文档库 最新最全的文档下载
当前位置:文档库 › 计算书

计算书

山东建筑大学成人教育学院2007土木工程专业毕业设计

题目:某中学教学楼

设计期限:自2009年7月6日

至2009年 10 月 1 日

班级:

学生姓名:李素娟

学号:

指导教师:(结构)宿军勇

(施工)

目录

1引言 (1)

2建筑设计说明 (2)

2.1 工程概括 (2)

2.2 工程设计依据 (2)

2.3 建筑设计的目的和要求 (2)

2.4 建筑平面设计 (3)

2.5建筑剖面设计 (8)

2.6建筑体型和立面的设计 (8)

2.7构造设计 (9)

3结构设计说明 (11)

3.1 工程概况 (11)

3.2 设计主要依据和资料 (11)

3.3 结构设计方案及布置 (13)

3.4 变形缝的设置 (13)

3.5 构件初估 (13)

3.6 基本假定与计算简图 (14)

3.7 荷载计算 (14)

3.8 侧移计算及控制 (14)

3.9 内力计算及组合 (15)

3.10 基础设计 (15)

3.11 施工材料 (15)

3.12 施工要求及其他设计说明 (16)

4 设计计算书 (16)

4.1 结构布置及计算简图 (17)

4.2 荷载计算 (19)

4.3 地震作用计算 (30)

4.4 竖向荷载作用下框架内力计算 (41)

4.5 风荷载计算 (56)

4.6 内力组合 (58)

4.7 截面设计 (61)

4.8 楼板设计 (69)

4.9 纵向连续梁设计 (94)

5. 施工组织及技术设计

参考文献…………………………………………………………………………

3 结构设计说明

3.1 工程概况

某中学教学楼,设计要求建筑面积约2000--4000m2,3-4层。经多方论证,初步确定设为四层,结构为钢筋混凝土框架结构。

3.2 设计主要依据和资料

3.2.1 设计依据

a) 国家及江苏省现行的有关结构设计规范、规程及规定。

b) 本工程各项批文及甲方单位要求。

c) 本工程的活载取值严格按《建筑结构荷载规范》(GB50009-2001)执行。

3.2.2 设计资料

1 房屋建筑学武汉工业大学出版社

2 混凝土结构(上、下)武汉理工大学出版社

3 基础工程同济大学出版社

4 建筑结构设计东南大学出版社

5 结构力学人民教育出版社

6 地基与基础武汉工业大学出版社

7 工程结构抗震中国建筑工业出版社

8 简明建筑结构设计手册中国建筑工业出版社

9 土木工程专业毕业设计指导科学出版社

10 实用钢筋混凝土构造手册中国建筑工业出版社

11 房屋建筑制图统一标准(BG50001-2001)中国建筑工业出版社

12 建筑结构制图标准(BG50105-2001)中国建筑工业出版社

13 建筑设计防火规范(GBJ16—87)中国建筑工业出版社

14 民用建筑设计规范(GBJI0I8-7)中国建筑工业出版社

15 综合医院建筑设计规范(JGJ49-88)中国建筑工业出版社

16 建筑楼梯模数协调标准(GBJI0I-87)中国建筑工业出版社

17 建筑结构荷载规范(GB5009-2001)中国建筑工业出版社

18 建筑结构可靠度设计统一标准(GB50068-2001)中国建筑工业出版社

19 混凝土结构设计规范(GB50010—2002)中国建筑工业出版社

20 地基与基础设计规范(GB5007-2002)中国建筑工业出版社

21 建筑抗震设计规范(GB50011—2001)中国建筑工业出版社

22 砌体结构中国建筑工业出版社

23 简明砌体结构设计施工资料集成中国电力出版社

24 土木工程专业毕业设计指南中国水利水电出版社

25 土建工程图与AutoCAD 科学出版社 26 简明砌体结构设计手册 机械工业出版社 27 砌体结构设计手册 中国建筑工业出版社 28 砌体结构设计规范(GB50010—2002) 中国建筑工业出版社

本工程采用框架结构体系,抗震等级为四级。本工程耐火等级为二级,其建筑构件的耐火极限及燃烧性能均按民用建筑设计规范(GBJI0I8-7)执行.

全部图纸尺寸除标高以米为单位外均以毫米为单位。本工程结构图中所注标高均为结构标高。

3.3 结构设计方案及布置

钢筋混凝土框架结构是由梁,柱通过节点连接组成的承受竖向荷载和水平荷载的结构体系。墙体只给围护和隔断作用。框架结构具有建筑平面布置灵活,室内空间大等优点,广泛应用于电子、轻工、食品、化工等多层厂房和住宅、办公、商业、旅馆等民用建筑。因此这次设计的成集中学教学楼采用钢筋混凝土框架结构。

按结构布置不同,框架结构可以分为横向承重,纵向承重和纵横向承重三种布置方案。 本次设计的教学楼采用横向承重方案,竖向荷载主要由横向框架承担,楼板为预制板时应沿横向布置,楼板为现浇板时,一般需设置次梁将荷载传至横向框架。横向框架还要承受横向的水平风载和地震荷载。在房屋的纵向则设置连系梁与横向框架连接,这些联系梁与柱实际上形成了纵向框架,承受平行于房屋纵向的水平风荷载和地震荷载。

3.4变形缝的设置

在结构总体布置中,为了降低地基沉降、温度变化和体型复杂对结构的不利影响,可以设置沉降缝、伸缩缝和防震缝将结构分成若干独立的单元。

当房屋既需要设沉降缝,又需要设伸缩缝,沉降缝可以兼做伸缩缝,两缝合并设置。对有抗震设防要求的的房屋,其沉降缝和伸缩缝均应该符合防震缝的要求,并进可能做到三缝合一。

3.5 构件初估

3.5.1 柱截面尺寸的确定

柱截面高度可以取()1/151/20h H =-,H 为层高;柱截面宽度可以()12/3b h =-。选定柱截面尺寸为500 mm ×500mm 3.5.2 梁尺寸确定

框架梁截面高度取梁跨度的l/8~l/12。该工程框架为纵横向承重,根据梁跨度可初步确定框架梁300mm ×600mm

3.5.3 楼板厚度

楼板为现浇双向板,根据经验板厚取130mm。

3.6 基本假定与计算简图

3.6.1 基本假定

第一:平面结构假定:该工程平面为正交布置,可认为每一方向的水平力只由该方向的抗侧力结构承担,垂直于该方向的抗侧力结构不受力。

第二:由于结构体型规整,布置对称均匀,结构在水平荷载作用下不计扭转影响。

3.6.2 计算简图

在横向水平力作用下,连梁梁对墙产生约束弯矩,因此将结构简化为刚结计算体系,计算简图如后面所述。

3.7荷载计算

作用在框架结构上的荷载通常为恒载和活载。恒载包括结构自重、结构表面的粉灰重、土压力、预加应力等。活荷载包括楼面和屋面活荷载、风荷载、雪荷载、安装荷载等。

高层建筑水平力是起控制作用的荷载,包括地震作用和风力。地震作用计算方法按《建筑结构抗震设计规范》进行,对高度不超过40m以剪切为主且质量和刚度沿高度分布比较均匀的结构,可采用底部剪力法。

竖向荷载主要是结构自重(恒载)和使用荷载(活载)。结构自重可由构件截面尺寸直接计算,建筑材料单位体积重量按荷载规范取值。使用荷载(活荷载)按荷载规范取值,楼面活荷载折减系数按荷载规范取用。

3.8 侧移计算及控制

框架结构的侧移由梁柱杆件弯曲变形和柱的轴向变形产生的。在层数不多的框架中,柱轴向变形引起的侧移很小,可以忽略不计。在近似计算中,一般只需计算由杆件弯曲引起的变形。

