文档库 最新最全的文档下载
当前位置:文档库 › 单片机温室大棚温度监控系统的设计方案

单片机温室大棚温度监控系统的设计方案

单片机温室大棚温度监控系统的设计方案
单片机温室大棚温度监控系统的设计方案

基于单片机温室大棚温度监控系统的设计

摘要:本系统以AT89C51单片机为控制核心,利用温度传感器

AD590对蔬菜大棚内的温度进行实时采集与控制,实现温室温度的

自动控制。本系统以单片机小系统模块,温度采集模块,加热模块,

降温模块,按键以及显示模块六个部分组成。可以通过按键设定温

室的温度值,采集的温度和设定的温度通过LED数码管显示。当所

设定的温度值比采集的温度值打时,通过加热器加热,以达到设定

值;反之,开启降温风扇,以快速达到降温效果。通过该系统对蔬

菜大棚内的温度进行有效可靠地检测与控制。从而保证大棚内的作

物在最佳温度条下生长,提高质量和产

量。 . 关键词:单片机温室大棚温度控制

Abstract: the system to AT89C51 SCM as control core, real-time

data acquisitionand control using the temperature sensor AD590

temperature of the greenhouse, realize the automatic control of the

greenhouse temperature. The system is composed of single chip microprocessor system module, the temperature acquisition

module, a heating module, temperature module,keyboard and

display module six parts. You can set the key greenhousetemperature value, the collection of temperature and

set temperature by LED digital tube display. When the set temperature value than the acquisition of temperature is high, through heating, in order to reach the set value。 otherwise,open the cooling fan, to achieve cooling effect. Through the system, effective,reliable detection and control of the greenhouse temperature. In order to ensurethe greenhouse crop at the optimum temperature of growth, improve quality andyield. Keywords: single chip microcomputer, greenhouse, temperature control

目录

ABSTRACT

第一章绪论

1.1课题的背景和意义 (1)

1.2单片机的前景与未来 (1)

1.3温度测控技术的应用 (3)

第二章温度传感器的介绍

2.1 传感器原理及前景简介 (8)

2.2温度一体化传感器的发展和应用 (9)

2.3 温度传感器AD590 (10)

2.3.1 AD590简介 (11)

2.3.2 AD590 的应用 (12)

第三章硬件设计

3.1 设计目的 (13)

3.2 设计思路 (13)

3.3 基于AT89C51的单片机小系统 (14)

3.4 温度采集模块 (15)

3.5 显示模块 (16)

3.6 键盘扫描 (17)

3.7 WP型温室加热器 (18)

3.8 降温模块 (18)

第四章软件部分设计

4.1软件设计

4.1.1主程序........................................................................

4.1.2定时器TO中断........................................................

4.1.3 现实模块........................................................................

4.1.4 按键扫描...........................................................................

4.1.5 源程序..............................................................................

致谢 (35)

参考文献 (36)

第一章绪论

1.1选题背景和意义

现在的精密测量和精密加工中,环境因素是影响精度的主要因素之一,其中的温度是环境的主要指标。

当前,已经开发了很多的温度测量系统,一些高精度温度传感器的精度可达到±0.01℃,然而价格非常昂贵一般只作为高分辨力的精度测量和用作测温仪器的标准。而对于生产应用中的较低精度温度测量系统,现有的系统多采用了与计算机直接结合的工作模式,增加了系统的成本。鉴于目前的情况,我们提出以价格低廉的单片机作为控制核心,以多个温度传感器作为测量元件,构成了低成本的智能温度测量系统。

在该系统中,根据测量空间或设备的实际需要,由多路温度传感器对关键温度点进行测量,由安装于仪器内的单片机对各路数据进行循环检测、存储,实现温度的智能测量。该系统具有与计算机的通讯功能,在长时间数据采集完成后,可以将数据在传送到计算机进行相关的研究分析。因此,该系统即具有现有的计算机控制的智能测量功能,又节省硬件成本。另外,我们所设计的智能温度测量系统外形尺寸小,即可用于实验室环境温度的测量,又可用于仪器、大型设备等的内部环境测量。

1.2 单片机的前景与未来

单片机现在可以说是百花齐放,百家争鸣的时期,世界上各大芯片制造公司都推出了自己的单片机,从8位、16位到32位,数不胜数,应有尽有,有与主流C51系列兼容的,也有不兼容的,但它们各具特色,互成互补,为单片机的应用提供广阔的天地。

纵观单片机的发展过程,可以预示单片机的发展趋势,大致有:

<1)低功耗CMOS化

随着对单片机功耗要求越来越低,现在的各个单片机制造商基本都采用了CMOS(互补金属氧化物半导体工艺>。CMOS虽然功耗较低,但由于其物理特征决定其工作速度不够高,而CHMOS则具备了高速和低功耗的特点。

<2)微型单片化

现在常规的单片机普遍都是将CPU、RAM、ROM、并行和串行通信接口,中断系统、定时电路、时钟电路集成在一块单一的芯片上,增强型的单片机集成了如A/D转换器、PMW(脉宽调制电路>、WDT(看门狗>、有些单片机将LCD(液晶>驱动电路都集成在单一的芯片上,这样单片机包含的单元电路就更多,功能就越强大。

<3)主流与多品种共存

现在单片机的品种繁多,各具特色,但仍以80C51为核心的单片机占主流,兼容其结构和指令系统的有PHILIPS公司的产品,ATMEL公司的产品和中国台湾的系列单片机。而Microchip公司的PIC精简指令集(RISC>也有着强劲的发展势头,中国台湾的HOLTEK公司近年的单片机产量与日俱增。此外还有MOTOROLA 公司的产品,日本几大公司的专用单片机。在一定的时期内,这种情形得以延续,将不存在某个单片机一统天下的垄断局面,走的是依存互补,相辅相成、共同发展的道路。

以前没有单片机时,只能使用复杂的模拟电路,然而这样做出来的产品不仅体积大,而且成本高,并且由于长期使用,元器件不断老化,控制的精度自然也会达不到标准。在单片机产生后,我们就将控制这些东西变为智能化了,我们只需要在单片机外围接一点简单的接口电路,核心部分只是由人为的写入程序来完成。这样产品的体积变小了,成本也降低了,长期使用也不会担心精度达不到了。所以,学习单片机在我国是有着广阔前景的。

1.3温度测控技术的应用

温度自动测控系统借助于温度传感器,测量大楼内的温度数据,并对大楼实现温度控制。系统采用以可编程序控制器为核心,配置以各类温度传感器,外围接口电路,由可编程序控制器检测个传感器的信号,完成实时数据采集,开关量处理,超限报警信号检测与输出等,并根据采集的信号来控制前端设备的运转。可编程序控制器是一种工业环境下应用的智能控制器件。可用于执行逻辑运算,顺序控制,定时,计数和算术操作等指令,并通过数字或模拟的输入输出方式控制各种类型的仪器设备。可编程序控制器还具有通信,联网等功能,它的应用范围大致介于继电器控制装置与过程控制的计算机之间,它也可在一个大型的集散控制系统中,作为前端控制装置,在上位机的统一调度下工作。

测量温度时,温度传感器把温度信号转变为电量,为与可编程序控制器连接,测量的电信号应转化为工业标准信号0-5V或4-20mA。当有多个传感器时,传感器信号之间最好不要共地,否则可编程序控制器的模拟量模块可能会工作不正常。输出信号通过中间继电器控制强电信号,驱动空调运转,系统自动根据测量的温度值,确定是否开启或关闭空调。例如,当温度度大于设定值30度时,开启空调,直至温度接近设定值20度时,切断电源。为保证系统具有良好

