文档库 最新最全的文档下载
当前位置:文档库 › 耦合电感在开关电源中的应用

耦合电感在开关电源中的应用

耦合电感在开关电源中的应用
耦合电感在开关电源中的应用

耦合电感在开关电源中的应用

1. 磁场的基本概念

安培定律:磁场强度H 沿闭合回路的线积分等于该回路包含电流的大小,既: ∫?=?I N dl H (1)

定于绕在磁芯上电流为I 的N 匝线圈产生的磁通势为F ,则: φφμμφ

?=??=??=?=R A l l A l H F c

c (2) c A B ?=φ

H B ?=μ

其中 φ磁通,R 为磁阻,Ac 为磁芯截面积,B 为磁通密度,μ为磁导率。 在磁路中磁通势与电路中电动势对应,磁通与电流对应,磁阻与电阻对应。 电感的定义:耦合磁链与产生磁链的电流的比,既:

I

N L φ?= 例:计算无气隙磁芯的有气隙磁芯的电感和磁通密度。

Fig1 无气隙磁芯

对于无气隙磁路的磁通和电感: I N l A A l I N R F A B m

c

m c c ???=??==?=μμφ (3) c

m c R N l A N I N L 2

2=??=?=μφ (4)

Fig2 有气隙磁芯及等效模型

对于有气隙磁路的磁通和电感:

c g c c g c c A l A l I N R R F A B ?+??=+=?=0μμφ (5)

g

c R R N I N L +=?=2

φ (6) 比较(3)式和(5)式,加入气隙后,磁芯的磁阻增大,电感量下降;若磁芯饱和磁密不变,则通过线圈的电流增大。

Fig 3 气隙对线圈饱和电流的影响

思考:为什么反激变压器需要磨气隙,桥式变压器不需要磨气隙?

2. 变压器和耦合电感

变压器与耦合电感的区别与耦合系数K 有关,若K 接近于1,可认为是变压器,若K<<1,可认为是耦合电感。

2112

L L M K ?=; 若21L L =, 则:1

12L M K = 其中M 12为互感。

互感的定义:线圈1的电流i 在线圈2中产生的磁链与线圈1电流的比值。 1

12212i N M φ?=

Fig 4 变压器示意图

对于Fig 4所示的变压器:

原边电感: c

R N L 211= 副边电感: c

R N L 222= 互感: c

c R N N R i N i N i N i N M 2111121112112212?=??=?=?=

φφ 耦合系数: 1=K

Fig 5 双绕组耦合电感 (a) 无耦合 (b) 耦合

对于Fig 5(a)所示的耦合电感,因线圈1产生的磁通经过中柱形成回路,几乎不通过线圈2,所以耦合系数为0。对于Fig 5 (b)所示的耦合电感,因线圈1产生的磁通部分通过中柱,部分耦合线圈2,所以耦合系统0

Fig 6 Fig5 (b)耦合电感等效磁路(R 1=R 2=R, N 1=N 2=N)

线圈1单独作用时的等效磁阻:

()C

C C eq R R R R R R R R R ++?=+=2// 自感: ()()

C C eq R R R R R N R N L L 22221+?+?=== 线圈1单独作用时,通过线圈2 的磁通:

112φφ?+=C

C R R R 互感: 1111112212L K L R R R i N R R R i N M C

C C C ?=+=??+=?=φφ 耦合系数: C C R R R K +=

可见耦合系数与中心柱磁阻大小有关,中心柱磁阻越大,耦合系数越接近1。

3. 多路输出反激变压器工作原理

4. 耦合电感在VRM 和POL 中的应用

含有耦合电感电路关于

第10章含有耦合电感的电路 重点: 1.互感和互感电压的概念及同名端的含义; 2.含有互感电路的计算; 3.空心变压器和理想变压器的电路模型。 难点: 1. 耦合电感的同名端及互感电压极性的确定; 2. 含有耦合电感的电路的方程; 3. 含有空心变压器和理想变压器的电路的分析。 本章与其它章节的联系: 本章的学习内容建立在前面各章理论的基础之上。 预习知识: 电磁感应定律 §10.1 互感 耦合电感元件属于多端元件,在实际电路中,如收音机、电视机中的中周线圈、振荡线圈,整流电源里使用的变压器等都是耦合电感元件,熟悉这类多端元件的特性,掌握包含这类多端元件的电路问题的分析方法是非常必要的。 1. 互感 两个靠得很近的电感线圈之间有 磁的耦合,如图10.1所示,当线圈1 中通电流i1 时,不仅在线圈1中产生 磁通f11,同时,有部分磁通 f21 穿过临 近线圈2,同理,若在线圈2中通电流 i2时,不仅在线圈2中产生磁通f22,图 10.1

同时,有部分磁通 f12穿过线圈1,f12 和f21称为互感磁通。定义互磁链: ψ12 = N1φ12ψ21 = N2φ21 当周围空间是各向同性的线性磁介质时,磁通链与产生它的施感电流成正比,即有自感磁通链: 互感磁通链: 上式中 M12和 M21称为互感系数,单位为(H)。当两个线圈都有电流时,每一线圈的磁链为自磁链与互磁链的代数和: 需要指出的是: 1)M 值与线圈的形状、几何位置、空间媒质有关,与线圈中的电流无关,因此,满足M12 =M21 =M 2)自感系数L 总为正值,互感系数 M 值有正有负。正值表示自感磁链与互感磁链方向一致,互感起增助作用,负值表示自感磁链与互感磁链方向相反,互感起削弱作用。 2. 耦合因数 工程上用耦合因数k 来定量的描述两个耦合线圈的耦合紧密程度,定义 一般有: 当k =1 称全耦合,没有漏磁,满足f11 = f21,f22 = f12。 耦合因数k 与线圈的结构、相互几何位置、空间磁介质有关。 3. 耦合电感上的电压、电流关系 当电流为时变电流时,磁通也将随时间变化,从而在线圈两端产生感应电压。根据电磁感应定律和楞次定律得每个线圈两端的电压为:

如何为开关电源选择合适的电感

如何为开关电源选择合适的电感 电感,一直以来都有些许神秘:它可以产生磁场,把磁场和电场联系起来;电感的电流I不能突变,但电流变化率dI/dt可以突变;电感的储能与其流过的电流有关。 铁氧体和铁粉是用于开关电源电感的两种磁芯材料。应用于电源的储能电感通常制成闭环,使得整个磁场包含在电感的内部,因此磁通大小与磁芯的存储能量将表征磁芯材料的特性。 以Buck电路的输出电感为例。该电感的磁芯具有一定的直流分量,适用的材质有:(1)铁粉芯 碾磨的铁粉与其他的合金组成的精细颗粒与绝缘材料涂层构成磁粉芯。铁粉颗粒周围的绝缘颗粒构成了铁粉芯的内在分散气隙。 (2)带气隙的铁氧体磁芯 Buck电路的电感具有一定的直流分量。若不开气隙,铁氧体磁芯极其容易饱和。开气隙后,闭合磁路的磁通将快速增大。由于空气的相对磁导率为1,且磁芯材料的相对磁导率为几千以上,所以,磁芯中的大部分能量将存储在气隙磁通中。 气隙降低了磁芯的有效磁导率,整个B-H曲线会倾斜,增大了饱和时的磁场强度H,磁芯不太容易饱和。图 1为不开气隙和开气隙的B-H曲线。 图 1 电感B-H曲线 通常我们会发现,大多数采用铁氧体的电感设计,其磁芯损耗仅为电感总损耗(线圈加上磁芯损耗)的5%~10%。但是若电感采用铁粉芯,则该值会增加到20%~30%。 一、电感:磁芯的饱和 当流过电感的电流(或磁场强度)大于一定值时,电感的磁芯可能饱和。当其饱和时,其感量会减小,并接近于0。 某反激电路的限流电阻上的电压波形如图 2所示(反激变换器中变压器的初、次级可以看成一对耦合电感)。从图中可以看出流经初级电感的电流波形。当电流增大时,电感逐渐饱和,电感量减小,从而导致梯形电流的波形的斜率增大。

开关电源电感的选取

为开关电源选择合适的电感 电感是开关电源中常用的元件,由于它的电流、电压相位不同,所以理论上损耗为零。电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上,用来平滑电流。电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”。换句话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的电压尖峰。 电感为磁性元件,自然有磁饱和的问题。有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和,也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。但是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一个是不可避免的绕线电阻,另一个是与绕制工艺、材料有关的分布式杂散电容。 杂散电容在低频时影响不大,但随频率的提高而渐显出来,当频率高到某个值以上时,电感也许变成电容特性了。如果将杂散电容“集”为一个电容,则从电感的等效电路可以看出在某一频率后所呈现的电容特性。 当分析电感在线路中的工作状况或者绘制电压电流波形图时,不妨考虑下面几个特点: 1. 当电感L 中有电流I 流过时,电感储存的能量为: E=0.5×L×I2 (1) 2. 在一个开关周期中,电感电流的变化(纹波电流峰峰值)与电感两端电压的关系为: V=(L×di)/dt (2) 由此可看出,纹波电流的大小跟电感值有关。 3. 就像电容有充、放电电流一样,电感器也有充、放电电压过程。电容上的电压与电流的积分(安·秒)成正比,电感上的电流与电压的积分(伏·秒)成正比。只要电感电压变化,电流变化率di/dt 也将变化;正向电压使电流线性上升,反向电压使电流线性下降。 计算出正确的电感值对选用合适的电感和输出电容以获得最小的输出电压纹波而言非常重要 从图1 可以看出,流过开关电源电感器的电流由交流和直流两种分量组成,因为交流分量具有较高的频率,所以它会通过输出电容流入地,产生相应的输出纹波电压dv=di×RESR。这个纹波电压应尽可能低,以免影响电源系统的正常操作,一般要求峰峰值为10mV~500mV。 纹波电流的大小同样会影响电感器和输出电容的尺寸,纹波电流一般设定为最大输出电流的10%~30%,因此对降压型电源来说,流过电感的电流峰值比电源输出电流大5%~15%。 降压型开关电源的电感选择 为降压型开关电源选择电感器时,需要确定最大输入电压、输出电压、电源开关频率、最大

含有耦合电感的电路(学生用)

第十章 含有耦合电感的电路 §1. 耦合电感器与互感电压 一、耦合电感器 ──如果电感器L 1,L 2之间有公共磁通相交链,这两个电感器就构成一个耦合电感器。 1、11φ21φ1L φ 电感器2与1的互感(mutual inductance ) 1 21 212121i N i M φψ=? 注2,21φ的方向与电感器2导线的绕向无关。 2 2’

1=k ──全耦合电感器(相当于021==L L φφ无漏磁通) 实际中: 当双线并绕时,耦合最强,1→k 。 当两个耦合电感器相距甚远,或彼此垂直时,其间耦合较弱,0→k 。

? ??><称强耦合时称弱耦合时,5.0,5.0k k 1ψ2ψ 1ψ13331333Mi i L -=-=ψψψ 表明:在这种绕线方式中,互感磁链与自感磁链方向相反,称为互感的“削弱”作用。 ΦΦ3’ 3

