文档库 最新最全的文档下载
当前位置:文档库 › 高等代数(北大版)第2章习题参考答案

高等代数(北大版)第2章习题参考答案

高等代数(北大版)第2章习题参考答案
高等代数(北大版)第2章习题参考答案

第二章 行 列 式

1. 求以下9级排列的逆序数,从而决定它们的奇偶性

1) 1 3 4 7 8 2 6 9 5; 2) 2 1 7 9 8 6 3 5 4; 3)

9 8 7 6 5 4 3 2 1;

解:1) 所求排列的逆序数为:

()1011033110134782695=+++++++=τ, 所以此排列为偶排列。

2) 所求排列的逆序数为:

()1810345401217986354

=+++++++=τ, 所以此排列为偶排列。 3) 所求排列的逆序数为:

()()362

19912345678987654321=-=+++++++=τ, 所以此排列为偶排列。 2.选择i 与k 使

1) 1274i 56k 9成偶排列; 2) 1i 25k 4897成奇排列。

解: 1) 当3,8==k i 时, 所求排列的逆序数为:

()()10

01131400127485639

9561274=+++++++==ττk i ,

故当3,8==k i 时的排列为偶排列.。

2)当6,3==k i 时, 所求排列的逆序数为:

()()5

11011010132564897

4897251=+++++++==ττk i ,

故当6,3==k i 时的排列为奇排列。

3.写出把排列12345变成排列25341的那些对换。

解: 12345()()()

2534125431214354,35,22,1??→???→???→?。

4.决定排列()211 -n n 的逆序数,并讨论它的奇偶性。

解: 因为1与其它数构成1-n 个逆序,2与其它数构成2-n 个逆序,

……n n 与1-构成1个逆序,所以排列()211 -n n 的逆序数为

()[]()()()

时排列为奇排列。

当时,排列为偶排列;

故当34,2414,42

11

221211++=+=-=

+++-+-=-k k n k k n n n n n n n τ

5.如果排列n n x x x x 121- 的逆序数为k ,排列121x x x x n n -的逆序数是多 少?

解: 因为比i x 大的数有i x n -个,所以在

121x x x x n n -与n n x x x x 121- 这两个排列中,由i x 与比它的 各数构成的逆序数的和为i x n -.因而,由i x 构成的逆序总数 恰为 ()()2

1121-=

-+++n n n 。 而排列n n x x x x 121- 的逆序数为k ,故排列121x x x x n n -的逆序数 为

()k n n --2

1。 6.在6阶行列式中,651456423123a a a a a a , 256651144332a a a a a a 这两项应带有 什么符号?

解: 在6阶行列式中,项651456423123a a a a a a 前面的符号为 ()()()

11)1(4

4312645234516=-=-++ττ 。

同理项256651144332a a a a a a 前面的符号为 ()

()()

()

1114

6234165341562=-=-++ττ 。

所以这两项都带有正号。

7.写出4阶行列式中所有带有负号并且因子23a 的项。

解: 所求的各项应是44322311a a a a - , 41342312a a a a - , 42312314a a a a - 。 8.按定义计算行列式:

1)0

0000100200

1000

n n - 2).0

0010000

2000010

n n -

3)n

n 0000

0010

020

0100

- 。

解:1)所给行列式的展开式中只含有一个非零项11,21n n n a a a -, 它前面的符号应为()[]

()

2

)1(21)1(11---=-n n n n τ ,

所以原行列式=()

()!12

1n n n --。

2)所给行列式的展开式中只含有一个非零项1,12312n n n a a a a - , 它前面的符号应为()()

()

1

12311--=-n n τ ,

所以原行列式=()

n n 1

1--!

。 3)所给行列式的展开式中只含有一个非零项nn n n n a a a a 1,12,21,1--- , 它前面的符号应为()

()()[]

()

()()

2

21212111-----=-n n n n n τ ,

所以原行列式=()()()

n n n 2

211---!。

9.由行列式定义证明:

00

000000

02121215

4

32154321=e e d d c c b b b b b a a a a a 解:行列式展开的一般项可表示为5432154321j j j j j a a a a a ,列标543j j j 只可以在1,2,3,4,5中取不同的值,故三个下标中至少有一个要取3,4,5列中之一数,从而任何一个展开式中至少要包含一个0元素,故所给行列式展开式中每一项的乘积必为0,因此原行列式值为0。 10. 由行列式定义计算

()x x x x x x f 1111231

11212-= 中4x 与3x 的系数,并说明理由。

解:含有4x 的展开项只能是44332211a a a a ,所以4x 的系数为2;同理,含有3x 的展开项只能是44332112a a a a ,所以3x 的系 数为-1。

11.由

01

111

11

111= , 证明:奇偶排列各半。 证:由题设,所给行列式的展开式中的每一项的绝对值等于1。 而行列式的值为0,这说明带正号与带负号的项的项数相等.根据行列式的定义,其展开式中的每一项的符号是由该乘积中各因子下标排列的逆序数所决定的,即当该乘积中各因子的第一个下标排成自然顺序,且第二个下标所成排列为偶排列时, 该项前面所带的符号为正,否则为负号,所以,由带正号的项与带负号的项数相等即说明奇偶排列各半。 12.设

()1

1

21

11

2

2

22112111211

1

1-------=n n n n n n n a a a a a a a a a x x x x P

其中121,,,-n a a a 是互不相同的数。

1)由行列式定义,说明()x P 是一个1-n 次多项式; 2)由行列式性质,求()x P 的根。

解:1)因为所给行列式的展开式中只有第一行含有x ,所以若行列式的第一行展开时,含有1-n x 的对应项的系数恰为()