当一般装修标准时,框架结构在地震作用下层间位移和层高之比、顶点位移与总高之比分别为1:650,1:700。

框架结构在正常使用条件下的变形验算要求各层的层间侧移值与该层的层高之比不宜超过1/550的限值。

3.9 内力计算及组合

3.9.1 竖向荷载下的内力计算

竖向荷载下内力计算首先根据楼盖的结构平面布置,将竖向荷载传递给每榀框架。框架

结构在竖向荷载下的内力计算采用分层法计算各敞口单元的内力,然后在将各敞口单元的内力进行叠加;连梁考虑塑性内力重分布而进行调幅,按两端固定进行计算。

3.9.2 水平荷载下的计算

利用D值法计算出框架在水平荷载作用下的层间水平力,然后将作用在每一层上的水平力按照该榀框架各柱的刚度比进行分配,算出各柱的剪力,再求出柱端的弯矩,利用节点平衡求出梁端弯矩。

3.9.3 内力组合

第一:荷载组合。荷载组合简化如下:

(1)恒荷载+活荷载、(2)恒荷载+风荷载、(3)恒荷载+活荷载+风荷载、(4)恒荷载+地震荷载+活荷载。

第二:控制截面及不利内力。框架梁柱应进行组合的层一般为顶上二层,底层,混凝土强度、截面尺寸有改变层及体系反弯点所在层。

框架梁控制截面及不利内力为:支座截面,-M

max ,V

max

,跨中截面,M

max

框架柱控制截面为每层上、下截面,每截面组合:Mmax及相应的N、V,N

max

及相应M、V,

N

min

及相应M、V。

3.10 基础设计

在荷载作用下,建筑物的地基、基础和上部结构3部分彼此联系、相互制约。设计时应根据地质资料,综合考虑地基——基础——上部结构的相互作用与施工条件,通过经济条件比较,选取安全可靠、经济合理、技术先进和施工简便的地基基础方案。根据上部结构、工程地质、施工等因素,优先选用整体性较好的独立基础。

3.11 施工材料

第一:本工程中所采用的钢筋箍筋为Ⅰ级钢,fy=210N/m㎡,主筋为Ⅱ级钢,

fy=300N/m㎡。

第二:柱梁钢筋混凝土保护层为35mm,板为15mm。

第三:钢筋的锚固和搭接按国家现行规范执行。

第四:本工程所有混凝土强度等级均为C30。

第五:墙体外墙及疏散楼梯间采用240厚蒸压灰砂砖。

第六:当门窗洞宽≤1000mm时,应采用钢筋砖过梁,两端伸入支座370并弯直钩;门窗洞宽≥1000mm时,设置钢筋混凝土过梁。

3.12 施工要求及其他设计说明

第一:本工程上部楼板设计时未考虑较大施工堆载(均布),当外荷载达到3.0Kn/m时,应采取可靠措施予以保护。

第二:本工程女儿墙压顶圈梁为240mm×120mm,内配4φ8,φ6@250,构造柱为240mm×240mm,内配4φ10,φ6@250,间隔不大于2000mm

第三;施工缝接缝应认真处理,在混凝土浇筑前必须清除杂物,洗净湿润,在刷2度纯水泥浆后,用高一级的水泥沙浆接头,再浇筑混凝土。

第四:未详尽说明处,按相关规范执行。

4 设计计算书

4.2 结构布置及计算简图

根据该房屋的使用功能及建筑设计的需求,进行了建筑平面、立面、及剖面设计其各层建筑平面剖面示意图如建筑设计图,主体结构4层,层高均为3.9m。

填充墙面采用240 mm厚的灰砂砖砌筑,门为木门,窗为铝合金窗,门窗洞口尺寸见门窗表。

楼盖及屋盖均采用现浇钢筋混凝土结构,楼板厚度取130mm,梁载面高度按梁跨度的1/12~1/8估算,由此估算的梁载面尺寸见表1,表中还给出柱板的砱强度等级。C30

(f

c =14.3N/mm2,f

t

=1.43N/mm2)

表1 梁截面尺寸

柱载面尺寸可根据式N=βFg

E n Ac≥N/[U

N

]fc估算表2查得该框架结构在30m以下,抚

震得级为三级,其轴压比值[U

N

]=0.9

表2 抗震等级分类

b=(1-2/3)h ,并按下述方法进行初步估算。

a ) 框架柱承受竖向荷载为主时,可先按负荷面积估算出柱轴力,再按轴心受压柱验算。考虑到弯矩影响,适当将柱轴力乘以1.2-1.4的放大系数。

b ) 对于有抗震设防要求的框架结构,为保证柱有足够的延性,需要限制柱的轴压比,柱截面面积应满足下列要求。

/A N fc λ≥

c) 框架柱截面高度不宜小于400mm,宽度不宜小于350mm 。为避免发生剪切破坏,柱净高与截面长边之比不宜大于4。

根据上述规定并综合考虑其他因素,设计柱截面尺寸取值统一取500?500mm 。 基础采用柱下条形基础,基础+距离室外地平0.5,室内外高差为0.45,框架结构计算简图如图所示,取顶层柱的形心线作为框架柱的轴线,梁轴线取至板底,2-4层柱高度即为层高3.9m ,底层柱高度从基础顶面取至一层板底,即h 1=3.9+0.45+0.5=4.85m 。框架计算简图见图1。

图1

框架计算简图

4.3 荷载计算

4.3.1 恒载标准值计算

屋面:刚性防水屋面(有保温层) :苏J01-2005 12/7

40厚C20细石砼内配直径4间距150双向钢筋 0.8 kN/m2

20厚1:3水泥砂浆找平 0.02x20=0.4kN/m2

70厚水泥防水珍珠岩块或沥青珍珠岩保温层

0.07x10=0.7 kN/m2

20厚1:3水泥砂浆找平层 0.02x20=0.4 kN/m2 100 厚结构层 0.1x25=2.5 kN/m2

12厚板底抹灰 0.012x20=2.5 kN/m2

合计 4.82kN/m2

楼面:

水磨石地面(10mm面层,20mm水泥砂浆打底,素水泥打底)

0.65kN/m2

130厚钢筋砼板25×0.13=3.25 kN/m2

12厚水泥沙浆0.012×20=2.5 kN/m2

合计 4.14 kN/m2

梁自重:

边跨梁 bXh=300×600mm

梁自重 25×0.3×(0.6-0.13)=3.75kN/m

抹灰层:12厚水泥砂浆

<0.012×(0.6-0.13)×2+0.012×0.3>×20=0.312kN/m 合计 4.062kN/m2

中间跨梁 bXh=250×500mm

梁自重 25×0.25×(0.5-0.13)=3.00kN/m 抹灰层:12厚水泥砂浆

<0.012×(0.5-0.13)×2+0.012×0.25>×20=0.26kN/m 合计 3.26kN/m2

柱自重:bXh=500×500mm

柱自重 25×0.50×0.50=6.25kN/m

抹灰层:12厚水泥砂浆 0.012×0.50×4×20=0.48kN/m

合计 6.73kN/m

外纵墙自重:

标准层:

纵墙(240灰砂砖)18×(3.9-0.5-1.8)×0.24=6.48kN/m

铝合金门窗 0.35×1.8 =0.63kN/m

水泥粉刷外墙面 0.36×(3.60-1.80)=0.756kN/m

水泥粉刷内墙面 0.36×(3.60-1.80)=0.756kN/m

合计 8.622kN/m2

底层:

纵墙(240灰砂砖)

18×(4.85-1.80-0.50-0.40)×0.24=9.288kN/m 铝合金门窗 0.35×1.8=0.63kN/m

釉面砖外墙面 0.5×(4.35-1.80-0.50)=1.025kN/m

水泥粉刷内墙面 0.756kN/m

合计 11.70kN/m 内纵墙自重:

标准层:

纵墙(240灰砂砖) 18×(3.90-0.50)×0.24=14.688kN/m

水泥粉刷墙面0.36×(3.90-0.5)×2.00=2.448kN/m

合计 17.136kN/m2

底层:

纵墙(240灰砂砖)