的测量精度,并能准确地对空调进行控制,必须在前端测量信号转换时具有较好的线性。

第二章温度传感器的介绍

2.1 传感器原理及前景简介

传感器是能感受<或响应)规定的被测量并按照一定规律转换成可用信号输出的器件或装置。通常由直接响应于被测量的敏感元件和产生可用信号输出的转换元件以及相应的电子线路所组成。

传感器有很多种类,包括电阻应变式传感器,压阻式传感器,热电阻传感器,温度传感器,光敏传感器等。

传感器的前景可以从以下几方面来看:采用新原理,开发新型传感器;大力开发物性型传感器;传感器的集成化;传感器的多功能化;传感器的智能化(Smart Sensor>。

2.2温度一体化传感器的发展和应用

温度一体化的传感器,适应于多种环境的温度测量。采用专用温度补偿电路和线性化处理电路。这种传感器性能可靠,使用寿命长,响应速度快,测量范围宽,目前已广泛应用。适用于通讯机房,办公室,厂矿,车间,仓库,医院,档案馆,博物馆,暖通空调,楼宇自控等环境的温度测量。温度一体的传感器节省资源,便于温度的测量和对湿度补偿,同时为保证结果真实可靠。2.3温度传感器AD590

2.3.1AD590 简介

线性优良、性能稳定、灵敏度高、无需补偿、热容量小、抗干扰能力强、可远距离测温且使用方便等优点。可广泛应用于各种冰箱、

域。

特点:1、流过器件的电流

2、AD590的测温范围为-55℃~ 150℃。

变化,电流变化1mA,相当于温度变化1K。AD590可以承受44V 正向电压和20V反向电压,因而器件反接也不会被损坏。

4、输出电阻为710MW。

5、精度高。AD590共有I、J、K、L、M五档,其中M档精度最高,在-55℃~150℃范围内,非线性误差为±0.3℃。AD590测量热力学温度、摄氏温度、两点温度差、多点最低温度、多点平均温度的具体电路,广泛应用于不同的温度控制场合。由于AD590精度

补偿。

2.3.2AD590 的应用 1.AD590的工作原理在被测温度一定时,AD590相当于一个恒流源,把它和5~30V的直流电源相连,并在输出端串接一个1kΩ的恒值电阻,那么,此电阻上流过的电流将

和被测温度成正比,此时电阻两端将会有1mV/K的电压信号。其基本电路如图3所示。

图3是利用ΔUBE特性的集成PN结传感器的感温部分核心电路。其中T1、T2起恒流作用,可用于使左右两支路的集电极电流I1和I2相等;T3、T4是感温用的晶体管,两个管的材质和工艺完全相同,但T3实质上是由n个晶体管并联而成,因而其结面积是T4的n倍。T3和T4的发射结电压UBE3和UBE4经反极性串联后加在电阻R上,所以R上端电压为ΔUBE。因此,电流I1为: I1=ΔUBE/R=

图4所示是AD590的内部电路,图中的T1~T4相当于图3中的T1、T2,而T9,T11相当于图3中的T3、T4。R5、R6是薄膜工艺制成的低温度系数电阻,供出厂前调整之用。T7、T8,T10为对称的Wilson电路,用来提高阻抗。T5、T12和T10为启动电路,其中T5为恒定偏置二极管。

T6可用来防止电源反接时损坏电路,同时也可使左右两支路对称。R1,R2为发射极反馈电阻,可用于进一步提高阻抗。T1~T4是为热效应而设计的连接方式。而C1和R4则可用来防止寄生振荡。该电路的设计使得T9,T10,T11三者的发射极电流相等,并同为整个电路总电流I的1/3。T9和T11 的发射结面积比为8:1,T10和T11的发射结面积相等。

T9和T11的发射结电压互相反极性串联后加在电阻R5和R6上,因此可以写出:ΔUBE=

3。

根据上式不难看出,要想改变ΔUBE,可以在调整R5后再调整R6,而增大R5的效果和减小R6是一样的,其结果都会使ΔUBE减小,不过,改变R5对ΔUBE的影响更为显著,因为它前面的系数较大。实际上就是利用激光修正R5以进行粗调,修正R6以实现细调,最终使其在250℃之下使总电流I达到1μA/K。

2.测温电路的设计

在设计测温电路时,首先应将电流转换成电压。由于AD590为电流输出元件,它的温度每升高1K,电流就增加1μA。当AD590的电流通过一个10kΩ的电阻时,这个电阻上的压降为10mV,即转换成10mV/K,为了使此电阻精确<0.1%),可用一个9.6kΩ的电阻与一个1kΩ电位器串联,然后通过调节电位器来获得精确的10kΩ。图5所示是一个电流/电压和绝对/摄氏温标的转换电路,其中运算放大器A1被接成电压跟随器形式,以增加信号的输入阻抗。而运放A2的作用是把绝对温标转换成摄氏温标,给A2的同相输入端输入一个恒定的电压<如1.235V),然后将此电压放大到2.73V。这样,A1与A2输出端之间的电压即为转换成的摄氏温标。

将AD590放入0℃的冰水混合溶液中,A1同相输入端的电压应为2.73V,同样使A2的输出电压也为2.73V,因此A1与A2两输出端之间的电压:2.73-2.73=0V即对应于0℃。3. 2 A/D转换和显示电路的设计设计A/D转换和显示电路具有两种方案。分述如下: <1)用A/D转换器MC14433实现首先将AD590的输出电流转换成电压,由于此信号为模拟信号,因此,要进行数码显示,还需将此信号转换成数字信号。采用MC14433的转换电路如图6所示。此电路的作用是通过A/D转换器MC14433将模拟信号转换成数字信号,以控制显示电路。其中MC14511为译码/锁存/驱动电路,它的输入为BCD码,输出为七段译码。LED数码显示由MC14433的位选信号DS1~DS4通过达林顿阵列MC1413来驱动,并由MC14433的DS1、Q2端来控制“+”、“-”温度的显示。当DS1=1,Q2=1时,显示为正;Q2=0时,显示为负。

图6 A/D转换和数码显示电路框图

<2)用ICL7106来实现采用ICL7106的A/D转换及LCD显示电路框图如图7所示。其中,ICL7106是3位半显示的A/D转换电路,它内含液晶显示驱动电路,可用来进行A/D转换和LCD显示驱动。

第四章硬件设计

4.1设计目标

本系统要控制的对象为这样一个规模的温室。温室结构的参数为:屋脊高5.2m,檐高3m,单跨度6.5m,长为20m,地面面积为130平方M。要实现的目标是,使薄膜温室的温度保持在20℃——30℃之间,在这个区域内温度值是可设定的。

4.2设计思路

系统原理框图如图1所示。本系统由单片机小系统模块、温度采集模块、WP型温室加热器、降温模块、按键以及显示模块六个部分组成。通过按键设定温度值,设定的温度值和采集的温度值都可以通过LED数码管显示。当所设定的温度值比采集的温度大时,通过加热器加热,以达到设定值;反之,开启降温风扇,以快速达到降温效果。该系统对温度的控制范围在20℃——30℃,温度控制的误差小于等于0.5℃。通过使用该系统,对蔬菜大棚内的温度进行有效、可靠地检测与控制,保证大棚内作物在最佳的温度条件下生长,提高质量和产量。

图1系统原理框图

该系统分为六个模块,分别是单片机小系统模块、温度采集模块、显示模块、键盘扫描模块、加热模块和降温模块。

4.3基于AT89C51的单片机小系统

本系统采用Atmel公司所生产的AT89C51单片机。AT89C51单片机小系统如图2所示:

图2 单片机小系统

这个小系统由时钟脉冲和复位电路组成, AT89C51内部已具备振荡电路,只要在接地引脚上面的两个引脚<即19、18脚)连接简单的石英晶体即可。AT89C51的时钟频率为12MHz。AT89C51的复位引脚为第9脚,当此引脚连接高电平超过2个机器周期<一个机器周

