文档库 最新最全的文档下载
当前位置:文档库 › 泛函分析7

泛函分析7

实变函数与泛函分析报告答案

试卷一 (参考答案及评分标准) 一、1. C 2 D 3. B 4. A 5. D 二、1.? 2、[]0,1; ? ; []0,1 3、***()()m T m T E m T CE =?+? 4、充要 5、11|()()|n i i i f x f x -=??-???? ∑成一有界数集。 三、1.错误……………………………………………………2分 例如:设E 是[]0,1上有理点全体,则E 和CE 都在[]0,1中稠密 ………………………..5分 2.错误…………………………………………………………2分 例如:设E 是Cantor 集,则0mE =,但E =c , 故其为不可数集 ……………………….5分 3.错误…………………………………………………………2分 例如:设E 是[],a b 上的不可测集,[],;(),,;x x E f x x x a b E ∈??=?-∈-?? 则|()|f x 是[],a b 上的可测函数,但()f x 不是[],a b 上的可测函数………………………………………………………………..5分 4.错误…………………………………………………………2分 0mE =时,对E 上任意的实函数()f x 都有()0E f x dx =?…5分 四、1.()f x 在[]0,1上不是R -可积的,因为()f x 仅在1x =处连续,即不连续点为正测度集………………………………………..3分 因为()f x 是有界可测函数,()f x 在[]0,1上是L -可积的…6分 因为()f x 与2x ..a e 相等,进一步,[]120,101()3f x dx x dx ==? ?…8分 2.解:设ln()()cos x n x n f x e x n -+=,则易知当n →∞时,()0n f x → …………………………..2分 又因' 2ln 1ln 0t t t t -??=< ??? ,(3t ≥),所以当3,0n x ≥≥时,

泛函分析讲义

第三章赋范空间 3.1. 范数的概念 “线性空间”强调元素之间的运算关系,“度量空间”则强调元素之间的距离关系,两者的共性在于:只研究元素之间的关系,不研究元素本身的属性。 为了求解算子方程,需要深入地了解函数空间的结构与性质,为此,我们不仅希望了解函数之间的运算关系和距离关系,还希望了解函数本身的属性。那么,究竟需要了解函数的什么属性呢? 3.1.1. 向量的长度 为了回答上述问题,我们需要从最简单的函数空间——欧氏空间——中寻找灵感。回想一下,三维欧氏空间中的元素被称为“向量”,向量最重要的两大属性是:长度和方向,向量的许多重要性质都是由其长度和方向所决定的。这一章的任务就是将欧氏空间中向量的长度推广为(以函数空间为原型的)一般线性空间中元素的广义长度,下一章的任务就是将欧氏空间中向量的方向推广为(以函数空间为原型的)一般线性空间中元素的广义方向。可以想象:其元素具有广义长度和广义方向的线性空间必将像欧氏空间那样,呈现出丰富多彩的性质,并且这些性质必将有助于求解算子方程。

图3.1.1. 三维欧氏空间中向量的大小和方向 矩阵论知识告诉我们:可以为欧氏空间中的向量赋予各种各样的长度,并且可以根据问题需要来选择最合适的向量长度。实际上,可以在数域F 上的n 维欧式空间n F 上定义向量12(,, ,)n x x x x =的如下三种长度(称为“范数”): ● 2-范数(也称为欧氏范数) :2x = ● 1-范数:11 n k k x x ==∑; ● ∞-范数:1max k k n x x ∞ ≤≤=。 图3.1.2. 三种向量范数对应的“单位圆” 图3.1.3. “单位圆”集合的艺术形式 下一节将谈到:就分析性质而言,这三种向量范数没有任何区别。 我们注意到:通常将 2 或 3 中两个向量之间的距离定义为两者的差向量的 长度。由此可知:如果有了长度的概念,就可以诱导出距离;反之则不然。因此,

(完整版)泛函分析复习与总结,推荐文档

《泛函分析》复习与总结 (2014年6月26日星期四 10:20--- 11:50) 第一部分 空间及其性质 泛函分析的主要内容分为空间和算子两大部分. 空间包括泛函 分析所学过的各种抽象空间, 函数空间, 向量空间等, 也包括空间的 性质, 例如完备性, 紧性, 线性性质, 空间中集合的各种性质等等。 以下几点是对第一部分内容的归纳和总结。 一.空间 (1)距离空间 (集合+距离)!验证距离的三个条件:称为是距离空间,如果对于 (,)X ρ,,x y z X ∈(i) 【非负性】,并且当且仅当 (,)0x y ρ≥(,)0x y ρ=【正定性】; x y =(ii) 【对称性】; (,)(,)x y y x ρρ=(iii) 【三角不等式】。 (,)(,)(,)x y x y y z ρρρ≤+距离空间的典型代表:空间、空间、所有的赋范线性空间、 s S 所有的内积空间。 (2)赋范线性空间 (线性空间 + 范数) !验证范数的三个条件:称为是赋范线性空间,如果 (,||||)X ?是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,x y X ∈(i) 【非负性】,并且当且仅当【正定性】 ||||0x ≥||||0x =0x =; (ii) 【齐次性】; ||||||||||ax a x =?

