文档库 最新最全的文档下载
当前位置:文档库 › 基于分数阶微分方程的手机病毒传播模型研究

基于分数阶微分方程的手机病毒传播模型研究

基于分数阶微分方程的手机病毒传播模型研究
基于分数阶微分方程的手机病毒传播模型研究

计算机病毒传播的数学模型

计算机病毒传播的数学模型 信息与计算科学2005级何金波 指导教师陈涛副教授 摘要: 在分析计算机病毒微观传染规律和传染机制的基础上,结合当前操作系统的特点,本文主要建立和分析了计算机病毒在单个计算机系统内的随机传染模型,并通过模型来分析计算机病毒的传播途径。得出了在单进程操作系统环境下,病毒的感染数量呈线性增长,感染强度相对稳定;在多进程操作系统环境下,病毒的感染数量和感染强度都呈e的指数级增长。关键词: 计算机病毒,数学模型,泊松过程,随机传染,MATLAB软件 Mathematical model of the spread of the computer virus HE Jing-bo Information and Computational Science, Grade 2005 Directed by Chen Tao (Associate Prof. Ph. D) Abstract: Based on the analysis of micro-computer viruses and virus transmission laws the transmission mechanism, combined with the characteristics of the current operating system, this paper analyzes the establishment and computer viruses within computer systems in a single random transmission model, and use the mathematical model to analyze the spread of computer viruses. Come, in a single process operating system environment, the number of infections is linear growth, intensity of infection is relatively stable; in a multi-process operating system environment, the number of virus infection and infection intensity of the exponential is Exponential growth. Keywords: Computer virus, Mathematical models, Poisson process, Random transmission, software of MATLAB

微分方程建模案例

第五章微分方程建模案例 微分方程作为数学科学的中心学科,已经有三百多年的发展历史,其解法和理论已日臻完善,可以为分析和求得方程的解(或数值解)提供足够的方法,使得微分方程模型具有极大的普遍性、有效性和非常丰富的数学涵。微分方程建模包括常微分方程建模、偏微分方程建模、差分方程建模及其各种类型的方程组建模。微分方程建模对于许多实际问题的解决是一种极有效的数学手段,对于现实世界的变化,人们关注的往往是其变化速度、加速度以及所处位置随时间的发展规律,其规律一般可以用微分方程或方程组表示,微分方程建模适用的领域比较广,涉及到生活中的诸多行业,其中的连续模型适用于常微分方程和偏微分方程及其方程组建模,离散模型适用于差分方程及其方程组建模。本章主要介绍几个简单的用微分方程建立的模型,让读者一窥方程的应用。下面简要介绍利用方程知识建立数学模型的几种方法: 1.利用题目本身给出的或隐含的等量关系建立微分方程模型 这就需要我们仔细分析题目,明确题意,找出其中的等量关系,建立数学模 型。 例如在光学里面,旋转抛物面能将放在焦点处的光源经镜面反射后成为平行光线,为了证明具有这一性质的曲线只有抛物线,我们就是利用了题目中隐含的条件——入射角等于反射角来建立微分方程模型的。 2.从一些已知的基本定律或基本公式出发建立微分方程模型

我们要熟悉一些常用的基本定律、基本公式。例如从几何观点看,曲线 y y(x)上某点的切线斜率即函数y y(x)在该点的导数;力学中的牛顿第二运 动定律:F ma ,其中加速度a 就是位移对时间的二阶导数,也是速度对时间 的一阶导数等等。从这些知识出发我们可以建立相应的微分方程模型。 例如在动力学中,如何保证高空跳伞者的安全问题。对于高空下落的物体, 我们可以利用牛顿第二运动定律建立其微分方程模型, 设物体质量为m ,空气阻 力 系数为k ,在速度不太大的情况下,空气阻力近似与速度的平方成正比;设时 刻t 时物体的下落速度为v ,初始条件:v (o ) 0.由牛顿第二运动定律建立其微 分方程模型: 求解模型可得: 体在地面上的投影面积。根据极限速度求解式子,在m,, 一定时,要求落地速 度w 不是很大时,我们可以确定出s 来,从而设计出保证跳伞者安全的降落伞的 直径大小来 3?利用导数的定义建立微分方程模型 dv m 一 dt mg kv 2 ? k(exp[2t 由上式可知,当t 其中,阻力系数k 1) 时,物体具有极限速度: lim v t mg :k , s , 为与物体形状有关的常数, 为介质密度,s 为物 、mg(exp[2t 1)