问题:在电路分析中,在确定互感电压时,是否一定要知道耦合电感器的实际绕向呢? 同名端──在耦合电感器各自一个端钮上通进电流,如果它们产生的互感磁通同方向,这两个端钮就称为同名端。在同名端上打上标记“。”、“.”、“*”或“?”均可。 标有同名端,并用参数表示的耦合电感器的电路符号为: 3. 21i i 、为时变函数时: dt di M dt di L dt Mi i L d dt d u 2 1121111)(+=+==ψ dt di M dt di L dt Mi i L d dt d u 1 2212222)(+=+==ψ

当21i i 、为同频率正弦量时,在正弦稳态情况下: 2 111I M j I L j U ωω+=? 1 222I M j I L j U ωω+=? M ω──互感抗

耦合电感的剖析

电感分析: 电感元件是电感线圈的理想化模型,用于反映电路中存储磁场能量的物理现 象。当线圈中通过电流i(t)时,就会在线圈内外产生磁通? (t) ,建立起磁场,其中储存有以磁场形式存在、由电能转化而来的磁场能量。 如果线圈的匝数为N,则与线圈交链的总磁通称为磁链,记为Ψ (t) ,有 Ψ(t)=N? (t) ,对于电感而言,磁通和磁链均是流过线圈自身的电流i(t)产 生的,所以成为自感磁通和自感磁链,简称为磁通和磁链,他们均是电流i(t)的函数。

Ψ(t )=L ?i (t ) U (t )=-e (t )= d ψ(t )dt = Nd ?(t ) dt =L di (t )dt 其中,U (t )是电感的端电压,e (t )是 感应电动势。一般电流和端电压关联,和感应电动势相反。 上面解释了,电感电流的跃变必然伴随着电感储能的跃变。电感储能与电压无关,和电流有关。 耦合电感: 电感仅仅考虑了流过一个线圈本身的时变电流所产生的磁通在自己内部引起的感应电压即自感电压。但是根据法拉第电磁感应定律,若两个或多个线圈相互邻近,则任一个线圈所载电流变化所产生的磁通,不仅能和自身交链,引起自感电压,而且还会有一部分与邻近的线圈交链,在该线圈上产生互感电压。 耦合电感与电感在开关电源中功能分析:对于电感,感值和匝数恒定,那么伏秒定则的含义是电感磁芯的磁通不变(或者是电流变化不变)。根据Ψ t =N ?(t ),Ψ t =L ?i (t ),电感端电压感应电动势U (t )=-e (t )= d ψ(t )dt =L di (t )dt 。可得U L ?t = d ψ(t )?t Ldt ===》d ψ t =?ψ t =?N ?(t ),由于电感匝 数恒定,事实上是磁通变化量??(t )恒定。 而在耦合电感中由于值存在原边、副边、互感,匝数有原边匝数、副边匝数,那么伏安关系变为磁通变化量的恒定。 耦合电感:

含耦合电感的电路研究

含耦合电感的电路研究 实验报告 一、实验目的 (1)进一步认识含耦合电感电路中的互感现象。 (2)学习同名端的判断方法。 (3)掌握互感的测量方法。 二、实验原理 (1)耦合线圈同名端的测定: 直流通断法 如图(一)所示,把自感系数为L 1 的线圈1通过开关接到直流电源上,把 一个直流电流表接在自感系数L 2 线圈2的两端。在开关S闭合瞬间,自感系数 L 2 的线圈2的两端将产生一个互感电势,电表的指针就会偏转。若指针正向偏转,则与直流电源正极相连的端钮1和与电表正极相连的端钮2为同名端;若指针反向偏转,则1与2为异名端。 R 图(一)确定互感线圈同名端的直流通断法 (2)互感系数M的测量: 在图(二)所示电路中,在自感系数为L 1 的线圈中通入固定频率的正弦电 流I 1,测量自感系数为L 2 的线圈的开路电压有效值U 2 ,若交流电压表的内阻足 够大,则有U 2=ωM 21 I 1 ,因此互感系数M 21 = I U 1 2 反之,在图(三)所示电路中,在自感系数为L 2的线圈中通入固定频率的

正线电流I 2,测量自感系数为L 1 的线圈的开路电压有效值U 1 ,则有U 1 =ωM 12 I 2 , 因此互感系数M 12= I U 21 如果两次测量时两个线圈相对位置未变,则有M 12=M 21 =M U2 图(二)自感系数为L1的线圈接电源端测量M21 U1 图(三)自感系数为L2的线圈接电源端测量M12 三、实验步骤 (1)测定两个线圈的同名端 按图(一)接线,在开关闭合瞬间可以看到电流表正向偏转,所以1和 2 是同名端。 (2)测定耦合线圈的互感系数M 按图(二)接线,事先将函数电源输出电压调定为U S ,读取交流电流表读数 I 1和交流电压表读数U 2 ,求出M 21 。改变函数电源输出频率多得几次数据记入表 一得到不同的M 21 求平均。

浅谈开关电源输出电感的设计

――DC/DC 电路中电感的选择 原文:Fairchild Semiconductor AB-12:Insight into Inductor Current 下载 翻译:frm (注:只有充分理解电感在DC/DC电路中发挥的作用,才能更优的设计DC/DC电路。本文还包括对同步DC/DC及异步DC/DC概念的解释。) 本文PDF文档下载 简介 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的DC电流效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC滤波电路中的L(C是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。 在降压转换中(Fairchild典型的开关控制器),电感的一端是连接到DC输出电压。另一端通过开关频率切换连接到输入电压或GND。 在状态1过程中,电感会通过(高边“high-side”)MOSFET连接到输入电压。在状态2过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET接地。如果是后一种方式,转换器就称为“同步(synchronus)”方式。 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。 我们利用电感上电压计算公式: V=L(dI/dt) 因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。通过电感的电流如图2所示: 通过上图我们可以看到,流过电感的最大电流为DC电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流:

如何为开关电源选择合适的电感(完整版)

如何为开关电源选择合适的电感 中心议题: 电感的特点 降压型开关电源的电感选择 升压型开关电源的电感选择 解决方案: 计算降压型开关电源的电感值 计算升压型开关电源的电感值 电感是开关电源中常用的元件,由于它的电流、电压相位不同,所以理论上损耗为零。电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上,用来平滑电流。电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”。换句话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的电压尖峰。 电感为磁性元件,自然有磁饱和的问题。有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和,也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。但是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一个是不可避免的绕线电阻,另一个是与绕制工艺、材料有关的分布式杂散电容。杂散电容在低频时影响不大,但随频率的提高而渐显出来,当频率高到某个值以上时,电感也许变成电容特性了。如果将杂散电容“集中”为一个电容,则从电感的等效电路可以看出在某一频率后所呈现的电容特性。 当分析电感在线路中的工作状况或者绘制电压电流波形图时,不妨考虑下面几个特点: 1. 当电感L中有电流I流过时,电感储存的能量为:E=0.5×L×I2 (1) 2. 在一个开关周期中,电感电流的变化(纹波电流峰峰值)与电感两端电压的关系为:V=(L×di)/dt (2) 由此可看出,纹波电流的大小跟电感值有关。 3. 就像电容有充、放电电流一样,电感器也有充、放电电压过程。电容上的电压与电流的积分(安·秒)成正比,电感上的电流与电压的积分(伏·秒)成正比。只要电感电压变化,电流变化率di/dt也将变化;正向电压使电流线性上升,反向电压使电流线性下降。 计算出正确的电感值对选用合适的电感和输出电容以获得最小的输出电压纹波而言非常重要。 从图1可以看出,流过开关电源电感器的电流由交流和直流两种分量组成,因为交流分量具有较高的频率,所以它会通过输出电容流入地,产生相应的输出纹波电压dv=di×RESR。这个纹波电压应尽可能低,以免影响电源系统的正常操作,一般要求峰峰值为10mV~500mV。 纹波电流的大小同样会影响电感器和输出电容的尺寸,纹波电流一般设定为最大输出电流的10%~30%,因此对降压型电源来说,流过电感的电流峰值比电源输出电流大5%~15%。 降压型开关电源的电感选择 为降压型开关电源选择电感器时,需要确定最大输入电压、输出电压、电源开关频率、最大纹波电流、占空比。下面以图2为例说明降压型开关电源电感值的计

开关电源EMI滤波器的正确选择与使用

开关电源EMI滤波器的正确选择与使用 1插入损耗和滤波电路的选择 在用户选择滤波器时,最关心插入损耗性能。但是,往往插入损耗相近的滤波器,在实际运用中效果相差甚远。究其主要原因是,相近插入损耗的滤波器可由不同的电路实现。这和理论分析是吻合的,因为插入损耗本身是个多解函数。 所以,选择滤波器时首先应选择适合你所用的滤波电路和插入损耗性能。要做到这一点,就要求了解所使用电源的等效噪声源阻抗和所需要对噪声的抑制能力。这符合“知己知彼,百战百殆”的客观规律。 那么滤波电路和电源等效噪声之间存在什么样的关系呢? 众所周知,EMI滤波器是由L、C构成的低通器件。为了在阻带内获得最大衰减,滤波器输入端和输出端的阻抗需与之连接的噪声源阻抗相反,即对低阻抗噪声源,滤波器需为高阻抗(大的串联电感);对高阻抗噪声源,滤波器就需为低阻抗(大的并联电容)。对于EMI滤波器,这些原则应用于共模和差模中。 如按此原则选用的滤波器,在实际运用中仍存在效果相差很多的现象,特别发生在重载和满载的情况下。造成这一问题的主要原因可能是滤波器中的电感器件在重载和满载时,产生饱和现象,致使电感量迅速下降,导致插入损耗性能大大变坏。其中尤以有差模电感的滤波器为多。因差模电感要流过电源火线或零线中的全部工作电流,如果差模电感设计不当,电流一大,就很容易饱和。当然也不排除共模扼流圈,因生产工艺水平较差,两个绕组不对称,造成在重载或满载时产生磁饱和的可能。 图1 共模滤波器模型 1.1.2差模滤波电路 由于开关电源的开关频率谐波噪声源阻抗为低阻抗,所以与之相对应的滤波器输出端应是高阻抗串联大电感LDM。 AC电网火线和零线之间是低阻抗,所以与之对应的滤波器输入端也应是高阻抗串联大电感LDM。如果想再进一步抑制差模噪声,可以在滤波器输入端并接线间电容CX1,条件是它的阻抗要比AC电网火线、零线之间的阻抗还要低得多。 开关电源工频谐波噪声源阻抗是高阻抗,所以与之相对应的滤波器输出端应是低阻抗并联大电容CX2。 合成的差模滤波电路参见图2。 最后,完整的共、差模滤波电路参见图3。

