文档库 最新最全的文档下载
当前位置:文档库 › 轻负荷时期高压电缆充电功率对电网无功平衡的影响分析

轻负荷时期高压电缆充电功率对电网无功平衡的影响分析

轻负荷时期高压电缆充电功率对电网无功平衡的影响分析
轻负荷时期高压电缆充电功率对电网无功平衡的影响分析

2. 火电机组功率突降切机保护涉网技术要求

附件2 火电机组功率突降切机保护涉网技术要求 1 机组功率突降切机保护功能 1.1 机组功率突降切机保护功能在下列情况下应能正确动作: a)系统故障或异常,导致机组与系统间的输电通道断开;具体工况: Ⅰ)单回线路不对称故障及永久故障跳闸; Ⅱ)双回线路相继故障跳闸; Ⅲ)系统振荡(振荡周期300~2000ms)过程中单回线路不对称故障及永久故障跳闸; Ⅳ)系统振荡(振荡周期300~2000ms)过程中双回线路相继故障跳闸。 b)安稳系统动作,导致机组与系统间的输电通道断开; 具体工况: 系统振荡(振荡周期300~2000ms),安稳系统动作解列。 c)断路器偷跳、误碰、手跳,导致机组与系统间的输电通道断开; 具体工况: 机组与系统未发生故障,电厂出线本侧及对侧解列。 d)其他原因造成的发电厂输电通道断开。

1.2 机组功率突降切机保护功能在汽轮发电机组正常调节、停机、热工保护动作或系统扰动等非机组解列情况下不应误动,主要包括下列情况: a)机组正常起机、并网、调节、停机; b)机组进相、迟相运行; c)交流系统故障或异常,机组与系统间的输电通道未断开;具体工况: Ⅰ)系统故障持续2000ms; Ⅱ)单回线路故障重合成功; Ⅲ)双回线路相继故障,双回线路及一回线路重合成功;Ⅳ)电厂及送出线以外系统故障期间,单回线路故障重合成功。 d)直流系统扰动,机组与系统间的输电通道未断开; 具体工况: Ⅰ)直流系统送端电厂孤岛运行或与交流系统弱联系,直流系统发生故障再启动; Ⅱ) 直流系统送端电厂孤岛运行或与交流系统弱联系,直流系统发生因交流系统故障导致的换相失败。 e)系统振荡,机组与系统间的输电通道未断开; 具体工况: 系统振荡,振荡周期300~2000ms。 f)系统负荷投切;

负荷计算及无功补偿

第三章 负荷计算及无功补偿 广东省唯美建筑陶瓷有限公司 刘建川 3.1 负荷曲线与计算负荷 负荷曲线(load curve )是指用于表达电力负荷随时间变化情况的函数曲线。在直角坐标糸中,纵坐标表示负荷(有功功率和无功功率)值,横坐标表示对应的时间(一般以小时为单位) 日负荷曲线 年负荷曲线 年每日最大负荷曲线 年最大负荷和年最大负荷利用小时数 3.1.2 计算负荷 计算负荷是按发热条件选择电气设备的一个假定负荷,其物理量含义是计算负荷所产生的恒定温升等于实际变化负荷所产生的最高温升。通常将以半小时平均负荷依据所绘制的负荷曲线上的“最大负荷”称为计算负荷,并把它作为按发热条件选择电气设备的依据。 3.2 用电设备额定容量的确定 3.2.1 用电设备的一作方式 (1)连续工作方式 在规定的环境温度下连续运行,设备任何部份温升不超过最高允许值,负荷比较稳定。 (2)短时运行工作制 (3)断续工作制 用电设备以断续方式反复进行工作,其工作时间与停歇时间相互交替。取一个工作时间内的工作时间与工作周期的百分比值,称为暂载率,即 *100%%100%0 t t T t t ε==+ 暂载率亦称为负荷持续率或接电率。根据国家技术标准规定,重复短暂负荷下电气设备的额定工作周期为10min 。吊车电动机的标准暂载率为15%、25%、40%、60%四种,电焊设备的标准暂载率为50%、65%、75%、100%,其中草药100%为自动焊机的暂载率。 3.2.2 用电设备额定容量的计算 (1)长期工作和短时工作制的设备容量 等于其铭牌一的额定功率,在实际的计算中,少量的短时工作制负荷可忽略不计。 (2)重复短时工作制的设备容量 ○ 1吊车机组用电动机的设备容量统一换算到暂载率为ε=25%时的额定功 率,若不等于25%,要进行换算,公式为:2Pe Pn ==Pe 为换算到ε=25%时的电动机的设备容量 εN 为铭牌暂载率

三相不平衡的原因、危害以及解决措施!