期为6个时钟脉冲),即可产生复位的动作。以12MHz的时钟脉冲为例,每个时钟脉冲1μs,两个机器周期为12μs,因此,在第9脚上连接一个12μs以上的高电平脉冲,即可产生复位的动作。对于上电复位,复位引脚上串接了一个电容,当复位引脚接 +5V电压时,电容相当于短路,经过一段时间<在这段时间内完成复位)后,电容处于充电状态,相当于断开。还有一种是手动复位,它的接法是在AT89C51复位引脚所串连的电容上并联接一个按钮开关。当按钮没按下时,电容处于充电状态;当按钮按下时,电容对复位引脚放电,从而在这个引脚上产生高电平,达到复位的目的。

4.4温度采集模块

本系统的温度采集和转换电路原理图如图3所示,它的工作过程为:系统通过AD590采集外界的温度参数,并通过三个放大器的作用将温度转化为电流模拟量;此模拟量通过ADC0804的转化变成数字量,以便单片机辨认接收。

图3AD590温度传感器工作的系统结构电路图

根据电路图,说明各个器件的功能如下:

OPA1:以0℃为标准,调节可变电阻R10使其输出电压为 2.73伏特。

OPA2:减2.73伏特,并反相。

OPA3:放大5倍并反相。

例如:AD590输出电压为 1.5伏特,则其温度为:1.5/5

3.302/10K=303.2微安培;

303.2-273.2=30微安培→30℃。

表1 各温度与3个OPA及ADC0804的输入与输出关系

图4 ADC0804

如图4,A/D转换器就是模拟/数字转换器,是将输入的模拟信号转换成数字信号。信号输入端的信号可以是传感器或是转换器的输出,而ADC输出的数字信号可以提供给微处理器,以便更广泛地应用。

ADC0804电压输入与数字输出关系如下表2所示:

表2 ADC0804电压输入与数字输出关系例如:VIN=3V,由上表可知 2.880+0.120=3V,为10010110B=96H。

AD590产生的电流与绝对温度成正比,它可接收的工作电压为4V——30V,检测的温度范围为-55℃——+150℃,它有非常好的线性输出性能,温度每增加1℃,其电流增加1微安培。当摄氏温度为0℃时,AD590的电流为273.2微安培,经10千欧姆电阻后其电压为2.732伏特。余者依上述方法类推。

利用AD590以及接口电路把温度转换成模拟电压,经由ADC0804转换成数字信号后传送给AT89C51处理。

温度采集和AD590温度传感器工作的系统结构电路图为图3。

4.5显示模块

译码IC及温度显示的电路图如图5所示。显示部分的工作原理是,它将温度转换的数字量,即温度值,经由AT89C51的P1口由两个译码IC输出并分别送入两个七段数码管显示,这两个LED都是共阳极的。

图5 译码IC及温度显示

BCD码转换成7段LED数码管的译码驱动IC,如图6所示,首推7447系列,包括7446、7449、74LS49。其中的7446及7447输出低电平驱动的显示码,用以推动共阳极7段LED数码管;而7448及74LS49输出高电平驱动显示码,用以推动共阴极7段LED数码管,7446、7447与7448的引脚相同<双并排16pins)。

温室大棚方案设计说明

温室大棚方案设计 一、方案概述 根据自贡的气候温度(年平均气温17.5℃至18.0℃)、湿度、日照(年日照1150至1200小时)等自然因素、建造成本并兼顾作物的生长需要,采用连栋96型文洛式(Venlo)玻璃温室方案。 Venlo型温室来源于荷兰,是一种小屋面玻璃温室,这种类型的温室得到了世界的认可,成为世界上应用最广、使用数量最多的玻璃温室类型,它具有构件截面小、安装简单、透光率高、密封性好、通风面积大等特点。 温室主体结构安装为装配式(无焊接)及专用铝合金型材(符合GB 5237-2008),骨架及各种连接件均经热浸镀锌防腐蚀处理。 覆盖材料为浮法玻璃,透光率90%-92%,热传递效率3%,正常使用寿命≥15年,抗结露,适合于南方种植温室、展览温室和科研用温室。 另外温室还配置:外遮阳系统、内保温遮荫系统、喷灌系统、计算机控制系统、供水系统、补光/补气系统、降温/加温设备、配电系统、循环通风系统等。 图样: 二、主要技术参数 1、连栋温室规格尺寸 温室跨度 9.6m×4跨,采用一跨三(尖顶)屋面;开间 4.0m,共10个开间,屋面倾斜角21°。 2、温室排列方式及面积 (1)温室东西向排跨,屋脊走向为南北向(南北向排开间) (2)连栋长:9.6m×4=38.4m 开间长:4m×10开间=40m (3)总面积:38.4m×40m=1536m2 3、温室性能指标 (1)抗风载荷:≤0.45KN/m2; (2)抗雪载荷:≤0.30KN/m2; (3)最大排雨量:110 mm/h; (4)电参数:220V/380V,50Hz; (5)温室主体骨架寿命(正常使用):≥15年。 4、其它主要参数 (1)温室基础及室内地面 基础钢筋混凝土结构,钢筋I、II级,混凝土C20。基础埋深0.8m。顶面标高0.5m,采用两端排水,其余地面夯实铺地布,提供给水、排水系统。排水管采用PVC110。 (2)温室主体骨架 温室主体物料采用国产优质热镀锌碳素结构钢,温室钢柱和侧面梁截面尺寸为100×60×3mm、80×40×2.5mm、50×30×2mm的热镀锌矩形管,立柱底板采用10mm厚的钢板。桁架截面尺寸为50×50×2mm,天沟采用2.5mm厚,冷弯热镀锌钢板用于排水。温室钢材均按行业标准配备,骨架及各种连接件均经热浸镀锌防腐蚀处理。 (3)温室门 为方便温室日常使用和操作管理,在温室东侧及隔断处设一套铝合金推拉门,在东门内设一缓冲间,防止开门时冷气进入,温室每个隔间设一扇铝合金门。 (4)覆盖材料

农作物温室环境智能监控系统研究背景意义及国内外现状

农作物温室环境智能监控系统研究背景意义及国内外现状 1研究背景及其研究意义 (1) 研究背景概述 (1) 项目研究意义 (2) 2国内外研究现状 (3) 国外研究现状 (3) 国内研究现状 (4) 1研究背景及其研究意义 研究背景概述 农业是国家重要的支柱产业,我国作为世界第一农业大国,农业生产在我国经济建设和社会发展中占有举足轻重的地位。良好的气候与生态环境条件是农业生产的重要保障,而我国幅员辽阔,气候与生态环境条件相对恶劣,制约农业的发展。 我国作为世界第一农业大国,在农业也是积累的相当多的经验和知识,但我国大部分地区都存在山多土地少,土质不好,土壤资源匮乏,气候条件复杂多变等劣势,这些劣势对农作物的生长极其不利;况且随着社会的进步,从事农业生产的人也日趋减少,而社会的对农产品的需求却日益增高,原有农作种植方式已经不能满足社会发展的需要,必须对传统的农业进行技术更新和改造。因此,在我国发展现代化农业和生态农业是今后农业发展的必然趋势,推广高新技术在农业生产中的应用势在必行。而现代温室农业技术就能满足以上的要求。 温室控制技术主要针对湿度、温度、光照度等温室作物生长必须的外在物理要素进行调节,以达到作物生长的最佳条件。现代温室控制技术主要是能通过系统实时采集温室环境的温湿度和光照度,以达到温室植物生长环境实时监控的目的。近年来,我国在温室控制技术方面也做了很多的研究,并在温室栽培等方面取得了显着成果。但由于我国在这方面的研究时间不算长,在配套技术与设备上都比较匮乏,使得环境的监控能力不高,生产力有限。能够实现全年生产的大型现代化温室很少。而且需要进口温室设备,但投资又太大,需要的操作人员的素质要求也高。所以我国温室环境控制还有很多地方需要改善与提高。 温室环境智能监控系统的研究涉及到计算机技术、传感器技术、控制技术、通讯技

