文档库 最新最全的文档下载
当前位置:文档库 › 遗传学名解

遗传学名解

遗传学名解
遗传学名解

嵌合体(mosaic)一个个体内同时存在两种或两种以上的核型的细胞系,这种个体称为嵌合体,如46,XX/47,XXY;45,X/46,XX等。嵌合体可以是数目异常之间、结构异常之间以及数目和结构异常之间的嵌合。

罗伯逊易位(Robertsonian translocation) 一条染色体上的断片移接到另一条非同源染色体的臂上,这种结构畸变称为易位。常见的易位方式有相互易位、罗伯逊易位和插入易位等。罗伯逊易位又称着丝粒融合(centric fusion),是发生于近端着丝粒染色体的一种易位形式。当两个近端着丝粒染色体在着丝粒部位或者是着丝粒附近部位发生断裂后,二者的长臂在着丝粒处接合在一起,形成一条衍生染色体。两者的短臂则构成一个小染色体(往往在第二次分裂时丢失,可能是由于缺乏着丝粒或者是由于其完全由异染色质构成所致)。(由于丢失的小染色体几乎全是异染色质,而有两条长臂够成的染色体上则几乎包含了两条染色体的全部基因)因此罗伯逊以为携带者虽然只有45条染色体,但表型一般正常,在形成配子的时候会出现异常,造成胚胎死亡而流产或生出先天畸形患儿。

Lyon假设(Lyon hypothesis)要点:1.X染色体失活发生在胚胎发育早期。2.X染色体的失活是随机的。异固缩的X染色体可以来自父亲或母亲。3.失活是完全的。(雌性哺乳动物体细胞内仅有一条X染色体是有活性的,另一条在遗传上是失活的,在间期细胞核中螺旋化而呈异固缩为X染色质。)4.失活是永久和克隆式繁殖的。故失活是随机的,又是恒定的。

先证者(proband)先证者是某个家族中第一个被医生或者遗传研究者发现的罹患某种遗传病的患者或具有某种性状的成员

外显率(penetrance) 外显率是某一显性基因(在杂合状态下)或纯合隐性基因在一个群体中得以表现的百分比。外显率等与100%时为完全外显,否则则为不完全外显(外显不全)。某一基因的外显率不是绝对不变的,相反,它随着观察者锁定观察标准的不同而变化。

拟表型(phenocopy)拟表型指在个体发育过程中,环境因素的作用使个体产生一种症状与某一特定基因所产生的表现型十分相似,或者说由环境因素引起的疾病模拟了由遗传决定的表现型,又称表现型模拟。由于并非生殖细胞中基因本身的改变所致,故不会遗传给后代。偏性遗传(sex-influenced inheritance)虽非伴性遗传的疾病,但在两性中的表达程度和频率均有不同,是为~或从性遗传,例如早秃(AD)绝大多数为男性。

表现度(expressivity) 表现度是基因在个体中的表现程度,或者说具有同一基因型的不同个体或同一个体的不同部位,由于各自遗传背景的不同,所表现的程度可能有显著的差异。当一种畸形疾病或综合症的表现极为轻微而无临床意义时,称为顿挫型。

限性遗传(sex-limited inheritance) 限性遗传是常染色体上的基因,由于基因表达的性别限制,只在一种性别表现,而在另一种性别则完全不能表现。这主要是由于解剖学结构上的性别差异造成的,也可能受性激素分泌方面的差异限制。(如女性的子宫阴道积水症,男性的前列腺癌等。

显示杂合子(manifesting heterozygote) 偶见X连锁隐性遗传的血友病或Duchenne肌营养不良的男性患者的杂合子母亲也可能受累,这种X连锁隐性遗传的女性杂合子表现出的临床症状是显示杂合子。女性X染色体有随机失活现象,机遇使她大部分细胞中带有正常基因的X染色体失活,而带有隐形致病基因的那条X染色体恰好有活性,从而表现出或

轻或重的临床症状。

遗传早现(genetic anticipation) 遗传早现是指一些遗传病(通常为显性遗传病)在连续几代的遗传中,发病年龄提前而且病情严重程度增加。

亲代印迹(parental imprinting) 又称遗传印迹(genetic imprinting),是指同一基因会随着它来自父源或母源而又不同的表现。这雨基因在男女生殖细胞形成的过程中受到不同的暂时修饰有关,这些修饰使得染色体或基因带有了亲代的印迹。易患性(liability)在多基因遗传病发生中,遗传因素和环境因素共同作用决定一个个体患某种遗传病的可能性称为易患性。一般群体中,易患性很高或很低的个体很少,大部分个体接近平均值,因此群体的易患性变异也呈正态分布。一个个体的易患性高低无法测量,但一个群体的易患性平均值可以从该群体的患病率作出估计。(可再表述群体易患性阈值发病率的关系)

易感性(susceptibility) 易感性特指由遗传因素决定的患病风险,仅代表个体所含有的遗传因素;但在一定的环境条件下,易感性高低可以代表易患性高低。

遗传度(heritability) 在多基因遗传病中,遗传度的含义是多基因累加效应对疾病易患性变异的贡献大小。~愈大,表明遗传因素对病因的贡献愈大。广义遗传度H或h2是指遗传方差占表型方差的比值,它表示数量性状从亲代传递给子代的相对能力。其公式为h2=VG/Vp ×100%。(Vp=VG+VE)

多基因病阈值(threshold of multifactorial disease) 当一个个体易患性高到一定限度就可能发病。这种由易患性所导致的多基因遗传病发病最低限度成为发病阈值。其标志着在一定的环境条件下,患者所必需的最低的致病基因数量,所以多基因遗传性状亦属于阈值性状。(可再表述群体易患性阈值发病率的关系)

Hardy-Weinberg平衡(Hardy-Weinberg equilibrium)在一个随机婚配的大群体中,如果没有突变、迁移、自然选择等影响,一个位点上各种基因型的相对比例,及其频率将代代保持不变,处于遗传平衡状态。主要影响因素:基因突变、选择、随机遗传漂变、迁移、遗传异质性。

合适度:指在一定环境条件下,某基因型个体能够生存并将基因传给下一代的能力。

遗传漂变:小群体中,等位基因的频率由于抽样误差引起的随机变化。

近婚系数(inbreeding coefficient) 指有亲缘关系的配偶,从他们共同的祖先得到同一基因,有奖这一基因传递给他们子女使之成为纯合子的概率。近亲婚配除了通过亲缘系数来测判断双方的相似程度之外,还可以通过近婚系数来测定近亲婚配子女的基因纯和程度。一级亲的近婚系数是1/4,叔侄女(舅甥女)为1/8,一级表亲为1/16,二级表亲为1/64。近婚可以提高多基因疾病的发病率,但不及单基因(AR)显著。