1

1+-n 乘一个范德蒙行列式

2

1

21

12

3

233

2

2

22

2

2

1

2

111111-------n n n n n n n a a a a a a a a a a a a

于是,由121,,,-n a a a 为互不相同的的数即知含有1-n x 的对应项的系数不为0,因

而()x P 为一个1-n 次的多项式。

2) 若用121,,,-n a a a 分代替x 时,则由行列式的性质知所给行列式的值为0,

即()0=i a P .故()x P 至少有1-n 个根121,,,-n a a a .又因为()x P 是一个

1-n 次的多项式,所以121,,-n a a a 必是()x P 的全部根。

13.计算下面的行列式:

1)6217213424435431014327

427246

- 2)y

x

y

x x y

x y

y x y x

+++

3)

311113111131

1113 4)3

21421431432432

1 5)y y x x -+-+1111111111111111 6)()()()()()()()()()()()()2

222

2222

2222

222

2321321321321++++++++++++d d d d c c c c b b b b a a a a

解:1) 原式=621

1144312327

111062172110004435432000327

42710005=

=55

510294621

1327

110621

1044311327

1010?-=-= 。 2)原式=x

y

x y x

y x y

y x y

x

y x x y x y

x y x y y

x ---++=+++++001

)(2222222 =()

332)

(2y x x

y x y

x y x +-=---+。

3)原式=

48862

00002000

02011

116311613161136

1116=?==。

4) 原式=

1

11022203

110432110

32

1

102141014310

43210------= =20

1604

02

2204

002203

1

1

=--=--- 。 5)原式=y

y x x y y y x x x --=

--1010000

11000111100111100 6)原式=221222122

2122212523212523

21252321252321222

2

2

22

2

2

++++=++++++++++++d d c c

b b a a d d d d

c c c c

b b b b a a a a =0 。

14.证明 2

2

2

111222

22211111

12c b a c b a c b a

b a a

c c b b a a c c b b

a a c c

b =+++++++++。 证明:由行列式的性质,有

左边=222222

2211111

11b a a c c b a b a a c c b a b a a c c

b a ++++++++++++ =22

2

2

22111

11c b c b a c b c b a c b c

b a --++--++--++ =2=2

2

2111

c b a c b a c

b a

右边 。 15.算出下列行列式的全部代数余子式:

1)

3

0001

2001

21

04

121- 2)4

101232

11- 解:1)611-=A , 012=A , 013=A ,014=A , 1221-=A , 622=A ,023=A ,024=A ,

2

,1,0,70,3,6,154443424134333231-=====-=-==A A A A A A A A 。

2)3,12,7131211=-==A A A , 1,4,6232221-===A A A , 5,5,5333231==-=A A A 。 16.计算下面的行列式:

1)

1

23

452213

112

1111- 2)2

10

1

1

211

1311

2

13

1

11211

----

3)5

3

12

12133215

311

21

024

1210-- 4)2

10

3

1

2

2101102

1

1

23

21

10

2110211

---

解:1)原式=21001000511011113210411051101111---

=------ =11

00021005

110

1111=-- 。

2)原式=

1

0231121406130

3412110

23

11212221

2113121--=

--- =-

1

234613

34

121-=-()1213

3235436624121-=--+-+ 。 3)原式=142211

55310

41112121

4

2

02

11

55031041

11

210

24

1210------=-------

=-3

86031250

3019386615139613

8066

150139

6011

212=--=--

=3

4831

630

19-= 。

4)原式=13

6

21621011430

410211

02220

1

2

81

10

624210110124

621102220

1

2

8

1

---=--- =

17

2012030312

502

2

212811362162111434

10221

281--=

--

=-17

010*********

1701001012078317212033125281-=-=-

=-

8

3

171012783= 。

17.计算下列n 阶行列式:

1)x y

x y x y x 000

0000000000000

2)n

n n n n n b a b a b a b a b a b a b a b a b a ---------

21

2221

212

11

1

3)

m

x x x x m x x x x m

x n n n ---

2

1

212

1 4)n

222232222222221

5)

n

n n

n n ------110

2000002200001

11321

解:1)按第一列展开,原式=()n n n y x 1

1+-+。

2)从第2列起各列减去第1列

原式=

n

n n

n b b b b b a b b b b b a b b b b b a ---------1211

1211

21211

1

当3≥n 时,原式=0;

当2=n 时,原式=()()1212b b a a --; 当1=n 时,原式=11b a -。

3)原式=m

x x x m x x x m x n n n

n i i --??? ??-∑=

222

1111

()112

000

01

-==-??

? ??-=--?

?? ??-=∑∑n n i i n

n n i i m m x m m x x m x

4)原式=1

2001

2010

0110

00122001

0101

00012

221---=-n n n

=()()22--n !。 5)各列加到第1列得到

原式=

()()()

11

020000

022000

1

013221--------+n n n n n n n

=()

()12

1

11

+--n n 。 18.证明:

1)???

?

??-=∑=n

i i n n

a

a a a a a a a a 1021210

10

1

001

001

1

11

。 2)

01111

2

21010

000010

00

1

000a x a x a x a x a x

a x a x

a x n n n n n +++=+-------

3)

β

αβαβ

ααββ

αβααββ

ααββ

α--=+++++++111000

0000010001000

n n

4)

αα

α

αααcos cos 21

1

cos 200000cos 210001cos 210001cos =

5)

???

? ?