第二章动力学系统的微分方程模型

第二章:动力学系统的微分方程模型 利用计算机进行仿真时,一般情况下要给出系统的数学模型,因此有必要掌握一定的建立数学模型的方法。在动力学系统中,大多数情况下可以使用微分方程来表示系统的动态特性,也可以通过微分方程可以将原来的系统简化为状态方程或者差分方程模型等。在这一章中,重点介绍建系统动态问题的微分方程的基本理论和方法。 在实际工程中,一般把系统分为两种类型,一是连续系统;其数学模型一般是高阶微分方程;另一种是离散系统,它的数学模型是差分方程。 §2.1 动力学系统统基本元件 任何机械系统都是由机械元件组成的,在机械系统中有3种类型的基本机械元件:惯性元件、弹性元件和阻尼元件。 1 惯性元件:惯性元件是指具有质量或转动惯量的元件,惯量可以定义为使加速度(或角加速度)产生单位变化所需要的力(或力矩)。 惯量(质量)= ) 加速度(力(2 /) s m N 惯量(转动惯量)= ) 角加速度(力矩(2/) s rad m N ? 2 弹性元件:它在外力或外力偶作用下可以产生变形的元件,这种元件可以通过外力做功来储存能量。按变形性质可以分为线性元件和非线性元件,通常等效成一弹簧来表示。 对于线性弹簧元件,弹簧中所受到的力与位移成正比,比例常数为弹簧刚度k 。 x k F ?= 这里k 称为弹簧刚度,x ?是弹簧相对于原长的变形量,弹性力的方向总是指向弹 簧的原长位移,出了弹簧和受力之间是线性关系以外,还有所谓硬弹簧和软弹簧,它们的受力和弹簧变形之间的关系是一非线性关系。 3 阻尼元件:这种元件是以吸收能量以其它形式消耗能量,而不储存能量,可以形象的表示为一个活塞在一个充满流体介质的油缸中运动。阻尼力通常表示为: α x c R = 阻尼力的方向总是速度方向相反。当1=α,为线性阻尼模型。否则为非线性阻 尼模型。应注意当α等于偶数情况时,要将阻尼力表示为: ||1--=αx x c R 这里的“-”表示与速度方向相反

3.1 微分方程模型的建模步骤

第3章微分方程模型 3.1 微分方程模型的建模步骤 在自然科学以及工程、经济、医学、体育、生物、社会等学科中的许多系统,有时很难找到该系统有关变量之间的直接关系——函数表达式,但却容易找到这些变量和它们的微小增量或变化率之间的关系式,这时往往采用微分关系式来描述该系统——即建立微分方程模型。我们以一个例子来说明建立微分方程模型的基本步骤。 例1 某人的食量是10467(焦/天),其中5038(焦/天)用于基本的新陈代谢(即自动消耗)。在健身训练中,他所消耗的热量大约是69(焦/公斤?天)乘以他的体重(公斤)。假设以脂肪形式贮藏的热量100%地有效,而1公斤脂肪含热量41868(焦)。试研究此人的体重随时间变化的规律。 模型分析 在问题中并未出现“变化率”、“导数”这样的关键词,但要寻找的是体重(记为W )关于时间t 的 函数。如果我们把体重W 看作是时间t 的连续可微函数,我们就能找到一个含有的dt dW 微分方程。 模型假设 1.以)(t W 表示t 时刻某人的体重,并设一天开始时人的体重为0W 。 2.体重的变化是一个渐变的过程。因此可认为 )(t W 是关于t 连续而且充分光滑的。 3.体重的变化等于输入与输出之差,其中输入是指扣除了基本新陈代谢之后的净食量吸收;输出就是进行健身训练时的消耗。 模型建立 问题中所涉及的时间仅仅是“每天”,由此,对于“每天” 体重的变化=输入-输出。 由于考虑的是体重随时间的变化情况,因此,可得 体重的变化/天=输入/天—输出/天。 代入具体的数值,得 输入/天 = 10467(焦/天)—5038(焦/天)=5429(焦/天), 输出/天 = 69(焦/公斤?天)×W (公斤)= 69W (焦/天)。 体重的变化/天=t W ??(公斤/天)dt dW t =→?0 考虑单位的匹配,利用 “公斤/天=公斤焦天 焦/41868 /”, 可建立如下微分方程模型

第五章微分方程模型

第五章 微分方程模型 、 某人每天由饮食获取10467焦热量,其中5038焦用于新陈代谢,此外每公斤体重需支付69焦热量作为运动消耗,其余热量则转化为脂肪,已知以脂肪形式贮存的热量利用率为100%,每公斤脂肪含热量41868焦,问此人的体重如何随时间而变化 解: 设此人的体重为w ,则根据题意有,每天获取的热量,减去新陈代谢,减去运动消耗的热量,剩余的按利用率100% 转化为脂肪,即有下列等式成立: 1046750386941868 w dw dt --= 经化简有: 232313956139565429()41868t t w e t e c - =-?+ 假设此人现在的体重为0w ,则此人的体重随时间的变化如下: 2323139561395605429()41868t t w e t e w - =-?+ 、 生活在阿拉斯加海滨的鲑鱼服从Malthus 增长模型)(003.0)(t p dt t dp = 其中t 以分钟计。在0=t 时一群鲨鱼来到此水域定居,开始捕食鲑鱼。鲨鱼捕杀鲑鱼的速率是)(001.02t p ,其中)(t p 是t 时刻鲑鱼总数。此外,由于在它们周围出现意外情况,平均每分钟有条鲑鱼离开此水域。 (1)考虑到两种因素,试修正Malthus 模型。 (2)假设在0=t 是存在100万条鲑鱼,试求鲑鱼总数 )(t p ,并问∞→t 时会发生什么情况 解:

(1),由题可知, 在考虑两种因素后,修正后的Malthus 模型如下: 2()0.003()0.001()0.002dp t p t p t dt =-- (2),假设在0t = 时,存在100万条鲑鱼,即(0)1000000p = ,解下列初值问题 2()0.003()0.001()0.002(0)1000000 dp t p t p t dt p ?=--???=? 解得 0.0010.0012999998()11000001t t ae p t a ae --+==-其中 当t →∞ 时,2p →。 、 根据罗瑟福的放射性衰变定律,放射性物质衰变的速度与现存的放射性物质的原子数成正比,比例系数成为衰变系数,试建立放射性物质衰变的数学模型。若已知某放射性物质经时间21T 放射物质的原子下降至原来的一半(21T 称为该物质的半衰期)试决定其衰变系数。 解: 假设初始时刻该放射性物质的原子数位0N ,在时间t 时,该放射性物质的原子个数为N ,设衰变系数为k ,则有下列微分方程: 0,(0)dN kN N N dt =-= 解得 0()kt N t N e =

病毒传播SIS模型研究

问题重述 病毒传播问题的研究由来已久,而一再的病毒流行使得这一领域长期以来吸引着人们的注意。在对病毒传播过程的描述各种模型中,“易感-感染-易感”(SIS )模型是研究者经常的选择。关于SIS 模型,可以简单的描述为:一个易感的个体在和一个具有传染性的个体的接触中,在单位时间以一定的概率(β)被感染,同时,已感染的个体以概率(γ)被治愈又重新成为健康(易感)的个体。 实际中大量的问题可以利用网络(图)进行描述,比如在传染病问题的描述中,个体(人、动物、计算机等)可以看作网络的节点,当个体之间有可以导致病毒传播的接触时在两个个体之间连边。比如,对于接触性传染病,个体存在两种状态,健康的(易感的)和已感染的;将这些个体作为网络的节点,由于两个个体之间的亲密接触可能导致病毒的传播,因此可在两者之间进行连边。一个个体所接触的其它个体数量称为该节点的度(边数)。所谓二部网络(图),是网络中的节点可分成两类(比如男性和女性,雄性和雌性等),边仅仅存在于两类节点之间。 在经典的传染病学模型中,总是假定病毒赖以传播的网络具有匀质性,即网络中节点有基本相同的度,但一些研究表明,这一假设远远背离实际情况。因此,发现实际网络的一些特性,并研究这样的网络上的病毒传播问题具有理论和实际意义。 本题我们主要研究二部网络上的病毒传播问题,根据附件提供的一个二部网络(由10000个A 类节点和10000个B 类节点构成)的节点度的数据,完成以下任务: 1.根据“附件”提供的数据data.xls ,选择适当的坐标,作出节点连接度和其出现频率的图形,观察这种类型的连接度数据大致服从什么分布? 2.生成上述网络,可以采用如下的机制:先生成一个小型的二部图,随后在A 类中加入一个新节点并向B 类中的节点连边,该边指向B 类中i 号节点的概率正比于i 号节点当前的连接度,而后在B 类中产生新节点,以同样的方式向A 类连边,当这两个步骤进行足够多次之后即可得到满足数据文件特点的网络。根据这里所提供的生成机制,发现节点连接度分布的表达式。 3.在这类网络上考虑“易感-感染-易感”(SIS )模型,得到较平稳时期的得病数量以及A 类和B 类的得病比例。(参数γ=0.1, 考虑到两类个体的感染率可以不同,分析中假定A 类个体的感染率为B 个体感染率的2倍,即 A β=2 B β,并分别取B 类个体的感染率B β=0.01,0.02,0.03)。由于考虑P C 机 的计算速度,模拟时网络规模不要太大,可选择500+500的二部网络。 4.对我们的模型进行理论的分析,看看是否和我们的模拟结果一致。 问题分析 问题背景的分析: 随着卫生设施的改善,医疗水平的提高以及人类文明的不断改善,诸如霍乱、天花等曾经肆虐全球的传染性疾病已经得到有效的控制。但是,一些新的、不断

病毒传播SIS模型研究报告

摘要

问题重述 病毒传播问题的研究由来已久,而一再的病毒流行使得这一领域长期以来吸引着人们的注意。在对病毒传播过程的描述各种模型中,“易感-感染-易感”。由于考虑PC 机的计算速度,模拟时网络规模不要太大,可选择500+500的二部网络。4.对我们的模型进行理论的分析,看看是否和我们的模拟结果一致。 问题分析 问题背景的分析: 随着卫生设施的改善,医疗水平的提高以及人类文明的不断改善,诸如霍乱、天花等曾经肆虐全球的传染性疾病已经得到有效的控制。但是,一些新