18×(4.85-0.50-0.40)×0.24=17.06kN/m 水泥粉刷墙面 0.36×3.90×2=2.808kN/m

合计 19.87kN/m 4.3.2 活荷载标准值计算

第一:面和楼屋面活荷载标准值

根据荷载规范查得:

上人屋面 2.02

m

kN 楼面:教室 2.02

kN

m 走道 2.52

kN

m

第二:雪荷载 0.42

kN

m

屋面活荷载与雪荷载不同时考虑,两者中取大值。

4.3.3 竖向荷载下框架受荷总图

本次设计的教学楼纵向柱距为 4.50m,横梁跨度为 6.90m,单区格板为 4.50m×6.90m。L1/L2=1.5<2所以按双向板传递荷载,板上荷载分配如图2所示。

图2 板面荷载分配图

图3 计算单元的选取

第一:A-B轴间框架

屋面板荷载:

板传至梁上的三角形和梯形荷载等效为均布荷载

恒载

15

4.82 6.3218.98/

28

kN m ????=

活载

15

2.0 6.327.88/

28

kN m ????=

楼面板荷载:

恒载

15

4.14 6.3216.30/

28

kN m ????=

活载

15

2.0 6.327.88/

28

kN m ????=

梁自重 4.06/

kN m

A-B 轴间框架梁均布荷载: 屋面梁 恒载=梁自重+板传荷载

4.0618.98

23.04/kN m

=+=

活载=板传荷载 7.88/kN m =

楼面梁 恒载=梁自重+板传荷载

4.0616.3011.136

31.496/kN m

=++=

活载=板传荷载 7.88/kN m =

第二:B-C 轴间框架梁均布荷载:

屋面板传荷载:

恒载 1

4.82 2.1210.122/2kN m ???=

活载 1

2.0 2.12 4.2/2

kN m ???=

楼面板荷载:

恒载 1

4.14 2.128.694/2kN m ???=

活载 1

2.5 2.12 5.25/2

kN m ???=

梁自重 3.26/kN m

B-C 轴间框架梁均布荷载: 屋面梁 恒载=梁自重+板传荷载

3.2610.122

13.38/kN m

=+=

活载=板传荷载 4.2/kN m =

楼面梁 恒载=梁自重+板传荷载+墙自重

3.268.69411.136

23.09/kN m

=++=

活载=板传荷载 5.25/kN m = 第三:C-D 轴间框架梁均布板荷载同A-B 轴 第四:A 柱纵向集中荷载计算 顶层柱:

女儿墙自重(做法:墙高 900mm,100mm 砼压顶)

30.240.918/250.10.24(1.220.24)0.55.808/KN m m m kN m

=??+??+?+?=

顶层柱恒载=梁自重+板传荷载+板传荷载

16.30

8.62(6.90.5) 3.26(6.90.5) 6.92

60.7320.8634.85

116.44kN

=+-+?-+

?=++=

15

2.0 6.3(6.90.50)25.2028

kN =????-=顶层柱活载

标准层柱:

标准层柱恒载=墙自重 +梁自重+板传荷载

1

8.62(6.90.50) 3.26(6.90.50)16.30 6.9

2

55.1620.8652.16128.19kN

=?-+?-+??=++=

=标准柱活载板传活载

()

6.90.5

7.8825.22

kN -=?

=

基础顶面恒载=底层外纵墙自重+基础梁自重

(6.90.5) 2.5(6.90.5)74.881890.88kN

?-+?-=+==11.70 第五:B 柱纵向集中荷载计算

顶层柱:

顶层柱恒载=梁自重+板传荷载

2315

3.26(6.90.50)

4.82 6.3(6.90.50)

28

1

4.82 2.1120.150.152

112.63kN

=?-+????-+???-?+?=()(6.9-0.50)

=20.86+60.73+31.04 顶层柱活载=板传活载 15152.0 6.3(6.90.50) 2.0 2.40.502828

25.29.634.8kN

=????-+????-=+=(6.9)

标准层柱:

标准层柱恒载=内纵墙自重+梁自重+板传荷载

15

17.14(6.90.50) 3.62(6.90.50) 4.14 6.3(6.90.50)

28

15

4.14 2.128

202.41kN

=?-+?-+????-+????=(6.9-0.50)

1515

2.0 6.3(6.90.50) 2.5 2.1 6.90.502828

25.210.535.7kN

=????-+????-=+=顶层柱活载()

基础顶面恒载=底层内总墙+基础梁自重

19.87(6.90.50) 2.5(6.90.50)127.1716143.17kN

=?-+?-=+= 结构在进行梁柱的布置时柱轴线与梁的轴线不重合,因此柱的竖向荷载对柱存在偏心。框架的竖向荷载及偏心距如图4所示。

图4 框架竖向荷载图

4.3.4 重力荷载代表值计算

结构的重力荷载代表值应取结构和构件自重标准值k G 加上各可变荷载组合值1

n

Qi ik

i Q ?=∑,

1n

k Qi ik

i G G Q ?==+∑

其中可变荷载为雪荷载 20.4/kN m

0.5Qi ?=

屋面活载 22.0/kN m 0

Q ?= 楼面活载:教室 22.0/kN m 1.0

Q ?=

走道 22.5/kN m (1) 屋面处的重力荷载代表值的计算

女儿墙的计算

'' 5.81(23.414.7)2442.72G g l kN

==?+?=女儿墙女儿墙

屋面板结构层及构造层自重的标准层

' 4.82(23.40.3)(14.70.3)1731.51G kN

=?+?+=屋面板

'250.50.5(1.950.13)20

228.75G kN =???-?=柱

顶层的墙重

1

'{8.62[(6.60.5)2(7.20.5)2(60.5)2(6.30.5)2(2.10.5)]

2

17.14[(6.60.5)2(7.20.5)2(3.60.5)2(60.5)2(6.30.5)2

(6.30.5)8(2.10.5)4]}1095.99G kN

=??-?+-?+-?+-?+-+?-?+-?+-?+-?+-?+-?+-?=墙

'''''442.721713.51584.33228.751095.99

4065.30G G G G G G kN

=++++=++++=顶层梁女儿墙屋面板柱墙

(2) 其余层楼面处重力荷载代表值计算

'2191.98G kN =墙

' 3.39[(23.40.6)(14.70.6)]3.392415.31244.81G kN

=?+?+=??=楼面板

'250.50.5(3.90.13)20472.5G kN

=???-?=柱

''''2191.981244.81584.33472.54493.62G G G G G kN

=+++=+++=标准层墙楼面板粱柱 (3) 底层楼面处重力荷载代表值计算

3.9

4.850.1322'2191.982191.98 1.1263.90.13

2468.17G kN

+-=?=?-=墙

'1244.81G kN =楼面板 '584.33G kN =梁

'472.5 1.126532.04G kN

=?=柱

''''2468.171244.81584.33532.044843.4G G G G G kN =+++=+++=标准层墙楼面板粱柱

(4) 屋顶雪荷载标准值

0.40(23.40.6)(14.70.6)0.402415.3146.88Q q S kN

=?=?+?+=??=雪雪

(5) 楼面活荷载标准值

2.02

3.713.2 2.523.7 2.6

625.68154.05779.73G q S q S kN

=?+?=??+??=+=楼面教教走道走道

(6) 总重力荷载标准值

0.5EW G =+??屋面处屋面处结构和构件自重雪荷载标准值

=4065.30+0.5146.88 =4138.74kN

0.5779.930.5779.93EW EW G G =+??=+??楼面处底层楼面处结构自重活荷载标准值 =4843.40+0.5 =5233.27kN

标准层楼面处结构自重活荷载标准值 =4493.62+0.5 =4883.6kN

4.4 地震作用计算

4.4.1 横向框架侧移刚度计算

横梁线刚度ib计算过程见下表4,柱线刚度ic计算见表5。

取BC跨梁的相对线刚度为1.0,则其他为:

AB 跨 BC跨 1层柱 2-4层柱

相对刚度I 0.69 1.0 0.43 0.54

框架梁柱的相对线刚度如图4,作为计算各节点杆端弯矩分配系数的依据。

设计说明书与计算书示例

目录 第一部分设计说明书 第1章绪论 (6) 1.1水资源状况 (6) 1.1.1世界水资源状况 (6) 1.1.2中国水资源状况 (6) 1.2 我国城市污水处理现状及存在的一些问题 (6) 1.2.1 我国城市污水处理现状 (6) 1.2.2 ,,,,,,,,, ................................................................... 错误!未定义书签。 1.3 ,,,,,,,, (6) 1.4 ,,,,,,,,, (6) 1.5 ,,,,,,,,,,,, (6) 1.5.1 传统活性污泥法 (6) 1.5.2 AB法 (6) 1.5.3 SBR法 (6) 1.5.4 氧化沟法 (6) 1.5.5 , ........................................................................... 错误!未定义书签。 1.5.6 ,,,,,, (7) 1.5.7 倒置A2/O法 (7) 1.6 生物脱氮、除磷的技术新发展 (7) 1.6.1 生物脱氮新技术 (7) 1.6.2 除磷脱氮新技术 (7) i

第2章设计资料 (8) 2.1设计题目 (8) 2.2工程概况 (8) 2.2.1 地理位置及地势 (8) 2.2.2 .. (8) 2.2.3 . (8) 2.3 设计水质资料 (8) 2.3.1 污水厂设计进水水质 (8) 2.3.2 设计出水水质 (8) 2.4 设计内容 (8) 2.5. (8) 第3章设计方案的确定 (9) 3.1污水处理程度 (9) 3.2 设计水量及规模 (9) 3.3 水质特点 (9) 3.4 ..... .. (9) 3.5 污水处理设计方案选择 (9) 3.6污泥处理设计方案的选择 (9) 3.7 设计工艺流程的确定 (9) 3.8 主要构筑物类型的选择 (10) 3.8.1 污水提升泵房 (10) 3.8.2 沉砂池 (10) i i

8m钢筋混凝土空心板简支梁桥上部结构计算书完整版

8m钢筋混凝土空心板简支梁桥 上部结构计算书 7.1设计基本资料 1.跨度和桥面宽度 标准跨径:8m(墩中心距) 计算跨径:7.6m 桥面宽度:净7m(行车道)+2×1.5m(人行道) 2技术标准 设计荷载:公路-Ⅱ级,人行道和栏杆自重线密度按照单侧8kN/m计算,人群荷载取3kN/m2 环境标准:Ⅰ类环境 设计安全等级:二级 3主要材料 混凝土:混凝土空心板和铰接缝采用C40混凝土;桥面铺装采用0.04m 沥青混凝土,下层为0.06m厚C30混凝土。沥青混凝土重度按23kN/m3计算,混凝土重度按25kN/m3计算。 钢筋:采用R235钢筋、HRB335钢筋 2.构造形式及截面尺寸 本桥为c40钢筋混凝土简支板,由8块宽度为1.24m的空心板连接而成。 桥上横坡为双向2%,坡度由下部构造控制

空心板截面参数:单块板高为0.4m ,宽1.24m ,板间留有1.14cm 的缝隙用于 灌注砂浆 C40混凝土空心板抗压强度标准值Mpa f ck 8.26=,抗压强度设计值 Mpa f cd 4.18=,抗拉强度标准值Mpa f tk 4.2=,抗拉强度设计值Mpa f td 65.1=, c40混凝土的弹性模量为Mpa E C 41025.3?= 图1 桥梁横断面构造及尺寸图式(单位:cm ) 7.3空心板截面几何特性计算 1.毛截面面积计算 如图二所示 2)-4321?+++=S S S S S A (矩形 2 15.125521cm S =??= 2 cm 496040124=?=矩形S 225.1475)5.245(cm S =?+= 2 35.2425.2421cm S =??=

厌氧池和DE氧化沟污水处理毕业设计计算书

X X 工业大学 毕业设计说明书 作者:XX 学号:XXXXXX 学院:土木工程学院 系(专业):给水排水工程 题目:我国水污染现状 及某市25万吨污水处理工程设计 指导者:XXX 讲师 评阅者: (姓名) (专业技术职务) 2016 年12 月

中文摘要

外文摘要

目录 中文摘要 (1) 外文摘要 (2) 1绪论 ................................................................................................................................. - 1 -1.1 污水处理厂的基础资料 ........................................................................................ - 1 -1.1.1设计资料 ................................................................................................................. - 1 -1.1.2水质特点 ................................................................................................................. - 1 -1.2我国水污染现状....................................................................................................... - 2 -1.3国内外研究现状....................................................................................................... - 4 -1.3.1研究现状 ................................................................................................................. - 4 -1.3.2处理工艺的比较.................................................................................................... - 5 - 1.4工艺流程的确定....................................................................................................... - 8 - 2 污水处理构筑物的设计计算................................................................................. - 10 -2.1 格栅........................................................................................................................... - 10 -2.1.1设计概述 ............................................................................................................... - 10 -2.1.2设计要点 ............................................................................................................... - 11 -2.1.3设计参数:........................................................................................................... - 12 -2.1.4设计计算 ............................................................................................................... - 12 -2.2 污水提升泵房设计计算 ...................................................................................... - 15 -2.2.1 泵房选择条件................................................................................................... - 15 -2.2.2 设计计算............................................................................................................ - 16 -2.3泵后细格栅的计算................................................................................................. - 17 -2.3.1设计参数:........................................................................................................... - 17 -2.3.2设计计算 ............................................................................................................... - 18 -

预应力张拉应力计算

一、控制张拉力 预应力钢绞线张拉控制力表 说明: 1.例如5φ指该钢绞线束由5根公称直径为的单根钢绞线组成;若使用OVM型锚具则通常表示为OVM15-5; 2.单根钢绞线的公称截面积一般为140mm2; 3.1t相当于10KN,张拉千斤顶的吨位可由控制张拉力换算出; 4.千斤顶驱动油泵的油表读数换算:钢绞线束的控制张拉力(N)/千斤顶油缸活塞面积(mm2); 二、张拉伸长值计算

1.预应力筋采用应力控制方法张拉时,应以伸长值进行校核,实际伸长值与理论伸长值的差值应控制在6%以内,即︱(△L实-△L理)/△L理︱<6% 2.理论伸长值的计算公式: 单端理论伸长值△L=(Pp×L)/(Ap×Ep) ①Pp——预应力筋的平均张拉力(N),直线筋取张拉端的拉力,两端张拉的曲线筋的平均张拉力计算如下: Pp= P(1-e-(κχ+μθ))/(κχ+μθ)式中:Pp ——预应力筋的平均张拉力(N); P——预应力筋张拉端的张拉力(N),在没有超张拉的情况下一般计算为:钢绞线--1395MPa×140mm2=195300N;若有超张拉则乘以其系数; x——从张拉端至计算截面的孔道长度(m),一般为单端长度;θ——从张拉端至计算截面曲线孔道部分切线的夹角之和(rad); k——孔道每米局部偏差对摩擦的影响系数,见下表;μ——预应力筋与孔道壁的摩擦系数,见下表;系数k及μ值表孔道成型方式 k μ钢丝束、钢绞线、光面钢筋带肋钢筋精轧螺纹钢筋预埋铁皮管道 --- 抽芯成型孔道 --- 预埋金属螺旋管道 ~ --- ②L——预应力筋的单端长度(mm),即总长的一半; ③Ap——预应力筋的截面面积(mm2),钢绞线为140 mm2; ④Ep——预应力筋的弹性模量(N/mm2),钢绞线为195×103N/mm2; 以上计算所得△L为单端理论伸长值,整束钢绞线的理论伸长值为:△L理=2△L 3.实测伸长值的计算: △L实=△L总-(△L初实-△L初理)-△L锚塞回缩 式中:△L总——张拉达到控制应力时测得的总伸长量; △L初实——张拉达到初应力(控制应力的10%~15%)时测得的实际伸长量; △L初理——初应力以下的推算理论伸长量(一般为△L理×10%);