三相不平衡就是电能质量得一个重要指标,虽然影响电力系统得因素有很多,但正常性不平衡得情况大多就是因为三相元件、线路参数或负荷不对称。由于三相负荷得因素就是不一定得,所以供电点得三相电压与电流极易出现不平衡得现象,损耗线路。不仅如此,其对供电点上得电动机也会造成不利得影响,危害电动机得正常运行。 配电网三相不平衡得原因 1、三相负荷得不合理分配。 很多得装表接电得工作人员并没有专业得对于三相负荷平衡得知识概念,因此在接电得时候并没有注意到要控制三相负荷平衡,只就是盲目与随意得进行电路得接电荷装表,这在很大程度上造成了三相负荷得不平衡。 其次,我国得大多数电路都就是动力与照明混为一体得,所以在使用单相得用电设备时,用电得效率就会降低,这样得差异进一步加剧了配电变压器三相负荷得不平衡状况。 2、用电负荷得不断变化。 造成用电负荷不稳定得原因包括了地II经常出现得拆迁,移表或者用电用户得增加; 临时用电与季节性用电得不稳定性。这样在总量上与时间上得不确定与不集中性使得用电得负荷也不得不跟随实际情况而变化。 3、对于配变负荷得监视力度得削弱。 在配电网得管理上,经常会忽略三相负荷分配中得管理问题。在配电网得检测上,对配电变压器得三相负荷也没有进行定期得检测与调整。 除此之外,还有很多因素造成了三相不平衡得现象,例如线路得影响以及三相负荷矩得不相等等。 三相不平衡得危害 1、增加线路得电能损耗 在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流得平方成正比。 当低压电网以三相四线制供电时,由于有单相负载存在,造成三相负载不平衡在所难免。 当三相负载不平衡运行时,中性线即有电流通过。这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路得损耗。 2、增加配电变压器得电能损耗 配电变压器就是低压电网得供电主设备,当其在三相负载不平衡工况下运行时,将会造成配变损耗得增加。因为配变得功率损耗就是随负载得不平衡度而变化得。 3、配变出力减少 配变设计时,其绕组结构就是按负载平衡运行工况设计得,其绕组性能基本一致,各相额定容量相等。配变得最大允许出力要受到每相额定容量得限制。 假如当配变处于三相负载不平衡工况下运行,负载轻得一相就有富余容量,从而使配变得出力减少。其出力减少程度与三相负载得不平衡度有关。

三相不平衡技术方案

BF-TSF三相不平衡动态无功补偿装置 技术方案 概述:目前,学校、商场、宾馆、饭店及综合办公楼等场所的用电情况,使用的多为单相(220V)电感性电器。单相负荷已经在低压配电网中占有相当大的比例,由于单相负荷投入的不同时性以及在低压电网建设改造和运行维护的不到位,导致了低压配电网三相负荷分配不平衡,由此对低压配电网的运行造成了一定的影响,本文对此进行了原因分析并提出一些切实可行的解决措施。,因自身功率因数较低,需要进行无功自动补偿,文章通过对无功自动补偿的性质和安装位置的分析,结合实际工程采用的情况,说明了在上述范围内(三相负载不平衡配电系统)采用分相分组电容补偿比其他补偿方式具有明显的实际效果和无可比拟的优越性。 当前城乡配电网中大部分配电变压器均采用三相变压器,变压器出口三相负荷理论上应该达到对称,但是在低压配电网中存在大量的单相负荷,由于单相负荷分布的不均衡和投入的时间不同时性,使得三相负荷不平衡成为低压电网运行维护中一个比较突出的问题,笔者从电能质量和电网损耗两个方面来分析三相负荷不平衡所带来的影响,同时就此提出一些切实可行的解决措施. 1 三相负荷不平衡产生对电能质量的影响分析 目前在10千伏配变的绕组接线都采用Dyn0或者采用Yyn0的接线方式,配变一次绕组无中性线、二次绕组中性线接地,并接有零线。在二次低压供电方式中一般采取3相4线制供电。配变低压侧3相负荷不平衡直接体现在3相负荷电流的不对称,从电机学的原理来分析3相不对称电流可以分解为对称的正序、负序、零序电流,也可以简单的看成是对称的3相负荷加上单相负荷负荷的叠加。由于配电变压器的一次绕组没有中性线,所以在二次绕组侧产生的零序电流无法在一次绕组中平衡,零序电流在零序电阻上产生电压降直接导致了在配变二次侧产生了中性点位置偏移。 同样根据简单的电路原理也可以分析出,由于在A、B、C相的负荷不等,所以在A、B、C三相上的电流也就不等,那么A、B、C三相电流矢量和一般不等于0,也就是在中性线上的电流一般不等于0,也即零线电流一般不等于0,在实际情况下,零线的电阻是不等于0的, 这样在零线上就存在电压,形成了中性点位移,导致了A、B、C相的相电压不对称,当某一相上接的负荷越大,这一相上的电压也就越低,而另外两相的电压将变高,所以当三相负荷的差值越大,也就是三相负荷的电流不平衡度越大,那么中性点的位移也就越大,所以导致电压的偏差也就越大。在城区配网中大多数低压负荷为照明和家用电器,这些都是单相负荷,同时用户的单相负荷的启用时间又不同时,所以三相电流的不平衡将会很明显,导致了某些用户的电压偏低,有些用户的电压偏高,特别是在夏天用电高峰期间,我们发现在有些配变的某一相上接了多台空调,在同时启动是就会产生单相电流严重超过其他两相,导致该相上的电压偏低,使有些用户的电器无法启动。这就是3相负荷不平衡导致3相电流、电压出现不对称的产生的原因。 2 三相负荷不平衡对线损的影响分析: 2.1 三相负荷不平衡造成低压线路电能损耗增大。

无功补偿及电能计算

北极星主页 | 旧版 | 电力运营 | 电信运营 | 工业控制 | 电子技术 | 仪器仪表 | 大学院校 | 科研院所 | 协会学会新闻中心| 技术天地| 企业搜索| 产品中心| 商务信息| 人才招聘| 期刊媒体| 行业展会| 热点专题| 论坛| 博客| 高级搜索 帐号 密码 个人用户注册企业免费注册 能源工程 ENERGY ENGINEERING 2003年第1卷第1期 工矿企业无功补偿技术及其管理要求 方云翔 (浙江信息工程学校,湖州 313000)