常微分课后答案解析第二章

第一章 绪论 §1、1 微分方程:某些物理过程的数学模型 §1、2 基本概念 习题1、2 1.指出下面微分方程的阶数,并回答方程就是否线性的: (1) y x dx dy -=24; (2)0122 2 2=+??? ??-xy dx dy dx y d ; (3)0322 =-+?? ? ??y dx dy x dx dy ; (4)x xy dx dy dx y d x sin 352 2=+-; (5) 02cos =++x y dx dy ; (6)x e dx y d y =+??? ? ??22sin . 解 (1)一阶线性微分方程; (2)二阶非线性微分方程; (3)一阶非线性微分方程; (4)二阶线性微分方程; (5)一阶非线性微分方程; (6)二阶非线性微分方程. 2.试验证下面函数均为方程022 2=+y dx y d ω的解,这里0>ω就是常数. (1)x y ωcos =; (2)11(cos C x C y ω=就是任意常数); (3)x y ωsin =; (4)22(sin C x C y ω=就是任意常数); (5)2121,(sin cos C C x C x C y ωω+=就是任意常数); (6)B A B x A y ,()sin(+=ω就是任意常数). 解 (1)y x dx y d x dx dy 2 222cos ,sin ωωωωω-=-=-=,所以022 2=+y dx y d ω,故

x y ωcos =为方程的解. (2)y x C y x C y 2 2 11cos , sin ωωωωω-=-=''-=',所以022 2=+y dx y d ω,故x C y ωcos 1=为方程的解. (3)y x dx y d x dx dy 2222sin ,cos ωωωωω-=-==,所以02 2 2=+y dx y d ω,故x y ωsin =为方程的解. (4)y x C y x C y 2 2 22sin , cos ωωωωω-=-=''=',所以022 2=+y dx y d ω,故x C y ωsin 2=为方程的解. (5)y x C x C y x C x C y 2222121sin cos , cos sin ωωωωωωωωω-=--=''+-=',所 以02 2 2=+y dx y d ω,故x C x C y ωωsin cos 21+=为方程的解. (6)y B x A y B x A y 2 2 )sin(, )cos(ωωωωω-=+-=''+=',故0222=+y dx y d ω,因 此)sin(B x A y +=ω为方程的解. 3.验证下列各函数就是相应微分方程的解: (1)x x y sin = ,x y y x cos =+'; (2)212x C y -+=,x xy y x 2)1(2 =+'-(C 就是任意常数); (3)x Ce y =,02=+'-''y y y (C 就是任意常数); (4)x e y =,x x x e ye y e y 2212-=-+'-; (5)x y sin =,0cos sin sin 22 2 =-+-+'x x x y y y ; (6)x y 1- =,12 22++='xy y x y x ; (7)12 +=x y ,x y x y y 2)1(2 2 ++-='; (8))()(x f x g y = ,) () ()()(2x f x g y x g x f y '-'='.

传染病模型

病毒扩散与传播的控制模型 摘要 随着科技的发展,病毒扩散与传播越来越受到人们的关注。 本文通过建立微分方程模型,描述了病毒扩散与传播的过程,最后通过分析,得到了控制病毒扩散与传播的方法。 对问题一,我们通过分析影响变量的因素,建立微分方程模型。 对问题二,我们通过把增加的影响因素加入到问题一的微分方程模型中,改善后得到了新的微分方程模型。最后把变量代入,求解微分方程模型,得到结果。当t=13天时,确诊患者人数达到峰值6793000人;t=150天时,确诊人数减少到116800人。 对问题三、问题四、问题五,通过把改变后的条件代入到问题二中的微分方程模型中,可以得到其对应结果。问题三的结果,当t=13天时,确诊人数达到峰值6769000人,t=150天时,确诊人数减少到108400人。问题四的结果,当t=13天时,确诊人数达到峰值6795000人,t=150天时,确诊人数减少到116200人。问题五的结果,当t=12天时,确诊人数达到峰值6793000人,当t=150天时,确诊人数减少到113500人 对问题六,结合前面所得到的结果,我们分析在其它因素都不变的情况下只改变一种因素,分析得到该种因素的灵敏度,最后得出各个因素的灵敏度。可以得到,尽快开始隔离、治愈时间1t 、2t ,加强隔离强度p 、减少人均日接触率r 都可以改善病情。 对问题七,在问题六的基础上,可以得出相应的减轻病情的方法和建议。 关键词:微分方程模型微分方程组求解(MATLAB )

一、问题的重述 已知某种不完全确知的具有传染性病毒的潜伏期为d1~d2天,病患者的治愈时间为d3天。该病毒可通过直接接触、口腔飞沫进行传播、扩散,该人群的人均每天接触人数为r。为了控制病毒的扩散与传播将该人群分为五类:确诊患者、疑似患者、治愈者、死亡和正常人,可控制参数是隔离措施强度p(潜伏期内的患者被隔离的百分数)。 要求: 1.在合理的假设下试建立该病毒扩散与传播的控制模型; 2.利用你所建立的模型针对如下数据进行模拟 条件1:d1=1, d2=11, d3=30, r=10, 条件2:已经知道的初始发病人数为890、疑似患者为2000 条件3:隔离措施强度p=60% 条件4:患者2天后入院治疗,疑似患者2天后被隔离,试给出患者人数随时间变化的曲线图,并明确标识图中的一些特殊点的具体数据,分析结果的合理性。 3.若将2中的条件4改为条件:患者1.5天后入院治疗,疑似患者1.5 天后被隔离,模拟结果有何变化? 4.若仅将2中的条件3改为条件:隔离措施强度p=40%,模拟结果有何 变化? 5.若仅将2中的条件1改为条件:d1=1, d2=11, d3=30, r=250,模拟 结果有何变化? 6.分析问题中的参数对计算结果的敏感性。 7.针对如上数据给政府部门写一个不超过400字的建议报告。 二、问题的分析 2.1 问题一的分析 问题一的解决,在于对疑似患者、确诊患者、治愈者、正常人、死亡者的理解,在理解的基础上,我们分析影响它们的因素有哪些,最后通过建立微分方程模型来解释这些影响关系。 2.2 问题二的分析 问题二的解决基于问题一,在问题已的基础上,我们对于增加的影响因素进