midas简支梁桥计算书

1、模型简介 中梁模型图 弯矩 剪力

扭转(剪力最大) 扭转(扭转最大) 自振模态振型图

2、计算书 1. 设计规范 1.1. 公路工程技术标准(JTG B01-2003) 1.2. 公路桥涵设计通用规范(JTG D60-2004) 1.3. 公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004) 1.4. 公路桥涵地基与基础设计规范(JTG D63-2007) 1.5. 公路桥梁抗震设计细则(JTG/T B02-01-2008) 2.设计资料 2.1. 使用程序: MIDAS/Civil, Civil 2006 ( Release No. 1 ) 2.2. 截面设计内力: 3维 2.3. 构件类型: 全预应力 2.4. 公路桥涵的设计安全等级: 一级 2.5. 构件制作方法: 预制 3.主要材料指标 3.1. 混凝土 强度等级弹性模量 (MPa) 容重 (kN/m3) 线膨胀系数 标准值设计值 f ck (MPa) f tk (MPa) f cd (MPa) f td (MPa) C50 34500.00 25.00 1.000e-005 32.40 2.65 22.40 1.83 3.2. 预应力钢筋 预应力钢筋弹性模量 (MPa) 容重 (kN/m3) 线膨胀系数 f pk (MPa) f pd (MPa) f'pd (MPa) 预应力钢束195000.00 78.50 1.200e-005 1860.00 1260.00 390.00 3.3. 普通钢筋 普通钢筋弹性模量 (MPa) 容重 (kN/m3) f sk (MPa) f sd (MPa) f'sd (MPa) HRB335 200000.00 76.98 335.00 280.00 280.00 R235 210000.00 76.98 235.00 195.00 195.00 4.模型简介 4.1. 单元数量: 梁单元14 个 4.2. 节点数量: 15 个 4.3. 钢束数量: 3 个 4.4. 边界条件数量: 2 个 4.5. 施工阶段: 6 个 步骤名称 结构组边界组荷载组 激活钝化激活钝化激活钝化T梁预制结构组1 - 边界- 自重- 预应力N1 - - - - 预应力1 -

简支梁设计计算

第四章 简支梁(板)桥设计计算 第一节 简支梁(板)桥主梁内力计算 对于简支梁桥的一片主梁,知道了永久作用和通过荷载横向分布系数求得的可变作用,就可按工程力学的方法计算主梁截面的内力(弯矩M 和剪力Q ),有了截面内力,就可按结构设计原理进行该主梁的设计和验算。 对于跨径在10m 以内的一般小跨径混凝土简支梁(板)桥,通常只需计算跨中截面的最大弯矩和支点截面及跨中截面的剪力,跨中与支点之间各截面的剪力可以近似地按直线规律变化,弯矩可假设按二次抛物线规律变化,以简支梁的一个支点为坐标原点,其弯矩变化规律即为: )(42max x l x l M M x -= (4-1) 式中:x M —主梁距离支点x 处的截面弯矩值; m ax M —主梁跨中最大设计弯矩值; l —主梁的计算跨径。 对于较大跨径的简支梁,一般还应计算跨径四分之一截面处的弯矩和剪力。如果主梁沿桥轴方向截面有变化,例如梁肋宽度或梁高有变化,则还应计算截面变化处的主梁内力。 一 永久作用效应计算 钢筋混凝土或预应力混凝土公路桥梁的永久作用,往往占全部设计荷载很大的比重(通常占60~90%),桥梁的跨径愈大,永久作用所占的比重也愈大。因此,设计人员要准确地计算出作用于桥梁上的永久作用。如果在设计之初通过一些近似途径(经验曲线、相近的标准设计或已建桥梁的资料等)估算桥梁的永久作用,则应按试算后确定的结构尺寸重新计算桥梁的永久作用。 在计算永久作用效应时,为简化起见,习惯上往往将沿桥跨分点作用的横隔梁重力、沿桥横向不等分布的铺装层重力以及作用于两侧人行道和栏杆等重力均匀分摊给各主梁承受。因此,对于等截面梁桥的主梁,其永久作用可简单地按均布荷载进行计算。如果需要精确计算,可根据桥梁施工情况,将人行道、栏杆、灯柱和管道等重力像可变作用计算那样,按荷载横向分布的规律进行分配。 对于组合式梁桥,应按实际施工组合的情况,分阶段计算其永久作用效应。 对于预应力混凝土简支梁桥,在施加预应力阶段,往往要利用梁体自重,或称先期永久作用,来抵消强大钢丝束张拉力在梁体上翼缘产生的拉应力。在此情况下,也要将永久作用分成两个阶段(即先期永久作用和后期永久作用)来进行计算。在特殊情况下,永久作用可能还要分成更多的阶段来计算。 得到永久作用集度值g 之后,就可按材料力学公式计算出梁内各截面的弯矩M 和剪力Q 。当永久作用分阶段计算时,应按各阶段的永久作用集度值g i 来计算主梁内力,以便进行内力或应力组合。 下面通过一个计算实例来说明永久作用效应的计算方法。 例4-1:计算图4-1 所示标准跨径为20m 、由5片主梁组成的装配式钢筋混凝土简支梁桥主梁的永久作用效应,已知每侧的栏杆及人行道构件的永久作用为m kN /5。 图4-1 装配式钢筋混凝土简支梁桥一般构造图(单位:cm )

污水处理厂氧化沟设计计算

给水排水工程技术 毕业课程设计 乌鲁木齐市某地区排水工程 施工图预算 学年学期 班级 指导教师 姓名 学号 新疆学院 设备工程系

目录内容摘要 一、设计题目 二、设计任务书 三、污水处理厂的设计规模 四、污水处理程度的要求 五、设计内容 六、氧化沟的工艺流程图 七、设计计算 八、污水处理厂平面布置 九、污水处理厂高程计算 十、参考文献 十一、附图

内容摘要 本设计为策勒县污水处理厂工程工艺设计,污水处理厂规模为30240 m3,污水主要来源为生活污水和工业污水,主要采用氧化塘处理方法。污水处理厂处理后的出水达到污水综合排放标准(8978-96) 一、设计题目 新疆策勒县污水处理厂工艺设计 二、设计任务书 1、设计的任务和目的 毕业设计是一项重要的实践性教学环节,是培养学生应用所学专业理论知识解决工程实际问题、提高设计制图水平及使用各种技能资料能力的重要手段,通过毕业设计,使学生了解和熟悉排水工程设计的一般原则、步骤和方法;掌握污水处理厂的设计计算方法及设计说明、计算书的编制方法、施工图的绘制方法。 2、设计简介 本设计为给水排水工程技术专业专科毕业设计,是大学三年教学计划规定的最后一个实践性环节。本设计题目为策勒县污水处理厂工艺设计。在指导老师的指导下,在规定的时间内进行城市污水处理厂的设计。 3、设计内容 (1)、处理工艺流程选择 (2)、污水处理构筑物的设计 (3)、污水处理工艺施工图初步设计的绘制 4、设计依据 本设计根据给水排水工程技术专业毕业设计任务指导书、《给水排水设计手册》(第五册)、《水处理手册》《水处理设计手册》《给水排水设计手册(第二版)第1册》《给水排水常用数据手册(第二版)》《水处理工程技术》《给水排水设计手册》(第11册)《排水工程(第二版)》(下册)等进行设计。 设计原始资料

