文档库 最新最全的文档下载
当前位置:文档库 › 离散数学复习题

离散数学复习题

离散数学复习题
离散数学复习题

离散数学复习题

第一章集合论基础

1.设S = {2,a,{3},4},R ={{a},3,4,1},指出下面的写法哪些是对的,哪些是错的?

{a}∈S,{a}∈R,{a,4,{3}}?S,{{a},1,3,4}?R,R=S,{a}?S,{a}?R,φ?R,φ?{{a}}?R?E, {φ}?S,φ∈R,φ?{{3},4}。

2写出下面集合的幂集合

{a,{b}},{1,φ},{X,Y,Z}

3.R,S是集合A上的两个关系。试证明下列等式:

(1)(R?S)-1= S-1?R-1

(2)(R-1)-1= R

(3)(R∪S)-1= R-1∪S-1

(4)(R∩S)-1= R-1∩S-1

4.设R是集合A上的关系,令

R+={(x, y)|x∈A,y∈A,并且存在n>0,使得xR n y},

则称R+是R的传递闭包,证明:R+是包含R的最小具有传递性的关系。

5.若非空集合上的非空关系R是反自反的,是对称的,试证明R不是传递的。

6.集合A上的关系是对称的,反对称的,试指明关系R的结构。

解:R的结构是A 中元素只可能与自身有关系。

7.设R是非空集合A上的关系,如果

1)对任意a∈A,都有a R a ;

2)若aRb,aRc,则bRc ;

证明:R是等价关系。

8.有人说:“等价关系中的反身性可以不要,因为反身性可以从对称性和传递性推出:由对称性,从a ? b可得b ? a,再由传递性得a ?a”。你的意见呢?

9.若集合A上的关系R,S具有对称性,证明:R?S具有对称性的充要条件为R?S= S?R。

10.若R是等价关系,试证明R-1也是等价关系。

第二章命题逻辑

1. 给P和Q指派真值1,给R和S指派真值0,求出下面命题的真值:

a) (P∧(Q∧R))∨?((P∨Q)∧(R∨S))

b) (?(P∧Q)∨?R)∨(((?P∧Q)∨?R)∧S)

c) (?(P∧Q)∨?R)∨((Q??P)→(R∨?S))

d) (P∨(Q→(R∧?P)))?(Q∨?S)

2. 指出下列公式哪些是恒真的哪些是恒假的:

(1)P∧(P→ Q)→Q

(2)(P→ Q)→(?P∨Q)

(3)(P→ Q)∧(Q→R)→(P→ R )

(4)(P? Q)?(P∧ Q∨?P∧? Q)

3.判断下列公式是恒真?恒假?可满足?

a) (P→(Q∧R))∧(?P→(?Q∧?R));

b) P→(P∧(Q→P));

c) (Q→P)∧(?P∧Q);

d) (?P∨?Q)→(P??Q)。

4.证明下面的等价式:

(1) (?P∧(?Q∧R))∨(Q∧R)∨(P∧R)=R

(2) P→(Q→P)=?P→(P→Q)

(3) P→(Q∨R)=(P→Q)∨(P→R)

(4) (P→Q)∧(R→Q)=(P∨R)→Q

5.设S={G1,…,G n}是命题公式集合。试求出在不增加新原子的情况下从S 出发演绎出的所有命题公式。

6.证明:两个公式之间的蕴涵关系具有反身性,反对称性和传递性。

7.证明:若前提集合S中的公式都是恒真的,G是从S出发的一个演绎的逻辑结果,则G必是恒真公式。

8.证明{C∨D,(C∨D)→?H,?H→(A∧?B),(A∧?B)→(R∨S)}共同蕴涵R∨S。

9.证明{P∨Q,Q→R,P→M,?M}共同蕴涵R∧(P∨Q)。

10.证明{?P∨Q,?Q∨R,R→S}共同蕴涵P→S。

11. 证明:命题公式G是恒真的当且仅当在等价于它的合取范式中,每个子句均至少包含一个原子及其否定。

12. 试将下列公式化为析取范式和合取范式:

a) P∧(P→Q)

b) ?(P∨Q)?(P∧Q)

13. 试将下列公式化为主析取范式和主合取范式:

(1) P→((P→Q)∧?(?Q∨?P));

(2) P∨(?P→(Q∨(?Q→R)))。

第三章谓词逻辑

1.设下面所有谓词的定义域都是{a,b,c}。试将下面谓词公式中的量词消除,写成与之等价的命题公式。

(1) ?xR(x)∧?xS(x)

(2) ?x(P(x)→Q(x))

(3)?x?P(x)∨?xP(x)

2.指出下列表达式中的自由变量和约束变量,并指明量词的作用域:

(1)(?xP(x)∧?xQ(x))∨(?xP(x)→Q(y))

(2)?x?y((P(x)∧Q(y))→?zR(z))

(3)A(z)→(??x?yB(x,y,a))

(4)?x A(x)→?yB(x,y)

(5)(?xF(x)∧?yG(x,y,z))→?zH(x,y,z)

3.设I是如下一个解释:

D={a,b}

P(a,a) P(a,b) P(b,a) P(b,b)

1 0 0 1

试确定下列公式在I下的真值:

(1)?x?yP(x,y);

(2)?x?yP(x,y);

(3)?x?yP(x,y);

(4)?y?P(a,y);

(5)?x?y(P(x,y)→P(y,x));

(6)?xP(x,x)

4.设G=?xP (x)→?xP(x)。

(1)若解释I的非空区域D包含仅仅一个元素,则G在I下取1值。

(2)设D={a,b},试找出一个D上的解释I,使G在I下取0值。

5.设I是如下一个解释:

D={3,2}

a b f(3) f(2) P(3,3) P(3,2) P(2,3) P(2,2) 3 2 2 3 1 1 0 0 试求出下列公式在I 下的真值:

(1) (a ,f(a))∧P(b ,f(b)); (2) x ?yP(y ,x);

(3) x ?y(P(x ,y)→P(f(x),f(y)));