(iii) 【三角不等式】。 ||||||||||||x y x y +≤+赋范线性空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间()、空间(1,2,3,n =L p l 1p ≤≤∞([,])p L a b )、空间、空间、Banach 空间、所有的1p ≤≤∞[,]C a b [,]k C a b 内积空间(范数是由内积导出的范数)。 (3)内积空间 (线性空间 + 内积) !验证内积的四个条件:称为是内积空间,如果 (,(,))X ??是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,,x y z X ∈(i) 【非负性】,并且当且仅当【正 (,)0x x ≥(,)0x x =0x =定性】; (ii) 【第一变元可加性】; (,)(,)(,)x y z x z x z +=+(iii) 【第一变元齐次性】; (,)(,)ax z a x z =(iv) 【共轭对称性】。 (,)(,)x z z x =内积空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间、空间。1,2,3,n =L 2l 2([,])L a b 注. 1) 从概念的外延来理解, 有如下的关系: {内积空间}{赋范线性空间}{距离空间}. ??2) 内积可导出范数, 范数可导出距离, 反之未必. 例如在赋范 线性空间中, 如果范数满足平行四边形公式, 则由范数可以定义内 积. 3) 在距离空间中,,当 0k x x ρ??→?0(,)0k x x ρ→; k →∞赋范线性空间中,,当;|||| 0k x x ???→?0||||0k x x -→k →∞

博士生入学考试泛函分析考试大纲

博士生入学考试《泛函分析》考试大纲 第一章度量空间 §1 压缩映象原理 §2 完备化 §3 列紧集 §4 线性赋范空间 4.1 线性空间 4.2 线性空间上的距离 4.3 范数与Banach空间 4.4 线性赋范空间上的模等价 4.5 应用(最佳逼近问题) 4.6 有穷维* B空间的刻划 §5 凸集与不动点 5.1 定义与基本性质 5.2 Brouwer与Schauder不动点原理* 5.3 应用* §6 内积空间 6.1 定义与基本性质 6.2 正交与正交基 6.3 正交化与Hilbert空间的同构 6.4 再论最佳逼近问题 第二章线性算子与线性泛函 §1 线性算子的概念 1.1 线性算子和线性泛函的定义 1.2线性算子的连续性和有界性 §2 Riesz定理及其应用 Laplace方程f ? -狄氏边值问题的弱解 u= 变分不等到式 §3 纲与开映象定理 3.1 纲与纲推理 3.2 开映象定理 3.3 闭图象定理 3.4 共鸣定理 3.5应用 Lax-Milgram定理 Lax等价定理 §4 Hahn-Banach定理

4.1线性泛函的延拓定理 4.2几何形式----凸集分离定理 §5 共轭空间·弱收敛·自反空间 5.1 共轭空间的表示及应用(Runge) 5.2 共轭算子 5.3弱收敛及*弱收敛 5.4弱列紧性与*弱列紧性 §6 线性算子的谱 6.1 定义与例 6.2 Γелbφaнд定理 第三章紧算子与Fredholm算子 §1 紧算子的定义和基本性质 §2 Riesz-Fredholm 理论 §3 Riesz-Schauder理论 §4 Hilbert-Schmidt定理 §5 对椭圆方程的应用 §6 Fredholm算子 参考文献 1.张恭庆林源渠,“泛函分析讲义”,北京大学出版社,1987。 2.黄振友杨建新华踏红刘景麟《泛函分析》,科学出版社, 2003。