张拉力计算示例

张拉控制应力与油表读数换算示例 根据《公路施工手册》桥涵分册下册P117-P119计算。. 以预应力斜腿刚构钢束为例: 已知:预应力钢筋弹性模量Mpa 5 1095.1?=E P ,金属波纹管磨阻系数25.0=μ,孔道每米局部偏差对摩擦的影响系数K=0.0015.钢绞线采用mm s 2.15φ,单股截面面积2140mm Ag =,抗拉强度标准值Mpa f K 1860=P ,张拉控制应力Mpa f pk con 1395186075.075.0=?==σ。钢绞线钢束股数n=6股。 1、预应力的张拉力P ,按P118公式(13-28)计算: b n g k ???A ?=P 1000 1σ……………………(13-28) 式中:P-----预应力筋的张拉力,KN; k σ-----预应力筋的张拉控制应力,Mpa; Ag -----预应力筋的单股截面面积,2 mm ; n-----同时张拉预应力筋的股数; b-----超张拉系数,不超拉时为1.0。 代入数值得:KN b n g k 8.11710.11000 1614013951000 1=????=?? ?A ?=P σ 2、张拉力与油表读数换算 1#200T 千斤顶张拉控制预应力与0J0703796油表读数的换算: Y=0.0266X-0.3134 注:Y-----油表读数,单位Mpa X-----张拉控制预应力,单位KN ①当张拉控制应力为10%时 Y=0.0266*1171.8*10%-0.3134=2.8Mpa ②当张拉控制应力为30%时 Y=0.0266*1171.8*30%-0.3134=9.0Mpa ③当张拉控制应力为100%时 Y=0.0266*1171.8*100%-0.3134=30.9Mpa 同理,其它钢绞线张拉控制应力与油表读数换算见附表。

简支梁桥的设计计算

简支梁桥的设计计算 1.车轮荷载在板上是如何分布的? 答:作用在桥面上的车轮荷载,与桥面的接触面近似于椭圆,但为了便于计算,通常把接触面看错矩形,作用在桥面上的车轮荷载,与桥面的接触面近似于椭圆,为便于计算,把此接触面看作的矩形。车轮荷载在桥面铺装层中呈450角扩散到行车道板上。 2.梁桥横向力计算时,杠杆法的基本原理和使用条件是什么? 答:杠杆法基本原理是忽略了主梁之间横向结构的联系作用,即假设桥面班在主梁上断开,把桥面板看作沿横向支承在主梁上的简支梁获简支单悬臂梁。 杠杆法的适用条件:(1)双肋式梁桥;(2)多梁式桥支点截面 3.杠杆法计算荷载横向分布系数的步骤是什么? 答:(1)绘制主梁的荷载反力影响线; (2)确定荷载的横向最不利的布置; (3)内插计算对应于荷载位置的影响线纵标ηi ; (4)计算主梁在车道荷载和人群荷载作用下的横向分布系数; 4.多跨连续单向板的内力计算时,计算弯矩和剪力有哪些需要注意的地方? 答: 1.弯矩首先计算出跨度相同的简支板在恒载和活载作用下的跨中弯矩M0,再乘以相应的修正系数,得支点、跨中截面的设计弯矩,弯矩修正系数可根据板厚t和梁肋高度h的比值(即主梁的抗扭能力的大小)来选用。 2.剪力计算单向板支点剪力时,一般不考虑板和主梁的弹性固结作用,荷载应尽量靠近梁肋边缘布置。计算跨径取用梁肋间的净跨径。考虑相应的有效工作宽度沿桥梁跨径方向的变化,计算出荷载强度q和q',将每米板宽承受的分布荷载分为矩形部分A1 和三角形部分A2 。对于跨内只有一个车轮荷载的情况,由恒载及活载引起的支点剪力Qs为:如行车道板的跨径内不只一个车轮进入时,需计及其它车轮的影响。 5.桥梁支座必须满足那些方面的要求? 答:(1)首先具有足够的承载力(包括恒载和活载引起的竖向力和水平力),以保证安全可靠地传递支座反力;

预应力空心板梁张拉控制力、伸长值计算书

预应力空心板梁张拉控制力、伸长值 计 算 书 一、 说明: (1)本工区有小桥三座全为20m 空心板梁,空心板梁采用后张法,两端张拉,张拉程序为:0→初应力(10%×σk )初应力→(20%×σk )→103%σk (持荷2分钟)→σk →锚固; (3)张拉机具:采用YM1500-4、5锚具,千斤顶采用YDCW-1500型钢铰线孔道采用金属波纹管制孔,(千斤顶、预应力钢铰线,锚具及夹片等检测,标定报告附后。 二、 计算: 根据实际检测:预应力钢铰线公称直径为15.24mm/根,平均伸长 率δ(%)为5.67%,平均弹性模量E p =1.953×105Mpa ,截面积A p (mm 2)为140mm 2,极限抗拉强度标准值(RY )平均1953.3 Mpa ,极限荷截273.7KN ,后张法预应力筋理论伸长值及预应力筋平均张拉力计算取:张拉控制力20m 中板采用设计值781.2KN ×103%=804.6KN,20边板采用设计值976.5KN×103%=1005.8KN ,弹性模量1.953×105Mpa ,截面积140mm 。 计算公式取自人民交通出版社2000年出版《公路桥涵施工技术规范》的P 129、P 339。 理论伸长值计算公式: Ep Ap L Pp L ??= ? 平均张拉力计算公式:μθ μθ+-+-=kx e P p kx p ] 1[)(

式中:ΔL ——预应力筋理论伸长值(mm ) P p ——预应力筋平均张拉力(N ) L ——预应力筋的长度(mm ) A p ——预应力筋的截面积(mm 2) E p ——预应力筋的弹性模量(N/mm 2) P ——预应力筋张拉端的张拉力(N ) X ——从张拉端至计算截面的孔道长度(M ) θ——从张拉端至计算截面曲线孔道部分切线的夹角之和(rad ) K ——孔道每米局部偏差对摩擦的影响系数(取0.0015) μ——预应力筋与孔道壁的摩擦系数(取0.25) 1、 20M 空心板理论伸长值计算: <1> 20M 中板(根据设计图纸已知L 1=9.882+0.55=10.432m L 2=9.83+0.55=10.38m ) (N 1): N p e p 780185180 12225.0882.90015.0] 1[804600)18012225.0882.90015.0(==??+?-???+?-ππ (N 2): N p e p 7955771802225.083.90015.0]1[804600)1802225.083.90015.0(==??+?-???+?-ππ 理论伸长值: (N 1): mm L 4.7410953.114041043278018551=????=? (N 2):mm L 5.7510953.1140410380 79557752=????=? <2> 20M 边板(根据设计图纸已知L 1=9.882+0.55=10.432m

简支梁桥设计

桥梁工程课设——简支梁桥设计 1. 基本设计资料 1) 跨度和桥面宽度 (一) 标准跨径:35m (墩中心距)。 (二) 计算跨径:34.5m (三) 主梁全长:34.96m (四) 桥面宽度:净14m (行车道)+2×1m (人行道) 2) 技术标准 设计荷载:公路—I 级,人群荷载为23m KN 。 设计安全等级:一级。 3) 主要材料 (一) 混凝土:混凝土简支T 形梁及横梁采用C40混凝土,容重为3 26m KN ; 桥面铺装为厚0.065~0.17m 的防水混凝土,容重为325m KN 。 (二) 钢材:采用R235钢筋、HRB400钢筋。 4) 构造形式及截面尺寸(见图1-1和1-2) 如图所示,全桥共由9片主梁组成,单片T 形梁高为2m ,宽为1.6m ,桥上 横坡为双向1.5%,坡度由混凝土桥面铺装控制;设有五根横梁。 图1-1 桥梁横断面图

图1-2 主梁纵断面图 2. 主梁的荷载横向分布系数计算 1) 跨中荷载横向分布系数计算 如前所述,本例桥跨内设有5道横隔梁,具有可靠横向连接,且承重结构的宽跨比为:5.0464.05.3416≤==l B ,故可以按照修正的刚性横梁法来绘制横向影响线和计算横向分布系数c m 。 (一) 计算主梁的抗弯和抗扭惯性矩I 和T I 计算主梁截面的重心位置x 翼缘板厚按平均厚度计算,其平均板厚为 cm h 13)1610(2 1 1=+?=