?+=+++++∑=-n

i i n n

n a

a a a a a a a a 1211

32

1

1

111

1

1

1

1111111111

111

11

11111

。 证明:4)分别将第)1,,2(+=n i i 行乘以-

1

1

-i a 加到第1行,得

左边=

n

n

i i

a a a a a

1

00100

10001211

0∑

=-

=)1

(1

021∑

=-n

i i

n a a a a a = 右边。 4)从最后一行起,分别将每一行都乘以x 后加到其前一行,得

左边=

1

2

122

33121221101111

00

0000001000010000-----------+-++++++-++++-++++n n n n n n n n n n n n a x a x a x a x a x a x a x a x a x a x a x a x

()

()()(

)

()0

1111

011111

11

11

1111

1

1a x a x a x a x a x a x a x a x

a x n n n n n n n n n n n n

n ++++=-++++-=---++++-=-----+---+

=右边。

4)将所给行列式记为n D ,按第1列展开得

()21---+=n n n D D D αββα,

即()211----=-n n n n D D D D αβα, 此式对一切n 都成立.故递推得

()

()()()()[]

n

n n n n n n n n D D D D D D D D ββαααββαβαβαβαβα=+--+=-==-=-=--------2

21224333221 ,

在n D 中βα,的地位是一样的,故同理可得 n n n D D αβ=--1, 所以 ()n n D αβα=-,

从而 β

αβα--=++1

1n n n D =右边。

4)对2阶行列式,有ααα

α2cos 1cos 2cos 21

1

cos 22=-==D , 此时结论

成立。

假设对阶数小于n 的行列式结论皆成立,则对n 阶行列式n D 按最后一行展

开,得21cos 2---=n n n D D D α,因为

()()[]()()α

αααααα

sin 1sin cos 1cos 1cos 2cos 2-+-=--=-=-n n n n D n ,

代入n D 可得

()()()()()()[]α

ααα

αααα

αααααn n n n n n n D n cos 1cos sin 1sin cos 1cos sin 1sin cos 1cos 1cos cos 2=+-=---=-----=

故对一切n 结论成立,即证。

4)左边=

n

n a a a a ++++-11

1

1

1

1111011110111

10111111

21

=

n

n

i i

n

n a a a a a a a a

00000

0111110

1

00010001

000

111111

211

1

21

=-+=----

=???

?

??+∑=n

i i n a

a a a 12111 =右边。 19.用克拉默法则解下列方程:

1)???????=-+-=+--=++-=++-4333235233362324321432143214321x x x x x x x x x x x x x x x x 2)???????-=++-=+-+=---=-++8

232422383226232432143214

3214321x x x x x x x x x x x x x x x x

3)?????????-=-+---=++++-=++-+=+-+--=-+-+33222243422238243214225432154321543215432154321x x x x x x x x x x x x x x x x x x x x x x x x x 4)?????

????=+=++=++=++=+1

50650650

651655454343232121x x x x x x x x x x x x x

解:1)70,70,70,70,704321-=-=-=-=-=d d d d d 。 所以方程组有唯一解:

1,1,1,144332211========

d

d

x d d x d d x d d x 。

2)648,324,648,324,3244321-=-====d d d d d 。 所以方程组有唯一解:

2,1,2,144332211-========

d

d

x d d x d d x d d x 。 3)312,168,96,336,96,2454321==-=-===d d d d d d 。 所以方程组有唯一解:

13,7,4,14,45544332211====-==-====

d

d x d d

x d d x d d x d d x 。 4)212,395,703,1145,1507,66554321=-==-===d d d d d d . 所以方程组有唯一解: 665

212

,13379,3537,133229,665150754321=-==-==

x x x x x 。 20.设n a a a ,,,21 是数域P 中互不相同的数,n b b b ,,,21 是数域 P 中任一组给定的数,用克拉默法则证明:有唯一的数域P 上 的多项式()112210--++++=n n x c x c x c c x f 使 ()i i b a f = ()n i ,,2,1 =。 证明:由()i i b a f =得

??

?????=++++=++++=++++------n n n n n n

n n n n b

a c a c a c c

b a

c a c a c c b a c a c a c c 1122102

1

212222101

111212110.............................................

这是一个关于110,,,-n c c c 的线性方程组,且它的系数行列式

为一个范得蒙行列式.由已知该行列式不为0,故线性方程组 只有唯一解,即所求多项式是唯一的。

21.设水银密度h 与温度t 的关系为332210t a t a t a a h +++=, 由实验测定得以下数据:

求15=t ,40时的水银密度(准确到两位数)。 解:将h t ,的实验数据代入关系式

332210t a t a t a a h +++=,得60.130=a ,且

??

?