融合基因(fusion gene)两种非同源基因的部分片段拼接而成的基因,成为融合基因。此可能是在减数分裂时同源染色体之间错位配对引发不等交换的结果。

移码突变(frame-shift mutation)若基因中碱基缺失或插入不是3个或3的倍数个碱基时,这将导致突变部位以后的密码子变化,重新组合三联密码子而导致移码突变。

杂质(heteroplasmy)杂质表示一个细胞或组织及含有突变型,又含有野生型线粒体基因

组。即一个细胞数千个mtRNA在这个位点上存在正常和突变基因。

纯质(homoplasmy) 纯质用来描述一个细胞或组织中所有的线粒体具有相同的基因组,或者都是野生型序列,或者都是携带一个基因突变的序列。即在某一特定位点上,所有的mtDNA都为同一基因。

(如果一种线粒体基因突变会降低ATP的产生,那么那些高需能有含有同质性突变线粒体KNA的细胞就会遭受更为严重的损害;相反,有同质性突变线粒体DNA的低需能细胞所受影响较小。)

遗传瓶颈(genetic bottle neck) 随卵母细胞成熟,线粒体数急剧下降(10万锐减到100个)的现象,其生理学意义可能在于最大限度的降低含有突变基因的线粒体传给子代。

癌基因(oncogene) 是指一段能引起细胞恶性转化的核苷酸序列,有v-onc(病毒癌基因)和c-onc(细胞癌基因)。比较不同:前者无内含子,非病毒生长繁殖所必须,有急性致癌作用;后者有内含子,是正常生长分化所必须,无致癌作用。v-onc来自于c-onc。分为src/ras/myc/sis等族。

标记染色体(marker chromosome) 在肿瘤的发生发展过程中,由于肿瘤细胞的增殖失控等原因,导致细胞有丝分裂异常并产生部分染色体断裂与重接,形成了一些结构特殊的染色体,称为标志性染色体(形成是随机的)。一小部分能够在肿瘤细胞中稳定遗传,称为特异性标记染色体(非随机事件),与肿瘤的恶性程度及转移能力密切相关

基因治疗(gene therapy) 是指应用重组DNA技术,更换、修正有缺陷的致病基因或将正常基因植入靶细胞代替遗传缺陷的基因,恢复这些基因的正常功能,或关闭、抑制异常表达的基因,达到治疗目的。步骤:目的基因的克隆>目的基因的转移>目的基因的表达>靶细胞的选择>安全性问题(保证转移表达系统的绝对安全)

遗传携带者(genetic carrier) 遗传携带者指表型正常,但带有致病遗传物质(致病基因或染色体畸变),能传递给后代使之患病的个体。一般包括:带有隐性致病基因的个体(杂合子);带有平衡易位染色体的个体;带有显性致病基因而暂时表达正常的顿挫型或迟发外显者。