泛函分析答案

泛函分析答案: 1、 所有元素均为0的n ×n 矩阵 2、 设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。 3、 设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。 4、 设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的 λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。 5、 设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件: (1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x) (3) 三角不等式:d(x,y)≤d(x,z)+d(y,z) for every x,y,z ∈E n 维欧几里德空间常用距离定义: 】 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }T d 2(x,y)=( 21 ||n i i i x y =-∑)1/2 d 1(x,y)=1 ||n i i i x y =-∑ d p (x,y) = ( 1 ||n p i i i x y =-∑ )1/p d ∞(x,y)=1max ||i i i n x y ≤≤- 6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)0(n ∞),这时记作 0lim n n x x -->∞ =,或 简单地记作x n x 0 7、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iff x=0 (2)||λx||=λ||x||,λ为常数 (3)||x+y||≤||x||+||y||,for every x,y ∈E 8、设E 为线性赋范空间,{x n }∞ n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。若E 的基本列的收敛元仍属于E ,则称E 为完备的线性赋范空间,即为Banach 空间。线性赋范空间中的基本列不一定收敛。 9、有限维的线性赋范空间必然完备,所以它必定是Banach 空间。 $ 10、如果内积空间能在由内积诱导的赋范空间完备,则此内积空间称为Hilbert 空间。 11、L 2(a,b )为定义在(a,b)上平方可积函数空间,即设f(t)∈L 2(a,b ), 2|()|b a f t dt ? <∞。 当 L 2(a,b )中内积的定义为(f,g )= _____ ()()b a f t g t dt ? (其中f(t),g(t)∈L 2(a,b ))时其为Hilbert 空间。 ★ 12、算子表示一种作用,一种映射。设X 和Y 是给定的两个线性赋范空间,集合D ?X , 若对D 中的每一个x ,均有Y 中的一个确定的变量y 与其对应,则说这种对应关系确定

泛函分析学习心得

泛函分析学习心得 学习《实变函数论与泛函分析》这门课程已有将近一年的时间,在接触这门课程之前就已经听闻这门课程是所有数学专业课中最难学的一门,所以一开始是带着一种“害怕学不好”的心理来学.刚开始接触的时候是觉得很难学,知识点很难懂,刚开始上课时也听不懂,只顾着做笔记了.后来慢慢学下来,在课前预习、课后复习研究、上课认真听课后发现没有想象中的那么难,上课也能听懂了.因此得出了一个结论:只要用心努力去学,所有课程都不会很难,关键是自己学习的态度和努力的程度. 在学习《泛函分析》的前一个学期先学习了《实变函数论》,《实变函数论》这部分主要学习了集合及其运算、集合的势、n 维空间中的点集、外测度与可测集、Lebesgue 可测集的结构、可测函数、P L 空间等内容,这为这学期学习《泛函分析》打下了扎实的基础.我们在这个学期的期中之前学习的《泛函分析》的主要内容包括线性距离空间、距离空间的完备性、内积空间、距离空间中的点集、不动点定理、有界线性算子及其范数等.下面我谈谈对第一章的距离空间中部分内容的理解与学习: 第一章第一节学习了线性距离空间,课本首先给出了线性空间的定义及其相关内容,这与高等代数中线性空间是基本一样的,所以学起来比较容易.接着是距离空间的学习,如果将n 维欧氏空间n R 中的距离“抽象”出来,仅采用性质,就可得到一般空间中的距离概念: 1.距离空间(或度量空间)的定义: 设X 为一集合,ρ是X X ?到n R 的映射,使得使得X z y x ∈?,,,均满足以下三个条件: (1))(0,≥y x ρ,且)(0,=y x ρ当且仅当y x =(非负性) (2))()(x y y x ,,ρρ=(对称性) (3))()()(z y y x z x ,,,ρρρ+≤(三角不等式), 则称X 为距离空间(或度量空间),记作)(ρ,X ,)(y x ,ρ为y x ,两点间的距离. 学习了距离空间定义后,我们可以验证:欧式空间n R ,离散度量空间,连

泛函分析答案

泛函分析答案: 1、所有元素均为0的n ×n 矩阵 2、设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。 3、设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。 4、设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。 5、设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件: (1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x) (3) 三角不等式:d(x,y)≤d(x,z)+d(y,z)foreveryx,y,z ∈E n 维欧几里德空间常用距离定义: 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }T d 2(x,y)=(21 ||n i i i x y =-∑)1/2 d 1(x,y)=1 ||n i i i x y =-∑ d p (x,y)=(1 ||n p i i i x y =-∑)1/p d ∞(x,y)=1max ||i i i n x y ≤≤- 6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)?0(n ?∞),这时记作 0lim n n x x -->∞ =,或简单地记作x n ?x 0 7、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iffx=0 (2)||λx||=λ||x||,λ为常数 (3)||x+y||≤||x||+||y||,foreveryx,y ∈E 8、设E 为线性赋范空间,{x n }∞n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。若E 的基本列的收敛元仍属于E ,则称E 为完备的线性赋范空间,即为Banach 空间。线性赋范空间中的基本列不一定收敛。 9、有限维的线性赋范空间必然完备,所以它必定是Banach 空间。 10、如果内积空间能在由内积诱导的赋范空间完备,则此内积空间称为Hilbert 空间。 11、L 2 (a,b )为定义在(a,b)上平方可积函数空间,即设f(t)∈L 2 (a,b ),2|()|b a f t dt ?<∞。