大棚监控系统设计方案

大棚监控系统设计方案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

农业温室大棚监控系统设计方案 一、概述 .......................................................................................................... 错误!未定义书签。 二、项目需求 .................................................................................................. 错误!未定义书签。 三、系统架构设计 .......................................................................................... 错误!未定义书签。 四、大棚现场布点 .......................................................................................... 错误!未定义书签。 五、平台软件 .................................................................................................. 错误!未定义书签。光照度传感器................................................................................................... 错误!未定义书签。 1 、简介............................................................................................................ 错误!未定义书签。 2、用途 ............................................................................................................ 错误!未定义书签。 3、技术参数..................................................................................................... 错误!未定义书签。 4、安装与使用................................................................................................. 错误!未定义书签。

(完整word版)温度监测系统设计仿真与实现

实用温度监测系统 学院:电子信息工程学院专业:通信工程1303 学生姓名:张艺 学号:13211075 任课教师:刘颖 2015年06 月10 日

目录 实验题目:失真放大电路 .............. 错误!未定义书签。 1 实验题目及要求 (2) 2 实验目的与知识背景 (2) 2.1 实验目的 (2) 2.2 知识点 (2) 3 实验过程 (4) 3.1 选取的实验电路及输入输出波形 (4) 3.2 每个电路的讨论和方案比较 (16) 3.3 分析研究实验数据............. 错误!未定义书签。 4 总结与体会 (20) 4.1 通过本次实验那些能力得到提高,那些解决的问题印象深刻, 有那些创新点。 (20) 4.2 对本课程的意见与建议......... 错误!未定义书签。 5 参考文献 (21)

目录 1.电路设计及原理分析 (3) 1.1设计任务 (4) 1.2技术指标 (4) 1.3电路原理图 (5) 1.4基本原理 (5) 2.电路模拟与仿真 (6) 2.1仿真软件 (6) 2.2创建电路模拟图 (9) 2.3元件列表 (9) 2.4仿真记录与结果分析 (10) 3.实际电路的安装调试 (15) 3.1 元件参数确定 (15) 3.2 电路板布线设计 (15) 3.3 焊接 (15) 3.4调试与测量 (15) 3.5分析结果及改进 (16) 4.总结 (176) 5.心得体会 (177) 6.参考文献 (198)

1.电路设计及原理分析 1.1设计任务 通过Proteus软件仿真精密双限温度报警仪设计,在老师点拨我们自学的基础上了解了运放的作用,用了比较器,震荡电路等知识,根据找到的电路图进行仿真,调试电路,明白了温度报警的意义。 通过比较器产生“数字模拟信号”,使得在信号产生的时候,震荡电路工作产生震荡信号驱动扬声器报警。 1.2技术指标 a.当温度在设定范围内时报警电路不工作; b.当温度低于下限值或高于上限值时,声光报警; c.上下限低于报警led用不同颜色; d.上下限可调; e.控温精度度 1℃ f.监测范围0.5℃

农业大棚环境监控系统方案

农业大棚环境监控系统方案 2014.9

一简介 (3) 二农业大棚环境监控概述 (3) 三背景与需求 (4) 四系统的组成 (4) 1)总体架构 (4) (2)系统有两种典型配置结构 (4) (3)传感信息采集 (5) 五大棚监测点现场分布 (6) 六系统的软件 (7) 七常用的传感器 (8) 1、空气温湿度传感器 (8) 2、土壤温度传感器 (8) 3、土壤水分传感器 (8) 4、CO2含量传感器 (9) 5、NH3含量传感器 (9) 6、光照度传感器 (9)

一简介 近年来,温室大棚种植为提高人们的生活水平带来极大的便利,得到了迅速的推广和应用。种植环境中的温度、湿度、光照度、CO2浓度等环境因子对作物的生产有很大的影响。传统的人工控制方式难以达到科学合理种植的要求,目前国内可以实现上述环境因子自动监控的系统还不多见,而引进国外具有多功能的大型连栋温室控制系统价格昂贵,不适合国情。 针对目前大棚发展的趋势,提出了一种大棚智能监控系统的设计。根据大棚智能监控的特殊性,需要传输大棚现场参数给管理者,并把管理者的命令下发到现场执行设备,同时又要使上级部门可随时通过互连网或者手机信息了解区域大棚的实时状况。基于GPRS的智能大棚监控系统使这些成为可能。 二农业大棚环境监控概述 农业温室大棚监控系统通过实时采集农业大棚内空气温度、湿度、光照、土壤温度、土壤水分等环境参数,根据农作物生长需要进行实时智能决策,并自动开启或者关闭指定的环境调节设备。通过该系统的部署实施,可以为农业生态信息自动监测、对设施进行自动控制和智能化管理提供科学依据和有效手段。 开拓者kitozer系列的农业温室大棚监控及智能控制解决方案是通过可在大棚内灵活部署的各类无线传感器和网络传输设备,对农作物温室内的温度,湿度、光照、土壤温度、土壤含水量、CO2浓度等与农作物生长密切相关环境参数进

农业大棚智能温室监测系统设计方案

农业大棚智能温室监测系统设计方案 托普物联网认为:智能温室监测系统是根据无线网络获取的植物实时的生长环境信息,如通过各个类型的传感器可监测土壤水分、土壤温度、空气温度、空气湿度、光照强度、植物养分含量等参数。其它参数也可以选配,如土壤中的PH值、电导率等等。信息收集、负责接收无线传感汇聚节点发来的数据、存储、显示和数据管理,实现所有基地测试点信息的获取、管理、动态显示和分析处理以直观的图表和曲线的方式显示给用户,并根据以上各类信息的反馈对农业园区进行自动灌溉、自动降温、自动卷模、自动进行液体肥料施肥、自动喷药等自动控制。 一、概述 农业大棚智能温室监测系统通过实时采集农业大棚内空气温度、湿度、光照、土壤温度、土壤水分等环境参数,根据农作物生长需要进行实时智能决策,并自动开启或者关闭指定的环境调节设备。通过该系统的部署实施,可以为农业生态信息自动监测、对设施进行自动控制和智能化管理提供科学依据和有效手段。 大棚监控及智能控制解决方案是通过可在大棚内灵活部署的各类无线传感器和网络传输设备,对农作物温室内的温度,湿度、光照、土壤温度、土壤含水量、CO2浓度等与农作物生长密切相关环境参数进行实时采集,在数据服务器上对实时监测数据进行存储和智能分析与决策,并自动开启或者关闭指定设备(如远程控制浇灌、开关卷帘等)。 二、项目需求 在每个智能农业大棚内部署无线空气温湿度传感器、无线土壤温度传感器、无线土壤含水量传感器、无线光照度传感器、无线CO2传感器等,分别用来监测大棚内空气温湿度、土壤温度、土壤水分、光照度、CO2浓度等环境参数。为了方便部署和调整位置,所有传感器均应采用电池供电、无线数据传输。大棚内仅需在少量固定位置提供交流220V市电(如:风机、水泵、加热器、电动卷帘)。 每个农业大棚园区部署1套采集传输设备(包含路由节点、长距离无线网关节点、Wi-Fi 无线网关等),用来覆盖整个园区的所有农业大棚,传输园区内各农业大棚的传感器数据、设备控制指令数据等到Internet上与平台服务器交互。 在每个需要智能控制功能的大棚内安装智能控制设备(包含一体化控制器、扩展控制配电箱、电磁阀、电源转换适配设备等),用来接受控制指令、响应控制执行设备。实现对大棚内的电动卷帘、智能喷水、智能通风等行为的实现。 三、智能温室监测系统架构设计