6.设G 1=?x(P(x)→Q(x)),G 2=?Q(a),证明:?P(a)是G 1和G 2的逻辑结果。

7.试将下列公式化成等价的前束范式: (1)?x(P(x)→?yQ(x ,y));

(2)?x((??yP(x ,y))→(?zQ(z)→R(x)));

(3)?x ?y(?zP(x ,y ,z)∧(?uQ(x ,u)→?vQ(y ,v)))。

8.找出下面公式的Skolem 范式: (1)?(?xP(x)→?y ?zQ(y ,z));

(2)?x(?E(x ,0)→(?y(E(y ,g(x))∧?z(E(z ,g(x))→E(y ,z)))))。

第四章 图与网络

1.若

G=(P ,L)是有限图,设P(G),L(G)的元数分别为m ,n 。证明:n ≤2m

C ,

其中2m

C 表示m 中取2的组合数。

2.设

G 是有限图,M ,A 分别是G 的关联矩阵和相邻矩阵,证明:MM’和

A 2的对角线上的元素是G 中所有点的度。

3.设G=(P ,L)是有限图,P(G),L(G)的元数分别为m ,n 。证明:如果n>C

m -1

2

则G 是连通的。

4.证明:连通图中任意两条最长的简单路必有公共点。

5. 一公司在六个城市c 1,c 2,…,c 6中的每一个都有分公司。从c i 到c j 的班机旅费由下列矩阵中的第i 行第j 列元素给出(∞表示没有直接班机): 0 50 ∞ 40 25 10 50 0 15 20 ∞ 25 ∞ 15 0 10 20 ∞ 40 20 10 0 10 25 25 ∞ 20 10 0 55 10 25 ∞ 25 55 0

公司所关心的是计算两城市间的最便宜路线的表格。请准备一张这样的表格。

6.设G为图(可能无限),无回路,但若任意外加一边于G后就形成一回路,试证G必为树。

7. 试举出一个连通的(即漠视为图后是连通的),但无根的有向图。

8.设G是有向图,其中含一有向路(e1,…,e n),其中fin(e n)=init(e1),证明:G 不是有向树。

9.设G为有向图,若G具有有向树定义中的1)和2),并且没有有向回路。问:若G有限,G是否是有向树?若G不是有限的,如何?

10 证明:若一个图G的任意两点度数之和≥n-1,n=|P(G)|,则该图有Hamilton 路。

11. 设图G有6个点,12条边,问能否肯定G为Hamilton图?若能,说明原因;若不能举一反例。试进一步讨论n个节点的图,边数最多的非Hamilton 图是怎样的图?边数是多少?

第六章群与环

1. 设W1、W2、W3分别为是模6的剩余类集合Z6的子集:W1={0,3},

W2={0,2,4},W3={1,3,5},试问剩余类加法是不是这些子集的二元代

数运算?

2. S={2n | n∈N},加法是S上的二元代数运算吗?乘法呢?

3. 自然数集N 上的二元代数运算* 定义为x * y = x y,* 是否满足结合律?是否满足交换律?

4. 设* 是集合S上的二元代数运算,且满足结合律,设x,y是S中任意元素,如果x * y = y * x,则x = y。试证明* 满足等幂律。

5. 设+ 和* 是集合S上的两个二元代数运算,对于S中任意元素x和y,x + y = x。证明* 对于+ 满足分配律。

6. 计算(1 2 3)(2 3 4)(1 4)(2 3)。

7. 试证明n 个元素的所有置换作成一个群(通常叫做n次对称群)。证明n 个元素的所有偶置换作成群(叫做n次交代群)。写出四次交代群中的元素。n 次交代群的元数为何?

8. (1)(1 2)(3 4),(1 3)(2 4),(1 2)(2 3)四个置换作成一个群叫klein四

元群,求证klein四元群是四次对称群的正规子群。

9. 写出三次对称群的所有子群。

10. 求证G的任意多个子群的交集是G的子群。并且,G的任意多个正规子群的交集仍是G的正规子群。

11. 设H是G的子群。N是G的正规子群。命HN为H的元素乘N的元素所得的所有元素的集合。求证HN是G的子群。

12. 设H是群G的一个有限非空子集,求证只要H中任意两个元素的积仍在H内,则H是G的子群。

13. 求证循环群的子群仍是循环群。

14. 求证若G的元数是一个质数,则G必是循环群。

15. (1)设G是群,a∈G,试证明:若a的周期为2,

则a-1 = a。

(2)设群G除了单位元以外每一个元素的周期均为2,试证明G是Abel群。

16. 设G是6元循环群,试找出G的所有生成元,并找出G的所有子群。

17. 设K和H都是群G的子群,试证明:若H·K是G的子群,则K·H = H·K。

(完整版)离散数学试卷及答案

离散数学试题(A卷答案) 一、(10分)求(P↓Q)→(P∧?(Q∨?R))的主析取范式 解:(P↓Q)→(P∧?(Q∨?R))??(?( P∨Q))∨(P∧?Q∧R)) ?(P∨Q)∨(P∧?Q∧R)) ?(P∨Q∨P)∧(P∨Q∨?Q)∧(P∨Q∨R) ?(P∨Q)∧(P∨Q∨R) ?(P∨Q∨(R∧?R))∧(P∨Q∨R) ?(P∨Q∨R)∧(P∨Q∨?R)∧(P∨Q∨R) ? M∧1M ? m∨3m∨4m∨5m∨6m∨7m 2 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解设设P:王教授是苏州人;Q:王教授是上海人;R:王教授是杭州人。则根据题意应有: 甲:?P∧Q 乙:?Q∧P 丙:?Q∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为:

((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则由定理4.19知,tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?'R 。由定理4.15和由定理4.16得sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。 综上可知,tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 四、(15分)集合A ={a ,b ,c ,d ,e }上的二元关系R 为R ={}, (1)写出R 的关系矩阵。 (2)判断R 是不是偏序关系,为什么? 解 (1) R 的关系矩阵为: ??? ??? ? ? ? ?=100001100010100 10110 11111 )(R M (2)由关系矩阵可知,对角线上所有元素全为1,故R 是自反的;ij r +ji r ≤1,故R 是反对称的;可计算对应的关系矩阵为:

离散数学模拟题一套及答案

离散数学考试(试题及答案) 一、(10分)某项工作需要派A、B、C和D4个人中的2个人去完成,按下面3个条件,有几种派法?如何派? (1)若A去,则C和D中要去1个人; (2)B和C不能都去; (3)若C去,则D留下。 解设A:A去工作;B:B去工作;C:C去工作;D:D去工作。则根据题意应有:ACD,(B∧C),CD必须同时成立。因此 (ACD)∧(B∧C)∧(CD) (A∨(C∧ D)∨(C∧D))∧(B∨C)∧(C∨D) (A∨(C∧ D)∨(C∧D))∧((B∧C)∨(B∧D)∨C∨(C∧D)) (A∧B∧C)∨(A∧B∧D)∨(A∧C)∨(A∧C∧D) ∨(C∧D∧B∧C)∨(C∧D∧B∧D)∨(C∧D∧C)∨(C∧ D∧C∧D) ∨(C∧D∧B∧C)∨(C∧D∧B∧D)∨(C∧D∧C)∨(C∧D F∨F∨(A∧C)∨F∨F∨(C∧ D∧B)∨F∨F∨(C∧D∧B)∨F∨(C∧D)∨F (A∧C)∨(B∧C∧ D)∨(C∧D∧B)∨(C∧D) (A∧C)∨(B∧C∧ D)∨(C∧D) T 故有三种派法:B∧D,A∧C,A∧D。 二、(15分)在谓词逻辑中构造下面推理的证明:某学术会议的每个成员都是专家并且是工人,有些成员是青年人,所以,有些成员是青年专家。 解:论域:所有人的集合。():是专家;():是工人;():是青年人;则推理化形式为: (()∧()),()(()∧())

下面给出证明: (1)() P (2)(c) T(1),ES (3)(()∧()) P (4)( c)∧( c) T(3),US (5)( c) T(4),I (6)( c)∧(c) T(2)(5),I (7)(()∧()) T(6) ,EG 三、(10分)设A、B和C是三个集合,则AB(BA)。 证明:ABx(x∈A→x∈B)∧x(x∈B∧xA)x(xA∨x∈B)∧x(x∈B∧xA) x(x∈A∧xB)∧x(xB∨x∈A)x(x∈A∧xB)∨x(x∈A∨xB) (x(x∈A∧xB)∧x(x∈A∨xB))(x(x∈A∧xB)∧x(x∈B→x∈A)) (BA)。 四、(15分)设A={1,2,3,4,5},R是A上的二元关系,且R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R)。 解 r(R)=R∪I A={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)=R∪R-1={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>, <5,2>,<1,2>,<4,2>,<4,3>} R2={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} R3={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>} R4={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>}=R2 t(R)=R i={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,1>,<5,4>,<5,5>}。

离散数学期末考试试题(有几套带答案)

离散数学试题(A卷及答案) 一、证明题(10分) 1)(?P∧(?Q∧R))∨(Q∧R)∨(P∧R)?R 证明: 左端?(?P∧?Q∧R)∨((Q∨P)∧R)?((?P∧?Q)∧R))∨((Q∨P)∧R) ?(?(P∨Q)∧R)∨((Q∨P)∧R)?(?(P∨Q)∨(Q∨P))∧R ?(?(P∨Q)∨(P∨Q))∧R?T∧R(置换)?R 2)?x(A(x)→B(x))??xA(x)→?xB(x) 证明:?x(A(x)→B(x))??x(?A(x)∨B(x))??x?A(x)∨?xB(x)???xA(x)∨?xB(x)??xA(x)→?xB(x) 二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分) 证明:(P∨(Q∧R))→(P∧Q∧R)??(P∨(Q∧R))∨(P∧Q∧R)) ?(?P∧(?Q∨?R))∨(P∧Q∧R) ?(?P∧?Q)∨(?P∧?R))∨(P∧Q∧R) ?(?P∧?Q∧R)∨(?P∧?Q∧?R)∨(?P∧Q∧?R))∨(?P∧?Q∧?R))∨(P∧Q∧R) ?m0∨m1∨m2∨m7 ?M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D, (C∨D)→?E, ?E→(A ∧?B), (A∧?B)→(R∨S)?R∨S 证明:(1) (C∨D)→?E (2) ?E→(A∧?B) (3) (C∨D)→(A∧?B) (4) (A∧?B)→(R∨S) (5) (C∨D)→(R∨S) (6) C∨D

(7) R∨S 2) ?x(P(x)→Q(y)∧R(x)),?xP(x)?Q(y)∧?x(P(x)∧R(x)) 证明(1)?xP(x) (2)P(a) (3)?x(P(x)→Q(y)∧R(x)) (4)P(a)→Q(y)∧R(a) (5)Q(y)∧R(a) (6)Q(y) (7)R(a) (8)P(a) (9)P(a)∧R(a) (10)?x(P(x)∧R(x)) (11)Q(y)∧?x(P(x)∧R(x)) 四、设m是一个取定的正整数,证明:在任取m+1个整数中,至少有两个整数,它们的差是m的整数倍 证明设 1 a,2a,…,1+m a为任取的m+1个整数,用m去除它们所得余数 只能是0,1,…,m-1,由抽屉原理可知, 1 a,2a,…,1+m a这m+1个整 数中至少存在两个数 s a和t a,它们被m除所得余数相同,因此s a和t a的差是m的整数倍。 五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C) (15分)证明∵x∈ A-(B∪C)? x∈ A∧x?(B∪C)? x∈ A∧(x?B∧x?C)?(x∈ A∧x?B)∧(x∈ A∧x?C)? x∈(A-B)∧x∈(A-C)? x∈(A-B)∩(A-C)∴A-(B∪C)=(A-B)∩(A-C) 六、已知R、S是N上的关系,其定义如下:R={| x,y∈N∧y=x2},S={| x,y∈N∧y=x+1}。求R-1、R*S、S*R、R{1,2}、S[{1,2}](10分) 解:R-1={| x,y∈N∧y=x2},R*S={| x,y∈N∧y=x2+1},S*R={| x,y∈N∧y=(x+1)2}, 七、若f:A→B和g:B→C是双射,则(gf)-1=f-1g-1(10分)。 证明:因为f、g是双射,所以gf:A→C是双射,所以gf有逆函数