则,cm x 8.7020 20013)20160(10020200213 13)20160(=?+?-??+? ?-= 主梁抗弯惯性矩I 为 4 23238.24294296)8.70100(2002020020121)2138.70(13)20160(13)20160(121cm I =? ?? ???-??+??+-??-+?-?=对于T 形梁截面,抗扭惯性矩可近似按下式计算: i i m i i T t b c I ∑==1 式中 i b ,i t ——单个矩形截面的宽度和高度; i c ——矩形截面抗扭刚度系数,由表2-1可以查的 T I 的计算过程及结果见表2-2 既得4310825.5m I T -?= (二) 计算抗扭修正系数β 对于本例,主梁间距相同,将主梁近似看成等截面,则得 9682.06.153243.01210 825.5425.05.34911 12113 22 2=??????+=+ = -∑E E a EI GI nl i T β (三) 按修正偏心压力法计算横向影响线竖坐标值

第四章简支梁设计计算

第四章 简支梁(板)桥设计计算 第一节 简支梁(板)桥主梁内力计算 对于简支梁桥的一片主梁,知道了永久作用和通过荷载横向分布系数求得的可变作用,就可按工程力学的方法计算主梁截面的内力(弯矩M 和剪力Q ),有了截面内力,就可按结构设计原理进行该主梁的设计和验算。 对于跨径在10m 以内的一般小跨径混凝土简支梁(板)桥,通常只需计算跨中截面的最大弯矩和支点截面及跨中截面的剪力,跨中与支点之间各截面的剪力可以近似地按直线规律变化,弯矩可假设按二次抛物线规律变化,以简支梁的一个支点为坐标原点,其弯矩变化规律即为: )(42 max x l x l M M x -= (4-1) 式中:x M —主梁距离支点x 处的截面弯矩值; m ax M —主梁跨中最大设计弯矩值; l —主梁的计算跨径。 对于较大跨径的简支梁,一般还应计算跨径四分之一截面处的弯矩和剪力。如果主梁沿桥轴方向截面有变化,例如梁肋宽度或梁高有变化,则还应计算截面变化处的主梁内力。 一 永久作用效应计算 钢筋混凝土或预应力混凝土公路桥梁的永久作用,往往占全部设计荷载很大的比重(通常占60~90%),桥梁的跨径愈大,永久作用所占的比重也愈大。因此,设计人员要准确地计算出作用于桥梁上的永久作用。如果在设计之初通过一些近似途径(经验曲线、相近的标准设计或已建桥梁的资料等)估算桥梁的永久作用,则应按试算后确定的结构尺寸重新计算桥梁的永久作用。 在计算永久作用效应时,为简化起见,习惯上往往将沿桥跨分点作用的横隔梁重力、沿桥横向不等分布的铺装层重力以及作用于两侧人行道和栏杆等重力均匀分摊给各主梁承受。因此,对于等截面梁桥的主梁,其永久作用可简单地按均布荷载进行计算。如果需要精确计算,可根据桥梁施工情况,将人行道、栏杆、灯柱和管道等重力像可变作用计算那样,按荷载横向分布的规律进行分配。 对于组合式梁桥,应按实际施工组合的情况,分阶段计算其永久作用效应。 对于预应力混凝土简支梁桥,在施加预应力阶段,往往要利用梁体自重,或称先期永久作用,来抵消强大钢丝束张拉力在梁体上翼缘产生的拉应力。在此情况下,也要将永久作用分成两个阶段(即先期永久作用和后期永久作用)来进行计算。在特殊情况下,永久作用可能还要分成更多的阶段来计算。 得到永久作用集度值g 之后,就可按材料力学公式计算出梁内各截面的弯矩M 和剪力Q 。当永久作用分阶段计算时,应按各阶段的永久作用集度值g i 来计算主梁内力,以便进行内力或应力组合。 下面通过一个计算实例来说明永久作用效应的计算方法。

氧化沟工艺设计计算及说明

氧化沟工艺设计计算书 1.项目概况 处理水量Q=5万m 3/d ;进水水质BOD 为150mg/L ;COD 为300 mg/L ;SS 为250mg/L ; L mg TN L mg N NH /30,/304==-+ 。处理要求出水达到国家一级(B)排放标准即 COD ≤60 mg/L ,BOD 5≤20 mg/L ,SS ≤20mg/L ,L mg TN L mg N NH /20,/84≤≤-+ 。 2. 方案对比 三种方案优缺点比较如下表: 本方案设计采用氧化沟,氧化沟分两座,每座处理水量Q=2.5万m3/d 。下面是氧化沟 工艺流程图。 氧化沟工艺流程图 3. 设计计算

3.1设计参数 总污泥龄:20d MLSS=4000mg/L MLVSS/MLSS=0.7 MLVSS=2800mg/L 污泥产率系数(VSS/BOD 5)Y=0.6kg /(kg.d ) 3.2 工艺计算 (1)好氧区容积计算 出水中VSS=0.7SS=0.7×20=14mg/L VSS 所需BOD=1.42×14(排放污泥中VSS 所需得BOD 通常为VSS 的1.42倍) 出水悬浮固体BOD 5=0.7×20×1.42×(1-e -0.23× 5)=13.6 mg/ L 出水中溶解性Se=BOD 5=20-13.6 mg/ L=6.4mg/L %.795%100150 .4 61505=?-= 去除率BOD 好氧区容积:内源代谢系数Kd=0.05 35.77467 .04000)2005.01() 4.6150(25000206.0)1()(m X c Kd c Se So YQ V V =???+-???=+-= θθ好氧 停留时间 h h Q V t 7.442425000 7746.5 =?==好氧 校核: )/(17.05 .77467.0400025000)4.6150()(5d kgMLVSS kgBOD V X Se So Q M F V ?=???--=好氧 满足脱氮除磷的要求。 硝化校核:硝化菌比增长速率 105.020 1 1 -== = d c n θμ n f 为硝化菌在活性污泥中所占比例,原污水中BOD 5/TKN=150/30=5,此时对应n f =0.054 N kgNH kgVSS Y n -=+ 4/1.0(硝化菌产率系数) n q 为单位质量的硝化菌降解N NH -+ 4 的速率:5.01 .005 .0== =n n n Y q μ 实际硝化速率1 027.05.0054.0-=?=?=d q f r n n n

张拉计算方法

后张法预应力钢绞线伸长量的计算 与现场测量控制 预应力钢绞线施工时,采用张拉应力和伸长值双控,实际伸长值与理论伸长值误差不得超过6%,后张预应力技术一般用于预制大跨径简支连续梁、简支板结构,各种现浇预应力结构或块体拼装结构。预应力施工是一项技术性很强的工作,预应力筋张拉是预应力砼结构的关键工序,施工质量关系到桥梁的安全和人身安全,因此必须慎重对待。一般现行常接触到的预应力钢材主要:有预应力混凝土用钢绞线、PC光面钢丝、刻痕钢丝、冷拔低碳钢丝、精轧螺纹钢等材料。对于后张法预应力施工时孔道成型方法主要有:金属螺旋管、胶管抽芯、钢管抽芯、充气充水胶管抽芯等方法。本人接触多的是混凝土预应力钢绞线(PCstrand、1×7公称直径15,24mm,f pk=1860Mpa,270级高强底松弛),成孔方法多采用金属螺旋管成孔,本文就以此两项先决条件进行论述。 1 施工准备: 熟悉图纸:拿到施工图纸应先查阅施工说明中关于预应力钢绞线的规格,一般预应力钢束采用ASTMA416-270级低松弛钢绞线,其标准强度为f pk=1860Mpa,1×7公称直径15,24mm,锚下控制力为Δk= f pk Mpa。 根据施工方法确定计算参数: 预应力管道成孔方法采用金属螺旋管成孔,查下表确定K、μ取值:表1