智能化温室大棚整体控制设计方案和对策

目录 一、智能温室大棚简介 (2) 二、智能温室大棚结构设计 (2) 一、温室结构设计 (2) 1.温室结构布局 (3) 2.温室覆盖材料 (3) 3.温室的通风 (3) 二、温室运行机构 (3) 1.电力系统 (3) 2.降温增湿系统 (3) 3.遮阳系统 (3) 4.增温系统 (3) 5.浇灌系统 (4) 三、智能温室大棚控制系统 (4) 一、控制系统的主要构成 (5) 1、传感器 (5) 2、控制器 (5) 3、执行器件 (5)

4、上位机 (6) 二、具体控制过程 (6) 一、智能温室大棚简介 智能温室也称作自动化温室,是指由计算机控制温室的执行器件来改善温室的环境,营造适合农作物生长的环境。温室的主要系统有可移动天窗、遮阳系统、保温系统、升温系统、降温系统、浇灌系统等自动化设施系统。 智能温室的控制一般有信号采集系统、中心计算机和控制系统三大部分组成。 二、智能温室大棚结构设计 一、温室结构设计 首先应进行温室建筑布局、形式、尺寸等方面设计,应考虑结构、机械、覆盖与支撑材料、荷载、通风、保温、给排水以及环境调控设备等多种因素,同时还应该考虑本地的地理气候条件,充分利用自然资

源,力图降低制造成本和运行费用。 其结构框架设计的基本特点 1.温室结构布局尽量采用南北栋方式建筑可使太阳直射光 平均日总量透过率最高。 2.温室覆盖材料温室材料透光率对温室的光照总量有着重 要影响,可采用浮法玻璃其透光率可达90%以上。亦可采用超 长塑料薄膜(穿透率85%)为覆盖材料。但其耐用性不高。PC 塑料板在造价、使用年限、透光率等方面是一个不错的选择。 3.温室的通风应充分利用自然条件,确定温室开窗的朝向十分 重要,如地区全年平均主导风向为东南,则天窗的位置应设在北 侧。同时还可安装自然风收集装置增加温室循环,冬天还可在 自然风收集装置上安装空气增温系统,增加循环的时候还可以 增肌温室的温度。 二、温室运行机构 1.电力系统可采用工业电网与自发电结合方式充分节省能 源与成本。自发电可采取风力发电,风力发电占地少,转化率高。成本相比太阳能发电低 2.降温增湿系统可采取湿帘降温增湿系统,或者高压喷雾 降温系统。降温还应配合风机降温。 3.遮阳系统采用移动遮阳慕,进行遮阳。 4.增温系统可采取水电共同增温,或单一增温系统。水电增温这

温度监控系统设计实验报告

温度监控系统设计

引言:温度是工业控制中主要的被控参数之一,特别是在冶金、化工、 建材、食品、机械、石油等工业中,具有举足重轻的作用。对于不同场所、不同工艺、所需温度高低范围不同、精度不同,则采用的测温元件、测方法以及对温度的控制方法也将不同;产品工艺不同、控制温度的精度不同、时效不同,则对数据采集的精度和采用的控制算法也不同,因而,对温度的测控方法多种多样。随着电子技术和微型计算机的迅速发展,微机测量和控制技术也得到了迅速的发展和广泛的应用。利用微机对温度进行测控的技术,也便随之而生,并得到日益发展和完善,越来越显示出其优越性。 作为获取信息的手段——传感器技术得到了显著的进步,其应用领域较广泛。传感器技术已成为衡量一个国家科学技术发展水平的重要标志之一。因此,了解并掌握各类传感器的基本结构、工作原理及特性是非常重要的。 为了提高对传感器的认识和了解,尤其是对温度传感器的深入研究以及其用法与用途,基于实用、广泛和典型的原则而设计了本系统。本文利用单片机结合传感器技术而开发设计了这一温度监控系统。文中传感器理论单片机实际应用有机结合,详细地讲述了利用热敏电阻作为热敏传感器探测环境温度的过程,以及实现热电转换的原理过程。 本设计应用性比较强,设计系统可以作为生物培养液温度监控系统,如果稍微改装可以做热水器温度调节系统、实验室温度监控系统,以及构成智能电饭煲等等。课题主要任务是完成环境温度检测,利用单片机实现温度调节并通过计算机实施温度监控。设计后的系统具有操作方便,控制灵活等优点。 本设计系统包括温度采集模块,单片机最小系统,显示模块,按键控制模块,报警模块和指示模块六个部分。文中对每个部分功能、实现过程作了详细介绍。整个系统的核心是进行温度监控,完成了课题所有要求。 方案设计:总体设计方案采用AT89C52单片机作控制器,温度传感器选用DS18B20来设计数字温度计,系统由6个模块组成:主控制器、测温电路、显示电路、报警电路、控制电路及指示电路。主控制器由单片机AT89C52实现,测温电路由温度传感器DS18B20实现,显示电路由4位LED数码管直读显示,,报警系统由蜂鸣器和发光二级管构成,控制电路由按键构成,指示电路由发光二极管组成。本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,并且加有报警装置,超过温度可发出警示,还可以调整报警温度。该设计控制器使用单片机AT89C52,测温传感器使用DS18B20,用4位共阳极LED数码管以I/O传送数据,实现温度显示,能准确达到以上要求。 实验目的和要求: 1.学习DS18B20温度传感芯片的结构和工作原理。 2.掌握LED数码管显示的原理及编程方法。 3.掌握矩阵式键盘的原理及使用方法。

温室大棚监控系统解决方案-v

温室大棚监控系统解决方案

目录 前言 (3) 1、中国农业发展现状 (3) 2、温室大棚控制系统在农业应用中的意义 (4) 2.1、促进农业三个方面的发展: (4) 2.2、社会经济效益: (5) 3、温室大棚控制系统设计方案概述 (6) 3.1、系统设计原则 (6) 3.2 系统功能特点 (7) 3.3 系统组成 (7) 3.4 系统示意图 (8) 4 温室大棚控制系统功能 (8) 4.1 环境信息采集系统 (8) 4.2 视频监控系统 (10) 4.3 智能控制系统 (12) 4.4 信息展示系统 (13) 4.5 管理平台 (15) 4.6公司资料 (17)