离散数学试题与答案

试卷二试题与参考答案 一、填空 1、 P:您努力,Q:您失败。 2、 “除非您努力,否则您将失败”符号化为 ; “虽然您努力了,但还就是失败了”符号化为 。 2、论域D={1,2},指定谓词P P (1,1) P (1,2) P (2,1) P (2,2) T T F F 则公式x ??真值为 。 3设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则 R= (列举法)。 R 的关系矩阵M R = 。 4、设A={1,2,3},则A 上既不就是对称的又不就是反对称的关系 R= ;A 上既就是对称的又就是反对称的关系R= 。 5、设代数系统,其中A={a,b,c}, 则幺元就是 ;就是否有幂等 性 ;就是否有对称性 。 6、4阶群必就是 群或 群。 7、下面偏序格就是分配格的就是 。 8、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件就是 。 * a b c a b c a b c b b c c c b

二、选择 1、在下述公式中就是重言式为( ) A.)()(Q P Q P ∨→∧; B.))()(()(P Q Q P Q P →∧→??; C.Q Q P ∧→?)(; D.)(Q P P ∨→。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为 ( )。 A.0; B.1; C.2; D.3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A.3; B.6; C.7; D.8 。 4、设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A.4; B.5; C.6; D.9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为 则R 具有( )性质。 A.自反性、对称性、传递性; B.反自反性、反对称性; C.反自反性、反对称性、传递性; D.自反性 。 6、设 ο,+ 为普通加法与乘法,则( )>+<ο,,S 就是域。 A.},,3|{Q b a b a x x S ∈+== B.},,2|{Z b a n x x S ∈== C.},12|{Z n n x x S ∈+== D.}0|{≥∧∈=x Z x x S = N 。 7、下面偏序集( )能构成格。

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

离散数学模拟试题讲解

1 离散数学模拟试题Ⅰ 一、单项选择题(本大题共15小题,每题1分,共15分)在每小题列出的四个备选项中只有一个就是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分 1.设 }16{2<=x x x A 是整数且,下面哪个命题为假( A )。 A 、A ?}4,2,1,0{; B 、A ?---}1,2,3{; C 、A ?Φ; D 、A x x x ?<}4{是整数且。 2.设}}{,{,ΦΦ=Φ=B A ,则B -A 就是( C )。 A 、}}{{Φ; B 、}{Φ; C 、}}{,{ΦΦ; D 、Φ。 3.右图描述的偏序集中,子集},,{f e b 的上界为 ( B )。 A 、b,c; B 、a,b; C 、b; D 、a,b,c 。 4.设f 与g 都就是X 上的双射函数,则1)(-g f ο为( C )。 A 、11--g f ο; B 、1)(-f g ο; C 、11--f g ο; D 、1-f g ο。 5.下面集合( B )关于减法运算就是封闭的。 A 、N ; B 、}2{I x x ∈; C 、}12{I x x ∈+; D 、}{是质数x x 。 6.具有如下定义的代数系统>*<,G ,( D )不构成群。 A 、G={1,10},*就是模11乘 ; B 、G={1,3,4,5,9},*就是模11乘 ; C 、G=Q(有理数集),*就是普通加法; D 、G=Q(有理数集),*就是普通乘法。 7.设 },32{I n m G n m ∈?=,*为普通乘法。则代数系统>*<,G 的幺元为( B )。 f

2 A 、不存在 ; B 、0032?=e ; C 、32?=e ; D 、1132--?=e 。 8.下面集合( C )关于整除关系构成格。 A 、{2,3,6,12,24,36} ; B 、{1,2,3,4,6,8,12} ; C 、{1,2,3,5,6,15,30} ; D 、{3,6,9,12}。 9.设},,,,,{f e d c b a V =, },,,,,,,,,,,{><><><><><><=e f e d d a a c c b b a E ,则有向图 >=

离散数学考试题详细答案

离散数学考试题(后附详细答案) 一、命题符号化(共6小题,每小题3分,共计18分) 1.用命题逻辑把下列命题符号化 a)假如上午不下雨,我去看电影,否则就在家里读书或看报。 设P表示命题“上午下雨”,Q表示命题“我去看电影”,R表示命题“在家里读书”,S表示命题“在家看报”,命题符号化为:(PQ)(PRS) b)我今天进城,除非下雨。 设P表示命题“我今天进城”,Q表示命题“天下雨”,命题符号化为:Q→P或P→Q c)仅当你走,我将留下。 设P表示命题“你走”,Q表示命题“我留下”,命题符号化为:Q→P 2.用谓词逻辑把下列命题符号化 a)有些实数不是有理数 设R(x)表示“x是实数”,Q(x)表示“x是有理数”,命题符号化为: x(R(x) Q(x)) 或x(R(x) →Q(x)) b)对于所有非零实数x,总存在y使得xy=1。 设R(x)表示“x是实数”,E(x,y)表示“x=y”,f(x,y)=xy, 命题符号化为: x(R(x) E(x,0) →y(R(y) E(f(x,y),1)))) c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b. 设F(f)表示“f是从A到B的函数”, A(x)表示“x∈A”, B(x)表示“x∈B”,E(x,y)表示“x=y”, 命题符号化为:F(f)a(A(a)→b(B(b) E(f(a),b) c(S(c) E(f(a),c) →E(a,b)))) 二、简答题(共6道题,共32分) 1.求命题公式(P→(Q→R))(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。 (5分) (P→(Q→R))(R→(Q→P))(PQR)(PQR) ((PQR)→(PQR)) ((PQR) →(PQR)). ((PQR)(PQR)) ((PQR) (PQR)) (PQR)(PQR) 这是主合取范式 公式的所有成真赋值为000,001,010,100,101,111,故主析取范式为 (PQR(PQR(PQR(PQR(PQR(PQR 2.设个体域为{1,2,3},求下列命题的真值(4分) a)xy(x+y=4) b)yx (x+y=4) a) T b) F 3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。(4分) x(F(x)→G(x))→(xF(x)→xG(x)) x(F(x)→G(x))→(yF(y)→zG(z)) x(F(x)→G(x))→yz(F(y)→G(z)) xyz((F(x)→G(x))→(F(y)→G(z))) 4.判断下面命题的真假,并说明原因。(每小题2分,共4分)