常微分课后答案解析第二章

第一章 绪论 §1.1 微分方程:某些物理过程的数学模型 §1.2 基本概念 习题1.2 1.指出下面微分方程的阶数,并回答方程是否线性的: (1) y x dx dy -=24; (2)0122 2 2=+??? ??-xy dx dy dx y d ; (3)0322 =-+? ? ? ??y dx dy x dx dy ; (4)x xy dx dy dx y d x sin 352 2=+-; (5) 02cos =++x y dx dy ; (6)x e dx y d y =+??? ? ??22sin . 解 (1)一阶线性微分方程; (2)二阶非线性微分方程; (3)一阶非线性微分方程; (4)二阶线性微分方程; (5)一阶非线性微分方程; (6)二阶非线性微分方程. 2.试验证下面函数均为方程02 2 2=+y dx y d ω的解,这里0>ω是常数. (1)x y ωcos =; (2)11(cos C x C y ω=是任意常数); (3)x y ωsin =; (4)22(sin C x C y ω=是任意常数); (5)2121,(sin cos C C x C x C y ωω+=是任意常数); (6)B A B x A y ,()sin(+=ω是任意常数).

解 (1)y x dx y d x dx dy 2222cos ,sin ωωωωω-=-=-=,所以02 2 2=+y dx y d ω,故x y ωcos =为方程的解. (2)y x C y x C y 2 2 11cos , sin ωωωωω-=-=''-=',所以0222=+y dx y d ω,故 x C y ωcos 1=为方程的解. (3)y x dx y d x dx dy 2 222sin ,cos ωωωωω-=-==,所以022 2=+y dx y d ω,故x y ωsin =为方程的解. (4)y x C y x C y 2 2 22sin , cos ωωωωω-=-=''=',所以022 2=+y dx y d ω,故x C y ωsin 2=为方程的解. (5)y x C x C y x C x C y 2222121sin cos , cos sin ωωωωωωωωω-=--=''+-=', 所以022 2=+y dx y d ω,故x C x C y ωωsin cos 21+=为方程的解. (6)y B x A y B x A y 2 2 )sin(, )cos(ωωωωω-=+-=''+=',故02 2 2=+y dx y d ω,因此)sin(B x A y +=ω为方程的解. 3.验证下列各函数是相应微分方程的解: (1)x x y sin = ,x y y x cos =+'; (2)212x C y -+=,x xy y x 2)1(2 =+'-(C 是任意常数); (3)x Ce y =,02=+'-''y y y (C 是任意常数); (4)x e y =,x x x e ye y e y 2212-=-+'-; (5)x y sin =,0cos sin sin 22 2 =-+-+'x x x y y y ; (6)x y 1- =,12 22++='xy y x y x ; (7)12 +=x y ,x y x y y 2)1(2 2 ++-=';

微分方程模型建模实例

微分方程模型建模实例 1.一个半球状雪堆,其体积融化的速率与半球面面积S成正比,比例系数k > 0。设融化中雪堆始终保持半球状,初始半径为R且3小时中融化了总体积的7/8,问雪堆全部融化还需要多长时间? 2.从致冰厂购买了一块立方体的冰块,在运输途中发现,第一小时大约融化了1/4 (1)求冰块全部融化要多长时间(设气温不变) (2)如运输时间需要2.5小时,问:运输途中冰块大约会融化掉多少? 3.一展开角为α的圆锥形漏斗内盛着高度为H的水,设漏斗底部的孔足够大(表面张力不计),试求漏斗中的水流光需要多少时间? 4.容器甲的温度为60度,将其内的温度计移入容器乙内,设十分钟后温度计读数为70度,又过十分钟后温度计读数为76度,试求容器乙内的温度。 5.一块加过热的金属块初始时比室温高70度,20分钟测得它比室温高60度,问:(1)2小时后金属块比室温高多少?(2)多少时间后,金属块比室温高10度? 6.设初始时容器里盛放着含净盐10千克的盐水100升,现对其以每分钟3升的速率注入清水,容器内装有搅拌器能将溶液迅时搅拌均匀,并同时以每分钟2升的速率放出盐水,求1小时后容器里的盐水中还含有多少净盐? 7.某伞降兵跳伞时的总质量为100公斤(含武器装备),降落伞张开前的空气阻力为0.5v,该伞降兵的初始下落速度为0,经8秒钟后降落伞打开,降落 伞打开后的空气阻力约为0.6 试球给伞降兵下落的速度v(t),并求其下落的极限速度。 8. 1988年8月5日英国人Mike McCarthy创建了一项最低开伞的跳伞纪录,它从比萨斜塔上跳下,到离地179英尺时才打开降落伞,试求他落地时的速度。 9.证明对数螺线r=A 上任一处的切线与极径的夹角的正切为一常 数,()

第二章 微 分 方 程 模 型.