摘要:分析了工矿企业采用无功补偿技术的必要性,介绍了无功补偿方式的确定及补偿容量的计算方法,并论述了加强无功补偿装置管理、提高运行效率应注意的问题。 关键词:无功补偿;技术管理;工矿企业 1 前言 供电部门在向用电单位(以下简称用户)输送的三相交流功率中,包括有功功率和无功功率两部分。将电能转换成机械能、热能、光能等那一部分功率叫有功功率,用户应按期向供电部门交纳所用有功电度的电费;无功功率为建立磁场而存在并未做功,所以供电部门不能向用户收取无功电度电费,但无功功率在输变电过程中要造成大量线路损耗和电压损失,占用输变电设备的容量,降低了设备利用率。因此,供电部门对输送给用户的无功功率实行限制,制订了功率因数标准,采用经济手段———功率因数调整电费对用户进行考核。用户功率因数低于考核标准,调整电费是正值,用户除了交纳正常电费之外,还要增加支付调整电费(功率因数罚款);用户功率因数高于考核标准,调整电费是负值,用户可以从正常电费中减去调整电费(功率因数奖励)。 用电设备如变压器、交流电动机、荧光灯电感式镇流器等均是电感性负荷,绝大多数用户的自然功率因数低于考核标准,都要采取一些措施进行无功补偿来提高功率因数。安装移相电力电容器是广大用户无功补偿的首选方案。 2 无功补偿的经济意义 2.1 提高输变电设备的利用率 有功功率

分析主变纵差动保护不平衡电流原因及解决方法

分析主变纵差动保护不平衡电流原因及解 决方法 摘要:本文从对变压器纵差保护原理进行阐述的基础上,较详细地分析了纵差保护不平衡电流的形成原因,并提出了解决变压器纵差保护中不平衡电流的方法。 关键词:主变;纵差保护;不平衡电流;解决方法 前言:纵差动保护是变电站主变压器的主保护,它灵敏度高、选择性好,在变压器保护上运用较为成功。但是变压器纵差保护一直存在励磁涌流难以鉴定的问题,虽然已经有几种较为有效的闭锁方案,又因为高压输电线路长度的增加、静止无功补偿容量的增大以及变压器硅钢片工艺的改进、磁化特性的改善等因素,使得变压器纵差保护所固有原理性矛盾更加突显。 一、变压器纵差保护原理 纵差保护作为变压器内部故障的主保护,将有许多特点和困难。变压器具有两个或更多个电压等级,构成纵差保护所用电流互感器的额定参数各不相同,由此产生的纵差保护不平衡电流将比发电机的大得多,纵差保护是利用比较被保护元件各端电流的幅值和相位的原理构成的,根据KCL基本定理,当被保护设备无故障时恒有各流入电流之和必等于各流出电流之和。当被保护设备内部本身发生故障时,短路点成为一个新的端子,此时电流大于“0”,但是实际上在外

部发生短路时还存在一个不平衡电流。事实上,外部发生短路故障时,因为外部短路电流大,特别是暂态过程中含有非周期分量电流,使电流互感器的励磁电流急剧增大,而呈饱和状态使得变压器两侧互感器的传变特性很难保持一致,而出现较大的不平衡电流。因此采用带制动特性的原理,外部短路电流越大,制动电流也越大,继电器能够可靠制动。 另外,由于纵差保护的构成原理是基于比较变压器各侧电流的大小和相位,受变压器各侧电流互感器以及诸多因素影响,变压器在正常运行和外部故障时,其动差保护回路中有不平衡电流,使纵差保护处于不利的工作条件下。为保证变压器纵差保护的正确灵敏动作,必须对其回路中的不平衡电流进行分析,找出产生的原因,采取措施予以消除。 二、纵差保护不平衡电流分析 1、稳态情况下的不平衡电流 变压器在正常运行时纵差保护回路中不平衡电流主要是由电流互感器、变压器接线方式及变压器带负荷调压引起。 (1)由电流互感器计算变比与实际变比不同而产生。正常运行时变压器各侧电流的大小是不相等的。为了满足正常运行或外部短路时流入继电器差动回路的电流为零,则应使高、低压两侧流入继电器的电流相等,即高、低侧电流互感器变比的比值应等于变压器的变比。但是,实际上由于电流

电力系统无功功率平衡与电压调整

电力系统无功功率平衡与电压调整 由于电力系统中节点很多,网络结构复杂,负荷分布不均匀,各节点的负荷变动时,会引起各节点电压的波动。要使各节点电压维持在额定值是不可能的。所以,电力系统调压的任务,就是在满足各负荷正常需求的条件下,使各节点的电压偏移在允许范围之内。 由综合负荷的无功功率一电压静态特性分析可知,负荷的无功功率是随电压的降低而减少的,要想保持负荷端电压水平,就得向负荷供应所需要的无功功率。所以,电力系统的无功功率必须保持平衡,即无功功率电源发出的无功功率要与无功功率负荷和无功功率损耗平衡。这是维持电力系统电压水平的必要条件。 一、无功功率负荷和无功功率损耗 1.无功功率负荷 无功功率负荷是以滞后功率因数运行的用电设备(主要是异步电动机)所吸收的无功功率。一般综合负荷的功率因数为0.6~O.9,其中,较大的数值对应于采用大容量同步电动机的场合。 2.电力系统中的无功损耗 (1)变压器的无功损耗。变压器的无功损耗包括两部分。一部分为励磁损耗,这种无功损耗占额定容量的百分数,基本上等于空载电流百分数0I %,约为1%~2%。因此励 磁损耗为 0/100Ty TN Q I S V (Mvar)(5-1-1)