【浙江工商大学】《离散数学》期末考试题(B)

《离散数学》期末考试题(B) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ),)(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为 ( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二、单选题(每小题3分,共15分) 1.设R 是集合A 上的偏序关系,1-R 是R 的逆关系,则1 -?R R 是A 上的 (A)偏序关系 (B)等价关系 (C)相容关系 (D)以上结论都不成立 2.由2个命题变元p 和q 组成的不等值的命题公式的个数有 (A)2 (B)4 (C)8 (D)16 3.设p 是素数且n 是正整数,则任意有限域的元素个数为 (A)n p + (B)pn (C)n p (D)p n 4.设R 是实数集合,≤是其上的小于等于关系,则(R, ≤)是 (A)有界格 (B)分配格 (C)有补格 (D)布尔格 5.3阶完全无向图3K 的不同构的生成子图有 (A)2 (B)3 (C)4 (D)5 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”. 1.若一个元素a 既存在左逆元l a ,又存在右逆元r a ,则r l a a =. ( ) 2.命题联结词→不满足结合律. ( ) 3.在Z 8 = {0,1,2,3,4,5,6,7}中,2关于“?8”的逆元为 4. ( ) 4.整环不一定是域. ( )

离散数学模拟试卷和答案

北京语言大学网络教育学院 《离散数学》模拟试卷一 注意: 1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。请监考老师负责监督。 2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。 3.本试卷满分100分,答题时间为90分钟。 4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。 一、【单项选择题】(本大题共15小题,每小题3分,共45分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。 1、在由3个元素组成的集合上,可以有 ( ) 种不同的关系。 [A] 3 [B] 8 [C]9 [D]27 2、设{}{}1,2,3,5,8,1,2,5,7A B A B ==-=,则( )。 [A] 3,8 [B]{}3 [C]{}8 [D]{}3,8 3、若X 是Y 的子集,则一定有( )。 [A]X 不属于Y [B]X ∈Y [C]X 真包含于 Y [D]X∩Y=X 4、下列关系中是等价关系的是( )。 [A]不等关系 [B]空关系 [C]全关系 [D]偏序关系 5、对于一个从集合A 到集合B 的映射,下列表述中错误的是( )。 [A]对A 的每个元素都要有象 [B] 对A 的每个元素都只有一个象 [C]对B 的每个元素都有原象 [D] 对B 的元素可以有不止一个原象 6、设p:小李努力学习,q:小李取得好成绩,命题“除非小李努力学习,否则他不能取得好成绩”的符号化形式为( )。 [A]p→q [B]q→p [C]┐q→┐p [D]┐p→q 7、设A={a,b,c},则A 到A 的双射共有( )。 [A]3个 [B]6个 [C]8个 [D]9个

离散数学考试试题(A卷及答案)

离散数学考试试题(A卷及答案) 一、(10分)证明?(A∨B)→?(P∨Q),P,(B→A)∨?P A。 证明:(1)?(A∨B)→?(P∨Q) P (2)(P∨Q)→(A∨B) T(1),E (3)P P (4)A∨B T(2)(3),I (5)(B→A)∨?P P (6)B→A T(3)(5),I (7)A∨?B T(6),E (8)(A∨B)∧(A∨?B) T(4)(7),I (9)A∧(B∨?B) T(8),E (10)A T(9),E 二、(10分)甲、乙、丙、丁4个人有且仅有2个人参加围棋优胜比赛。关于谁参加竞赛,下列4种判断都是正确的: (1)甲和乙只有一人参加; (2)丙参加,丁必参加; (3)乙或丁至多参加一人; (4)丁不参加,甲也不会参加。 请推出哪两个人参加了围棋比赛。 解符号化命题,设A:甲参加了比赛;B:乙参加了比赛;C:丙参加了比赛;D:丁参加了比赛。 依题意有, (1)甲和乙只有一人参加,符号化为A⊕B?(?A∧B)∨(A∧?B); (2)丙参加,丁必参加,符号化为C→D; (3)乙或丁至多参加一人,符号化为?(B∧D); (4)丁不参加,甲也不会参加,符号化为?D→?A。 所以原命题为:(A⊕B)∧(C→D)∧(?(B∧D))∧(?D→?A) ?((?A∧B)∨(A∧?B))∧(?C∨D)∧(?B∨?D)∧(D∨?A) ?((?A∧B∧?C)∨(A∧?B∧?C)∨(?A∧B∧D)∨(A∧?B∧D))∧((?B∧D)∨(?B∧?A)∨(?D∧?A)) ?(A∧?B∧?C∧D)∨(A∧?B∧D)∨(?A∧B∧?C∧?D)?T 但依据题意条件,有且仅有两人参加竞赛,故?A∧B∧?C∧?D为F。所以只有:(A∧?B∧?C∧D)∨(A∧?B∧D)?T,即甲、丁参加了围棋比赛。 三、(10分)指出下列推理中,在哪些步骤上有错误?为什么?给出正确的推理形式。 (1)?x(P(x)→Q(x)) P (2)P(y)→Q(y) T(1),US (3)?xP(x) P (4)P(y) T(3),ES (5)Q(y) T(2)(4),I (6)?xQ(x) T(5),EG 解 (4)中ES错,因为对存在量词限制的变元x引用ES规则,只能将x换成某个个体常元c,而不能将其改为自由变元。所以应将(4)中P(y)改为P(c),c为个体常元。 正确的推理过程为: (1)?xP(x) P (2)P(c) T(1),ES (3)?x(P(x)→Q(x)) P (4)P(c)→Q(c) T(3),US (5)Q(c) T(2)(4),I (6)?xQ(x) T(5),EG 四、(10分)设A={a,b,c},试给出A上的一个二元关系R,使其同时不满足自反性、反自反性、对称性、反对称性和传递性。 解设R={},则