??-++-=++-=++08.0270009003005.080004002008

.0100010010321321321a a a a a a a a a

因为系数行列式

40

,1800,500000

101227000

900308000400

201000

100

103216-==-=≠?==d d d d

由克拉默法则可求得

0000033.0,00015.0,0042.0321-==-=a a a , 故所求关系式为

320000033.000015.00042

.060.13t t t h -+-=,

再将40,15==t t 分别代入上式,其水银密度分别为

,56.1315==t h 48.1340==t h 。

高等代数(北大版)第6章习题参考答案

第六章线性空间 . 设 M N , 证 明: M N M , M N N 。 1 证任 取M , 由 M N , 得 N , 所 以M N , 即证 M N M 。又因 M N M , 故 M N M 。再证第二式,任 取 M 或N , 但 M N , 因此无论 哪一种情形,都有N , 此即。但 N M N , 所以 M N N 。 2.证明 M ( N L ) (M N ) (M L) , M (N L) ( M N ) (M L ) 。 证x M (N L), 则 x M 且 x N L. 在后一情形,于是 x M N或 x M L. 所以 x (M N )(M L) ,由此得 M ( N L) (M N ) (M L ) 。反之,若 x (M N ) ( M L) ,则 x M N或 x M L. 在前一情形, x M , x N , 因此 x N L. 故得 x M ( N L ), 在后一情形,因而 x M , x L, x N L ,得 x M ( N L ), 故 ( M N ) ( M L) M ( N L), 于是 M ( N L) (M N ) (M L ) 。 若 x M ( N L),则 x M , x N L 。 在前一情形 X x M N ,且 X M L,因而 x ( M N) ( M L)。 在后一情形, x N ,x 因而 x M N , 且 X M ,即 X ( M N)(M L)所以L, L (M N)(M L) M (N L) 故 M ( N L) =()(M L) M N 即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1)次数等于n( n 1)的实系数多项式的全体,对于多项式的加法和数量乘法;2)设 A 是一个 n× n 实数矩阵, A 的实系数多项式 f (A )的全体,对于矩阵的加法和数量 乘法; 3)全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4)平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5)全体实数的二元数列,对于下面定义的运算: ( a1,b1)( a b ( a1a2,b1b2a1 a2) (kk 1) 2

高等代数北大版第章习题参考答案

第七章 线性变换 1.? 判别下面所定义的变换那些是线性的,那些不是: 1)? 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)? 在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3)? 在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4)? 在P 3中,A ),,2(),,(132213 21x x x x x x x x +-=; 5)? 在P[x ]中,A )1()(+=x f x f ; 6)? 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)? 把复数域上看作复数域上的线性空间, A ξξ=。 8)? 在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx = k A )(α, 故A 是P 3 上的线性变换。 5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i , k(A a)=i, A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y , A (k X )=k BXC k kX B ==)()(A X ,故A 是n n P ?上的线性变换。

高等代数-北京大学第三版--北京大学精品课程

第一学期第一次课 第一章 代数学的经典课题 §1 若干准备知识 1.1.1 代数系统的概念 一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则,则称这样的一个体系为一个代数系统。 1.1.2 数域的定义 定义(数域) 设K 是某些复数所组成的集合。如果K 中至少包含两个不同的复数,且K 对复数的加、减、乘、除四则运算是封闭的,即对K 内任意两个数a 、b (a 可以等于b ),必有 K b a b K ab K b a ∈≠∈∈±/0时,,且当,,则称K 为一个数域。 例1.1 典型的数域举例: 复数域C ;实数域R ;有理数域Q ;Gauss 数域:Q (i) = {b a +i |b a ,∈Q },其中i =1-。 命题 任意数域K 都包括有理数域Q 。 证明 设K 为任意一个数域。由定义可知,存在一个元素0≠∈a K a ,且。于是 K a a K a a ∈= ∈-=10, 。 进而∈?m Z 0>, K m ∈+??++=111。 最后,∈?n m ,Z 0>, K n m ∈,K n m n m ∈-=-0。这就证明了Q ?K 。证毕。 1.1.3 集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ?;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ?;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \。 定义(集合的映射) 设A 、B 为集合。如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为 ). (, :a f a B A f α→ 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像。A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即{}A a a f A f ∈=|)()(。 若,'A a a ∈≠?都有),'()(a f a f ≠ 则称f 为单射。若 ,B b ∈?都存在A a ∈,使得b a f =)(,则称f 为满射。如果f 既是单射又是满射,则称f 为双射,或称一一对应。 1.1.4 求和号与求积号 1.求和号与乘积号的定义. 为了把加法和乘法表达得更简练,我们引进求和号和乘积号。 设给定某个数域K 上n 个数n a a a ,,,21Λ,我们使用如下记号:

高等代数(北大版)第5章习题参考答案.doc

第五章 二次型 1.用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果。 1) 4 x 1 x 2 2 x 1 x 3 2x 2 x 3 ; 2) x 12 2 x 1 x 2 2x 22 4x 2 x 3 4x 32 ; 3) x 12 3x 22 2x 1 x 2 2x 1 x 3 6x 2 x 3 ; 4) 8x 1 x 4 2x 3 x 4 2x 2 x 3 8x 2 x 4 ; 5) x 1 x 2 x 1 x 3 x 1 x 4 x 2 x 3 x 2 x 4 x 3 x 4 ; 6) x 12 2 x 22 x 42 4x 1 x 2 4x 1 x 3 2x 1 x 4 2x 2 x 3 2x 2 x 4 2 x 3 x 4 ; 7) x 2 x 2 x 2 x 2 2x 1 x 2 2x 2 x 3 2x x 4 。 1 2 3 4 3 解1)已知 f x 1 , x 2 , x 3 4x 1 x 2 2x 1x 3 2x 2 x 3 , 先作非退化线性替换 x 1 y 1 y 2 x 2 y 1 y 2 ( 1) x 3 y 3 则 f x 1 , x 2 , x 3 4 y 12 4y 22 4 y 1 y 3 4y 2 4y y y 2 y 2 4y 2 1 1 3 3 3 2 2 y 1 3 y 32 4 y 22 , y 3 再作非退化线性替换 y 1 1 z 1 1 z 3 2 2 y 2 z 2 ( 2) y 3 z 3 则原二次型的标准形为