另一部分为绕组中的无功损耗。在变压器满载时,基本上等于短路电压k U 的百分值,约 为10%这损耗可用式(6-2)求得 2(%)()100k TN TL Tz TN U S S Q S V (Mvar)(5-1-2) 式中,TN S 为变压器的额定容量(MVA);TL S 为变压器的负荷功率(MVA)。 由发电厂到用户,中间要经过多级变压,虽然每台变压器的无功损耗只占每台变压器容量的百分之十几,但多级变压器无功损耗的总和可达用户无功负荷的75%~100%左右。 (2)电力线路的无功损耗。电力线路上的无功功率损耗也分为两部分,即并联电纳和串联电抗中的无功功率损耗。并联电纳中的无功损耗又称充电功率,与电力线路电压的平方成正比,呈容性。串联电抗中的无功损耗与负荷电流的平方成正比,呈感性。因此电力线路作为电力系统的一个元件,究竟是消耗容性还是感性无功功率,根据长线路运行分析理论,可作一个大致估计。对线路不长,长度不超过100km ,电压等级为220kV 电力线路,线路将消耗感性无功功率。对线路较长,其长度为300km 左右时,对220kV 电力线路,线路基本上既不消耗感性无功功率也不消耗容性无功功率,呈电阻性。大于300km 时,线路为电容性的。 二、系统综合负荷的电压静态特性 电力系统中某额定功率的用电设备实际吸收的有功功率和无功功率的大小是随电力网的电压变化而变的,尤其是无功功率受电压的影响很大。电力系统综合负荷的电压静态

简述三相不平衡对电力系统的影响及改善措施

简述三相不平衡对电力系统的影响及改善措施 摘要:随着电力系统的发展,电网的三相负荷不平衡现象日益突出。当三相负荷分布不对称时,除了可能导致旋转电机转子发热损坏、继电保护误动作、大负荷相设备过负荷等危害外,还将引起配电网线损的严重增加。这种增加有时数倍于三相负荷对称分布的线损。采取切实可行、经济合理的补偿抑制措施,提高其电能质量确保系统的安全、可靠和经济运行。 关键词:三相不平衡危害措施 1造成三相不平衡的主要原因 造成三相不平衡的主要原因是大容量非对称负荷的接入和电网 中的谐波分量。电力机车和电弧炉是一个典型的非对称负载。交流电气化铁路在国内是从电力系统110kv(220千伏)电力机车牵引变压器降压到27.5千伏(55千伏)后向牵引和电力机车单相供电,因电力机车为大功率单相整流拖动负荷,牵引变压器中将会产生负序电流和负序电压。除含基波成分外,还含谐波成分,因此实际上系统负序分量也将含谐波,但是基波成分占主要部分,特别是采取一定的滤波措施以后仍然如此。此外,牵引负荷具有波动性大和沿线分布广的特点,针对电力系统来说,电气化铁路牵引负荷属于非线性不平衡负载的动态干扰。交流电弧炉炼钢由于技术和经济的优势,发展迅速。单机容量从过去的几吨到三四百吨,电弧炉变压器从几百兆伏安提高到100-200mva。电弧炉炼钢的冶炼周期为1.5-6

小时,这主要取决于电弧炉的类型,规模和工艺,在这段时间内,对电网产生很多的不利影响。包括有功功率和无功功率冲击引起的电压波动和闪变、电弧的非线性导致的大量谐波注入电网等。 2 三相不平衡的主要危害 2.1 三相不平衡对发电机的影响发电机定子绕组有负序电流时,在转子表面(例如,大齿,小齿,槽楔,护环等),阻尼绕组和励磁绕组中引起的两倍电源频率的电流。汽轮发电机转子是单一锻成体。具有很强的阻尼作用,所以二倍频率电流的励率电流在励磁绕组中感应的分量很小;又因二倍频电流有较强的集肤效应,对转子表面的渗透深度仅几毫米,流通路径中等价有功电阻较大。故而发电机在不对称运行时,转子表面产生的附加损耗可能就会很大。发生不对称故障时,定子直流分量会在转子表面产生工频电流的影响。它在转子表面的渗透深度比二倍频电流深引起附加温升。发电机不对称运行时,定子电流中最大相电流可能超过额定值,转子表面感应的二倍频电流密度很大,转子表面谐波附加损耗与二倍频电流所产生的损耗相叠加,将导致转子结构件,特别是护环与转子本体嵌装面、边段槽楔与小齿接触面以及大齿横向槽两端过热甚至烧损。 2.2 使三相电压不平衡,中性点电位漂移规程规定:“配电变压器在运行中,其中性线的电流不得高于配电变压器的出口电流的25%”,当变压器在正常的三相平衡负载的运行状况时,在理想的情