离散数学期末试卷及答案

一.判断题(共10小题,每题1分,共10分) 在各题末尾的括号内画 表示正确,画 表示错误: 1.设p、q为任意命题公式,则(p∧q)∨p ? p ( ) 2.?x(F(y)→G(x)) ? F(y)→?xG(x)。( ) 3.初级回路一定是简单回路。( ) 4.自然映射是双射。( ) 5.对于给定的集合及其上的二元运算,可逆元素的逆元是唯一的。( ) 6.群的运算是可交换的。( ) 7.自然数集关于数的加法和乘法构成环。( ) 8.若无向连通图G中有桥,则G的点连通度和边连通度皆为1。( ) 9.设A={a,b,c},则A上的关系R={,}是传递的。( ) 10.设A、B、C为任意集合,则A?(B?C)=(A?B)?C。( ) 二、填空题(共10题,每题3分,共30分) 11.设p:天气热。q:他去游泳。则命题“只有天气热,他才去游泳”可符号 化为。 12.设M(x):x是人。S(x):x到过月球。则命题“有人到过月球”可符号 化为。 13.p?q的主合取范式是。 14.完全二部图K r,s(r < s)的边连通度等于。 15.设A={a,b},,则A上共有个不同的偏序关系。 16.模6加群中,4是阶元。 17.设A={1,2,3,4,5}上的关系R={<1,3>,<1,5>,<2,5>,<3,3>,<4,5>},则R的传递闭包t(R) = 。. 18.已知有向图D的度数列为(2,3,2,3),出度列为(1,2,1,1),则有向图D的入度

列为。 19.n阶无向简单连通图G的生成树有条边。 20.7阶圈的点色数是。 三、运算题(共5小题,每小题8分,共40分) 21.求?xF(x)→?yG(x,y)的前束范式。 22.已知无向图G有11条边,2度和3度顶点各两个,其余为4度顶点,求G 的顶点数。 23.设A={a,b,c,d,e,f},R=I A?{,},则R是A上的等价关系。求等价类[a]R、[c]R及商集A/R。 24.求图示带权图中的最小生成树,并计算最小生成树的权。 25.设R*为正实数集,代数系统< R*,+>、< R*,·>、< R*,/>中的运算依次为普通加法、乘法和除法运算。试确定这三个代数系统是否为群?是群者,求其单位元及每个元素的逆元。 四、证明题(共3小题,共20分) 26 (8分)在自然推理系统P中构造下述推理的证明: 前题:p→(q∨r),?s→?q,p∧?s 结论:r 27 (6分)设是群,H={a| a∈G∧?g∈G,a*g=g*a},则是G的子群 28.(6分)设G是n(≥3)阶m条边、r个面的极大平面图,则r=2n-4。

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R 证明: 左端(P∧Q∧R)∨((Q∨P)∧R) ((P∧Q)∧R))∨((Q∨P)∧R) ((P∨Q)∧R)∨((Q∨P)∧R) ((P∨Q)∨(Q∨P))∧R ((P∨Q)∨(P∨Q))∧R T∧R(置换)R 2) x (A(x)B(x))xA(x)xB(x) 证明:x(A(x)B(x))x(A(x)∨B(x)) x A(x)∨xB(x) xA(x)∨xB(x) xA(x)xB(x) 二、求命题公式(P∨(Q∧R))(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))(P∧Q∧R)(P∨(Q∧R))∨(P∧Q∧R)) (P∧(Q∨R))∨(P∧Q∧R) (P∧Q)∨(P∧R))∨(P∧Q∧R) (P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R))∨(P∧Q∧R))∨(P∧Q∧R) m0∨m1∨m2∨m7 M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D,(C∨D)E, E(A∧B),(A∧B)(R∨S)R∨S证明:(1) (C∨D) E ?P (2) E(A∧B) ??P (3) (C∨D)(A∧B) T(1)(2),I (4) (A∧B)(R∨S)??P (5) (C∨D)(R∨S) ? T(3)(4),I (6) C∨D P (7) R∨S T(5),I 2) x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x)) 证明(1)xP(x) P

(2)P(a) T(1),ES (3)x(P(x)Q(y)∧R(x)) P (4)P(a)Q(y)∧R(a) T(3),US (5)Q(y)∧R(a) T(2)(4),I (6)Q(y) T(5),I (7)R(a) T(5),I (8)P(a)∧R(a) T(2)(7),I (9)x(P(x)∧R(x)) T(8),EG (10)Q(y)∧x(P(x)∧R(x)) T(6)(9),I 四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数(10分)。 解:A,B,C分别表示会打排球、网球和篮球的学生集合。则|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2。 先求|A∩B|。 ∵6=|(A∪C)∩B|=|(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2,∴|(A∩B)|=3。 于是|A∪B∪C|=12+6+14-6-5-3+2=20。不会打这三种球的人数25-20=5。五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C)(10分)。 证明:∵x A-(B∪C) x A∧x(B∪C) xA∧(xB∧x C) (x A∧x B)∧(x A∧xC) x(A-B)∧x(A-C) x(A-B)∩(A-C) ∴A-(B∪C)=(A-B)∩(A-C) 六、已知R、S是N上的关系,其定义如下:R={| x,yN∧y=x2} R*S={| x,y N∧y=x2+1} S*R={<x,y>| x,yN∧y=(x+1)2},R{1,2}={<1,1>,<2,4>},S[{1,2}]={1,4}。 七、设R={<a,b>,,<c,a>},求r(R)、s(R)和t(R) (15分)。 解:r(R)={,,,<b,b>,

