素链的半结晶纤维束。纤维素纳米纤维不仅纤细,而且纤维素分子链可以拉伸和结晶,所以其质量仅为钢铁的1/5,强度却是钢铁的5倍以上。另外,其线性热膨胀系数极小,是玻璃的1/50,而且其弹性模量在-200~200℃范围内基本保持不变。弹性模量约140GPa,强度2~3GPa。不同于石油基材料,作为生物基材料,更环保。 图1 纳米纤维素微观结构作为下一代工业材料或绿色纳米材料,目前已在全世界积极地开展有关制造和利用这种纤维素纳米纤维的研究。用木材浆粕等植物类纤维材料制造纤维素纳米纤维的各种方法相继被开发出来。在低浓度(约百分之几)下进行的浆粕纤维分解技术有高压高速搅拌方法、微射流法、水中逆流碰撞法、研磨机研磨法、冷冻粉碎法、超声波分丝法、高速搅拌法和空心颗粒粉碎法等。纤维素纳米纤维重要的特征是可以用所有的植物资源作为原料。除木材外,还可以从稻杆和麦杆等农业废弃物、废纸、甘蔗和马铃薯的榨渣,以及烧酒气体等的工业废弃物中制得直径为10~50nm的纳米纤维。如果有效利用轻薄且宽域分布的生物资源的特点,则可以制造和利用取自唾手可得资源的高性能纳

米纤维。日本等发达国家已经实现了纤维素纳米纤维的工业化生产。轻量、强度高的纤维素纳米纤维作为复合材料,可制造汽车零部件和家电产品外壳、建筑材料等;利用气体阻隔性可制造屏障薄膜;利用其透明性可制作显示器和彩色滤光器、有机EL基板、太阳能电池板等;利用耐热性可制造半导体封装材料和柔性基板、绝缘材料等;利用黏弹性能,可生产化妆品、药品、食品、伤口敷料如细胞培养基材、分离器和过滤器以及特殊功能纸张等。在石油工程领域,纳米纤维素凝胶可作为井下流体助剂,不发生体积收缩;可用于钻井液降滤失剂、页岩抑制剂、增稠剂等,改善相关流体的性能。《石油工程科技动态》所有信息编译于国外石油公司网站、发表的论文、专利等,若需转载,请注明出处!中国石化石油工程技术研究院战略规划研究所

相关文档