f x 1 , x 2 , x 3 z 12 4z 22 z 32 , 最后将( 2)代入( 1),可得非退化线性替换为 x 1 1 z 1 z 2 1 z 3 2 2 x 2 1 z 2 1 ( 3) z 1 z 3 2 2 x 3 z 3 于是相应的替换矩阵为 1 0 1 1 0 1 1 1 0 2 2 2 2 T 1 1 0 1 1 1 1 0 0 2 , 1 0 0 1 2 1 且有 1 0 0 T AT 0 4 0 。 0 1 2 )已知 f x 1 , x 2 , x 3 x 12 2x 1 x 2 2x 22 4 x 2 x 3 4x 32 , 由配方法可得 f x , x , x x 2 2x x 2 x 2 x 2 4x x 3 4x 2 1 2 3 1 1 2 2 2 3 x 1 x 2 2 x 2 2x 3 2 , 于是可令 y 1 x 1 x 2 y 2 x 2 2x 3 , y 3 x 3 则原二次型的标准形为 f x , x 2 , x 3 y 2 y 2 , 1 1 2 且非退化线性替换为

(完整版)高等代数(北大版)第9章习题参考答案

第九章 欧氏空间 1.设() ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =, (3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑= 'A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此 ∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 1222 22112 11)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。

(完整版)高等代数(北大版第三版)习题答案II

高等代数(北大第三版)答案 目录 第一章多项式 第二章行列式 第三章线性方程组 第四章矩阵 第五章二次型 第六章线性空间 第七章线性变换 第八章 —矩阵 第九章欧氏空间 第十章双线性函数与辛空间 注: 答案分三部分,该为第二部分,其他请搜索,谢谢!

12.设A 为一个n 级实对称矩阵,且0'A X X , 0>'B X X , 因此 ()0>'+' =+'BX X AX X X B A X , 于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。 14.证明:二次型()n x x x f ,,,21Λ是半正定的充分必要条件是它的正惯性指数与秩相等。 证 必要性。采用反证法。若正惯性指数≠p 秩r ,则r p <。即 ()n x x x f ,,,21Λ2 2122221r p p y y y y y ---+++=+ΛΛ, 若令

高等代数北大版习题参考答案

第九章 欧氏空间 1.设()ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,

(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 122222 11211)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。 4) 由定义,知 ∑=j i j i ij y x a ,),(βα , α== β==

高等代数(北大版第三版)习题答案III

高等代数(北大*第三版)答案 目录 第一章多项式 第二章行列式 第三章线性方程组 第四章矩阵 第五章二次型 第六章线性空间 第七章线性变换 第八章 —矩阵 第九章欧氏空间 第十章双线性函数与辛空间 注: 答案分三部分,该为第三部分,其他请搜索,谢谢!

第九章 欧氏空间 1.设() ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =, (3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑= 'A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此 ∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 1222 22112 11)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。

高等代数北大版习题参考答案

第七章线性变换 1.?判别下面所定义的变换那些是线性的,那些不是: 1)?在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)?在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3)?在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4)?在P 3中,A ),,2(),,(132213 21x x x x x x x x +-=; 5)?在P[x ]中,A )1()(+=x f x f ; 6)?在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)?把复数域上看作复数域上的线性空间,A ξξ=。 8)?在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α,A )0,0,4()(=αk , A ≠ )(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+=A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- =A α+A β, A =)(αk A ),,(321kx kx kx =k A )(α, 故A 是P 3 上的线性变换。 5)是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f +=A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f +A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i,k(A a)=i,A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y ,

高等代数(北大版)第5章习题参考答案

第五章 二次型 1.用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果。 1)323121224x x x x x x ++-; 2)2 3322221214422x x x x x x x ++++; 3)3231212 2216223x x x x x x x x -+--; 4)423243418228x x x x x x x x +++; 5)434232413121x x x x x x x x x x x x +++++; 6)4342324131212 422212222442x x x x x x x x x x x x x x x ++++++++; 7)4332212 4232221222x x x x x x x x x x ++++++。 解 1)已知 ()323121321224,,x x x x x x x x x f ++-=, 先作非退化线性替换 ??? ??=-=+=33 212211y x y y x y y x (1) 则 ()312 221321444,,y y y y x x x f ++-= 2 223233121444y y y y y y ++-+-= ()2 2 233 3142y y y y ++--=, 再作非退化线性替换 ??? ? ??? ==+=3 3223112121z y z y z z y (2) 则原二次型的标准形为

()2 322213214,,z z z x x x f ++-=, 最后将(2)代入(1),可得非退化线性替换为 ??? ? ? ? ??? =+-=++=333212321 121212 121z x z z z x z z z x (3) 于是相应的替换矩阵为 ?? ?????? ? ?-=? ?????? ??????? ??-=1002112 1 210 2110001021021100011011T , 且有 ??? ? ? ??-='100040001AT T 。 2)已知()=321,,x x x f 2 3322221214422x x x x x x x ++++, 由配方法可得 ()()() 2 33222222121321442,,x x x x x x x x x x x f +++++= ()()2 322 212x x x x +++=, 于是可令 ??? ??=+=+=33 3222112x y x x y x x y , 则原二次型的标准形为 ()2 221321,,y y x x x f +=, 且非退化线性替换为