含有耦合电感的电路

第十章 含有耦合电感的电路 本章重点: 1.互感及互感电压 2.互感线圈的串并联 3.理想变压器的变换作用 本章难点:空心变压器的等效电路 本章内容 §10-1 互感 1、概念:互感、总磁链、同名端。 2、耦合线圈的电压、电流关系) 设,u i 为关联参考方向: (1) 121111u u L u +=±== dt di M dt di dt d 211ψ 222122u u L u +=+±== dt di dt di M dt d 212ψ 式中:u 11=L 1 dt di 1 ,u 22=L 2dt di 2称为自感电压; u 22=±M dt di 1,u 12=±M dt di 2称为互感电压(互感电压的正负,决定于互感电压“+”极性端子,与产生它的电流流进的端子为一对同名端,则互感电压为“+”号). (2) 相量式 1212111j L L M U I j M I jX I J Z I ωω? ? ? ? ? =±=+ 1221222j L L M U M I j I jX I J Z I ωω? ? ? ? ? =±+=+ 式中M Z j M ω=为互感抗。 3、耦合因数: 1def k == =≤ §10-2 含有耦合电感电路的计算 1、耦合电感的串联 (1)反向串联:把两个线圈的同名端相连称为反接。由(a)图知:

111 11(L -M )=(L -M)di di di u R i R i dt dt dt =++ 22222(L -M )=(L -M)di di di u R i R i dt dt dt =++ 122212()(L +L -2M)di u u u R R i dt =+=++ 其相量式为(b 图去耦等效电路) 12 12()(L +L -2M)U R R I j I ω=++&&& 1212()(L +L -2M)Z R R j ω=++ (2)顺向串联;把两个线圈的异名端相连,称为顺接。 1212()(L +L +2M)Z R R j ω=++ 2、耦合电感线圈并联 (1)同侧并联电路:把两个耦合电感的同名端连在同一个结点上,称为同侧并联电路,由(a) 图得: ? ? ? 1211( )U R j L I j M I ωω=++; ? ? ? 1222 ()U j M I R j ML I ωω=++ i + ?? R 1 R 2 L 1 L 2 + + — — —U 1 U 2 i + R 1 R 2 L 1-M L 2-M + + — — U 1 U 2 — (a) (b) i ? + — ???U &j M ω1j L ω2 j L ω3I &1I &2 I &1R 20 ? + — ?U &3 j L ω() 1 j L M ω-() 2 j L M ω-3I &1 I & 2 I &1R 2 R 0 (a ) (b ) ① ① 1'

DC-DC电感参数选择计算

DC-DC升压和降压电路电感参数选择 注:只有充分理解电感在DC-DC电路中发挥的作用,才能更优的设计DC-DC电路。本文还包括对同步DC-DC及异步DC-DC概念的解释。 DC-DC电路电感的选择简介 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的DC电流效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC滤波电路中的L(C是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。在降压转换中(Fairchild典型的开关控制器),电感的一端是连接到DC输出电压。另一端通过开关频率切换连接到输入电压或GND。 在状态1过程中,电感会通过(高边“high-side”)MOSFET连接到输入电压。在状态2过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET接地。如果是后一种方式,转换器就称为“同步(synchronus)”方式。 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。 我们利用电感上电压计算公式: V=L(dI/dt)

含有耦合电感电路

9含有耦合电感电路 一、教学基本要求 1、熟练掌握互感的概念及具有耦合电感的电路计算方法。 2、掌握空心变压器和理想变压器的应用。 二、教学重点与难点 1. 教学重点: (1).互感和互感电压的概念及同名端的含义; (2). 含有互感电路的计算 (3). 空心变压器和理想变压器的电路模型 2.教学难点:(1). 耦合电感的同名端及互感电压极性的确定; (2). 含有耦合电感的电路的方程 (3). 含有空心变压器和理想变压器的电路的分析。 三、本章与其它章节的联系: 本章的学习内容建立在前面各章理论的基础之上。 四、学时安排总学时:4 五、教学内容

§ 互感 耦合电感元件属于多端元件,在实际电路中,如收音机、电视机中的中周线圈、振荡线圈,整流电源里使用的变压器等都是耦合电感元件,熟悉这类多端元件的特性,掌握包含这类多端元件的电路问题的分析方法是非常必要的。 1. 互感 图 两个靠得很近的电感线圈之间有磁的耦合,如图所示,当线圈1中通电流i1时,不仅在线圈1中产生磁通φ11,同时,有部分磁通φ21穿过临近线圈2,同理,若在线圈2中通电流i2时,不仅在线圈2中产生磁通φ22,同时,有部分磁通φ12穿过线圈1,φ12和φ21称为互感磁通。定义互磁链: ψ12 = N1φ12ψ21 = N2φ21 当周围空间是各向同性的线性磁介质时,磁通链与产生它的施感电流成正比,即有自感磁通链: 互感磁通链: 上式中 M12和 M21称为互感系数,单位为(H)。当两个线圈都有电流时,每一线圈的磁链为自磁链与互磁链的代数和: 需要指出的是: 1)M 值与线圈的形状、几何位置、空间媒质有关,与线圈中的电流无关,因此,满足 M 12 =M21 =M 2)自感系数L 总为正值,互感系数 M 值有正有负。正值表示自感磁链与互感磁链方向一致,互感起增助作用,负值表示自感磁链与互感磁链方向相反,互感起削弱作用。 2. 耦合因数 工程上用耦合因数k 来定量的描述两个耦合线圈的耦合紧密程度,定义