离散数学模拟试题及答案

《离散数学》模拟试题 一、 填空题(每小题2分,共20分) 1. 已知集合A ={φ,1,2},则A 得幂集合p (A )=_____ _。 2. 设集合E ={a , b , c , d , e }, A = {a , b , c }, B = {a , d , e }, 则A ∪B =___ ___, A ∩ B =____ __,A -B =___ ___,~A ∩~B =____ ____。 3. 设A ,B 是两个集合,其中A = {1, 2, 3}, B = {1, 2},则A -B =____ ___, ρ(A )-ρ(B )=_____ _ _。 4. 已知命题公式,则G 的析取范式为 。 5. 设P :2+2=4,Q :3是奇数;将命题“2+2=4,当且仅当3是奇数。”符号化 ,其真值为 。 二、单项选择题(选择一个正确答案的代号填入括号中,每小题4分,共16分。) 1. 设A 、B 是两个集合,A ={1,3,4},B ={1,2},则A -B 为( ). A. {1} B. {1, 3} C. {3,4} D. {1,2} 2. 下列式子中正确的有( )。 A. φ=0 B. φ∈{φ} C. φ∈{a,b} D. φ∈φ 3. 设集合X ={x , y },则ρ(X )=( )。 A. {{x },{y }} B. {φ,{x },{y }} C. {φ,{x },{y },{x , y }} D. {{x },{y },{x , y }} 4. 设集合 A ={1,2,3},A 上的关系 R = {(1,1),(2,2),(2,3),(3,3),(3,2)}, 则R 不具备( ). 三、计算题(共50分) R Q P G →∧?=)(

离散数学试卷及答案

填空10% (每小题 2 分) 1、若P,Q,为二命题,P Q 真值为0 当且仅当。 2、命题“对于任意给定的正实数,都存在比它大的实数” 令F(x):x 为实数,L(x, y) : x y 则命题的逻辑谓词公式为。 3、谓词合式公式xP(x) xQ(x)的前束范式为。 4、将量词辖域中出现的和指导变元交换为另一变元符号,公式其余的部分不变,这种方法称为 换名规则。 5、设x 是谓词合式公式A的一个客体变元,A的论域为D,A(x)关于y 是自由的,则被称为存 在量词消去规则,记为ES。 选择25% (每小题分) 1、下列语句是命题的有()。 A、明年中秋节的晚上是晴天; C、xy 0 当且仅当x 和y 都大于0; D 、我正在说谎。 2、下列各命题中真值为真的命题有()。 A、2+2=4当且仅当3是奇数; B、2+2=4当且仅当 3 不是奇数; C、2+2≠4 当且仅当3是奇数; D、2+2≠4当且仅当 3 不是奇数; 3、下列符号串是合式公式的有() A、P Q ; B、P P Q; C、( P Q) (P Q); D、(P Q) 。 4、下列等价式成立的有( )。 A、P QQ P ; B、P(P R) R; C、P (P Q) Q; D 、P (Q R) (P Q) R。 5、若A1,A2 A n和B为 wff ,且A1 A2 A n B 则 ( )。 A、称A1 A2 A n 为 B 的前 件; B 、称 B 为A1,A2 A n 的有效结论

C 、 x(M (x) Mortal (x)) ; D 、 x(M(x) Mortal (x)) 8、公式 A x(P(x) Q(x))的解释 I 为:个体域 D={2} ,P(x) :x>3, Q(x) :x=4则 A 的 真 值为( ) 。 A 、 1; B 、 0; C 、 可满足式; D 、无法判定。 9、 下列等价关系正确的是( )。 A 、 x(P(x) Q(x)) xP(x) xQ(x); B 、 x(P(x) Q(x)) xP(x) xQ(x); C 、 x(P(x) Q) xP(x) Q ; D 、 x(P(x) Q) xP(x) Q 。 10 、 下列推理步骤错在( )。 ① x(F(x) G(x)) P ② F(y) G(y) US ① ③ xF(x) P ④ F(y) ES ③ ⑤G(y) T ②④I ⑥ xG(x) EG ⑤ A 、②; B 、④; C 、⑤; D 、⑥ 逻辑判断 30% 1、 用等值演算法和真值表法判断公式 A ((P Q) (Q P)) (P Q) 的类型。 C 、当且仅当 A 1 A 2 A n D 、当且仅当 A 1 A 2 A n B F 。 6、 A ,B 为二合式公式,且 B ,则( )。 7、 A 、 A C 、 A B 为重言式; B 、 B ; E 、 A B 为重言式。 人总是要死的”谓词公式表示为( )。 论域为全总个体域) M (x ) : x 是人; Mortal(x) x 是要死的。 A 、 M (x) Mortal (x) ; B M (x) Mortal (x)

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(?P∧(?Q∧R))∨(Q∧R)∨(P∧R)?R 证明: 左端?(?P∧?Q∧R)∨((Q∨P)∧R) ?((?P∧?Q)∧R))∨((Q∨P)∧R) ?(?(P∨Q)∧R)∨((Q∨P)∧R) ?(?(P∨Q)∨(Q∨P))∧R ?(?(P∨Q)∨(P∨Q))∧R ?T∧R(置换)?R 2) ?x (A(x)→B(x))??xA(x)→?xB(x) 证明:?x(A(x)→B(x))??x(?A(x)∨B(x)) ??x?A(x)∨?xB(x) ???xA(x)∨?xB(x) ??xA(x)→?xB(x) 二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))→(P∧Q∧R)??(P∨(Q∧R))∨(P∧Q∧R)) ?(?P∧(?Q∨?R))∨(P∧Q∧R) ?(?P∧?Q)∨(?P∧?R))∨(P∧Q∧R) ?(?P∧?Q∧R)∨(?P∧?Q∧?R)∨(?P∧Q∧?R))∨(?P∧?Q∧?R))∨(P∧Q∧R) ?m0∨m1∨m2∨m7 ?M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D, (C∨D)→?E,?E→(A∧?B), (A∧?B)→(R∨S)?R∨S 证明:(1) (C∨D)→?E P (2) ?E→(A∧?B) P (3) (C∨D)→(A∧?B) T(1)(2),I (4) (A∧?B)→(R∨S) P (5) (C∨D)→(R∨S) T(3)(4), I (6) C∨D P (7) R∨S T(5),I 2) ?x(P(x)→Q(y)∧R(x)),?xP(x)?Q(y)∧?x(P(x)∧R(x)) 证明(1)?xP(x) P