泛函分析课程总结

泛函分析课程总结 数学与计算科学学院 09数本5班 符翠艳 2009224524 序号:26 一.知识总结 第七章 度量空间和赋范线性空间 1. 度量空间的定义:设X 是一个集合,若对于X 中任意两个元素,x y ,都有唯 一确定的实数(),d x y 与之相对应,而且满足 ()()()()()()()1,0,,0=;2,,;3,,,,d x y d x y x y d x y d y x d x y d x z d z y z ≥=?? ??=????≤+?? 、的充要条件是、、对任意都成立。 则称d 为X 上的一个度量函数,(d X ,)为度量空间,),(y x d 为y x ,两点间的度量。 2. 度量空间的例子 ①离散的度量空间(),X d 设X 是任意的非空集合,对X 中任意两点,x y X ∈,令 ()1,,0,x y d x y x y ≠?? =??=?? 当当 ②序列空间S 令S 表示实数列(或复数列)的全体,对S 中任意两点 ()()12n 12,,...,,...,,...,,...n x y ξξξηηη==及,令 ()11,21i i i i i i d x y ξηξη∞ =-=+-∑ ③有界函数空间B (A ) 设A 是一给定的集合,令B (A )表示A 上有界实值(或复值)函数全体,对B (A )中任意两点,x y ,定义 (),()()sup t A d x y x t y t ∈=- ④可测函数空间m(X) 设m(X)为X 上实值(或复值)的L 可测函数全体,m 为L 测度,若()m X ≤∞,对任意两个可测函数()()f t g t 及,令 ()()(),1()() X f t g t d f g dt f t g t -=+-?

泛函分析习题解答

第七章 习题解答 1.设(X ,d )为一度量空间,令 }),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U 问),(0εx U 的闭包是否等于),(0εx S ? 解 不一定。例如离散空间(X ,d )。)1,(0x U ={0x },而)1,(0x S =X 。 因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。 2. 设 ],[b a C ∞是区间],[b a 上无限次可微函数的全体,定义 证明],[b a C ∞按),(g f d 成度量空间。 证明 (1)若),(g f d =0,则) ()(1)()(max ) () ()()(t g t f t g t f r r r r b t a -+-≤≤=0,即f=g (2))()(1)()(max 2 1 ),()()()()(0t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞ =∑ =d (f ,g )+d (g ,h ) 因此],[b a C ∞按),(g f d 成度量空间。 3. 设B 是度量空间X 中的闭集,证明必有一列开集ΛΛn o o o 21,包含B ,而且B o n n =?∞ =1 。 证明 令n n n o n n B x d Bo o .2,1},1 ),({K =<==是开集:设n o x ∈0,则存在B x ∈1,使 n x x d 1),(10<。设,0),(1 10>-=x x d n δ则易验证n o x U ?),(0δ,这就证明了n o 是 开集 显然B o n n ??∞=1 。若n n o x ∞ =?∈1 则对每一个n ,有B x n ∈使n x x d 1 ),(1< ,因此

泛函分析报告结课论文设计

泛函分析结课论文Functional Analysis Course Paper 学号

一、泛函分析空间理论 泛函中四大空间的认识 第一部分我们将讨论线性空间,在线性空间的基础上引入长度和距离的概念,进而建立了赋线性空间和度量空间。 在线性空间中赋以“数”,然后在数的基础上导出距离,即赋线性空间,完备的赋线性空间称为巴拿赫空间。数可以看出长度,赋线性空间相当于定义了长度的空间,所有的赋线性空间都是距离空间。 在距离空间过距离的概念引入了点列的极限,但是只有距离结构、没有代数结构的空间,在应用过程中受到限制。赋线性空间和积空间就是距离结构与代数结构相结合的产物,较距离空间有很大的优越性。 赋线性空间是其中每个向量赋予了数的线性空间,而且由数诱导出的拓扑结构与代数结构具有自然的联系。完备的赋线性空间是Banach空间。赋线性空间的性质类似于熟悉的n R,但相比于距离空间,赋线性空间在结构上更接近于n R。 赋线性空间就是在线性空间中,给向量赋予数,即规定了向量的长度,而没有给出向量的夹角。 在积空间中,向量不仅有长度,两个向量之间还有夹角。特别是定义了正交的概念,有无正交性概念是赋线性空间与积空间的本质区别。任何积空间都赋线性空间,但