前言 物联网信息技术在2006 年被评为未来改变世界的十大技术之一,是继互联网之后的又一 次产业升级,是十年一次的产业机会。总体来说,物联网是指各类传感器和现有的互联网相互 衔接的新技术,物物相连,相互感知,若干年后,地球上的每一粒沙子都有可能分配到一个确 定地址,它的各种状态、参数可被感知。 2009 年8 月温家宝总理在无锡提出“感知中国”,物联网开始在中国受到政府的重视和政 策牵引。 2010 年国家发布了“十二五”发展规划纲要,其中第十三章“全面提高信息化水平”第 一节“构建下一代信息基础设施”中明确提到:推动物联网关键技术研发和在重点领域的应用 示范。 在第五章“加快发展现代农业”第二节“推进农业结构战略性调整”中提出:加快发展 设施农业,推进蔬菜、水果、茶叶、花卉等园艺作物标准化生产。提升畜牧业发展水平。促进 水产健康养殖。推进农业产业化经营,促进农业生产经营专业化、标准化、规模化、集约化。 推进现代农业示范区建设。第三节“加快农业科技创新”中提出:推进农业技术集成化、劳动 过程机械化、生产经营信息化。加快农业生物育种创新和推广应用,做大做强现代种业。加强 高效栽培、疫病防控、农业节水等领域的科技集成创新和推广应用,实施水稻、小麦、玉米等 主要农作物病虫害专业化统防统治。加快推进农业机械化,促进农机农艺融合。发展农业信息 技术,提高农业生产经营信息化水平。 物联网信息技术与现代农业的结合更加是国家重点推动的关键示范应用。 1、中国农业发展现状 我国是农业大国,而非农业强国。近30 年来农业高产量主要依靠农药化肥的大量投入, 大部分化肥和水资源没有被有效利用而随地弃置,导致大量养分损失并造成环境污染。我国农 业生产仍然以传统生产模式为主,传统耕种只能凭经验施肥灌溉,不仅浪费大量的人力物力, 也对环境保护与水土保持构成严重威胁,对农业可持续性发展带来严峻挑战。 我国人口占世界总人口的22%,耕地面积只占世界耕地面积的7%,随着经济的飞速发展,人民生活水平不断提高,资源短缺,环境恶化与人口剧增的矛盾越来越突出。特别是我国加入 世贸组织后,国外价格低廉的优质农副产品源源不断的流入我国,这对我国的农产品市场构成 极大威胁。因此,如何提高我国农产品的质量和生产效率,如何对大面积土地的规模化耕种实 时信息技术指导下科学的精确管理,是一个即前沿又当务之急的科研课题。而现实情况是,粗 放的管理与滥用化肥,其低效益和环境污染令人惊叹。 传统农业产生的物质技术手段落后,主要依靠人力、畜力和各种手工工具以及一些简单机 械。在现实中主要存在的问题是: (1)农业科技含量、装备水平相对滞后 (2)农业生产存在污染和浪费,据农业、水利部门测算,我国每年农业所消耗化肥、农药 和水资源量都在飞速增长,数据惊人,农业的污染问题困扰着不少乡村,不少农民群 众饮水安全受到影响 (3)农业产出少、农民收入低

农业大棚环境监控系统的监测内容及应用解决方案

农业大棚环境监控系统的监测内容及应用解决方案 1.前言 1.1国内外农业温室大棚系统的现状 我国是一个农业大国,目前在广大农村,农业温室比比皆是。近年来,随着我国农业和农村经济的发展,农业生产方式逐步由传统的粗放经营式向现代集约型经营方式转变,农业科技示范园,作为现代集约型农业和高新科技应用的示范窗口,应运而生。随着科学技术的进步,温室的结构档次在逐步的提高,建设一种可提高温室内作物产量和质量,降低生产成本,减轻工作人员劳动强度的农业温室大棚智能监控系统,是广大温室作物生产人员的迫切需求。 目前,虽然也有不少单位或个人引进了一些国外的计算机智能监控系统,如温室环境监控系统,施肥灌溉监控系统,工厂化育苗智能监控系统等,这些系统真正实现了温室控制的智能化和自动化,但往往存在投资过大.系统维护不方便等各种发展制约瓶颈,再者就是要求温室的管理操作人员本身有较高的文化素质和较丰富的工程技术经验,目前我国广大农民还不具备,这也限制了国外同类产品在国内的推广应用。开发低价位、实用型的农业温室大棚智能监控系统对于推进我国农业自动化、智能化进程具有重要的意义,同时也具有很大的市场潜力。据调查,目前市场上迫切需要的是一种低成本、操作使用简便的实用农业温室大棚智能监控系统。针对这一要求及我国日光温室量大、面广的特点,研究一种既符合我国农业水平实际又适合农民经济承受能力、技术上不低于国外同类产品的农业温室智能集成监控系统是非常必要的。智能化农业温室大棚是集农业科技上的高、精、尖技术和计算机自动控制技术于一体的先进的农业生产设施,是现代农业科技向产业转化的物质基础。它能营造相对独立的作物生长环境,彻底摆脱传统农业对自然环境的依赖性。目前,计算机监控在农业温室大棚种植中得到了越来越广泛的应用,并正在成为农业温室大棚监控的核心。智能化农业温室大棚研究是当今兴起的一门横跨生物学、计算机科学、电子科学、机械设计和环境控制等几大学科的综合了多种高新技术的边缘学科。从目前我国农业发展政策看,未来10一15年我国农业科技进步的重要内容就是推动规模经营和农业产业化的发展,所以研究开发适合我国的国情的农业温室大棚智能监控系统是非常必要的。

设计农业大棚环境监控系统方案

农业大棚环境监控系统方案 一简介 (2) 二农业大棚环境监控概述 (2) 三背景与需求 (2) 四系统的组成 (3) 1)总体架构 (3) (2)系统有两种典型配置结构 (3) (3)传感信息采集 (4) 五大棚监测点现场分布 (4) 六系统的软件 (5) 七常用的传感器 (5) 1、空气温湿度传感器 (5) 2、土壤温度传感器 (6) 3、土壤水分传感器 (6) 4、CO2含量传感器 (6) 5、NH3含量传感器 (7) 6、光照度传感器 (7) 2014.9

一简介 近年来,温室大棚种植为提高人们的生活水平带来极大的便利,得到了迅速 浓度等环境因子对作物的推广和应用。种植环境中的温度、湿度、光照度、CO 2 的生产有很大的影响。传统的人工控制方式难以达到科学合理种植的要求,目前国内可以实现上述环境因子自动监控的系统还不多见,而引进国外具有多功能的大型连栋温室控制系统价格昂贵,不适合国情。 针对目前大棚发展的趋势,提出了一种大棚智能监控系统的设计。根据大棚智能监控的特殊性,需要传输大棚现场参数给管理者,并把管理者的命令下发到现场执行设备,同时又要使上级部门可随时通过互连网或者手机信息了解区域大棚的实时状况。基于GPRS的智能大棚监控系统使这些成为可能。 二农业大棚环境监控概述 农业温室大棚监控系统通过实时采集农业大棚内空气温度、湿度、光照、土壤温度、土壤水分等环境参数,根据农作物生长需要进行实时智能决策,并自动开启或者关闭指定的环境调节设备。通过该系统的部署实施,可以为农业生态信息自动监测、对设施进行自动控制和智能化管理提供科学依据和有效手段。 开拓者kitozer系列的农业温室大棚监控及智能控制解决方案是通过可在大棚内灵活部署的各类无线传感器和网络传输设备,对农作物温室内的温度,湿度、光照、土壤温度、土壤含水量、CO2浓度等与农作物生长密切相关环境参数进行实时采集,在数据服务器上对实时监测数据进行存储和智能分析与决策,并自动开启或者关闭指定设备(如远程控制浇灌、开关卷帘等)。 三背景与需求 在每个智能农业大棚内部署无线空气温湿度传感器、无线土壤温度传感器、无线土壤含水量传感器、无线光照度传感器、无线CO2传感器等,分别用来监测大棚内空气温湿度、土壤温度、土壤水分、光照度、CO2浓度等环境参数。为了方便部署和调整位置,所有传感器均应采用电池供电、无线数据传输。大棚内仅