一起110kV主变直阻不平衡率超标的原因分析及处理

龙源期刊网 https://www.wendangku.net/doc/a016849269.html, 一起110kV主变直阻不平衡率超标的原因分析及处理 作者:刘波 来源:《科技风》2016年第17期 摘要:在日常电力输送及供应当中,变压器直流电阻测试是主变测试的主要项目,是综 合判断变压器故障的主要依据。本文就对我公司一起主变直阻不平衡率超标故障的原因进行了分析,并提出了一些解决措施,为后期管理提供基础保障。 关键词:变压器;高压绕组;不平衡率;直流电阻 1 背景概况 电力变电器绕组直流电阻测试是变压器交接、例试及大修后必不可少的重要试验项目之一,通过测试它能有效反映变压器绕组匝间短路、绕组断股、分接开关以及导线接头接触不良等故障,也是判断三相绕组直流电阻是否平衡,调压分接开关档位指示是否正确有效手段。 2 试验异常情况 电气试验工作人员在进行1号主变例行试验时发现高压侧直流电阻三相不平衡系数超标,每一档不平衡率都达到4%左右,按规定:有中性点引出线时,各相绕组电阻同一温度的相互差异应在2%之内,此外在同一温度下各相电阻的初值差不超过±2%,从测试数据可知,三相不平衡系数超标原因可能是CO相直流电阻偏大,检测数据如表1、表2所示: 3 故障查找及原因分析 3.1 试验仪器方面 主变高压侧直流电阻测试三相不平衡率达到4%左右,这在我们平常的主变试验中比较少见,我们首先对所用仪器测试数据的稳定性进行了排查,将测试线夹调换至中压侧并对其各相直流电阻进行测试,数据显示三相不平衡率合格,如表3所示,故排除试验仪器问题。 3.2 高压侧中性点引线接触不良的影响 为了排除高压侧中性点引线与三相绕组末端接触不良造成的影响,在高压侧选一档位,将测试线夹接至任意两相线端,测量线间直流电阻,共测三次(AB/BC/CA),然后按照计算公式可以算出各相的实际阻值,测试结果如表4所示:

电力系统的无功优化与无功补偿

电力系统的无功优化和无功补偿 摘要:电力系统的无功优化和无功补偿是提高系统运行电压,减小网损,提高系统稳定水平的有效手段。本文对当前国内外的无功优化和无功补偿进行了总结,对目前无功补偿和优化存在的问题进行了一定的探讨和研究。 关键词:无功优化无功补偿非线性网损电压质量 1前言 随着国民经济的迅速发展,用电量的增加,电网的经济运行日益受到重视。降低网损,提高电力系统输电效率和电力系统运行的经济性是电力系统运行部门面临的实际问题,也是电力系统研究的主要方向之一。特别是随着电力市场的实行,输电公司(电网公司)通过有效的手段,降低网损,提高系统运行的经济性,可给输电公司带来更高的效益和利润。电力系统无功功率优化和无功功率补偿是电力系统安全经济运行研究的一个重要组成部分。通过对电力系统无功电源的合理配置和对无功负荷的最佳补偿,不仅可以维持电压水平和提高电力系统运行的稳定性, 而且可以降低有功网损和无功网损,使电力系统能够安全经济运行。 无功优化计算是在系统网络结构和系统负荷给定的情况下,通过调节控制变量(发电机的无功出力和机端电压水平、电容器组的安装及投切和变压器分接头的调节)使系统在满足各种约束条件下网损达到最小。通过无功优化不仅使全网电压在额定值附近运行,而且能取得可观的经济效益,使电能质量、系统运行的安全性和经济性完美的

结合在一起,因而无功优化的前景十分广阔。无功补偿可看作是无功优化的一个子部分,即它通过调节电容器的安装位置和电容器的容量,使系统在满足各种约束条件下网损达到最小。 2无功优化和补偿的原则和类型 2.1无功优化和补偿的原则 在无功优化和无功补偿中,首先要确定合适的补偿点。无功负荷补偿点一般按以下原则进行确定: 1)根据网络结构的特点,选择几个中枢点以实现对其他节点电压的控制; 2)根据无功就地平衡原则,选择无功负荷较大的节点。 3)无功分层平衡,即避免不同电压等级的无功相互流动,以提高系统运行的经济性。 4)网络中无功补偿度不应低于部颁标准0.7的规定。 2.2无功优化和补偿的类型 电力系统的无功补偿不仅包括容性无功功率的补偿而且包括感性无功功率的补偿。在超高压输电线路中(500kV及以上),由于线路的容性充电功率很大,据统计在500kV每公里的容性充电功率达1.2Mvar/km。这样就必须对系统进行感性无功功率补偿以抵消线路的容性功率。如实际上,电网在500kV的变电所都进行了感性无功补偿,并联了高压电抗和低压电抗,使无功在500kV电网平衡。 3 输配电网络的无功优化(闭式网)

第5章 电力系统的无功功率平衡和电压调整.

第5章 电力系统的无功功率平衡和电压调整 一、填空题 1.电力系统的无功电源除了发电机,还有各种类型的 装置。 2.输电线路两端电压差值越大,则流过的无功功率也就越 (填“大”或“小”)。 3.电力系统的无功平衡是指各种无功电源供给的无功功率要与 和_____________相平衡。同时,为了保证运行的可靠性和电能质量,以及适应负荷的发展,还必须具备一定的 。 4.电力系统中的无功损耗主要包括 的无功损耗和 的无功损耗。 5.电力系统的无功电源有 、 、 、_____________和 等。 6. 电力系统电压的监视和调整通常只选择一些关键性的母线(节点)来完成,这些关键性的母线称为 。 7.中枢点的调压方式分为 、 和 三类。 8.在整个电力系统普遍缺少无功的情况下, (填“能”或“不能”)采用改变变压器分接头的方法提高所有用户的电压水平。 9.在负荷水平较低时,应 (填“增加”或“减少”)并联运行的变压器台数,以_________(填“升高”或“降低”)二次母线电压。 10. 如下图所示,A U ?、B U ? 分别为线路AB 两端的电压相量,由此可知:线路中有功功率的流向为 ;感性无功功率的流向为 。 11.电力系统中某两个相邻节点a 、b 的电压分别为kV U a 2228∠=?,kV U b 5192∠=?,该两个节点之间P 的流向为 ,感性无功Q 的流向为 。 二、选择题 1.关于输电线路上有功功率和无功功率的传输方向,下列说法正确的是( ) A.有功功率从电压相角超前的一端流向电压相角滞后的一端,无功功率从电压幅值较大的一端流向电压幅值较小的一端 B.有功功率从电压相角滞后的一端流向电压相角超前的一端,无功功率从电压幅值较小的一端流向电压幅值较大的一端 C.有功功率从电压幅值较大的一端流向电压幅值较小的一端,无功功率从电压相角超前的一端流向电压相角滞后的一端 D.有功功率从电压幅值较小的一端流向电压幅值较大的一端,无功功率从电压相角滞后的一端流向电压相角超前的一端 2.中枢点的三种调压方式中,实现难度最大的是( ) A.顺调压 B.逆调压 C.恒调压 D.无法判断 3.当整个系统缺乏无功电源时,可采取以下哪些调压措施( ) (1)改变变压器变比调压 (2)串联电容补偿调压 A B B