高等代数北大版第章习题参考答案

高等代数北大版第章习 题参考答案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第六章 线 性空 间 1.设,N M ?证明:,M N M M N N ==。 证任取,M ∈α由,N M ?得,N ∈α所以,N M ∈α即证M N M ∈。又因 ,M N M ? 故M N M =。再证第二式,任取M ∈α或,N ∈α但,N M ?因此无论 哪一种情形,都有,N ∈α此即。但,N M N ?所以M N N =。 2.证明)()()(L M N M L N M =,)()()(L M N M L N M =。 证),(L N M x ∈?则.L N x M x ∈∈且在后一情形,于是.L M x N M x ∈∈或所以)()(L M N M x ∈,由此得)()()(L M N M L N M =。反之,若 )()(L M N M x ∈,则.L M x N M x ∈∈或在前一情形,,,N x M x ∈∈因此 .L N x ∈故得),(L N M x ∈在后一情形,因而,,L x M x ∈∈x N L ∈,得 ),(L N M x ∈故),()()(L N M L M N M ? 于是)()()(L M N M L N M =。 若x M N L M N L ∈∈∈(),则x ,x 。 在前一情形X x M N ∈,X M L ∈且,x M N ∈因而()(M L )。 ,,N L x M N X M L M N M M N M N ∈∈∈∈∈?在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L ) 即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1)次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法; 2)设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量乘法;

高等代数(北大版)第7章习题参考答案

第七章线性变换 1.判别下面所定义的变换那些是线性的,那些不是:1)在线性空间V中,A,其中V是一固定的向量; 2)在线性空间V中,A其中V是一固定的向量; 3)在P 322 中,A(,,)(,,) x1xxxxxx; 231233 4)在P 3中,A(,,)(2,,) x1xxxxxxx 2312231 ; 5)在P[x]中,A f(x)f(x1); 6)在P[x]中,A()(), fxfx其中 0 x P是一固定的数;0 7)把复数域上看作复数域上的线性空间,A 。 nn 中,A X=BXC其中B,CP 8)在P 解1)当0时,是;当0时,不是。nn 是两个固定的矩阵. 2)当0时,是;当0时,不是。 3)不是.例如当(1,0,0),k2时,k A()(2,0,0),A(k)(4,0,0), A(k)k A()。 4)是.因取(x1,x2,x3),(y1,y2,y3),有 A()=A(x1y1,x2y2,x3y3) =(2x12y1x2y2,x2y2x3y3,x1y1) =(2x1x2,x2x3,x1)(2y1y2,y2y3,y1) =A+A, A(k)A(kx1,kx2,kx3) (2kx 1 k x 2 ,k x 2 k x, 3 k x) 1 (2kx 1 k x 2 ,k x 2 k x, 3 k x) 1 =k A(), 3 故A是P 上的线性变换。 5)是.因任取f(x)P[x],g(x)P[x],并令 u(x)f(x)g(x)则 A(f(x)g(x))=A u(x)=u(x1)=f(x1)g(x1)=A f(x)+A(g(x)), 再令v(x)kf(x)则A(kf(x))A(v(x))v(x1)kf(x1)k A(f(x)),故A为P[x]上的线性变换。 6)是.因任取f(x)P[x],g(x)P[x]则. A(f(x)g(x))=f(x0)g(x0)A(f(x))A(g(x)), A(kf(x))kf(x0)k A(f(x))。 7)不是,例如取a=1,k=I,则A(ka)=-i,k(A a)=i,A(ka)k A(a)。 8)是,因任取二矩阵X,Y nn

高等代数北大编 第1章习题参考答案

第一章 多项式 一 、习题及参考解答 1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(2 2 3 +-=---=x x x g x x x x f ; 2) 2)(,52)(24+-=+-=x x x g x x x f 。 解 1)由带余除法,可得9 2926)(,9731)(--=-= x x r x x q ; 2)同理可得75)(,1)(2 +-=-+=x x r x x x q 。 2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+3 2 |1, 2)q px x mx x ++++2 4 2 |1。 解 1)由假设,所得余式为0,即0)()1(2 =-+++m q x m p , 所以当???=-=++0 012m q m p 时有q px x mx x ++-+3 2|1。 2)类似可得???=--+=--0 10 )2(2 2m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。 综上所诉,当?? ?+==10q p m 或???=+=2 12 m p q 时,皆有q px x mx x ++++2 42|1。 3.求()g x 除()f x 的商()q x 与余式: 1)5 3 ()258,()3f x x x x g x x =--=+; 2)3 2(),()12f x x x x g x x i =--=-+。 解 1) 432()261339109()327 q x x x x x r x =-+-+=-; 2) 2()2(52)()98q x x ix i r x i =--+=-+。

高等代数北大版第6章习题参考答案.docx

第六章线性空间 .设 MN ,证明: M I N M , M U N N 。 1 证任取M , 由 M N , 得N , 所以M N , 即证M N I M 。又因M N M , 故M I N M 。再证第二式,任取M 或N , 但 M N ,因此无论哪一种情形,都有N , 此即。但 N M N , 所以M U N N 。 2.证明M ( N L )(M N ) (M L) , M (N L) ( M N ) ( M L) 。 证x M( N L), 则 x M 且 x N L. 在后一情形,于是 x M N或 x M L.所以 x(M N )(M L) ,由此得 M( N L) (M N )(M L) 。反之,若 x(M N )( M L) ,则 x M N或 x M L. 在前一情形, x M , x N , 因此 x N L. 故得x M ( N L), 在后一情形,因而 x M , x L, x N U L ,得x M ( N L), 故 ( M N ) ( M L) M (N L), 于是 M ( N L) (M N ) (M L ) 。 若 x M U( N I L),则 x M , x N I L 。 在前一情形 X x M U N ,且 X M U L,因而 x ( M U N)。 I(MU L) 在后一情形, x N ,x因而 x M U N, 且,即 X ( M N)(M L)所以L,X M U L U IU (M U N)I(MU L) M U(NU L) 故M U(N I L) =( M U N)I( MU L) 即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1)次数等于n( n1)的实系数多项式的全体,对于多项式的加法和数量乘法; 2)设 A 是一个 n × n 实数矩阵, A 的实系数多项式 f (A)的全体,对于矩阵的加法和数量乘法; 3)全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4)平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5)全体实数的二元数列,对于下面定义的运算: ( a1,b1)( a b ( a1a2,b1b2a1 a2) (kk1)2 k。( a , b1) =( ka1, kb1 +a1 12