赋线性空间未必是积空间。 距离空间和赋线性空间在不同程度上都具有类似于n R 的空间结构。事实上,n R 上还具有向量的积,利用积可以定义向量的模和向量的正交。但是在一般的赋线性空间中没有定义积,因此不能定义向量的正交。积空间实际上是定义了积的线性空间。在积空间上不仅可以利用积导出一个数,还可以利用积定义向量的正交,从而讨论诸如正交投影、正交系等与正交相关的性质。Hilbert 空间是完备的积空间。与一般的Banach 空间相比较,Hilbert 空间上的理论更加丰富、更加细致。 1 线性空间 (1)定义:设X 是非空集合,K 是数域,X 称为数域上K 上的线性空间,若,x y X ?∈,都有唯一的一个元素z X ∈与之对应,称为x y 与的和,记作 z x y =+ ,x X K α?∈∈,都会有唯一的一个元素u X ∈与之对应,称为x α与的积,记作 u x α= 且,,x y z X ?∈,,K αβ∈,上述的加法与数乘运算,满足下列8条运算规律: 10 x y y x +=+ 20 ()()x y z x y z ++=++ 30 在X 中存在零元素θ,使得x X ?∈,有x x θ+= 40 x X ?∈,存在负元素x X ?-∈,使得()x x θ+-= 50 1x x ?= 60 ()()x x αβαβ= 70 ()+x x x αβαβ+= 80 ()x y x y ααα+=+ 当K R =时,称X 为实线性空间;当K C =时,称X 为复线性空间 (2)维数: 10 设X 为线性空间, 12,,,n x x x X ∈若不存在全为0的数12,,,n K ααα∈,使 得 11220n n x x x ααα++ +=

数学专业参考材料书汇总整编推荐

学数学要多看书,但是初学者很难知道那些书好,我从网上收集并结合自己的经验进行了整理: 从数学分析开始讲起: 数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。当大四考研复习再看时会感觉轻松许多。数学系的数学分析讲三个学期共计15学分270学时。将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分。 记住以下几点: 1,对于数学分析的学习,勤奋永远比天分重要。 2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。 3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。 4,看得懂的仔细看,看不懂的硬着头皮看。 5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。 6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。 7,经常回头看看自己走过的路 以上几点请在学其他课程时参考。 数学分析书: 初学从中选一本教材,一本参考书就基本够了。我强烈推荐11,推荐1,2,7,8。另外建议看一下当不了教材的16,20。 中国人自己写的:

1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒) 应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。网络上可以找到课后习题的参考答案,不过建议自己做。不少经济类工科类学校也用这一本书。里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。不过仍然不失为一本好书。能广泛被使用一定有它自己的一些优势。 2《数学分析》华东师范大学数学系著 师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。课本最后讲了一些流形上的微积分。虽然是师范类的书,难度比上一本有一些降低,不过还是值得一看的。3《数学分析》陈纪修等著 以上三本是考研用的最多的三本书。 4《数学分析》李成章,黄玉民 是南开大学一个系列里的数学分析分册,这套教材里的各本都经常被用到,总体还是不错的,是为教学改革后课时数减少后的数学系各门课编写的教材。 5《数学分析讲义》刘玉链 我的数学分析老师推荐的一本书,不过我没有看,最近应该出了新版,貌似是第五?版,最初是一本函授教材,写的应该比较详细易懂。不要因为是函授教材就看不起,事实上最初的函授工作都是由最好的教授做的。细说就远了,总之可以看看。 6《数学分析》曹之江等著 内蒙古大学数理基地的教材,偏重于物理的实现,会打一个很好的基础,不会盲目的向n 维扩展。适合初学者。国家精品课程的课本。

泛函分析知识总结

泛函分析知识总结与举例、应用 学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。本文主要对前面两大内容进行总结、举例、应用。 一、度量空间和赋范线性空间 (一)度量空间 度量空间在泛函分析中是最基本的概念,它是n维欧氏空间n R(有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。 1.度量定义:设X是一个集合,若对于X中任意两个元素x,y,都有唯一确定的实数d()与之对应,而且这一对 应关系满足下列条件: 1°d()≥0 ,d()=0 ?x=y(非负性) 2°d()= d() (对称性) 3°对?z ,都有d()≤d()() (三点不等式) 则称d()是x、y之间的度量或距离(或),称为 ()度量空间或距离空间()。 (这个定义是证明度量空间常用的方法)