共模电感的参数选择

开关电源EMI滤波器的设计 要使EMI滤波器对EMI信号有最佳的衰减特性,设计与开关电源共模、差模噪声等效电路端接的EMI滤波器时,就要分别设计抗共模干扰滤波器和抗差模干扰滤波器才能收到满意的效果。1抗共模干扰的电感器的设计 电感器是在同一磁环上由两个绕向与匝数都相同的绕组构成。当信号电流在两个绕组流过对,产生的磁场恰好抵消,它可几乎无损耗地传输信号。因此,共模电流可以认为是地线的等效干扰电压Ug所引起的干扰电流。当它流经两个绕组时,产生的磁场同相叠加,电感器对干扰电流呈现出较大的感抗,由此起到了抑制地线干扰的作用。电路如图1所示。 I Bel 信号源至负载RL连接线的电阻为Rcl、Rc2,电感器自感为L1、L2,互感为M,设两绕组为紧耦合,则得到L1 = L2 = M。由于Rcl和RL串联且Rcl vv RL,则可以不考虑Vg,Vg 被短路可以不考虑Vg的影响。其中(Is是信号电流,Ig是经地线流回信号源的电流。由基尔霍夫定律可写出: 吒=址员+島+沖佗2Af>]-址島+沖心一⑷] 0 ■-人[& + 酒U一+ + j和仏) 令Ai ■■ Xt ?= M = £為朕氐 得到 R L X f

式(2)表明负载上的信号电压近似等于信号源电压,即共模电感传输有用信号时几乎不引入衰减。由(1)式得知,共模千扰电流Ig随f: fc的比值增大而减小。当f: fc的比值趋于无穷时,Ig=0,即干扰信号电流只在电感器的两个绕组中流过而不经过地线,这样就达到了抑制共模干扰的作用。所以,可以根据需要抑制的干扰电压频率来设置电感器截止频率。 一般来说,当干扰电压频率f > 5fc时,即Vn: Vg< 0.197,就可认为达到有效抑制地线中心干扰的目的。 2?抗差模干扰的滤波器设计 差模干扰的滤波器可以设计成n型低通滤波器,电路如图2所示。这种低通滤波器主要是设置电路截止频率人的值达到有效地抑制差模传导干扰的目的。

第十章含耦合电感的电路习题解答.doc

第十章(含耦合电感的电路)习题解答 一、选择题 1.图10—1所示电路的等效电感=eq L A 。 A.8H ; B.7H ; C.15H ; D.11H 解:由图示电路可得 121 d d 2d d ) 63(u t i t i =++, 0d d 4d 221=+t i t i d 从以上两式中消去 t i d d 2 得t i u d d 811=,由此可见 8=eq L H 2.图10—2所示电路中,V )cos(18t u s ω=,则=2i B A 。 A.)cos(2t ω; B.)cos(6t ω; C.)cos(6t ω-; D.0 解:图中理想变压器的副边处于短路,副边电压为0。根据理想变压器原副边电压的关系可知原边的电压也为0,因此,有 A )cos(29 ) cos(18 1t t i ω=ω= 再由理想变压器原副边电流的关系n i i 121= (注意此处电流2i 的参考方向)得 A )cos(612t ni i ω== 因此,该题应选B 。 3.将图10─3(a )所示电路化为图10—3(b )所示的等效去耦电路,取哪一组符号取决于 C 。 A.1L 、2L 中电流同时流入还是流出节点0; B.1L 、2L 中一个电流流入0,另一个电流流出节点0 ; C.1L 、2L 的同名端相对于0点是在同侧还是在异侧,且与电流参考方向无关; D.1L 、2L 的同名端相对于0点是在同侧还是在异侧,且与电流参考方向有关。 解:耦合电感去耦后电路中的M 前面是取“+”还是取“–”,完全取决于耦合电感的同名端是在同侧还是在异侧,而与两个电感中电流的参考方向没有任何关系。因此,此题选C 。

开关电源的电感选择和布局布线

开关电源的电感选择和布局布线 开关电源(SMPS,Switched-Mode Power Supply)是一种非常高效的电源变换器,其理论值更是接近100%,种类繁多。按拓扑结构分,有Boost、Buck、Boost-Buck、Charge-pump等;按开关控制方式分,有PWM、PFM;按开关管类别分,有BJT、FET、IGBT等。本次讨论以数据卡电源管理常用的PWM控制Buck、Boost型为主。 开关电源的主要部件包括:输入源、开关管、储能电感、控制电路、二极管、负载和输出电容。目前绝大部分半导体厂商会将开关管、控制电路、二极管集成到一颗CMOS/Bipolar 工艺的电源管理IC中,极大简化了外部电路。其中储能电感作为开关电源的一个关键器件,对电源性能的好坏有重要作用,同时也是产品设计工程师重点关注和调试的对象。随着像手机、PMP、数据卡为代表的消费类电子设备的尺寸正朝着轻、薄、小巧、时尚的趋势发展,而这正与产品性能越强所要的更大容量、更大尺寸的电感和电容矛盾。因此,如何在保证产品性能的前提下,减小开关电源电感的尺寸(所占据的PCB面积和高度)是本文要讨论的一个重要命题,设计者将不得不在电路性能和电感参数间进行折中(Tradeoff)。 任何事物都具有两面性,开关电源也不例外。坏的PCB布局布线设计不但会降低开关电源的性能,更会强化EMC、EMI、地弹(grounding)等。在对开关电源进行布局布线时应注意的问题和遵循的原则也是本文要讨论的另一重要命题。 一开关电源占空比D、电感值L、效率η公式推导 Buck型和Boost型开关电源具有不同的拓扑结构,本文将使用如图1-1、1-2所示的电路参考模型[1]: 图1-1 Buck电路参考模型 参考电路模型默认电感的DCR(Direct Constant Resistance)为零。