低压配电网三项负荷不平衡分析与防控措施

低压配电网三项负荷不平衡分析与防控措施 发表时间:2018-08-13T14:27:00.653Z 来源:《基层建设》2018年第19期作者:高艺卓赵雪云[导读] 摘要:在低压配电网中,三相电路的负载是处于不断变化的,特别是在农村电网中,由于农村用户的用电时间差异很大,单相负载较多,造成不平衡的情况尤为突出,给变压器的运行带来很大的负担,情况严重时将会直接烧毁变压器,降低了电网系统的安全性和可靠性。 国网营口供电公司盖州供电分公司辽宁省营口市 115000 摘要:在低压配电网中,三相电路的负载是处于不断变化的,特别是在农村电网中,由于农村用户的用电时间差异很大,单相负载较多,造成不平衡的情况尤为突出,给变压器的运行带来很大的负担,情况严重时将会直接烧毁变压器,降低了电网系统的安全性和可靠性。当配网系统长期处于不平衡状态时,许多供电设备以及用电设备的安全运行将会大打折扣,供电企业的经济效益亏损,用户的生命财产安全在一定程度上受到威胁。本文主要针对低压配电网三项负荷不平衡分析与防控措施进行简要分析。 关键词:低压配电网;三项负荷;不平衡;防控措施 1装置系统设计 装置的基本原理是先检测三相的负载电流,再将带载多的某相电流补偿到带载少的那一相,达到三相平衡。具体是通过外部电流互感器CT,实时检测负载电流,并通过DSP计算,来分析负载中的三相不平衡程度,然后根据设置值来控制PWM信号发生器发出控制信号给内部IGBT,使逆变器产生满足要求的无功补偿电流,最终达到补偿三相不平衡的目的。主电路采用的是T型三电平拓扑,该拓扑由三个同样的单相T型IGBT模块组成,A,B,C三相分别有一套T型IGBT模块,该主电路拓扑图如图1:由于A,B,C三相的IGBT模块完全一样,其工作方式完全一致,仅仅是相差120度,其中单相T型IGBT模块的工作状态可有图2分析出。通过DSP控制IGBT的关断来使装置工作在整流或逆变状态。单相T字型IGBT模块单相拓扑如图2所示。 图1 系统主电路拓扑图 图2 单相T型三电平主电路拓扑图 2低压配电网三相负荷不平衡的成因及危害分析 2.1形成原因 由于受到一些原因的影响,如低压配电线路布局不合理、管理维护不到位、三相动力用户负荷性质不同等等,从而导致配电台区三相负荷不平衡。对三相负荷进行分配的过程中,因未对用户的单体负荷容量加以了解,只是从用户的实际户数进行初步分配,虽然从表面上,这种分配方式达到了平均性的要求,但事实上却存在较大的偏差,很容易引起三相负荷不平衡的情况;在单相供电模式下,线路的长度不断增加,单相负荷也随之提升,由此也会造成三相负荷不平衡;对于一些用户比较少的台区,有的用户常常会使用功率较大的电器设备,如空调、电磁炉等等,这样容易使原本处于基本平衡的三相负荷被打破;新增用户时,没有充分考虑三相负荷不平衡这一因素,随意将用户接入到配电台区中,致使三相负荷不平衡。 2.2潜在危害 三相负荷不平衡具有动态变化大的特点,并且在直观上很难发现,故此它的存在对于整个低压配电网而言,有着潜在的危害,如会导致配电线路上的损耗增加;会引起变压器油质劣化、绕组过热、变压器的绝缘性能降低、造成高压线路过流跳闸;当三相负荷不平衡时,会产生出零序电压,从而使配变供电中性点漂移,形成一相电压过低、另一相电压过高的情况。 3低压配电网三相负荷不平衡的防控措施 3.1三相调平 三相调平是解决低压配电网三相负荷不平衡较为有效的途径之一,在对三相进行调平的过程中,存在一个难点问题,即如何以用户实际用电量对分相进行调整,从而实现三相之间用电量的相对一致。在对算法进行设计的过程中,需要着重考虑的问题是如何根据用电量对三相待调相的用户用电接入数据进行组合排序,并建立与之相关的数据模型,对用电量偏高和偏低的用户进行重组调相,从而使调整后分相间用电量的均值到达总体用电平均值水平。