注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(),只要 满足1°、2°、3°都称为度量。这里“度量”这个名 称已由现实生活中的意义引申到一般情况,它用来描 述X 中两个事物接近的程度,而条件1°、2°、3°被 认为是作为一个度量所必须满足的最本质的性质。 ⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个 集合X 上若有两个不同的度量函数1d 和2d ,则我们认为 (X, 1d )和(X, 2d )是两个不同的度量空间。 ⑶ 集合X 不一定是数集,也不一定是代数结构。为直观 起见,今后称度量空间()中的元素为“点” ,例如若 x X ∈,则称为“X 中的点” 。 ⑷ 在称呼度量空间()时可以省略度量函数d ,而称“度 量空间X ” 。 1.1举例 1.11离散的度量空间:设X 是任意的非空集合,对X 中任意两点∈X ,令 ()1x y d x y =0x=y ≠??? ,当,,当,则称(X ,d )为离散度量空间。 1.12 序列空间S :S 表示实数列(或复数列)的全体,d()=1121i i i i i i ?η?η∞=-+-∑; 1.13 有界函数空间B(A):A 是给定的集合,B(A)表示A 上有界

最新泛函分析考试题集与答案

泛函分析复习题2012 1.在实数轴R 上,令p y x y x d ||),(-=,当p 为何值时,R 是度量 空间,p 为何值时,R 是赋范空间。 解:若R 是度量空间,所以R z y x ∈?,,,必须有: ),(),(),(z y d y x d z x d +≤成立 即p p p z y y x z x ||||||-+-≤-,取1,0,1-===z y x , 有2112=+≤p p p ,所以,1≤p 若R 是赋范空间,p x x x d ||||||)0,(==,所以R k x ∈?,, 必须有:||||||||||x k kx ?=成立,即p p x k kx ||||||=,1=p , 当1≤p 时,若R 是度量空间,1=p 时,若R 是赋范空间。 2.若),(d X 是度量空间,则)1,m in(1d d =,d d d +=12也是使X 成为度量空间。 解:由于),(d X 是度量空间,所以X z y x ∈?,,有: 1)0),(≥y x d ,因此0)1),,(m in(),(1≥=y x d y x d 和0) ,(1) ,(),(2≥+= y x d y x d y x d 且当y x =时0),(=y x d , 于是0)1),,(m in(),(1==y x d y x d 和0) ,(1) ,(),(2=+=y x d y x d y x d 以及若

0)1),,(m in(),(1==y x d y x d 或0) ,(1) ,(),(2=+= y x d y x d y x d 均有0),(=y x d 成立,于是y x =成立 2)),(),(y x d x y d =, 因此),()1),,(m in()1),,(m in(),(11y x d y x d x y d x y d === 和),() ,(1) ,(),(1),(),(22y x d y x d y x d x y d x y d x y d =+=+= 3)),(),(),(z y d y x d z x d +≤,因此 }1),,(),(m in{)1),,(m in(),(1z y d y x d z x d z x d +≤= ),(),()1),,(m in()1),,(m in(11z y d y x d z y d y x d +=+≤ 以及设x x x f += 1)(,0)1(1)(2 >+='x x f ,所以)(x f 单增, 所以) ,(),(1),(),(),(1),(),(2z y d y x d z y d y x d z x d z x d z x d +++≤+= ),(),(1) ,(),(),(1),(z y d y x d z y d z y d y x d y x d +++++= ),(),() ,(1) ,(),(1),(22z y d y x d z y d z y d y x d y x d +=+++≤ 综上所述)1,m in(1d d =和d d d += 12均满足度量空间的三条件, 故),(1y x d 和),(2y x d 均使X 成为度量空间。

泛函分析知识总结

泛函分析知识总结与举例、应用 学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。本文主要对前面两大内容进行总结、举例、应用。 一、 度量空间和赋范线性空间 (一)度量空间 度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。 1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y) 与之对应,而且这一对应关系满足下列条件: 1°d(x,y)≥0 ,d(x,y)=0 ? x=y (非负性) 2°d(x,y)= d(y,x) (对称性) 3°对?z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式) 则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空 间或距离空间(metric space )。 (这个定义是证明度量空间常用的方法) 注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为 度量。这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。 ⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。 ⑶ 集合X 不一定是数集,也不一定是代数结构。为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。 ⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。 1.1举例