医学遗传学名词解释精华双语版

adductive effect 加性效应:在多基因遗传的疾病或性状中,单个基因的作用是微小的,但是若干对等位基因的作用积累起来,可以形成一个明显的表型效应,称为加性效应。 allele 等位基因:位于同源染色体的特定基因座上的不同形式的基因,它们影响同一相对性状的形成。 autosomal dominant inheritance AD 常染色体显性遗传:控制某性状或疾病的基因是显性基因,位于常染色体上,其遗传方式称为常染色体显性遗传。 autosomal recessive inheritance AR常染色体隐性遗传:控制一种遗传性状或疾病的隐性基因位于常染色体上,这种遗传方式称为常染色体隐性遗传。 base substitution 碱基替换:一个碱基被另一个碱基所替换,是DNA分子中单个碱基的改变,称为点突变。 Cancer family癌家族:恶性肿瘤发病率高的家族。 cancer family syndrome 癌家族综合征:一个家族中有多个成员患有恶性肿瘤,其原因可以是遗传性的,也可称为遗传性瘤,也可以是环境中的各种致癌因素引起的。 carrier 携带者:表型正常但带有致病基因的杂合子称为携带者。Carter effect卡特效应:发病率低的性别,阈值较高,那些已发病的患者易患性一定很高,因而他们的亲属(尤其是发病率高的性别)发病风险增高。相反,发病率高的性别,阈值较低,已发病的患者易患性也较低,因而他们的亲属(尤其是发病率低的性别)发病风险较低。 chromosomal aberration 染色体畸变:染色体发生的数目和结构上的异常改变。 chromosome polymorphism 染色体多态性:在正常健康人群中恒定的染色体微小变异。 codominance 共显性:染色体上的某些等位基因没有显隐之分,在杂合状态时两种基因的作用都能表达,各自独立的表达基因产物,形成相应的表型。 coefficient of relationship 亲缘系数:两个有共同祖先的个体在某一基因座位上有相同等位基因的概率。 complete dominant完全显性:在显性遗传性状或疾病中,带有致病基因的杂合子表现出与纯合子完全相同的表型。Congenital malformation先天畸形:胎儿出生后,整个身体或其一部分的外形或内脏具有解剖学形态结构的异常。consanguinity近亲:医学遗传学上通常将3-4代内有共同祖先的一些个体称为近亲 CpG island CpG 岛:DNA在某些区域CpG序列的密度比平均密度高出很多,称为CpG岛。 criss-cross inheritance交叉遗传:XR患者多为男性,男性患者的致病基因只可能来自其携带者母亲,将来只能传给女儿,也就是从男到女再到男,这个现象就是交叉遗传。交叉遗传是XR病致病基因遗传的特点。 delayed dominance 延迟显性:某些带有显性致病基因的杂合子,在生命的早期并不表现相应的病理状况,当达到一定年龄时,致病基因的作用才显现。 diagnosis of genetic disease 遗传病的诊断:临床医生根据患者的症状、体征以及各种辅助检查结果并结合遗传学分析,从而确认是否患有某种遗传病并判断其遗传方式及遗传规律。 DMs 双微体:染色体区域复制后产生许多DNA片段并释放到胞浆中,这些多余的染色体DNA成分形成连在一起的双点样形状称为双微体。Dosage compensation剂量补偿:由于雌性细胞中的两条X染色体中的一条发生异固缩,失去转录活性,这保证了雌雄两性细胞中都只有一条X染色体保持转录活性,使两性X连锁基因产物的量保持在相同水平上. dynamic mutation 动态突变:又称为不稳定三核苷酸重复序列突变,其突变是由于基因组中脱氧三核苷酸串联重复拷贝数增加,拷贝数的增加随着世代的传递而不断扩增,称为动态突变。 enzyme protein disease酶蛋白病:是由于遗传性酶缺乏或增多而引起的先天性代谢病,又叫遗传性酶病(hereditary enzymopathy)。AR epigenetics 表观遗传学:通过有丝分裂或减数分裂来传递非DNA 序列信息的现象称为表观遗传学。 expressivity 表现度:在发病个体间,杂合子因某种原因而导致的个体间的表现程度的差异。 euploid 整倍体异常:在二倍体的基础上,体细胞以整个染色体组为单位的增多或减少。 familiar carcinoma 家族癌:一个家族中多个成员患同一种癌,通常是较常见的癌或瘤患者一级亲属发病率远高于一般人群。fitness 适合度:在一定环境条件下,某种基因型个体能够生存下来并将其基因传递给子代的能力。 Flanking sequence侧翼序列:每个断裂基因中第一个外显子的上游和最末一个外显子的下游,都有一段不被转录的非编码区,称为侧翼序列。 fragile site 脆性部位:在特殊培养条件下出现的染色体恒定部位的宽度不等的不着色区。 fragile X chromosome 脆性X染色体:X染色体的Xq27~Xq28之间成细丝样,导致染色体的末端成随体样结构,由于这一部位容易发生断裂,故称为脆性X染色体。 frameshift mutation 移码突变:在DNA编码顺序中插入或缺失一个或几个碱基对(但不是3或3的倍数),造成这一位置以后的一系列编码发生移位错误fusion gene 融合基因:染色体之间的错配联会和不等交换导致两种不同的基因发生交换所致。 GT-AG法则:在每个外显子和内含子的接头区都是一段高度保守的共有序列,内含子的5`端是GT,3端是AG,这种接头方式称为GT-AG 法则,普遍存在于真核生物中,是RNA剪接的识别信号。 Gene cluster基因簇:功能相同、结构相似的一系列基因常彼此靠近、成串地排列在一起,这一系列基因称基因簇。 genetics disease遗传病:经典遗传学认为,人体生殖细胞(精子或卵子)或受精卵细胞,其遗传物质发生异常改变后所导致的疾病叫遗传病。genetic heterogeneity 遗传异质性:表型相同的个体具有不同的 基因型,这种现象称作遗传异质性。 genetic imprinting 遗传印记:位于同源染色体上的一对等位基 因,随其来源于父亲或母亲的不同而表现出功能上的差异,即一个 等位基因不表达或低表达,结果产生了不同的表型。 Genetic load遗传负荷:一个群体由于致死基因或有害基因的存在 而使群体适合度降低的现象。通常用平均每个个体所带有害基因数 来表示。 genetic consulting 遗传咨询:咨询医师应用医学遗传学与临床医 学的基本原理与技术解答遗传病患者及其家属或有关人员提出的 有关疾病的病因、遗传方式、诊断、治疗、预防、预后等问题,估 计患者亲属特别是子女中某病的再发风险,提出建议及指导,以供 患者及其亲属参考的全过程。 genetic screening 遗传筛查:将人群中具有风险基因型的个体检 测出来的一项普查工作,通过筛查,可了解遗传性疾病在人群中的 分布及影响分布的因素,估计某些疾病的致病基因频率,分析、研 究遗传性疾病的发病规律和特点,为人群预防对策提供依据。 Genome 基因组:一个生殖细胞中所有遗传信息。包括核基因组和线 粒体基因组。 gene frequency 基因频率:某一基因在其基因座位上所有等位基因 中所占的比例。 genotype frequency 基因型频率:某种基因型的个体占群体总个体 数的比例。 gene flow 基因流:在具有某一基因频率群体的部分个体,因某种 原因迁入与其基因频率不同的另一个群体,并杂交定居,是迁入群 体的基因频率改变。可使某些基因有效地从一个群体扩散到另一个 群体,这种现象称为基因流或迁移压力。 gene amplification 基因扩增:基因组中某个基因拷贝数目的增 加,细胞癌基因通过基因扩增使其拷贝数大量增加,从而激活并导 致细胞恶性转化。 gene diagnosis 基因诊断:又称分子诊断(molecular diagnosis) 利用分子生物学技术,直接探测遗传物质的结构或表达水平的变化 情况,从而对被检查者的状态和疾病作出诊断。 gene therapy 基因治疗:运用DNA重组技术设法修复患者细胞中有 缺陷的基因,是细胞恢复正常功能而达到治疗遗传病的目的,包括 基因修改和基因添加。 Gene family 基因家族:一系列外显子相关联的基因,其成员是由 一个祖先基因复制或趋异产生。 Hardy-Weinburg low 哈温定律:在一定条件下,群体的基因频率和 基因型频率在世代传递中保持不变,称为遗传平衡定律。其中一定 条件是指群体很大,随机婚配,没有选择,没有突变,没有大规模 的个体迁移。 Hemoglobinopathy血红蛋白病:珠蛋白分子结构或合成量异常所引 起的疾病。 Hereditary tomor遗传性肿瘤:符合Mendel遗传规律、呈ad遗传, 来源于神经或胚胎组织heritability 遗传率:在多基因遗传病中遗 传因素所起作用的大小。 heteroplasmy 异质性:由于线粒体DAN的突变,使在同一组织或细 胞内同时存在野生型和突变性的线粒体DAN。 的单基因肿瘤。 histone code 组蛋白密码:组蛋白在翻译后的修饰过程中发生改 变,提供一种识别的标志,为其他蛋白与DNA的结合产生协同或拮 抗效应,是一种动态转录调控成分。包括被修饰的氨基酸种类,位 置,和修饰方式。 Homologous chromosomes同源染色体:大小、形态、结构上相同的 一对染色体。成对的染homoplasmy 同质性:在同一组织或细胞内, 线粒体基因组都一致。 色体一条来自父体,一条来自母体。 HSRs 均质染色区:扩增过程在某一染色体区域产生一系列重复DNA 序列,即特殊复制的染色体区带模式,称为均质染色区。 halfzygous半合子:虽然具有二组相同的染色体组,但有一个或多 个基因是单价的,没有与之相对应的等位基因,这种合子称为半合 子 inbreeding coefficient近婚系数:是指一个个体接受在血缘上相 同即由同一祖先的一个等位基因而成为该等位基因纯合子的概率。 inborn errors of metabolism 先天性代谢缺陷:由于基因突变导 致酶蛋白缺失或活性异常引起的遗传性代谢紊乱,又称遗传代谢病。 incomplete dominace 不完全显性:在显性遗传性状或疾病中,杂 合子的性状介于显性纯合子和隐形纯合子之间。 irregular dominance 不规则显性:显性遗传中,由于环境因素的 作用,使得带有致病基因的杂合子并不表现出相应的性状,使得遗 传递方式不规则,成为不规则显性。 Karyotype核型:一个细胞内的全套染色体即构成核型。 landmark 界标:染色体上具有显著形态学特征的并且稳定存在的结 构区域,包括染色体两臂的末端、着丝粒及其在不同显带条件下均 恒定存在的某些带。 