ΔL= Pp×L Ap×Ep ΔL—各分段预应力筋的理论伸长值(mm); Pp—各分段预应力筋的平均张拉力(N); L—预应力筋的分段长度(mm); Ap—预应力筋的截面面积(mm2); Ep—预应力筋的弹性模量(Mpa); 《公路桥梁施工技术规范》(JTJ 041-2000)附录G-8中规定了Pp的计算公式(2): Pp=P×(1-e-(kx+μθ)) kx+μθ P—预应力筋张拉端的张拉力,将钢绞线分段计算后,为每分段的起点张拉力,即为前段的终点张拉力(N); θ—从张拉端至计算截面曲线孔道部分切线的夹角之和,分段后为每分段中每段曲线段的切线夹角(rad); x—从张拉端至计算截面的孔道长度,分段后为每个分段长度或为公式1中L值; k—孔道每束局部偏差对摩擦的影响系数(1/m),管道内全长均应考虑该影响; μ—预应力筋与孔道壁之间的磨擦系数,只在管道弯曲部分考虑该系数的影响。 从公式(1)可以看出,钢绞线的弹性模量Ep是决定计算值的重要因素,它的取值是否正确,对计算预应力筋伸长值的影响较大。所以钢绞线在使用前必须进行检测试验,弹性模量则常出现Ep’=(~)×105Mpa的结果,这是由于实际的钢绞线的截面积并不是绝对的140mm2,而进行试验时并未用真实的钢绞线截面积进行计算,根据公式(1)可知,若Ap 有偏差,则得到了一个Ep’值,虽然Ep’并非真实值,但将其与钢绞线理论面积相乘所计算出的ΔL却是符合实际的,所以要按实测值Ep’进行计算。 公式2中的k和μ是后张法钢绞线伸长量计算中的两个重要的参数,其大小取决于多方面的因素:管道的成型方式、预应力筋的类型、表面特征是光滑的还是有波纹的、表面是否有锈斑,波纹管的布设是否正确,弯道位置及角度是否正确,成型管道内是否漏浆等等,各个因素在施工中的变动很大,还有很多是不可能预先确定的,因此,摩擦系数的大小很大程度上取决于施工的精确程度。在工程实施中,最好对孔道磨擦系数进行测定(测定方法可参照《公路桥梁施工技术规范》(JTJ 041-2000)附录G-9),并对施工中影响磨擦系数的方面进行认真的检查,如波纹管的三维位置是否正确等等,以确保摩擦系数的大小基本一致。实际计算可根据表1选取参数。 3 划分计算分段:整束钢绞线在进行分段计算时,首先是分段(见图1): 工作长度:工具锚到工作锚之间的长度,图1中工作段AB长度=L,计算时不考虑μ、θ,计算力为A点力,采用公式1直接进行计算,Pp=千斤顶张拉力; 波纹管内长度:计算时要考虑μ、θ,计算一段的起点和终点力。每一段的终点力就是下一段的起点力,例如靠近张拉端第一段BC的终点C点力即为第二段CD的起点力,每段的终点力与起点力的关系如下式: Pz=Pq×e-(KX+μθ)(公式3) Pz—分段终点力(N)

简支梁计算公式总汇

简支梁在各种荷载作用下跨中最大挠度计算公式: 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4).

跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求!

氧化沟设计计算

氧化沟设计计算 1.1功能描述 氧化沟(Oxidation ditch )为传统活性污泥法的变形工艺,其曝气池呈封闭的沟渠型,污水和活性污泥混合液在渠内呈循环流动,提高废水的水力停留时间,同时具有脱氮除磷的功能。目前氧化沟的类型主要有Carrusal2000、orbal 、改良式环型氧化沟等。目前我们主要运用配备射流曝气系统的改良式环型氧化沟。 1.2设计要点 (1) 容积确定V (m 3) f Nw Ne Se Sa Q V ??-?=)( 式中:Q ——设计水量, m 3/d ; Nw ——混合液MLSS 污泥浓度(kg/m 3), 取2.5-4.0 kg/m 3,设计一般为3.0 kg/m 3 Ne ——BOD 5-泥负荷, 0.1-0.2(kgBOD 5/kgMLSS·d),设计一 般为0.12 Sa ——进水BOD 5浓度, mg/L ; Se ——出水BOD 5浓度, mg/L ;

f ——混合液中MLVSS 与总悬浮固体浓 度的比值,一般为0.7-0.8,设计为 0.75。 (2) 氧化沟尺寸 A. 氧化沟高度H (m ) 改良式环型氧化沟设计有效高度H 0为7m ,超高0.6m , 则氧化沟高度H=7.6m ; B. 氧化沟宽度B 、长度L (m ) )4 14.3(2 0B L B H V ?+?= B L ?=2.2 式中:H 0 ——氧化沟的有效高度,m ; B ——氧化沟的宽度(即为圆弧直径),m ; L ——氧化沟的总长度,m 。一般取为氧化 沟宽度的2.2倍。 C. 氧化沟导流墙设计 氧化沟导流墙设置于沟的两头,与氧化沟外墙同心,起 到导流作用,导流墙的直径D=B/2;设置厚度为0.3m ,高度一般超出氧化沟0.2~0.3m ; D. 氧化沟隔流墙设计 隔流墙长度:L 0(m)=L-B (3) 射流曝气系统(FAS-Jet-20型) 射流曝气器数量N 计算,设计每0.5m 布置一套射流曝气器(沿

张拉方案及计算书

第一章工程概况及设计简介 第一节工程概况 本项目主线设预应力桥梁2座,现浇钢筋混凝土实心板桥1座。 其中城关村1号桥,桥梁上部结构为5Χ13m装配式预应力空心板,桥墩处采用桥面连续。桥梁中心桩号K0+579.0,起点桩号K0+543.48,终点桩号K0+614.52,桥长71.04米。桥梁宽度为:14m=净9m+2Χ2.5m(人行道及栏杆)。桥梁平面位于A=62.733m的左偏缓和曲线和直线上,桥墩径向布置,桥梁右偏角105°;桥梁横坡为双向1.5%,纵坡为0.5%。 城关村2号桥桥梁上部结构采用2Χ13m装配式预应力混凝土空心板,下部结构采用桩柱式墩台,桥梁中心桩号K0+720.0,桥梁起点桩号K0+705.98,终点桩号K0+736.02,桥长30.04m。梁宽度为14m=净9m+2Χ2.5m(人行道及栏杆),本桥平面位于直线上,桥面横坡为双向1.5%,纵断面纵坡0.5%。 第二节桥梁工程设计简介 一、桥梁技术标准 1、市政路等级:城市次干路; 2、设计行车速度:30km/h; 3、桥梁设计荷载:城-B级; 4、设计洪水频率:1/100; 5、设计安全等级:二级,结构重要性系数1.0; 6、耐久性环境类别:I类环境; 7、地震荷载:按6度设防。地震作用:地震动峰值加速度0.05g。 二、桥梁结构设计

1、桥面宽度 桥宽分配为:2.5m(人行道,含栏杆)+9m(车行道)(非机动车道)+2.5m (人行道,含栏杆)=14m。 2、桥型布置 城关村1、2号桥均为装配式简支梁桥。 3、结构设计 上部结构:采用13m后张预应力砼空心板梁,板梁标准跨径13m,梁长12.96m,梁高0.7m。 下部结构:桥台:桩柱式桥台,桩基采用?130cm人工挖孔桩。 三、主要材料 a. 砼:空心板:C40 砼桥面铺装: C40砼(抗渗等级W6);板梁封端: C40;台身、背墙、搭板、耳墙、人行道板和人行道枕梁: C30;桩基础:水下C30砼。 b.钢筋:HPB300钢筋技术指标应符合国标《钢筋混凝土用热轧光圆钢筋》GB1499.1-2008的要求,HRB400钢筋技术指标应符合国标《钢筋混凝土用热轧带肋钢筋》GB1499.2-2007的要求。 c. 预应力钢筋:采用符合《预应力混凝土用钢绞线》(GB/T 5244-2003)规定的ΦS15.20低松弛高强预应力钢绞线,公称面积140mm2,抗拉强度标准值fpk=1860MPa,弹性模量Ep=1.96×105MPa。 d.钢材:采用Q235钢,其技术标准应符合《碳素结构钢》GB/T700-2006的规定。 第二章编制依据

相关文档