《泛函分析》课程教学大纲-黎永锦

《泛函分析》教学大纲 Functional Analysis 课程编号: 适用专业:数学与应用数学 总学时数:学分: 一、本课程简介 《泛函分析》是现代数学中的的主要数学分支之一,它综合地运用分析、代数和拓扑的观点、方法,来研究数学中的许多问题,它在抽象空间上研究类似于实数上的分析问题,形成了综合运用代数和拓扑来分析处理问题的方法.通过这一课程,能使学生了解泛函分析的基本思想、原理及在各门学科中的应用,掌握泛函分析中主要的基本概念和重要的基本理论,学会用代数、分析和拓扑综合处理问题的新方法,弄清有限维空间与无穷维空间的差别,学会无穷维空间中处理线性问题的分析方法,该课程是学习其他数学分支与科研工作的重要基础. 二、本课程与其他课程的关系 《泛函分析》、《抽象代数》、《拓扑学》是现代数学的重要课程,它综合了分析、代数和拓扑的研究方法,因此学生最好有数学分析、线性代数、空间解析几何及点集拓扑学的基础. 三、教学内容、学时安排和基本要求 本课程主要是线性泛函分析的基本理论,重点介绍距离空间和赋范空间的基础,Banach空间最重要的定理,如Hahn-Banach保范延拓定理、逆算子定理、一致有界原理和Riesz表示定理等.

本课程学时为54学时. (一)度量空间(12学时) 1、具体内容 度量空间的基本概念,度量空间中开集、闭集、完备性与可分性、连续映照的概念、距离空间中列紧集、紧集上连续映照的性质、不动点定理. 2、基本要求 (1)正确理解度量空间基本概念、度量空间点列收敛等概念. (2)理解并掌握度量空间中的内点,极限点,开集闭集,闭包等. (3)理解并掌握列紧集及紧集的概念,紧集、列紧集上的连续映射的性质. (5)熟练掌握压缩映照原理及其应用. 3、重点、难点 重点:度量空间的紧性、不动点定理. 难点:具体度量空间上紧性的判别、压缩映射的构造及不动点定理的具体应用. (二)赋范线性空间(10学时) 1、具体内容 赋范空间的定义,范数的等价性,有限维赋范空间, Schauder基等. 2、基本要求 (1)理解线性空间和范数的概念以及相关的例子. (2)掌握范数的等价性及判别方法. (3)掌握具有基的Banach空间、有限维赋范线性空间的性质. (4)线性连续泛函与Hahn-Banach保范延扩定理. 3、重点、难点 重点:有限维赋范空间的性质和Hahn-Banach保范延扩定理. 难点:Hahn-Banach保范延扩定理及其推论的应用. (三) 有界线性算子(10学时) 1、具体内容

哲学家Strongart自学数学的非常故事的真实经历

女士们先生们,我是Strongart。记得在我24岁生日那天,曾经写过一段自学数学的小故事。现在又是一年多过去了,就再介绍一点回到家之后的情况吧,顺便把以前的故事精简一下。 其实我从小启蒙教育就比较好,倒不是有什么专门的培训,只是上小学之前都在家里,有意无意地从爷爷那里学了很多东西。到上小学的时候,我就已经能熟练掌握四则运算,可惜后来进了学校就停滞了,对数字的感觉明明已经非常敏锐了,还得跟他们一起背什么乘法口诀表!直到四年级的时候为准备竞赛,数学老师给我们几个数学好的学生开小灶。在不到一个学期的时间里学完了五六年级的数学,一点都不觉得有什么困难。 此后又是一段长期的停滞,直到一天我偶然发现一本书,是讲如何教育孩子成材的,其中有许多天才成长的故事深深打动了我。记得里面有一句大意是这样的:在孩子成熟之前,只要有一个小小的起点,让他体会到自己独特的价值并为之努力,那么他成年后将远远超过其他一般的人。那时我不知是初一还是初二,只是对这样的语句有一种模糊的体验。 后来,在放假前无意间有个顽皮的同学送了我一本高中的《立体几何》,促使我真正走上了自学数学的道路,再结合家里一些已经发黄了的中等数学教辅,到中考前已经完成相当于高中的数学课程。幸好当时能在大学附近的一个临时的小书店里买到了两本《数学分析》,然后就开始为按定义证明极限苦恼,能问老师吗?我不敢,因为直觉告诉我这是犯规的,可能这就是“潜规则”的压力了。 刚开始看《数学分析》真的很困难,手头只有一本教科书,习题只能做开头的几道。特别是极限初论讲完之后直接进入极限绪论,像有限覆盖定理之类的东西直到后来看到拓扑才真正明白。直到后来看到微分学,又在一堆中高考的辅导书里挖掘到一本微积分词典,才算是稍微送了口气。记得当时“违规”用导数做出道难题,反倒没办法讲给别人听,只轻轻说了“导数”两个字(据说现在高中数学讲导数了,很人性啊!那时的标准答案是用了一个BT的不等式的技巧),惹得他们看外星人一样的看我! 回顾高中以前的经历,运气要占了很大的因素,可后来就没那么巧了。第一年没考上大学,又买不到合适的数学书,就这样看了大半年像什么概率统计、数学物理