law of genetic equilibrium遗传平衡定律:如果一个群体满足下 述所有条件:1.群体无限大2.随机婚配,指群体内所有个体间婚配机 会完全均等3.没有基因突变,同时也没有来自其他群体的基因交流 4.没有任何形式的自然选择 5.没有个体的大量迁移,在这样一个理 想群体中,基因频率和基因型可以一代一代保持不变。这一规律称 为遗传平衡定律,又称为hardy-weinberg定律。 liability 易患性:由遗传背景和环境因素共同作用决定个体患某 种疾病的可能性大小。 Linkage group连锁群:在遗传学上,将位于同一对同源染色体上 的若干对彼此连锁的基因称为一个连锁群。 major gene主基因:对数量性状能产生明显表型效应的基因。 marker chromosome 标记染色体:由于肿瘤细胞的增值时空等原因 导致细胞有丝分裂异常并产生部分染色体断裂与重接,形成了一些 结构特殊的染色体,称为标志染色体。 maternal inheritance母系遗传:两个具有相对性状的亲本杂交, 不论正交或反交,子一代总是表现为母本性状的遗传现象. medical genetics医学遗传学:1.简单讲:医学遗传学是研究人类 疾病与遗传关系的一门学科。2.具体讲,医学遗传学是遗传学与临 床医学结合而形成的一门边缘学科,是遗传学知识在医学领域的应 用,可被视为遗传学的一个分支。 minor gene微效基因:在多基因性状中,每一对控制基因的作用是 微小的,故称微效基因。missense mutation 错义突变:碱基替换 导致改变后的密码子编码另一种氨基酸,是多肽链氨基酸种类和顺 序发生改变,产生异常的蛋白质分子。 modifier,modifying gene修饰基因:某些基因对某种遗传性状并 无直接影响,但可以加强或减弱与该遗传性状有关的主要基因的作 用。具有此种作用的基因即为修饰基因。 molecular disease 分子病:由于基因突变造成的蛋白质分子结构 异常或含量异常而导致的机体功能障碍的一类疾病。 monoclonal origin hypothesis of tumor 肿瘤的单克隆假说:致 癌因子引起体细胞基因突变,是正常体细胞转化为前癌细胞,然后 再一些促癌因素作用下,发展成为肿瘤细胞。也就是说,肿瘤细胞 是由单个突变细胞增殖而形成的,肿瘤是突变细胞的单克隆增殖细 胞群。 monogenic disease 单基因病:单一基因突变所引起的疾病。 mosaic 嵌合体:一个个体内同时含有两种或两种以上不同核型的细 胞系,此个体称为嵌合体。 mtDNA 线粒体DNA:一种双链闭合环状DNA分子,含有37个基因。 编码22种tRNA,13种mRAN,2种rRAN。 Multistep carcinogenesis 多步骤致癌假说:又称muitistep lesion theory多步骤损伤学说,细胞的癌变至少需要两种致癌基 因的联合作用,每一个基因的改变只完成其中的一个步骤,另一些 基因的变异最终完成癌变过程。 mutation load 突变负荷:由于基因突变产生了有害或致死基因, 或由于基因突变率增高而使群体适合度下降的现象。 mutation rate突变律:每一代每100万个基因中出现突变的基因 数量。(在一定时间内,每一世代发生的基因突变总数或特定基因座 上的突变数) Multigene family多基因家族:是指基因组中由一个祖先基因经重 复和变异所产生的一组来源相同,结构相似和功能相关的一组基因。 multiple alleles复等位基因:遗传学上把群体中存在于同一基因 座上,决定同一类相对性状,经由突变而来,且具有3种或3种以 上不同形式的等位基因互称为复等位基因。 natural selection自然选择:自然界中,有些基因型的个体生存 和生育能力较强,留下的后代较多,有些基因型的个体生存和生育 能力较弱,留下的后代较少,这种优胜劣汰的过程叫自然选择。 ncRNA 非编码RNA:是一类在真核细胞中被大量转录的RNA分子,既 不行使mRNA的功能,也无tRNA,rRNA的作用,但在调节真核细胞基 因表达的过程中发挥重要作用。 neutral mutation中性突变:指突变的结果既无益,也无害,没有 有害的表型效应,不受自然选择的作用。此时,基因频率完全取决 于突变率。(或者:产生的新等位基因与群体己有的等位基因的适合 度相同的突变)。 neoplasm 肿瘤:泛指由一群生长失去正常调控的细胞形成的新生 物。 nonsense mutation 无义突变:碱基替换是原来为某一个氨基酸编 码的密码子变成终止密码子,导致多肽链合成提前终止,产生无生 物活性的多肽链。 oncogene 癌基因:能引起宿主细胞恶性转化的基因。 pedigree 系谱:从先证者入手,调查其亲属的健康及婚育史,将调 查所得的资料按一定的方式绘制成系谱图。 pedigree analysis 系谱分析:从先证者入手,调查其亲属的健康 及生育状况,将调查资料以一定的方式绘制成系谱图进行系谱分析。 penetrance 外显率:在一个群体有致病基因的个体中,表现出相应 病理表型人数的百分比。 phenocopy 表型模拟:一个个体在发育过程中,在环境因素的作用 下产生的性状与由特定基因控制产生的性状相似或完全相同的现 象。 Ph chromosome Ph染色体:是一种特异性染色体。它首先由诺维尔 (Nowell)和亨格福德(Hungerford)在美国费城(Philadelphia) 从慢性粒细胞白血病患者的外周血细胞中发现,故命名为Ph染色体。 pleiotropy 基因多效性:一个基因决定或影响多个性状的形成。包 括初级效应及其引发的次级效应 Point mutation点突变:当基因(DNA链)中一个或一对碱基改变 时,称之为点突变。 Population genetics群体遗传学:以群体为单位研究群体内遗传 结构及其变化规律的分支学科。 prenatal diagnosis 产前诊断:对胚胎或胎儿在出生前是否患有某 种遗传病或先天畸形做出的诊断,是预防先天性和遗传性疾病患儿 出生的重要方法之一。 proband 先证者:在某个家族中第一个被医生确诊或被研究人员发 现的患有某种遗传性疾病或具有某种遗传性状的人。 pro-oncogene 原癌基因:广泛存在于人与哺乳动物细胞中,通常不 表达或低表达,在细胞增殖分化或胚胎发育过程中发重要作用,在 进化上高度保守,其表达具有组织特异性,细胞周期特异性,发育 阶段特异性。 pseudogene 假基因:在基因家族中不产生有功能基因产物的基因。 qualitative character 质量性状:在单基因遗传的性状或疾病取 决于单一的主基因,其变异在一个群体中的分布是不连续的,可以 吧变异个体明显的分为2~3个群,群之间差异显著,具有质的差异。 quantitative character 数量性状:在多基因遗传的性状或疾病 中,其变异在群体中的分布是连续的,某一性状的不同个体之间只 有量的差异而没有质的不同,这种形状称为数量性状。 random genetic drift 随机遗传漂变:在一个小的群体中由于所生 育的子女少,基因频率易在世代传递过程中产生相当大的随机波动。 Recurrence risk再发风险:某一遗传病患者的家庭成员中再次出 现该病的概率。 reverse diagnosis 逆向诊断:基因诊断和传统诊断方法的主要差 异在于直接从基因型推断表型,即可以越过产物直接检测基因结构 而作出诊断,改变了传统的表型诊断方式,故基因诊断又称为逆向 诊断。 RFLP 限制性基因片段多态性:DNA序列上发生变化而出现或丢失某 一限制性内切酶位点,是酶切产生的片段长度和数量发生变化,在 人群中不同个体间的这种差异称为限制性基因片段多态性。 samesense mutation 同义突变:碱基替换后,改变前后的密码子编 码同一种氨基酸。 segregation load 分离负荷:由于基因分离使得适合度高的杂合子 产生了适合度低的隐形纯合子的现象。 selection coefficient,s选择系数(压力):指在选择作用下适合 度降低的程度。S反映了某一基因型在群体中不利于存在的程度,因 此s=1-f. Sex chromatin性染色质:间期细胞核中性染色体的异染色质部分 显示出来的一种特殊结构。 sex-influenced inheritance 从性遗传:常染色体上的基因在表型 上由于受性别的影响而表现出在男女中的分配比例不同或基因表现 程度的差异。 sex-limited inheritance 限性遗传:基因位于常染色体上,由于 受到性别的限制,性状只能在一种性别中表现而在另一种性别中则 完全不能表现,但是这些基因均能传递给下一代,这种遗传方式为 限性遗传。 skipped generation隔代遗传:双亲正常,子女患病,子女的患病 基因来自父亲,这种遗传现象称为隔代遗传。 somatic cell gene therapy体细胞基因治疗:是指将一般基因转 移到体细胞,使之表达基因产物,以到达治疗目的。 split gene 断裂基因:大多数真核生物的编码序列在DNA上是不连 续的,被非编码序列所隔开。 SSCP single-strand conformation polymorphism单链构象多态 性:是一种分离核酸的技术,可以分离相同长度但序列不同的核酸 (性质类似于DGGE和TGGE,但方法不同)。 stem line 干系:在某种肿瘤内生长占优势或细胞百分数占多数的 细胞系称为干系。 susceptibility 易感性:由遗传基础决定一个个体患病的风险。 termination mutation 终止密码突变:一个终止密码子变成为某个 氨基酸编码的密码子,导致多肽链继续延长,形成过长的异常的多 肽链。 Thalassemia地中海贫血:简称地贫,也称珠蛋白生成障碍性贫血。 由于某种珠蛋白链合成速率降低,造成一些肽链缺乏,另一些肽链 相对过多,出现α链和非α链合成数量不平衡,导致溶血性贫血, 称为地中海贫血。 threshold 阈值:当个体易患性达到某个限度时个体即将患病,此 限度既为阈值。在一定环境条件下,阈值代表了致病所需的致病基 因的数量。 threshold effect 阈值效应:当突变的线粒体DNA达到一定的比例 时,才有受损的表型出现,则就是阈值效应。明显地依赖于受累细 胞或组织对能量的需求。 transition 转换:同种类型的碱基之间的替换。 transversion 颠换:两种不同种类碱基之间的替换。 tumor suppressor gene (anti-oncogene抗癌基因 or recessive oncogene 隐性癌基因)肿瘤抑制基因:起作用是隐性的,当一对等 位基因均发生缺陷而失去功能时可促使肿瘤发生。