开关电源设计中电感的选择

电子变压器与电感网 https://www.wendangku.net/doc/ab16626974.html,/news/201052.html 开关电源设计中电感的选择 【大比特导读】在开关电源的设计中电感的设计为工程师带来的许多的挑战。 工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的DC电流效应。这也会为选择合适的电感提供必 要的信息。 深入剖析电感电流 ――DC/DC 电路中电感的选择 只有充分理解电感在DC/DC电路中发挥的作用,才能更优的设计DC/DC电路。本文还包 括对同步DC/DC及异步DC/DC概念的解释。 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感 值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的 DC电流效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC滤波电路中的L(C是其中的输出电容)。虽然 这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。 在降压转换中,电感的一端是连接到DC输出电压。另一端通过开关频率切换连接到输 入电压或GND。 在状态1过程中,电感会通过(高边“high-side”)MOSFET连接到输入电压。在状态2 过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式实现电感接地:通 过二极管接地或通过(低边“low-side”)MOSFET接地。如果是后一种方式,转换器就称为 “同步(synchronus)”方式。

现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。 我们利用电感上电压计算公式: V=L(dI/dt) 因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。通过电感的电流如图2所示: 通过上图我们可以看到,流过电感的最大电流为DC电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流:

电路第10章---含有耦合电感的电路汇总

§10.1 互感 耦合电感元件属于多端元件,在实际电路中,如收音机、电视机中的中周线圈、振荡线圈,整流电源里使用的变压器等都是耦合电感元件,熟悉这类多端元件的特性,掌握包含这类多端元件的电路问题的分析方法是非常必要的。 1. 互感 两个靠得很近的电感线圈之间有磁的耦合,如图10.1所示,当线圈1中通电流 i 1 时,不仅在线圈1中产生磁通f 11,同时,有部分磁通 f 21 穿过临近线圈2,同理,若在线圈2中通电流 i 2 时,不仅在线圈2中产生磁通f 22, 同时,有部分磁通 f 12 穿过线圈1,f 12和f 21称为互感磁通。定义互磁链: 图 10.1 ψ12 = N 1φ12 ψ21 = N 2φ21 当周围空间是各向同性的线性磁介质时,磁通链与产生它的施感电流成正比,即有自感磁通链: 互感磁通链: 上式中 M 12 和 M 21 称为互感系数,单位为(H )。当两个线圈都有电流时,每一线圈的磁链为自磁链与互磁链的代数和: 需要指出的是: 1)M 值与线圈的形状、几何位置、空间媒质有关,与线圈中的电流无关,因此,满足

M12 =M21 =M 2)自感系数L 总为正值,互感系数 M 值有正有负。正值表示自感磁链与互感磁链方向一致,互感起增助作用,负值表示自感磁链与互感磁链方向相反,互感起削弱作用。 2. 耦合因数 工程上用耦合因数k 来定量的描述两个耦合线圈的耦合紧密程度,定义 一般有: 当k =1 称全耦合,没有漏磁,满足f11 = f21,f22 = f12。 耦合因数k 与线圈的结构、相互几何位置、空间磁介质有关。 3. 耦合电感上的电压、电流关系 当电流为时变电流时,磁通也将随时间变化,从而在线圈两端产生感应电压。根据电磁感应定律和楞次定律得每个线圈两端的电压为: 即线圈两端的电压均包含自感电压和互感电压。 在正弦交流电路中,其相量形式的方程为 注意:当两线圈的自感磁链和互感磁链方向一致时,称为互感的“增助”作用,互感电压取正;否则取负。以上说明互感电压的正、负: (1)与电流的参考方向有关。

天津理工电路习题及答案第十章含耦合电感电路

第十章 耦合电感和变压器电路分析 一 内容概述 1 互感的概念及VCR :互感、同名端、互感的VCR 。 2 互感电路的分析方法: ①直接列写方程:支路法或回路法; ②将互感转化为受控源; ③互感消去法。 3 理想变压器: ①理想变压器的模型及VCR ; ②理想变压器的条件; ③理想变压器的阻抗变换特性。 本章的难点是互感电压的方向。具体地说就是在列方程时,如何正确的计入互感电压并确定“+、-”符号。 耦合电感 1)耦合电感的伏安关系 耦合电感是具有磁耦合的多个线圈 的电路模型,如图10-1(a)所示,其中L 1、 L 2分别是线圈1、2的自感,M 是两线圈之 间的互感,“.”号表示两线圈的同名端。 设线圈中耦合电感两线圈电压、电流 选择关联参考,如图10-1所示,则有: dt di M dt di L )t (u dt di M dt di L )t (u 1 2222 11 1±=±= 若电路工作在正弦稳态,则其相量形式为: . 1 . 2. 2. 2. 1. 1I M j I L j U I M j I L j U ωωωω±=±= 其中自感电压、互感电压前正、负号可由以下规则确定:若耦合电感的线圈电压与电流的参考方向为关联参考时,则该线圈的自感电压前取正号(如图10-l (a)中所示)t (u 1的自感电压),否则取负号;若耦合电感线圈的线圈电压的正极端与该线圈中产生互感电压的另一线圈的 图10-1

电流的流入端子为同名端时,则该线圈的互感电压前取正号(如图10-l (a)所示中)t (u 1的互感电压),否则取负号(如图10-1(b)中所示)t (u 1的互感电压)。 2)同名端 当线圈电流同时流人(或流出)该对端钮时,各线圈中的自磁链与互磁链的参考方向一致。 2 耦合电感的联接及去耦等效 1)耦合电感的串联等效 两线圈串联如图10-2所示时的等效电感为: M 2L L L 2 1eq ±+= (10-1) (10-1)式中M 前正号对应于顺串,负号对应于反串。 2)耦合电感的三端联接 将耦合电感的两个线圈各取一端联接起来就成了耦合电感的三端联接电路。这种三端联接的电路也可用3个无耦合的电感构成的T 型电路来等效,如图10-3所示 图10-2 图10-3