第二章 微 分 方 程 模 型 建立微分方程模型就是把物理、化学、生物科学、工程科学和社会科学中的规律和原理用含有待定函数的导数或微分的数学关系式表示出来。这一章我们由浅入深地介绍一些微分方程模型。 2.1 简单模型 例1 物体在空气中的下落与特技跳伞问题 假设质量为m 的物体在空气中下落,空气阻力与物体的速度平方成正比,阻尼系数为k (>0),求物体的运动规律。 解 所谓运动规律即下落距离与时间的关系,如图2.1.1, 建立坐标系。设x 为物体下落的距离,于是物体下落的速度为 dx v dt =, 加速度为 22d x a dt =, 根据牛顿第二定律F ma =,可以列出微分方程 2 22d x d x m k m g d t d t ?? =-+ ???, (2.1.1) 负号表示阻力方向与速度方向相反。 例2 单摆的自由振动问题。 如图2.1.2 为一个单摆,上端固定在O 点,M 为一质量为m 的质点,摆杆OM 之长为L (摆杆的质量忽略不计)。单摆的平衡位置为铅垂线'OO 。将质点M 拉开,使OM 与'OO 成一个角度0θ,然后放手任其自由运动,试求摆杆OM 和铅垂线'OO 的夹角θ与时间t 的关系。 解 将重力分解为径向力F 与切向力T ,T 的大小为sin mg θ,M 的切向加速 度为22d a L dt θ =,于是,由牛顿第二定律,列出微分方程 22s i n d m a m L m g dt θ θ== , 即 22s i n d g dt L θθ=-, (2.1.2)

设初始时刻0t =,摆杆的初始位置为0θ,初始角速度为0,则单摆的运动规律的研究就化为微分方程的初值问题 ()()22 00' 0s i n ,,0.t t d g dt L t t θθθθθ==?=-??? =??=??? (2.1.3) 图2.1.1 图2.1.2 例3 考古和地质学中文物和化石年代的测定问题。 考古、地质学等方面的专家常用14C (碳14)来估计文物或化石的年代。它们的依据是,宇宙射线不断轰击大气层,使之产生中子,中子与氧气作用生成具有放射性的14C 。这种放射性碳可以氧化成二氧化碳。二氧化碳被植物所吸收,而动物又以植物为食物,于是放射性碳就被带到各种动植物体内。由于14C 是放射性的,无论存在于空气中或生物体内它都在不断衰变,活着的生物通过新陈代谢不断地摄取14C ,使得生物体内的14C 与空气中的14C 有相同的百分含量。生物体死后它停止摄取14C ,因而尸体内的14C 由于不断衰变而不断减少。碳定年代法就是根据14C 的衰变减少量的变化情况来判定生物的死亡时间的。 基本假设 (1)现代生物体中14C 的衰变速度与古代生物体中14C 的衰变速度相同(依据是地球周围大气中14C 的百分含量可认为基本不变,即宇宙射线照射大气层的强度自古至今基本不变); (2)14C 的衰变速度与该时刻14C 的含量成正比(这条假设的根据来自于原子物理学理论)。 下面用微分方程建模。 设在时刻t (年)生物体中14C 的存量为()x t ,由假设(2)知

第2章习题解答

习题解答 1. 系统的微分方程为()4()2()x t x t u t '=-+,其中()u t 是幅度为1,角频率为1rad/s 的方波输入信号,试建立系统的Simulink 模型并进行仿真。 解:用积分器直接构造求解微分方程的模型 由原微分方程()4()2()x t x t u t '=-+可知 x '经积分模块作用就得x ,而x 经代数运算又产生x ',据此可以建立系统模型并仿真,实现建模与仿真步骤如下。 ⑴利用Simulink 模块库中的基本模块,不难建立系统模型,如题图1所示。 题图1 求解微分方程的模型 模型中各个模块说明如下。 ①()u t 输入模块:它的参数设置如题图1(a)所示,模块名称由原来的Pulse Generrator 改为()u t 。 题图1(a) ()u t 输入模块的参数设置