高等代数(北大版)第10章习题参考答案

第十章双线性函数与辛空间 1、设V是数域P上的一个三维线性空间,ε1,ε2,ε3是它的一组基,f是V上的 一个线性函数,已知 f (ε1+ε3)=1,f (ε2-2ε3)=-1,f (ε1+ε2)=-3 求f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 ). 解因为f是V上线性函数,所以有 f (ε1)+ f (ε3)=1 f (ε2)-2 f (ε3)=-1 f (ε1)+f (ε2)=-3 解此方程组可得 f (ε1)=4,f (ε2)=-7,f (ε3)=-3 于是 f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 ).=X 1 f (ε1)+X2 f (ε2)+X3 f (ε3) =4 X 1 -7 X 2 -3 X 3 2、设V及ε1,ε2,ε3同上题,试找出一个线性函数f ,使 f (ε1+ε3)=f (ε2-2ε3)=0, f (ε1+ε2)=1 解设f为所求V上的线性函数,则由题设有 f (ε1)+ f (ε3)=0 f (ε2)-2 f (ε3)=0 f (ε1)+f (ε2)=1 解此方程组可得 f (ε1)=-1,f (ε2)=2,f (ε3)=1 于是?a∈V,当a在V的给定基ε1,ε2,ε3下的坐标表示为 a= X 1ε 1 +X 2 ε 2 +X 3 ε 3 时,就有 f (a)=f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 )

= X 1 f (ε1)+X2 f (ε2)+X3 f (ε3) =-X 1+2 X 2 + X 3 3、设ε1,ε2,ε3是线性空间V的一组基,f1,f2,f3是它的对偶基,令α1=ε1-ε3,α2=ε1+ε2-ε3,α3=ε2+ε3 试证:α1,α2,α3是V的一组基,并求它的对偶基。 证:设 (α1,α2,α3)=(ε1,ε2,ε3)A 由已知,得 A= 110 011 111????????-?? 因为A≠0,所以α1,α2,α3是V的一组基。设g1,g2,g3是α1,α2,α3得对偶基,则 (g1,g2,g3)=(f1,f2,f3)(Aˊ)1- =(f1,f2,f3) 011 112 111 -???? - ????--?? 因此 g1=f2-f3 g2=f1-f2+f3 g3=-f1+2f2-f3 4.设V是一个线性空间,f1,f2,…fs是V*中非零向量,试证:?α∈V,使 fi(α)≠0 (i=1,2…,s) 证:对s采用数学归纳法。 当s=1时,f1≠0,所以?α∈V,使fi(α)≠0,即当s=1时命题成立。 假设当s=k时命题成立,即?α∈V,使fi(α)=αi≠0 (i=1,2…,k) 下面证明s=k+1时命题成立。 若f 1 k+(α)≠0,则命题成立,若f 1 k+ (α)=0,则由f 1 k+ ≠0知,一定?β∈V 使f 1 k+ (β)=b,设fi(β)=di(i=1,2…,k),于是总可取数c≠0,使 ai+cdi≠0(i=1,2…,k) 令c γαβ =+,则γ∈V,且

高等代数(北大版)第10章习题参考答案

第十章 双线性函数与辛空间 个线性函数,已知 解此方程组可得 f ( 1) =4,f ( 2)=-7,f ( 3)=- 3 =4 X 1-7 X 2 - 3 X 3 设 f 为所求 V 上的线性函数,则由题设有 解此方程组可得 f (a)=f (X 1 1+X 2 2 +X 3 3 ) 1、 设 V 是数域 P 上的一个三维线性空间, 12 3 是它的一组基, f 是 V 上的 f ( 1+ 3 )=1,f ( 2 -2 3 )=-1,f ( 1+ 2 )=-3 求 f (X 1 1+X 2 2 +X 3 3 ). 解 因为 f 是 V 上线性函数, 所以有 1) + f ( 3)=1 2 )-2 f ( 3)=-1 1)+f ( 2 )=-3 f (X 1 1+X 2 2+X 3 3).=X 1 f ( 1)+X 2 f ( 2)+X 3 f ( 3) 2、 设V 及 1 , 2 , 3 同上题,试找出一个线性函数 f ,使 f ( 1+ 3) = f ( 2 -2 3)=0, f ( 1+ 2 )=1 1) + f ( 3)=0 2 )-2 f ( 3)=0 1)+f ( 2 )=1 1) =-1,f ( 2)=2,f ( a V,当 a 在 V 的给定基 3 下的坐标表示为 a= X 1 1+X 2 2 +X 3 3 时, 就有