遗传学大题复习

第一章绪论 (一)名词解释 1.分子遗传学:在分子水平上研究生物遗传与变异机制的遗传学分支学科,是生化遗传 学的发展与继续。是从基因水平探讨遗传病的本质。 2.medical genetics:即医学遗传学,是遗传学与医学相结合的一门边缘学科。是研究遗传病发生机制、传递方式、诊断、治疗、预后,尤其是预防方法的一门学科,为控制遗传病的发生和其在群体中的流行提供理论依据和手段,进而对改善人类健康素质作出贡献。 3.genetic disease:即遗传病,遗传物质改变所导致的疾病。 4.genetic medicine:即遗传医学,研究预防和控制遗传病在一些家庭内的发生和在群体中的流行、预防出生缺陷、不断提高人口素质的一门学科。 (二)填空题 1. 医学;遗传学 2.单基因病;多基因病;染色体病;体细胞遗传病 3.恶性肿瘤;先天畸形;自身免疫缺陷病;衰老 4.完全由遗传因素决定发病;基本上由遗传决定,但需要环境中一定诱因的作用;遗传因素和环境因素对发病都有作用,在不同的疾病中,其遗传度各不相同;发病完全取决于环境因素,与遗传基本上无关。 5.限制片段长度多态性(RFLP);短串联重复(STR);单核苷酸多态性(SNP) 6.常染色体显性遗传病(AD);常染色体隐性遗传病(AR);X连锁隐性遗传病(XR); X 连锁显性遗传病(XD); Y连锁遗传病; 线粒体遗传病 7.遗传病的传播方式;遗传病的数量分布;遗传病的先天性;遗传病的家族性;遗传病的传染性 (三)问答题 1.请列出5种有关遗传学研究的期刊(要求国际SCI杂志2种,国内核心杂志3种)。并列出5项遗传学最新进展知识。 遗传学研究的期刊:human Genetics, Nature,中华医学遗传学杂志,遗传,遗传学报。 5项遗传学最新进展知识:人类基因组计划,蛋白质组学,基因组印记,基因芯片,基因治疗。 2.人类基因病分为哪几类及各类的定义,并举例说明。 人类遗传病可划分为5类 ①单基因病:单基因病由单基因突变所致。这种突变可发生于两条染色体中的一条,由此所引起的疾病呈常染色体(或性染色体)显性遗传;如短指症,这种突变也可同时存在于两条染色体上,由此所引起的疾病呈常染色体(或性染色体)隐性遗传。如白化病。 ②多基因病:多基因病是有一定家族史、但没有单基因性状遗传中所见到的系谱特征的一类疾病,如先天性畸形及若干人类常见病。环境因素在这类疾病的发生中起不同程度的作用。 ③染色体病:染色体病是染色体结构或数目异常引起的一类疾病。从本质上说,这类疾病涉及一个或多个基因结构或数量的变化,因此其对个体的危害往往大于单基因病和多基因病。如21三体。 ④体细胞遗传病:体细胞遗传病只在特异的体细胞中发生,体细胞基因突变是此类疾病