变压器三相负荷不平衡原因分析及防范措施

变压器三相负荷不平衡原因分析及防范措施 发表时间:2018-06-11T15:06:54.410Z 来源:《河南电力》2018年2期作者:张璇 [导读] 变压器三相负荷不平衡,可能使低压电网的三相负荷不平衡度加大,这不仅关系到供电可靠性和稳定性,还会增加低压线路线损,使变压器出力下降。 (国网山西省电力公司太原供电公司山西太原 030012) 摘要:变压器三相负荷不平衡,可能使低压电网的三相负荷不平衡度加大,这不仅关系到供电可靠性和稳定性,还会增加低压线路线损,使变压器出力下降。因此变压器台区三相负荷不平衡问题应当引起重视。 关键词:变压器三相负荷不平衡;原因;防范措施 一、变压器三相负荷不平衡引起的麻烦 某地区多个台变多次出现一相总熔断器熔丝烧断的情况,利用用电采集系统采集配变的三相负荷数据,均为三相负荷不平衡引起,随着夏季用电负荷的不断增加,这种不平衡的情况也突显出来,随之带来抢报修以及服务热线诉求工单的数量猛增,给企业的优质服务带来影响。 在线损合格台区整改提高工作中也发现,因三相负荷的不平衡也会造成台区线损率的增加。在三相负荷不平衡度较大的情况下,在配电变压器中性点不接地或接地电阻达不到技术要求时,中性点将发生位移造成中性线带有一定的电压,从而加大线路电压的电压降,降低功率的输出,线路供电电压偏低,尤其是线路末端的电压远远超出电压降的允许范围,直接导致用户的用电设备不能正常工作,电气效能降低,同时极大的增加了低压线损率。通过用电采集系统提供的相关数据证明,一般情况下三相负荷不平衡可引起低压线损率升高2%~10%,三相负荷不平衡度若超过15%,则线损率显著增加,不平衡度越高对低压线损率的影响越大,如不平衡度超过30%,通过计算影响低压线损可以达到3%~6%。而事实上由于城乡用户受经济条件的制约和家用电器普及率的逐年提高,三相负荷不平衡度情况越来越严重,目前通过用电采集系统提供的数据计算,每天三个用电高峰期三相负荷不平衡度超过10%的占总综合变台区的60%,不平衡度超20%的台区数占总台区的40%,不平衡度超过30%的台区数占台区的26%。不平衡度越大的台区供电线路末端用户普遍反映电压偏低,而低压线损率也普遍反映较大。在低压三相负荷不平衡度的影响下,使配电变压器处于不对称运行状态,造成配电变压器的负载损耗和空载损耗增大,而影响到10kV线损率。 二、三相不平衡对变压器的影响 (1)三相不平衡将增加变压器的损耗 变压器的损耗包含空载损耗和负荷损耗,正常情况下变压器运行电压基本不变,即空载损耗是一个恒量。而负荷损耗则随着变压器运行负荷的变化而变化,且与负荷电流的平方成正比。当三相负荷不平衡运行时,变压器的负荷损耗可看成三只单相变压器的负荷损耗之和。 (2)三相不平衡降低了配电变压器的出力 配电变压器容量的设计和制造是以三相负载平衡条件确定的,如果三相负载不平衡,配电变压器的最大出力只能按三相负载中最大一相不超过额定容量为限,负荷轻的相就有富裕容量,从而使配电变压器出力降低。例如100kVA配电变压器,二次额定电流为144A,若Ia为144A,Ib、Ic分别为72A,配电变压器的出力只有67%。 (3)三相不平衡可能造成烧毁变压器的严重后果 上述不平衡时重负荷相电流过大(增为3倍),超载过多,可能造成绕组和变压器油的过热。绕组过热,绝缘老化加快;变压器油过热,引起油质劣化,迅速降低变压器的绝缘性能,减少变压器的寿命。(温度每增加8度,使用年限将减少一半,甚至烧毁绕组。 (4)三相负荷不平衡运行会造成变压器零序电流过大,局部金属件温升增高 在三相负荷不平衡运行下的变压器,必然会产生零序电流,而变压器内部零序电流的存在,会在铁芯中产生零序通磁,这些零序通磁就会在变压器的油箱壁或其它金属构件中构成回路。但配电变压器设计时不考虑这些金属构件为导磁部件,则由此引起的磁滞和涡流损耗使这些部件发热,致使变压器局部金属件温度异常升高,严重使将导致变压器运行事故。 三、影响变压器三相负荷不平衡的原因 三相负荷不平衡发生的原因主要是管理上存在薄弱环节,由于在对配电变压器三相负荷的分配上存在盲目性、工作随意性,以及运行维护人员对配电变压器三相负荷管理的责任心不到位,农村用电动力、照明的混用,尤其是居民用电单相负荷发展时无序延伸,用户用电情况不好掌握等客观因素,而在管理中又由于缺乏有效的监测、调整和考核机制,导致目前农村综合变压器三相负荷处于不平衡状态下运行。 四、防止变压器负荷不平衡运行采取的措施 (1)加强配电变压器负荷不平衡运行管理。运维班安排专人负责利用用电采集系统定期进行三相不平衡电流测试,并结合台区责任人的现场测量情况,按季度考核变压器三相负荷不平衡度的情况,把它列入考核项目,以提高农电管理人员搞好三相负荷平衡的自觉性和积极性。负荷每月至少进行一次测量,特殊情况下(如高峰负荷期间,负荷变化较大时等)可增加测量次数,对配电变压器负荷状况做到心中有数,并完善相关记录台帐,为调整配电变压器负荷提供准确可靠的数据。 管理人员应熟悉台区的每个用户用电情况、设备安装地点、用电能量变化情况,特别是注意大功率用电设备数量和容量等,看其分布在那相上。然后根据情况及时调整负荷。 (2)改造配电网,加强对三相负荷分布控制。在改造台区供电方案前,要了解所改造台区的负荷变化规律和负荷分配情况,对所改造的台区进行现场勘察,掌握负荷分布情况,同时绘制台区负荷分配接线图,并严格按三相负荷平衡的原则进行布线,尽量使三相四线深入到各重要负荷中心。配电变压器设置于负荷中心,供电半径不大于500m,主干线、分支干线均采用三相四线制供电,5户以上居民尽量不采用单相供电,中性线导线截面与其它相线截面一致,以减少损耗,消除断线的事故隐患。同时制定台区负荷分配接线图,做到任何一