温室大棚方案设计

温室大棚方案设计 黄屯村门户网站 https://www.wendangku.net/doc/a816341175.html, 2010年10月26日来源:黄屯村 【字体:大中小】 【推荐发送】【点击:3244次】 一、方案概述 根据自贡的气候温度(年平均气温17.5℃至18.0℃)、湿度、日照(年日照1150至1200小时)等自然因素、建造成本并兼顾作物的生长需要,采用连栋96型文 洛式(Venlo)玻璃温室方案。 Venlo型温室来源于荷兰,是一种小屋面玻璃温室,这种类型的温室得到了世界的认可,成为世界上应用最广、使用数量最多的玻璃温室类型,它具有构件截面小、安装简单、透光率高、密封性好、通风面积大等特点。 温室主体结构安装为装配式(无焊接)及专用铝合金型材(符合GB 5237-2008),骨架及各种连接件均经热浸镀锌防腐蚀处理。 覆盖材料为浮法玻璃,透光率90%-92%,热传递效率3%,正常使用寿命≥15年,抗结露,适合于南方种植温室、展览温室和科研用温室。 另外温室还配置:外遮阳系统、内保温遮荫系统、喷灌系统、计算机控制系统、供水系统、补光/补气系统、降温/加温设备、配电系统、循环通风系统等。 图样: 二、主要技术参数

1、连栋温室规格尺寸 温室跨度 9.6m×4跨,采用一跨三(尖顶)屋面;开间 4.0m,共10个开间, 屋面倾斜角21°。 2、温室排列方式及面积 (1)温室东西向排跨,屋脊走向为南北向(南北向排开间) (2)连栋长:9.6m×4=38.4m 开间长:4m×10开间=40m (3)总面积:38.4m×40m=1536m2 3、温室性能指标 (1)抗风载荷:≤0.45KN/m2; (2)抗雪载荷:≤0.30KN/m2; (3)最大排雨量:110 mm/h; (4)电参数:220V/380V,50Hz; (5)温室主体骨架寿命(正常使用):≥15年。 4、其它主要参数 (1)温室基础及室内地面 基础钢筋混凝土结构,钢筋I、II级,混凝土C20。基础埋深0.8m。顶面标高0.5m,采用两端排水,其余地面夯实铺地布,提供给水、排水系统。排水管采用 PVC110。 (2)温室主体骨架

温室大棚环境监测系统在温室大棚的作用

温室大棚环境监测系统在温室大棚的作用对于植物生长来说,农业气象环境非常重要,虽然现在随着温室大棚的推广,植物的生长不再受太多自然环境的影响,但是由于温室大棚是一个封闭的环境,因此在这个环境中,利用温室大棚环境监测系统创造适合植物生长的条件,是现代农业温室生产的重要内容。 温室大棚环境监测系统集传感器、自动化控制、通讯、计算等技术于一体,通过用户自定仪作物生长所需的适宜环境参数,搭建温室智能化软硬件平台,实现对温室中温度、湿度、光照、二氧化碳等因子的自动监测和控制。温室大棚环境监测系统可以为植物提供一个理想的生长环境,并能起到减轻人的劳动强度、提高设备利用率、改善温室气候、减少病虫害、增加作物产量等作用。 在现代智能温室大棚中,温室环境监测是其中一项重要的功能,智能温室大棚内湿度、温度、光照强弱及土壤的温度和含水量等因素,对大棚内的农作物生长起着关键性作用。而通过温室环境监测,可以帮助种植户通过计算机监测整个大棚内农作物生长情况,从而更便于记录农作物生长各种数据,也有利于新品种的实验。同时,温室环境监测的另外一个重要意义在于,通过环境的监测,可以获知温室中环境的变化,从而方便种植户采取措施进行调控,保证植物所处的环境始终是合适的,这样更加便于育苗工作的开展,育苗也更成功,需要的工作人员也少了很多。 温室大棚环境监测系统可以模拟基本的生态环境因子,如温度、湿度、光照、CO2浓度等,以适应不同生物生长繁育的需要,它由智能监控单元组成,按照预设参数,精确的测量温室的气候、土壤参数等,并利用手动、自动两种方式启动或关闭不同的执行结构(遮阳幕、湿帘水泵及风机、通风系统等),程序所需的数据都是通过各类传感器实时采集的。

农业温室大棚智能环境监控系统解决方案

智能温室大棚环境监控系统 1、系统简介 该系统利用物联网技术,可实时远程获取温室大棚内部的空气温湿度、土壤水分温度、二氧化碳浓度、光照强度及视频图像,通过模型分析,远程或自动控制湿帘风机、喷淋滴灌、内外遮阳、顶窗侧窗、加温补光等设备,保证温室大棚内环境最适宜作物生长,为作物高产、优质、高效、生态、安全创造条件。同时,该系统还可以通过手机、PDA、计算机等信息终端向农户推送实时监测信息、预警信息、农技知识等,实现温室大棚集约化、网络化远程管理,充分发挥物联网技术在设施农业生产中的作用。本系统适用于各种类型的日光温室、连栋温室、智能温室。 2、系统组成 该系统包括:传感终端、通信终端、无线传感网、控制终端、监控中心和应用软件平台。 (1)传感终端 温室大棚环境信息感知单元由无线采集终端和各种环境信息传感器组成。环境信息传感器监测空气温湿度、土壤水分温度、光照强度、二氧化碳浓度等多点环境参数,通过无线采集终端以GPRS方式将采集数据传输至监控中心,以指导生产。 (2)通信终端及传感网络建设 温室大棚无线传感通信网络主要由如下两部分组成:温室大棚内部感知节点间的自组织网络建设;温室大棚间及温室大棚与农场监控中心的通信网络建设。前者主要实现传感器数据的采集及传感器与执行控制器间的数据交互。温室大棚环境信息通过内部自组织网络在中继节点汇聚后,将通过温室大棚间及温室大棚与农场监控中心的通信网络实现监控中心对各温室大棚环境信息的监控。 (3)控制终端 温室大棚环境智能控制单元由测控模块、电磁阀、配电控制柜及安装附件组成,通过GPRS模块与管理监控中心连接。根据温室大棚内空气温湿度、土壤温度水分、光照强度及二氧化碳浓度等参数,对环境调节设备进行控制,包括内遮阳、外遮阳、风机、湿帘水泵、顶部通风、电磁阀等设备。 (4)视频监控系统

温度监控系统的设计代码

#include //************************* void INIT() { ADCON1=0X07; TRISC=0X80; TRISB=0X00; TRISD=0X00; RD1=0; RD0=0; TRISA=0X0f; TRISE=0X00; } //************************* #include #include "init.h" #include "proc.h" //************************* unsigned char i; unsigned int delay; extern unsigned char a; extern unsigned char temph; extern unsigned char templ; //*************************** void main() { //初始化 INIT(); for(delay=65536;delay>0;delay--) asm("clrwdt"); temph=0x35; templ=0x30; do { asm("clrwdt"); PROCDIANPIN(); RC0=0; RC1=0; }while(1); } #include #include "tranpc.h" //********************* union adres {

unsigned char adre[2]; }adresult; extern unsigned int delay; unsigned int temp; unsigned int y; unsigned char receive; unsigned char a; extern unsigned char rxbuf[]; unsigned char temph; unsigned char templ; extern unsigned char i; //****************************** void PROCDIANPIN() { ADCON0=0X89; ADCON1=0X84; ADIF=0; ADGO=1; for(delay=0x8ff;delay>0;delay--) asm("nop"); while(ADIF==0) { asm("clrwdt"); } asm("clrwdt"); ADIF=0; adresult.adre[0]=ADRESL; adresult.adre[1]=ADRESH; if((adresult.y1<=0x204)&&(adresult.y1>=0xD9)) { temp=0x10; for( y=0x204;adresult.y1<=y;adresult.y1=adresult.y1+0x07) { temp++; if(temp==0x1a) temp=0x20; if(temp==0x2a) temp=0x30; if(temp==0x3a) temp=0x40; if(temp==0x4a) temp=0x50; if(temp==0x5a) temp=0x60; if(temp==0x6a) temp=0x70; if(temp==0x7a) temp=0x80; if(temp==0x8a) temp=0x90; if(temp==0x9a) temp=0x100;