最新遗传学复习(刘祖洞_高等教育出版社_第二版)资料

一.绪论 遗传学:是研究生物遗传和变异的科学 遗传: 亲代与子代之间相似的现象 变异: 亲代与子代之间,子代与子代之间,总是存在不同程度差异的现象 遗传与变异:没有变异,生物界就失去了前进发展的条件,遗传只能是简单的重复;没有遗传,变异不能积累,就失去意义,生物也就不能进化了。 二.孟德尔定律 1. 性状:生物体或其组成部分所表现的形态特征和生理特征称为性状 2. 单位性状:生物体所表现的性状总体区分为各个单位作为研究对象,这些被区分开得每一个具体性状称为单位性状,即生物某一方面 的特征特性。 3. 相对性状:不同生物个体在单位性状上存在不同的表现,这种同一单位性状的相对差异称为相对性状 显性性状(dominant character ):F1中表现出来的那个亲本的性状。如红花。 隐性性状(recessive character ):F1中没有表现出来的那个亲本的性状。如白花。 F2中,两个亲本的性状又分别表现,称为性状分离。显性个体:隐性个体 = 3:1。 分离规律及其实现的条件? 分离规律 1)(性母细胞中)成对的遗传因子在形成配子时彼此分离、分配到配子中,配子只含有成对因子中的一个。 2) 杂种产生含两种不同因子(分别来自父母本)的配子,并且数目相等;各种雌雄配子受精结合是随机的,即两种遗传因子是随机结合到 子代中。 实现条件 1) 研究的生物体必须是二倍体(体内染色体成对存在),并且所研究的相对性状差异明显。 2) 在减数分裂过程中,形成的各种配子数目相等,或接近相等;不同类型的配子具有同等的生活力;受精时各种雌雄配子均能以均 等的机会相互自由结合。 3) 受精后不同基因型的合子及由合子发育的个体具有同样或大致同样的存活率。 4) 杂种后代都处于相对一致的条件下,而且试验分析的群体比较大。 三.遗传的染色体学说 1、有丝分裂和减数分裂的区别在哪里?从遗传学角度来看,这两种分裂各有什么意义?那么,无性生殖会发生分离吗?试加说明。答:有丝分裂 减数分裂 发生在所有正在生长着的组织中 从合子阶段开始,继续到个体的整个生活周期 无联会,无交叉和互换 使姊妹染色体分离的均等分裂 每个周期产生两个子细胞,产物的遗传成分相同 子细胞的染色体数与母细胞相同 只发生在有性繁殖组织中 高等生物限于成熟个体;许多藻类和真菌发生在合子阶段 有联会,可以有交叉和互换 后期I 是同源染色体分离的减数分裂;后期II 是姊妹染色单体分离的均等分裂 产生四个细胞产物(配子或孢子)产物的遗传成分不同,是父本和母本染色体的不同组合 为母细胞的一半

第四章 连锁遗传和性连锁遗传学课后答案

第四章连锁遗传和性连锁 1.试述交换值、连锁强度和基因之间距离三者的关系。 答:交换值是指同源染色体的非姐妹染色单体间有关基因的染色体片段发生交换的频率,或等于交换型配子占总配子数的百分率。交换值的幅度经常变动在0~50%之间。交换值越接近0%,说明连锁强度越大,两个连锁的非等位基因之间发生交换的孢母细胞数越少。当交换值越接近50%,连锁强度越小,两个连锁的非等位基因之间发生交换的孢母细胞数越多。由于交换值具有相对的稳定性,所以通常以这个数值表示两个基因在同一染色体上的相对距离,或称遗传距离。交换值越大,连锁基因间的距离越远;交换值越小,连锁基因间的距离越近。 2.在大麦中,带壳(N)对裸粒(n)、散穗(L)对密穗(l)为显性。 今以带壳、散穗与裸粒、密穗的纯种杂交,F1表现如何?让F1与双隐纯合体测交,其后代为: 带壳、散穗 201株裸粒、散穗 18株 带壳、密穗 20株裸粒、密穗 203株 试问,这2对基因是否连锁?交换值是多少?要使F2出现纯合的裸粒散穗20株,至少应中多少株? 答:F1表现为带壳散穗(NnLl)。 测交后代不符合1:1:1:1的分离比例,亲本组合数目多,而重组类型数目少,所以这两对基因为不完全连锁。 交换值% =((18+20)/(201+18+20+203))×100%=8.6%

F1的两种重组配子Nl和nL各为8.6% / 2=4.3%,亲本型配子NL和nl各为(1-8.6%) /2=45.7%; 在F2群体中出现纯合类型nnLL基因型的比例为: 4.3%×4.3%=18.49/10000, 因此,根据方程18.49/10000=20/X计算出,X=10817,故要使F2出现纯合的裸粒散穗20株,至少应种10817株。 3. 在杂合体ABy/abY,a和b之间的交换值为6%,b和y之间的交 换值为10%。在没有干扰的条件下,这个杂合体自交,能产生几种类型的配子;在符合系数为0.26时,配子的比例如何? 答:这个杂合体自交,能产生ABy、abY、aBy、AbY、ABY、aby、Aby、aBY 8种类型的配子。 在符合系数为0.26时,其实际双交换值为: 0.26×0.06×0.1×100=0.156%,故其配子的比例为:ABy42.078: abY42.078:aBy2.922:AbY2.922:ABY4.922:aby4.922:Aby0.078:aBY0.078。 3.设某植物的3个基因t、h、f依次位于同一染色体上,已知t-h 相距14cM,现有如下杂交:+++/thf×thf/thf。问:①符合系数为1时,后代基因型为thf/thf的比例是多少?②符合系数为0时,后代基因型为thf/thf的比例是多少? 答:①1/8 ②1/2 5.a、b、c 3个基因都位于同一染色体上,让其杂合体与纯隐性亲本测交,得到下列结果:

医学遗传学

题型: 名词解释,6个,30分 填空,1分/空,20分 选择,单选,10分 问答,5题,共40分 1临床上诊断PKU 患儿的首选方法是 A 染色体检查B生化检查 C 系谱分析D基因诊断 2 羊膜穿刺的最佳时间是 A孕7~9周B孕8~12周 C孕16~18周D孕20~24周 3遗传型肾母细胞瘤的临床特点是 A发病早,单侧发病B发病早,双侧发病 C发病晚,单侧发病D发病晚,,双侧发病 4进行产前诊断的指症不包括 A夫妇任一方有染色体异常 B曾生育过染色体病患儿的孕妇 C年龄小于35岁的孕妇 D多发性流产夫妇及其丈夫 填空 5 多基因遗传病遗传中微效基因的累加效果可表现在一个家庭中……….. 6线粒体疾病的遗传方式………… 根据系谱简要回答下列问题 1 判断此病的遗传方式,写出先证者的基因型 2患者的正常同胞是携带者的概率是多少 3如果人群中患者的概率为1/100,问Ⅲ3随机婚配生下患者的概率为多少