DCDC 电路中电感的选择

DC/DC 电路中电感的选择 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注与解释:电感上的DC 电流效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC 滤波电路中的L(C 是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。在降压转换中(Fairchild 典型的开关控制器),电感的一端是连接到DC 输出电压。另一端通过开关频率切换连接到输入电压或GND。 在状态1 过程中,电感会通过(高边“high-side”)MOSFET 连接到输入电压。在状态2 过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET 接地。如果是后一种方式,转换器就称为“同步(synchronus)”方式。 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态 1 过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态 2 过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。 我们利用电感上电压计算公式: V=L(dI/dt) 因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。通过电感的电流如图2 所示: 通过上图我们可以看到,流过电感的最大电流为DC 电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流: 其中,ton 是状态1 的时间,T 是开关周期(开关频率的倒数),DC 为状态1 的占空比。 警告:上面的计算是假设各元器件(MOSFET 上的导通压降,电感的导通压降或异步电路中肖特基二极管的正向压降)上的压降对比输入和输出电压是可以忽略的。 如果,器件的下降不可忽略,就要用下列公式作精确计算:

DC-DC开关电源电感选型指南

DC_DC电感选型指南 一:电感主要参数意义 DC-DC外围电感选型需要考虑以下几个参数:电感量L,自谐频率f0,内阻DCR,饱和电流Isat,有效电流Irms。 电感量L:L越大,储能能力越强,纹波越小,所需的滤波电容也就小。但是L 越大,通常要求电感尺寸也会变大,DCR增加。导致DC-DC效率降低。相应的电感成本也会增加。 自谐频率f0:由于电感中存在寄生电容,使得电感存在一个自谐振频率。超过此F0是,电感表现为电容效应,低于此F0,电感才表现为电感效应(阻抗随频率增大而增加)。 内阻DCR:指电感的直流阻抗。该内阻造成I2R的能量损耗,一方面造成DC-DC 降低效率,同时也是导致电感发热的主要原因。 饱和电流Isat:通常指电感量下降30%时对应的DC电流值。 有效电流Irms:通常指是电感表面温度上升到40度时的等效电流值。 二:DC-DC电感选型步骤 1,根据DC-DC的输入输出特性计算所需的最小电感量。 对于Buck型DC-DC,计算公式如下 Lmin=【V out*(1-V out/Vinmax)】/Fsw*Irpp 其中:Vinmax = maximum input voltage Vout = output voltage fsw = switching frequency Irpp = inductor peak-to-peak ripple current 通常将Irpp控制在50%的输出额定电流Irate。则上述公式变化如下: Lmin=2*【V out*(1-V out/Vinmax)】/Fsw*Irate 对于Boost型DC—DC的Lmin电感计算公式如下: Lmin=2*【Vinmax*(1-Vinmax/V out)】/Fsw*Irate 2,根据电感的精度,计算出有一定裕量的电感值例如:对于20%精度的电感,考虑到5%的设计裕量。则Dc-DC所需的电感为 L=1.25*Lmin

耦合电感的去耦等效方法

耦合电感的去耦等效方法的讨论 王胤旭5090309291 琦然5090309306 衎 5090309 摘要:本文主要讨论有公共连接点的两个耦合电感的简单去耦等效方法以及由此衍生的两个特例--耦合电感的串联和并联。并讨论多重耦合电感的去耦相对独立性以及某些含有复杂耦合电感电路的快速去耦等效方法。 1.有公共连接点的耦合电感的去耦等效 图示电路中, 耦合电感L1和L2 有一公共连接点 N, 根据耦合电感的性质, 可得如下方程: ?????+=+=2 21211I I L j MI j U MI j L j U BC AC ωωωω 对于节点N 有KCL 方程:0321=++I I I 上面两式整理得:2 2113 223 11)()()()(I M L j I M L j U U U MI j I M L j U MI j I M L j U BC AC AB BC AC ---=-=--=--=ωωωωωω 故可得其等效去耦电路如图2所示。 图1 耦合电感

图2 等效去耦后的电感 上述去耦过程可以用文字表述如下: 1)设互感为M 的两耦合电感具有公共的连接点(假设其同名端相连)且连接点处仅含 有三条支路, 则其去耦规则为: 含有耦合电感的两条支路各增加一个电感量为- M 的附 加电感; 不含耦合电感的另一条支路增加一个电感量为- M 的附加电感。 若为非同名端连接,只需将上述电感量M 改变符号即可。 2)若连接处含有多条支路, 则可以通过节点分裂, 化成一个在形式上仅含三条支路的节 点。 2.两个特例----耦合电感的串联和并联 2. 1 两耦合电感串联 1)若同名端连接于同一节点(即电流从异名端流入), 则构成反接串联,计算公式: M L L L eq 221-+=; 2)若非同名端连接于同一节点(即电流从同名端流入), 则构成顺接串联,计算公式: M L L L eq 221++=; 2. 2 两耦合电感的并联 1)若同名端连接于同一节点, 则构成同侧并联,计算公式:M L L M L L L eq 2212 21-+-=; 2)若非同名端连接于同一节点, 则构成异侧并联,计算公式:M L L M L L L eq 2212 21++-=;

相关文档
相关文档 最新文档