连栋农业温室大棚监控系统设计方案

农业温室大棚监控系统设计方案 一、概述2 二、项目需求2 三、系统架构设计3 四、大棚现场布点5 五、平台软件6

一、概述 近年来,温室大棚种植为提高人们的生活水平带来极大的便利,得到了迅速的推广和应用。种植环境中的温度、湿度、光照度、CO2浓度等环境因子对作物的生产有很大的影响。传统的人工控制方式难以达到科学合理种植的要求,目前国可以实现上述环境因子自动监控的系统还不多见,而引进国外具有多功能的大型连栋温室控制系统价格昂贵,不适合国情。 针对目前大棚发展的趋势,提出了一种大棚智能监控系统的设计。根据大棚智能监控的特殊性,需要传输大棚现场参数给管理者,并把管理者的命令下发到现场执行设备,同时又要使上级部门可随时通过互连网或者手机信息了解区域大棚的实时状况。基于GPRS的智能大棚监控系统使这些成为可能。 农业温室大棚监控系统通过实时采集农业大棚空气温度、湿度、光照、土壤温度、土壤水分等环境参数,根据农作物生长需要进行实时智能决策,并自动开启或者关闭指定的环境调节设备。通过该系统的部署实施,可以为农业生态信息自动监测、对设施进行自动控制和智能化管理提供科学依据和有效手段。 开拓者的农业温室大棚监控及智能控制解决方案是通过可在大棚灵活部署的各类无线传感器和网络传输设备,对农作物温室的温度,湿度、光照、土壤温度、土壤含水量、CO2浓度等与农作物生长密切相关环境参数进行实时采集,在数据服务器上对实时监测数据进行存储和智能分析与决策,并自动开启或者关闭指定设备(如远程控制浇灌、开关卷帘等)。 二、项目需求 在每个智能农业大棚部署无线空气温湿度传感器、无线土壤温度传感器、无

农业大棚远程智能监控与PLC自动化控制系统解决方案

农业大棚远程智能监控与P L C自动化控制系统解决方案 目录

1前言 1.1 智能农业远程智能监控系统的概念 智能农业是采用比较先进、系统的人工设施,改善农作物生产环境,进行优质高效生产的一种农业生产方式,20世纪80年代以来,智能农业发展很快,特别是欧美、日本等一些发达国家,目前已经普遍采用计算机控制的大型工厂化设施,进行恒定条件下全年候生产,效益大为提高;在社会主义市场经济条件下,我国的智能农业以其较高的科技含量、市场取向的新机制、短平快的产销特点、效益显着的竞争力,取得了快速发展,改善了传统农业的生产方式、组织方式和运行机制,提高了农业科技含量和物质装备水平,成为现代农业重要的生产方式。 深圳市信立科技有限公司智能农业远程智能监控系统是指利用现代电子技术、移动网络通信技术、计算机及网络技术相结合,将农业生产最密切相关的空气的温度、湿度及土壤水分等数据通过各种传感器以无线ZigBee技术动态采集,并利用中国电信的4G,4G CDMA网络通讯技术,将数据及时传送到智能专家平台,使智能农业管理人员、农业专家通过手机或手持终端就可以及时掌握农作物的生长环境,及时发现农作物生长症结,及时采取控制措施,及时调度指挥,及时操作,达到最大限度的提高农作物生长环境,

降低运营成本,提高生产产量,降低劳动量,增加收益。 1.2 实施农业远程智能监控系统的必要性 江苏智能农业发展,已经初步形成了政府引导、社会支持、市场推动和农民投入的良性运行机制,当前,全省发展智能农业,有丰富的资源、成熟的技术和广阔的市场,具备了进一步发展的基础,也蕴藏着巨大的潜力。 智能农业远程监控管理系统融合先进的信息技术、自动化控制、无线通讯技术等高新技术和农业科技专家为一体的综合平台,实现资金、技术、人才和信息的有效调配,改善农民的传统作业和手工操作,将产生巨大的经济和社会效益,推动农业和农村经济发展,成为江苏统筹城乡经济发展,建设现代化农业的重要内容和全面建设小康社会的强势产业。 2背景分析 江苏省在“十二五”期间加大智慧城市建设,将智能农业纳入六大智慧产业之一,突出显示了农业信息化在智慧城市建设中的重要地位。智慧农业建设较好地适应了市场经济发展要求和农业增效、农民增收的需要,取得了突破性进展,生产规模稳步扩大,突破了光热水气资源的限制,基本实现了淡季不淡、全年生产、保障供应;科技含量较快提高,无立柱日光温室、二氧化碳气肥、病虫害生物防治、无公害栽培、组织培养、工厂化育苗等先进技术得到推广应用,科技进步贡献率达到65%以上,成为种植业中科技含量较高的产业;智能农业以其病虫害相对较轻、用药量少、标准化程度高的优势,成为全省无公害蔬菜的骨干,质量安全水平明显提高。 随着自动化农业、精准农业、绿色农业的发展需求,迫切需要在农业领域引入物联网、4G等技术,进一步深化农业各环节的信息化水平,结合ZigBee技术、CDMA网络数据传输和传感器技术组成无线传感网络,通过ZigBee无线网络实时采集温室内温度、湿度信号以及光照、土壤湿度、CO2浓度、叶面湿度、露点温度等环境参数,自动开启或者关闭指定设备。可以根据用户需求,随时进行处理,为智能农业综合生态信息自动监测、对环境进行自动控制和智能化管理提供科学依

多点温度监控系统的设计

成都理工大学工程技术学院毕业论文 多点温度监控系统的设计 作者姓名: 专业名称:通信工程 指导教师:

摘要 随着“信息时代”的到来,作为获取信息的手段——传感器技术得到了显著的进步,其应用领域越来越广泛,对其要求越来越高,需求越来越迫切。传感器技术已成为衡量一个国家科学技术发展水平的重要标志之一。因此,了解并掌握各类传感器的基本结构、工作原理及特性是非常重要的。 为了提高对传感器的认识和了解,尤其是对温度传感器的深入研究以及其用法与用途,基于实用、广泛和典型的原则而设计了本系统。本文利用单片机结合传感器技术而开发设计了这一温度监控系统。文中传感器理论单片机实际应用有机结合,详细地讲述了利用热敏电阻作为热敏传感器探测环境温度的过程,以及实现热电转换的原理过程。 本设计系统包括温度传感器,A/D转换模块,输出控制模块,数据传输模块,温度显示模块电路五个部分。文中对每个部分功能、实现过程作了详细介绍。整个系统的核心是进行温度监控,完成了课题所有要求。 关键词:传感器,A/D转换模块,热敏电阻

Abstract With the "information age" come as a means of access to information technology –sensors technology got hold of significant advances in the increasingly broad applications of its becoming more demanding, and increasingly urgent needs. Sensor technology has become one of the important signs to measure the level of development of national science and technology. Therefore, it’s very important for us to comprehend and mastery the basic structure, operating principles and characteristics of sensor. For enhance the understanding of the sensor, especially thorough research as well as its usage and purpose on the temperature sensor. I designed this system were based on the principle of practical, widespread and representative. This article used the monolithic integrated circuit union sensor technology to develop this temperature supervisory system. Combine the sensor theory with monolithic integrated circuit can narrated the process in using the thermistor qua hot sensitive sensor survey ambient temperature by details, and it also realized the principle process of thermoelectricity transformed. This design system including temperature sensor, A/D transformation module, output control module, data transmission module and temperature demonstration module electric circuit five parts. In the article I have made a detail introduction on each partial functions and the realization process. The overall system’s core is processing on the temperature monitoring, carry out all requests of the topic. Keywords: temperature sensor,A/D transformation module,hot sensitive

相关文档
相关文档 最新文档