二高度近视AR,一对夫妇表型正常,男方的父亲是患者,女方的外祖母是患者,试问这对夫妇婚后子女发病风险(画系谱) 三PKU是AR,发病率0.0001,一个个侄子患本病,他担心自己婚后生育患者,问其随机婚配生育患儿的风险 四某种AR致病基因频率0.01,某女哥哥是患者,问此女随机婚配或与表兄妹婚配风险。

五PKU是一种AR病,人群中携带者频率为1/50,一个人妹妹患病,他担心自己婚后生育患儿,问这名男子随机婚配生育患儿的风险是多大 答案 1B 2C 3B 4C 填空 1患者人数和病情轻重 2母系遗传 大题 一1 常隐aa 2 2/3 3 2/3×1/100×1/4=1/600 二1×1/2×1/8=1/8 三 1/2×1/50×1/4=1/400 四随机婚配:2/3×1/50×1/4=1/300 与表兄: 2/3×1/4×1/4=1/24 五2/3×1/50×1/4=1/300

哈医大遗传学试题B1

一、选择题(40×1分=40分) 1.遗传病最主要的特点就是( C )。 A.先天性. B.不治之症. C.遗传物质的改变. D.家族性. E.可在上下代之间传递. 2.下列那种核型的X染色质阳性( D )。 A.45,X. B.46,XY. C.47,XYY. D.46,XX. E.46,XY/45,X. 3.Huntingtin基因(CAG)n在传递过程中,n发生改变的现象称( D )。 A.错义突变. B.移码突变. C.无义突变. D.动态突变. E.中性突变. 4.常染色质就是指( B )。 A.螺旋化程度高,有转录活性的染色质. B.螺旋化程度低,有转录活性的染色质. C.螺旋化程度高,无转录活性的染色质. D.螺旋化程度低,无转录活性的染色质. E.异固缩的染色质. 5.线粒体遗传病的遗传方式为( E )。 A.AD. B.AR. C.X连锁遗传. D.Y连锁遗传. E.母系遗传. 6、在一个群体中,由于有害基因或致死基因的存在,使群体适合度降低的现 象称为( B )。 A.隔离. B.遗传负荷. C.基因突变. D.随机遗传漂变. E.迁移. 7.在医院门诊中常见的遗传病就是( C )。 A.单基因病. B.染色体病. C.多基因病. D.线粒体病. E.体细胞遗传病、 8.红绿色盲为X连锁隐性遗传病,一个男子及其父亲与舅父均患此病,其她人 表型均正常,该男子致病基因应该来源于( D )。 A.该男子的父亲. B.该男子的祖母. C.该男子的祖父. D.该男子的外祖母. E.该男子的外祖父. 9.下列那种疾病应进行核型分析以利于诊断( E )。 A.先天聋哑. B.并指. C.血友病. D.苯丙酮尿症. E.多发畸形伴智力低下. 10.46,XY,inv(2)(p21q31)表示2号染色体发生了( D )。 A.末端缺失. B.中间缺失. C.臂内倒位. D.臂间倒位. E.环状染色体. 11.一个HbH型地中海贫血患者的基因型就是α-/- -,其双亲的基因型应该就 是下列的哪一种( C )。 A.αα/αα与αα/- -、 B.α-/α-与αα/α-、 C.αα/- -与αα/α-、 D.αα/α-与- -/- -、 E.α-/- -与αα/αα. 12.两个先天性聋哑患者结婚后所生的两个子女都正常,这就是由于( E )。 A.外显率不全. B.表现度不一. C.基因突变. D.等位基因异质性. E.基因座异质性. 13.常染色体隐性遗传病中,小家庭患者同胞发病比例偏高就是由于就是因素 造成的( A )。 A.选样偏倚. B、遗传异质性. C、表现度. D、外显不全. E、基因多效性、 14.近亲婚配的主要危害就是( E )。 A.易引起染色体畸变. B.自发流产率增高. C.群体隐性致病基因频率增高. D.后代X连锁遗传病发病风险增高. E.后代隐性遗传病发病风险增高. 15.下列哪组染色体就是近端着丝粒染色体( D )。 A.A组. B.B组. C.C组. D.D组. E.E组、 16.Ph染色体与下列哪种疾病相关( C )。 A.Down综合征. B.苯丙酮尿症. C.慢性髓细胞性白血病 D.Klinefelter综合征. E.Burkitt淋巴瘤. 17.与mRNA互补的DNA核苷酸链为( B )。 A.编码链. B.反编码链. C.前导链. D.延迟链. E.冈崎片段. 18.一位女性曾患精神分裂症(多基因病,群体发病率1%、遗传率80%),其儿 女的患精神分裂症的风险大约就是( C )。 A.0、5%. B.5%. C.10%. D.20%. E.50%. 19.父母的血型分别就是A型与AB型,生育一个B型血的孩子,她们生A型血后 代的可能性就是( C )。 A.0. B.25%、 C.50%、 D.75%、 E.不能确定、 20.某一性状的基因在常染色体上,但男女表达上有差异,称为( E )。 A、延迟显性遗传、 B、不规则显性遗传、 C、母系遗传、 D、限性遗传、 E、从性遗传、 21.从系谱分析角度考虑,下述哪种遗传方式的女性患者多于男性患者 ( B )。 A.常染色体遗传. B、 X连锁显性遗传. C、 X连锁隐性遗传. D、 Y连锁遗传. E、线粒体遗传. 22.下列哪项不就是一个群体保持遗传平衡不需要的条件( B )。 A.群体很大、 B.近亲婚配、 C.不发生突变、 D.没有选择、 E.无大规模个体迁移、 23.关于X染色体长臂2区7带3亚带1次亚带断裂后远侧片段丢失,下列哪种 描述就是正确的( D )。 A.45,X,del(X)(pter→q27、31:). B.46,XX,del(pter→q27、31:). C.47,XX,del(X)(pter→q27、31). D.46,X,del(X)(pter→q27、31:). E.46,X,del(X)(pter→q27、31). 24.多指(AD)的外显率为80%,一个患者与正常人婚配所生子女的发病风险就 是( B )。 A.25%. B.40%. C.50%. D.80%. E.100%. 25.下列哪些在有丝分裂时属于不稳定型染色体结构畸变( D )。 A.中间缺失. B.臂间倒位. C.相互易位. D.环状染色体. E.罗伯逊易位. 26.把群体某数量性状变异的分布绘成曲线,可以瞧到( D )。 A.曲线存在两个峰. B.曲线存在三个峰. C.曲线存在两个或三个峰. D.曲线只有一个峰. E.曲线存在一个或两个峰. 27.先天性髋关节脱位就是一种多基因病,女性发病率远高于男性,下列哪种后 代发病风险最高( B )。 A.男患的儿子. B.男患的女儿. C.女患的儿子. D.女患的女儿. E.女患的子女. 28.下列哪种患者的后代发病风险最高( E )。 A.单侧唇裂. B.单侧腭裂、 C.双侧唇裂、 D.单侧唇裂+腭裂. E、双侧唇裂+腭裂. 29.一个核型为47,XX,+21的母亲生育有一个Down综合征患儿,这种情况被称 为( C )。 A.双雌受精. B.初级不分离. C.次级不分离. D.染色体重排. E.染色体丢失. 30.目前临床上最常用的染色体显带技术就是( B )。 A.Q带. B.G带. C.C带. D.T带. E. R带. 31.移码突变中,一个碱基的插入或丢失会引起( C )。 A.插入或丢失碱基所在密码子改变. B.插入或丢失点以前的所有密码子改变.