离散数学考试试题(A、B卷及答案)

离散数学考试试题(A卷及答案) 一、证明题(10分) 1) (P∧Q∧A C)∧(A P∨Q∨C ) (A∧(P Q ))C。P<->Q=(p->Q)合取(Q->p) 证明: (P∧Q∧A C)∧(A P∨Q∨C) (P ∨Q ∨A∨C)∧(A∨P∨Q∨C) ((P ∨Q ∨A)∧(A∨P∨Q))∨C反用分配律 ((P∧Q∧A)∨(A ∧P ∧Q))∨C ( A∧((P∧Q)∨(P ∧Q)))∨C再反用分配律 GAGGAGAGGAFFFFAFAF

( A∧(P Q))∨C (A∧(P Q ))C 2) (P Q)P Q。 证明:(P Q)((P∧Q))(P ∨Q))P Q。 二、分别用真值表法和公式法求(P(Q∨R))∧(P∨(Q R))的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值(15分)。 主析取范式与析取范式的区别:主析取范式里每个括号里都必须有全部的变元。 主析取范式可由析取范式经等值演算法算得。 GAGGAGAGGAFFFFAFAF

证明: 公式法:因为(P(Q ∨R))∧(P∨(Q R)) (P∨Q∨R)∧(P∨(Q ∧R )∨(Q ∧R)) (P∨Q ∨R)∧(((P∨Q)∧(P ∨R ))∨(Q ∧R ))分配律 (P∨Q∨R)∧(P∨Q ∨Q)∧(P∨Q ∨R)∧(P∨R ∨Q)∧(P∨R ∨R) (P∨Q ∨R)∧(P∨Q ∨R )∧(P ∨Q∨R) M∧5M∧6M使(非P析取Q析取R)为0 4 GAGGAGAGGAFFFFAFAF

所赋真值,即100,二进制为4 GAGGAGAGGAFFFFAFAF

离散数学期末考试试卷(A卷)

离散数学期末考试试卷(A卷) 一、判断题:(每题2分,共10分) (1) (1) (2)对任意的命题公式, 若, 则 (0) (3)设是集合上的等价关系, 是由诱导的上的等价关系,则。(1) (4)任意一个命题公式都与某一个只含合取和析取两种联结词的命题公式等价。 (0) (5)设是上的关系,分别表示的对称和传递闭包,则 (0) 二、填空题:(每题2分,共10分) (1) 空集的幂集的幂集为()。 (2) 写出的对偶式()。 (3)设是我校本科生全体构成的集合,两位同学等价当且仅当他们在 同一个班,则等价类的个数为(),同学小王所在 的等价类为()。 (4)设是上的关系,则满足下列性质的哪几条:自反的,对称的,传递的,反自反的,反对称的。 () (5)写出命题公式的两种等价公式( )。 三、用命题公式符号化下列命题(1)(2)(3),用谓词公式符号化下列命题(4)(5)(6)。(12分) (1)(1)仅当今晚有时间,我去看电影。 (2)(2)假如上午不下雨,我去看电影,否则就在家里读书。 (3)你能通你能通过考试,除非你不复习。 (4)(4)并非发光的都是金子。 (5)(5)有些男同志,既是教练员,又是国家选手。 (6)(6)有一个数比任何数都大。 四、设,给定上的两个关系和分别是

(1)(1)写出 和 的关系矩阵。(2)求 及 (12分) 五、求 的主析取范式和主合取范式。(10分) 六、设 是 到 的关系, 是 到 的关系,证明: (8分) 七、设 是一个等价关系,设 对某一个 ,有 ,证明: 也是一个等价关系。(10分) 八、(10分)用命题推理理论来论证 下述推证是否有效? 甲、乙、丙、丁四人参加比赛,如果甲获胜,则乙失败;如果丙获胜,则乙也获 胜,如果甲不获胜,则丁不失败。所以,如果丙获胜,则丁不失败。 九、(10分) 用谓词推理理论来论证下述推证。 任何人如果他喜欢步行,他就不喜欢乘汽车,每一个人或喜欢乘汽车,或喜欢骑 自行车(可能这两种都喜欢)。有的人不爱骑自行车,因而有的人不爱步行 (论 域是人)。 十、(8分) 利用命题公式求解下列问题。 甲、乙、丙、丁四人参加考试后,有人问他们,谁的成绩最好, 甲说:“不是我,”乙说:“是丁,”丙说:“是乙,” 丁说:“不是我。” 四人的回答只有一人符合实际,问若只有一人成绩最 好,是谁? 离散数学期末考试试卷答案(A 卷) 一、判断题:(每题2分,共10分) (1)}}{{}{x x x -∈ ( ∨) (2) 对任意的命题公式C B A ,,, 若 C B C A ∧?∧, 则B A ? ( ? ) (3)设R 是集合A 上的等价关系, L 是由 R A 诱导的A 上的等价关系,则L R =。 ( ∨ ) (4) 任意一个命题公式都与某一个只含合取和析取两种联结词的命题公式等 价。 ( ? ) (5)设R 是A 上的关系,)(),(R t R s 分别表示R 的对称和传递闭包,则 )()(R st R ts ? ( ? ) 二、填空题:(每题2分,共10分)

相关文档 最新文档