②Gs 增益模块:增益参数Gain 设置为2。 ③求和模块:其图标形状Icon shape 选择rectangular ,符号列表Lisl of signs 设置为+-。 ④积分模块:参数不需改变。 ⑤G 1增益模块:增益参数设置为4,它的方向旋转可借助Format 菜单中的Rotate Block 命令实现。 ⑥Scope 示波器:在示波器参数设置窗口选择Data history 页,选中其中的Save data to workspace 复选框。这将使送入示波器的数据同时被保存在MA TLAB 工作空间的默认名为ScopeData 的结构矩阵或矩阵中。 ⑵设置系统仿真参数。单击模型编辑窗口Simulation 菜单中的Configuration Parameters 选项,打开仿真参数设置对话框,选择Solver 选项,把仿真的停止时间Sto ptime 设置为20。 ⑶仿真操作。双击示波器图标,打开示波器窗口。选择模型编辑窗口中Simulation 菜单中的Stan 命令,就可在示波器窗口中看到仿真结果的变化曲线,如题图1(b)所示。 题图1(b) 仿真结果 2. 建立使用阶跃信号为输入信号,经过传递函数为1 5.01 s 的一阶系统的Simulink 模型并进行仿真。要求:⑴查看其输出波形在示波器上的显示;⑵修改仿真参数Max step size 为2、Min step size 为1,在示波器上查看波形;⑶修改示波器Y 坐标轴范围为0~2,横坐标范围为0~15,查看波形。 解:⑴①利用Simulink 模块库中的基本模块,不难建立系统模型,如题图2所示。 题图2 一阶系统的Simulink 模型 模型中各个模块说明如下。 ()u t 输入模块:它的step time 被设置为0,模块名称由原来的step 改为()u t 。 Transfer Fon 传递函数模块:在Denominator coefficient 文本框中定义分母多项式系数向量为[0.5 1]。

数学建模实验答案微分方程模型

实验07 微分方程模型(2学时) (第5章 微分方程模型) 1.(验证)传染病模型2(SI 模型)p136~138 传染病模型2(SI 模型): 0(1),(0)di k i i i i dt =-= 其中, i (t )是第t 天病人在总人数中所占的比例。 k 是每个病人每天有效接触的平均人数(日接触率)。 i 0是初始时刻(t =0)病人的比例。 1.1 画~di i dt 曲线图p136~138 取k =0.1,画出i dt di ~的曲线图,求i 为何值时dt di 达到最大值,并在曲线图上标注。 参考程序:

提示:fplot, fminbnd, plot, text, title, xlabel 1)画曲线图 用fplot函数,调用格式如下: fplot(fun,lims) fun必须为一个M文件的函数名或对变量x的可执行字符串。 若lims取[xmin xmax],则x轴被限制在此区间上。 若lims取[xmin xmax ymin ymax],则y轴也被限制。 本题可用 fplot('0.1*x*(1-x)',[0 1.1 0 0.03]); 2)求最大值 用求解边界约束条件下的非线性最小化函数fminbnd,调用格式如下:x=fminbnd('fun',x1,x2) fun必须为一个M文件的函数名或对变量x的可执行字符串。 返回自变量x在区间x1

微分方程模型习题

(微分方程模型) .一个半球状雪堆,其体积融化地速率与半球面面积成正比,比例系数 > .设融化中雪堆始终保持半球状,初始半径为且小时中融化了总体积地,问雪堆全部融化还需要多长时间? .从致冰厂购买了一块立方体地冰块,在运输途中发现,第一小时大约融化了 ()求冰块全部融化要多长时间(设气温不变) ()如运输时间需要小时,问:运输途中冰块大约会融化掉多少? .一展开角为α地圆锥形漏斗内盛着高度为地水,设漏斗底部地孔足够大(表面张力不计),试求漏斗中地水流光需要多少时间? .容器甲地温度为度,将其内地温度计移入容器乙内,设十分钟后温度计读数为度,又过十分钟后温度计读数为度,试求容器乙内地温度. .一块加过热地金属块初始时比室温高度,分钟测得它比室温高度,问:()小时后金属块比室温高多少?()多少时间后,金属块比室温高度? .设初始时容器里盛放着含净盐千克地盐水升,现对其以每分钟升地速率注入清水,容器内装有搅拌器能将溶液迅时搅拌均匀,并同时以每分钟升地速率放出盐水,求小时后容器里地盐水中还含有多少净盐? .某伞降兵跳伞时地总质量为公斤(含武器装备),降落伞张开前地空气阻力为,该伞降兵地初始下落速度为,经秒钟后降落伞打开,降落伞打开后地空气阻力约为试球给伞降兵下落地速度(),并求其下落地极限速度. .年月日英国人创建了一项最低开伞地跳伞纪录,它从比萨斜塔上跳下,到离地英尺时才打开降落伞,试求他落地时地速度. .证明对数螺线上任一处地切线与极径地夹角地正切为一常数,().实验证明,当速度远低于音速时,空气阻力正比与速度,阻力系数大约为.现有一包裹从离地米高地飞机上落下,()求其落地时地速度()如果飞机高度更大些,结果会如何,包裹地速度会随高度而任意增大吗? .生态学家估计人地内禀增长率约为,已知年世界人口数为亿(×)而当时地人口增长率则为.试根据模型计算:()世界人口数地上限约为多少()何时将是世界人口增长最快地时候? .早期肿瘤地体积增长满足模型(λ,其中λ为常数),()求肿瘤地增倍时间 σ.根据统计资料,一般有σ()(单位为天),肺部恶性肿瘤地增倍时间大多大于天而小于天(发展太快与太慢一般都不是恶性肿瘤),故σ是确定肿瘤性质地重要参数之