泛函分析答案

泛函分析题1_3列紧集p19 1.3.1 在完备的度量空间中,求证:为了子集A是列紧的,其充分必要条件是对?ε > 0,存在A的列紧的ε网. 证明:(1) 若子集A是列紧的,由Hausdorff定理, ?ε > 0,存在A的有限ε网N. 而有限集是列紧的,故存在A的列紧的ε网N. (2) 若?ε > 0,存在A的列紧的ε/2网B. 因B列紧,由Hausdorff定理,存在B的有限ε/2网C. 因C ?B ?A,故C为A的有限ε网. 因空间是完备的,再用Hausdorff定理,知A是列紧的. 1.3.2 在度量空间中,求证:紧集上的连续函数必是有界的,并且能达到它的上、下确界. 证明:设(X, ρ)是度量空间,D是紧子集,f : D→ 是连续函数. (1) 若f无上界,则?n∈ +,存在x n∈D,使得f (x n) > 1/n. 因D是紧集,故D是自列紧的. 所以{x n}存在收敛子列x n(k) →x0∈D (k→∞). 由f的连续性,f (x n(k))→f (x0) (k→∞). 但由f (x n) > 1/n知f (x n)→ +∞(n→∞), 所以 f (x n(k))→ +∞ (k→∞),矛盾. 故f有上界.同理,故f有下界. (2) 设M = sup x∈D f(x),则?n∈ +,存在y n∈D,使得f (y n) > M- 1/n. {y n}存在子列y n(k) →y0∈D (k→∞). 因此f ( y0 ) ≥M. 而根据M的定义,又有f ( y0 ) ≤M. 所以f ( y0 ) = M.因此f能达到它的上确界. 同理,f能达到它的下确界. 1.3.3 在度量空间中,求证:完全有界的集合是有界的,并通过考虑l 2的子集E = {e k }k≥ 1,其中e k = { 0, 0, ..., 1, 0, ... } (只是第k个坐标为1,其余都是0 ),来说明一个集合可以是有界的但不完全有界的. 证明:(1) 若A是度量空间(X, ρ)中的完全有界集. 则存在A的有限1-网N = { x0, x1, x2, ..., x n }. 令R = ∑1 ≤j≤nρ(x0, x j) + 1. 则?x∈A,存在某个j使得0 ≤j≤n,且ρ(x, x j) < 1. 因此,ρ(x, x0) ≤ρ(x, x j) + ρ(x j, x0) ≤ 1 + ∑1 ≤j≤nρ(x0, x j) = R. 所以A是度量空间(X, ρ)中的有界集. (2) 注意到ρ(e k , e j) = 21/2 ( ?k ≠ j ), 故E中任意点列都不是Cauchy列. 所以,E中任意点列都没有收敛子列(否则,该收敛子列就是Cauchy列,矛盾).

泛函分析报告小论文设计[1]

泛函分析论文 泛函分析在数学物理方程、概率论、计算数学等分科中都有应用,是20世纪发展起来的一门新学科,其中泛函是函数概念的推广,对比函数是数与数之间的对应关系,我们发现泛函是函数和数之间的对应关系。在学习泛函分析前,我们先确定学习目标:理解和掌握“三大空间和三大定理”。学习中慢慢体味泛函分析的综合性及专业性。。 §1 度量空间 §1.1 定义:若X 是一个非空集合,:d X X R ?→是满足下面条件的实值函数,对于,x y X ?∈,有 (1)(,)0d x y =当且仅当x y =; (2)(,)(,)d x y d y x =; (3)(,)(,)(,)d x y d x z d y z ≤+, 则称d 为X 上的度量,称(,)X d 为度量空间。 【理解】度量空间就是:集合+距离;(满足非负性、对称性及三点不等式) 其实度量空间是在实变函数中接触的知识,但其在泛函分析学科中的重要性,我们可以通过度量空间的进一步例子来感受。 §1.2 度量空间的进一步例子 例:1、离散的度量空间(,)X d ,设X 是一个非空集合,,x y X ?∈,当1,(,)0,=x y d x y x y ≠?=??当当。 2、序列空间S ,i =1i |-|1(,)21+|-|i i i i d x y ξηξη∞ =∑是度量空间 3、有界函数全体()B A ,(,)sup|(t)-(t)|t A d x y x y ∈=是度量空间 4、连续函数[a,b]C ,(,)max|(t)-(t)|a t b d x y x y ≤≤=是度量空间 5、空间2l ,122=1(,)[(-)]k k i d x y y x ∞=∑是度量空间

相关文档