= X 1 f ( 1)+X2 f ( 2)+X3 f ( 3) =-X 1 +2 X 2+ X3 3、设 1,2,3是线性空间V 的一组基,f1,f2,f3 是它的对偶基,令 1= 1 -3, 2 =1+2-3,3= 2 +3 试证: 1 ,2, 3 是V 的一组基,并求它的对偶基。 证:设 ( 1,2,3)=( 1 ,2,3)A 由已 知, 得 1 1 0 A=0 1 1 1 1 1 因为A ≠0,所以1,2,3是V 的一组基。 设g1,g2,g3 是 1 , 2 , 3 得对偶基,则 g1,g2,g3)=( f1,f2,f3 )(Aˊ) 0 1 1 =( f1,f2,f3 ) 1 1 2 1 1 1 因此 g1=f2-f3 g2=f1-f2+f3 g3=-f1+2f2-f3 4.设V 是一个线性空间,f1,f2 , ?fs 是V*中非零向量,试证:∈V,使 fi( )≠0 (i=1,2 ?,s) 证:对s 采用数学归纳法。 当s=1 时,f1≠0,所以∈V,使fi( ) ≠0,即当s=1 时命题成立。 假设当s=k 时命题成立,即∈V,使fi( )= i ≠0 (i=1,2 ?,k) 下面证明s=k+1 时命题成立。 若f k1( )≠ 0,则命题成立,若 f k1( ) =0,则由 f k 1≠0知,一定∈V 使f k1( )=b,设fi( )=di(i=1,2 ?,k), 于是总可取数c≠0,使 c ,则∈V,且 ai+cdi ≠0(i=1,2 ?,k)

高等代数北大版第6章习题答案

第六章 线性空间 1.设,N M ?证明:,M N M M N N ==I U 。 证 任取,M ∈α由,N M ?得,N ∈α所以,N M I ∈α即证M N M ∈I 。又因 ,M N M ?I 故M N M =I 。再证第二式,任取M ∈α或,N ∈α但,N M ?因此无论 哪 一种情形,都有,N ∈α此即。但,N M N Y ?所以M N N =U 。 2.证明)()()(L M N M L N M I Y I Y I =,)()()(L M N M L N M Y I Y I Y =。 证 ),(L N M x Y I ∈?则.L N x M x Y ∈∈且在后一情形,于是.L M x N M x I I ∈∈或所以)()(L M N M x I Y I ∈,由此得)()()(L M N M L N M I Y I Y I =。反之,若 )()(L M N M x I Y I ∈,则.L M x N M x I I ∈∈或 在前一情形,,,N x M x ∈∈因此 .L N x Y ∈故得),(L N M x Y I ∈在后一情形,因而,,L x M x ∈∈x N L ∈U ,得 ),(L N M x Y I ∈故),()()(L N M L M N M Y I I Y I ? 于是)()()(L M N M L N M I Y I Y I =。 若x M N L M N L ∈∈∈U I I (),则x ,x 。 在前一情形X x M N ∈U , X M L ∈U 且,x M N ∈U 因而()I U (M L ) 。 ,,N L x M N X M L M N M M N M N ∈∈∈∈∈?U U U I U U I U U U U I U I U 在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L )即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法; 2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量 乘法; 3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5) 全体实数的二元数列,对于下面定义的运算: 2121211211 12 b a b a a b b a a k k b a ⊕+=+++-1111(a ,)((,) ()k 。(a ,)=(ka ,kb +

高等代数-北京大学第三版--北京大学精品课程

一个集合,如果在它里面存在一种或若干种代数运算, 这些运算满足一定的运算法则, 则称这样的一个体系为 定义(数域) 设K 是某些复数所组成的集合。如果 K 中至少包含两个不同的复数,且 K 对复数的加、减、乘、 四则运算 是封闭的,即对K 内任 两个数a 、 b ( a 可 以等于b ), 必有 b K , ab K ,且当b 0时,a/b K ,则称 K 为一个数域。 1.1典型的数域举例: 复数域C ;实数域R ;有理数域 Q ; Gauss 数域:Q (i) = { a b i | a, b € Q},其中 i = ?. 1 命题 任意数域K 都包括有理数域Q 。 证明 设K 为任意一个数域。由定义可知,存在一个元素 K ,且 a 0。于是 进而 最后, m, n Z 巴K 。这就证明了 n K 。证毕。 1.1.3 集合的运算, 集合的映射(像与原像、单射、满射、双射)的概念 和B 中的元素合并在一起组成的集合成为 A 与 B 的并集, 记做A B ;从集合A 中去掉属于B 的那些元素之后剩 定义(集合的映射) 设A 、B 为集合。如果存在法则 f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定 若a a'代都有f (a) 第一章代数学的经典课题 § 1若干准备知识 1.1.1代数系统的概念 个代数系统。 1.1.2数域的定义 定义(集合的交、并、差)设S 是集合,A 与B 的公共元素所组成的集合成为 A 与 B 的交集,记作A B ;把A 下的元素组成的集合成为 A 与 B 的差集,记做A B 。 的元素(记做f(a)),则称f 是A 到B 的一个映射,记为 B, f (a). 如果f(a) b B ,则b 称为a 在f 下的像,a 称为b 在f 下的原像。A 的所有元素在f 下的像构成的 B 的 子集称为A 在f 下的像,记做 f (A),即 f (A) f(a)| a A 。 f(a'),则称f 为单射。若 b B,都存在a A ,使得f(a) b ,则称f 为满射。 1.1.4 求和号与求积号 1 ?求和号与乘积号的定义.为了把加法和乘法表达得更简练,我们引进求和号和乘积号。 设给定某个数域K 上n 个数a 1,a 2, ,a n ,我们使用如下记号: 第一学期第一次课 如果f 既是单射又是满射,则称 f 为双射,或称一一对应。

相关文档
相关文档 最新文档