第五章----微分方程模型

第五章 微分方程模型 5.1、 某人每天由饮食获取10467焦热量,其中5038焦用于新陈代谢,此外每公斤体重需支付69焦热量作为运动消耗,其余热量则转化为脂肪,已知以脂肪形式贮存的热量利用率为100%,每公斤脂肪含热量41868焦,问此人的体重如何随时间而变化? 解: 设此人的体重为w ,则根据题意有,每天获取的热量,减去新陈代谢, 减去运动消耗的热量,剩余的按利用率100% 转化为脂肪,即有下列等式成立: 1046750386941868 w dw dt --= 经化简有: 232313956139565429()41868t t w e t e c -=-?+ 假设此人现在的体重为0w ,则此人的体重随时间的变化如下: 2323139561395605429()41868t t w e t e w - =-?+ 5.2、 生活在阿拉斯加海滨的鲑鱼服从Malthus 增长模型)(003.0)(t p dt t dp = 其中t 以分钟计。在0=t 时一群鲨鱼来到此水域定居,开始捕食鲑鱼。鲨鱼捕杀鲑鱼的速率是)(001.02t p ,其中)(t p 是t 时刻鲑鱼总数。此外,由于在它们周围出现意外情况,平均每分钟有0.002条鲑鱼离开此水域。 (1)考虑到两种因素,试修正Malthus 模型。 (2)假设在0=t 是存在100万条鲑鱼,试求鲑鱼总数 )(t p ,并问∞→t 时会发生什么情况? 解: (1),由题可知, 在考虑两种因素后,修正后的Malthus 模型如下: 2()0.003()0.001()0.002dp t p t p t dt =-- (2),假设在0t = 时,存在100万条鲑鱼,即(0)1000000p = ,解下列初值问题

手机病毒的传播机制以及防范策略

手机病毒的传播机制以及防范策略 舒琛 北京邮电大学信息工程学院 (100876) Email:032057@https://www.wendangku.net/doc/aa15509506.html, 摘 要:本文根据手机病毒的传播现状,分析了手机病毒的传播机制,同时得出将计算机病毒的防范机制平移到手机平台是手机病毒防范的良好策略之一。 关键词:病毒防范机制整体平移,蓝牙,手机病毒 §1引言 计算机病毒使计算机这一信息终端受到安全性的挑战才不过数十年,手机病毒就开始了其在手机这一客户的新兴移动终端“兴风作浪”的历程。 §2手机病毒 随着2004年6月全球首例手机蠕虫病毒——“卡波尔”通过手机的蓝牙功能在Symbian手机操作系统的智能手机上传播的实现,手机病毒正式从一种概念成为了一种威胁。[1] §2.1手机病毒的概念 凡是能够引起手机故障,破坏手机数据的程序统称为手机病毒。依据此定义,诸如逻辑炸弹、手机蠕虫等均可称为手机病毒。 手机病毒的产生过程是:程序设计—传播—潜伏—触发—运行—实施攻击。[2] 病毒的产生原因是: (1)开个玩笑或证明病毒制作者的能力。有些精通编程语言的人,为了炫耀或者证明自己的能力,编写了特殊的程序,这些程序将在一定条件下被触发,实现一定的功能,比如在屏幕上显示特殊的字符等。这类病毒一般是良性的,不会对客户的移动终端造成实质性的不良影响。[2] (2)用于版权保护。暂时没有这样的案例,但是不排除在下载服务以及将来智能手机的软件安装上,版权拥有者为了维护自己的经济利益反对盗版而采取相应的措施。 (3)用于特殊目的。一旦手机的电子货币功能真正成熟并且投入使用,不排除有人会为了经济利益而用病毒去盗取帐号、密码。同时,其他有心人士也可能用病毒达成自己的险恶用心。 §2.2病毒特征 手机病毒的特征与一般的计算机病毒既有共同点又有其个性的一面。 共同点有:(1)传染性。即手机病毒程序会自动寻找未经感染的文件,将自身代码强行连接到未受传染的程序之中。(2)未经授权而调用。一般程序是经过用户调用才执行,对用户而言是透明的、可见的。但病毒程序在执行过程中窃取系统的控制权,先于正常程序执行,且它们执行动作对用户而言是未知的,而其目的也是不明确的。(3)隐蔽性。病毒程序一般为了比较隐蔽而设计得短小精悍,而且即使感染它也不会立即发作,以便它有足够的时间进行传播。(4)潜伏性。和生物体内的病毒一样,为了有充分的传播时间,手机病毒不会立即发作,而是在满足特定的激发条件之后才开始运行。(5)破坏性。良性病毒只是开开玩笑,不会造成太大后果,最多是多占了资源。但恶性病毒会破坏数据,盗取帐号,甚至格式化磁盘。[2] 不同点有:(1)传播的途径不同。计算机病毒一般是通过网络、文件拷贝进行传播。而手机病毒是通过蓝牙技术或彩信手动接收到病毒或者通过网络下载并安装了病毒。(2)传播的危害不同。以往的病毒,只是在计算机上大展拳脚,但是手机病毒的出现,使得病 - 1 -

相关文档
相关文档 最新文档