刘祖洞遗传学课后题答案

第二章 孟德尔定律 1、 为什么分离现象比显、隐性现象有更重要的意义 答:因为 (1) 分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的; (2) 只有遗传因子的分离和重组,才能表现出性状的显隐性。可以说无分离现象的存在,也就无显性现象的发生。 9、真实遗传的紫茎、缺刻叶植株(AACC )与真实遗传的绿茎、马铃薯叶植株(aacc )杂交,F2结果如下: 紫茎缺刻叶 紫茎马铃薯叶 绿茎缺刻叶 绿茎马铃薯叶 247 90 83 34 (1)在总共454株F2中,计算4种表型的预期数。 (2)进行2 测验。 (3)问这两对基因是否是自由组合的 紫茎缺刻叶 紫茎马铃薯叶 绿茎缺刻叶 绿茎马铃 薯叶 观测值(O ) 247 90 83 34 预测值(e ) (四舍五入) 255 85 85 29 454 .129 )2934(85)85583(85)8590(255)255247()(2 22 222 =-+ -+-+ -=-=∑e e o χ 当df = 3时,查表求得:<P <。这里也可以将与临界值81.72 05.0.3=χ比较。 可见该杂交结果符合F 2的预期分离比,因此结论,这两对基因是自由组合的。 11、如果一个植株有4对显性基因是纯合的。另一植株有相应的4对隐性基因是纯合的,把这两个植株相互杂交,问F2中:(1)基因型,(2)表型全然象亲代父母本的各有多少 解:(1) 上述杂交结果,F 1为4对基因的杂合体。于是,F2的类型和比例可以图示如下: 也就是说,基因型象显性亲本和隐性亲本的各是1/28 。 (2) 因为,当一对基因的杂合子自交时,表型同于显性亲本的占3/4,象隐性亲 本的占1/4。所以,当4对基因杂合的F 1自交时,象显性亲本的为(3/4)4 ,象隐性亲本的 为(1/4)4 = 1/28 。 第三章 遗传的染色体学说

遗传大题题型归纳

遗传定律、伴性遗传及染色体变异 1、若用玉米为实验材料,验证孟德尔分离定律,下列因素对得出正确实验结论,影响最小的是()A.所选实验材料是否为纯合子 B.所选相对性状的显隐性是否易于区分 C.所选相对性状是否受一对等位基因控制 D.是否严格遵守实验操作流程和统计分析方法 2、下列关于遗传实验和遗传规律的叙述,正确的是( ) A.非等位基因之间自由组合,不存在相互作用 B.杂合子与纯合子基因组成不同,性状表现也不同 C.孟德尔巧妙设计的测交方法只能用于检测F1的基因型的3∶1性状分离比一定依赖于雌雄配子的随机结合 3、已知玉米有色籽粒对无色籽粒是显性。现将一有色籽粒的植株X进行测交,后代出现有色籽粒与无色籽粒的比是1;3,对这种杂交现象的推测不确切的是() A、测交后代有色籽粒的基因型与植株X相同 B.、玉米的有色,无色籽粒的遗传遵循基因自由组合定律 C、玉米的有色,无色籽粒是由一对等位基因控制的 D、测交后代的无色籽粒的基因型至少有三种。 4.老鼠的皮毛黄色(A)对灰色(a)显性,是由常染色体上的一对等位基因控制的.有一位遗传学家在实验中发现含显性基因(A)的精子和含显性基因(A)的卵细胞不能结合.如果黄鼠与黄鼠(第一代)交配得到第二代,第二代老鼠自由交配一次得到第三代,那么在第三代中黄鼠的比例是() 9 2 C.5/9 5、用基因型为Aa的小麦分别进行连续自交、随机交配、连续自交 并逐代淘汰隐性个体、随机交配并逐代淘汰隐性个体,根据各代 Aa基因型频率绘制曲线如图,下列分析错误的是() A.曲线Ⅱ的F3中Aa基因型频率为0.4 B.曲线Ⅲ的F2中Aa基因型频率为0.4 C.曲线Ⅳ的Fn中纯合体的比例比上一代增加(1/2)n+1 D.曲线Ⅰ和Ⅳ的各子代间A和a的基因频率始终相等 6、关于下列图解的理解正确的是() A.基因自由组合规律的实质表现在图中的④⑤⑥ B.③⑥过程表示减数分裂过程 C.左图中③过程的随机性是子代Aa占1/2的原因之一 D.右图子代中aaBB的个体在aaB中占的比例为1/16 7、已知某植物花瓣的形态和颜色受两对独立遗传的等位基因控制,其中基因组合AA、Aa、aa分别控制大花瓣、小花瓣、无花瓣;基因组合BB和Bb控制红色,基因组合bb控制白色.下列相关叙述正确的是() A.基因型为AaBb的植株自交,后代有6种表现型 B.基因型为AaBb的植株自交,后代中红色大花瓣植株占3/16 C.基因型为AaBb的植株自交,稳定遗传的后代有4种基因型、4种表现型 D.大花瓣与无花瓣植株杂交,后代出现白色小花瓣的概率为100% 8.下列说法,正确的有:() ①在减数分裂过程中,染色体数目减半发生在减数第一次分裂 ②性染色体上的基因都可以控制性别 ③非同源染色体数量越多,非等位基因组合的种类也越多 ④位于X或Y染色体上的基因,其相应的性状表现与一定的性别相关联 ⑤果蝇的X染色体比Y染色体长

相关文档