漫谈电力系统无功功率

漫谈电力系统无功功率 目前世界范围内掀起环境保护的热潮,电力系统是一种的特定环境,公用电网中出现的无功功率,是电网本身的运行规律所决定,但它给电网运行带来了许多麻烦。无功功率是一种既不能作有功,但又会在电网中引起损耗,而且又是不能缺少的一种功率。 在实际电力系统中,异步电动机作为传统的主要负荷使电网产生感性无功电流;电力电子装置大多数功率因数都很低,导致电网中出现大量的无功电流。无功电流产生无功功率,给电网带来额外负担且影响供电质量。因此,无功功率补偿(以下简称无功补偿)就成为保持电网高质量运行的一种主要手段之一,这也是当今电气自动化技术及电力系统研究领域所面临发展的一个重大课题,且正在受到越来越多的关注。 设置无功补偿电容器是补偿无功功率的传统方法,目前在国内外均获广泛应用。电容器与网络感性负荷并联,以并联电容器补偿无功功率具有结构简单、经济方便等优点,但其阻抗是固定的,故不能跟踪负荷无功需求的变化,即不能实现对无功功率的动态补偿。 随着电力系统的发展,要求对无功功率进行动态补偿,从而产生了同步调相机(Synchronous Condenser--SC)。它是专门用来产生无功功率的同步电机,在过励磁或欠励磁的情况下,能够分别发出不同大小的容性或感性无功功率。自20世纪2、30年代以来的几十年中,同步调相机在电力系统中作为有源的无功补偿曾一度发挥着主要作用,所以被称为传统的无功动态补偿装置。然而,由于它是旋转电机,运行中的损耗和噪声都比较大,运行维护复杂,而且响应速度慢,难以满足快速动态补

偿的要求。 20世纪70年代以来,同步调相机开始逐渐被静止型无功补偿装置(Static Var Compensator--SVC)所取代,目前有些国家已不再使用同步调相机。早期的静止无功补偿装置是饱和电抗器(Saturated Reactor--SR)型的,1967年英国GEC公司制成了世界上第一批该型无功补偿装置。饱和电抗器比之同步调相机具有静止、响应速度快等优点;但其铁芯需磁化到饱和状态,因而损耗和噪声还是很大,而且存在非线性电路的一些特殊问题,又不能分相调节以补偿负荷的不平衡,所以未能占据主流。电力电子技术的发展及其在电力系统中的应用,将晶闸管的静止无功补偿装置推上了无功补偿的舞台。1977年美国GE公司首次在实际电力系统中演示运行了晶闸管的静止无功补偿装置。1978年此类装置投入实际运行。随后,世界各大电气公司都竟相推出了各具特色的系列产品。近10多年来,占据了静止无功补偿装置的主导地位。于是静止无功补偿装置(SVC)成了专指使用晶闸管的静止无功补偿装置,包括晶闸管控制电抗器(Thyristor ontrolled Reactor--TCR)和晶闸管投切电容器(Thyistor Switched Capactor--TSC),以及这两者的混合装置(TCR+TSC),或者TCR与固定电容器(Fixed Capacitor--FC)或机械投切电容器(Mechanically Switched Capacitor--MSC)混合使用的装置(即TCR+FC、TCR+MSC)等。随着电力电子技术的进一步发展,20世纪80年代以来,一种更为先进的静止型无功补偿装置出现了,这就是采用自换相变流电路的无功补偿,有人称为静止无功发生器(Static Var Generator--SVG),也有人称其为高级静止无功补偿器(Advanced Static Var Compensator--ASVC)或静止调相器

电力系统无功功率优化

电力系统无功功率优化 【摘要】随着我国各种产业的迅速发展,现代电力系统日益扩大,对电网的运行的可靠性要求也越来越高。为了有效提高电力系统输电效率,降低有功网损和减少发电费用,我们需要加强对电力系统运行的经济性研究,合理选择无功补偿方案和补偿容量,通过对电力系统无功电源的合理配置和对无功负荷的最佳补偿,这样不仅能够改善电能的运行环境,给输电公司带来更高的效益和利润,还能提高功率因数,保证电网的电压质量,维持电压水平和提高电力系统运行的稳定性,最终保证了电网的安全、优质、经济运行。我国配电网的规模巨大,因此要想优化电力系统的无功补偿,需要电力部门和用户高度重视,密切配合,分析无功补偿应用技术,选择合适的优化方案。本文先是介绍了无功优化的重要性,接着分析了无功优化的基本思路,无功优化的一般模型和目标函数,阐述了无功功率的动态补偿。 【关键词】电力系统;无功优化;一般模型;目标函数;动态补偿 引言 电压和无功功率的分布有着非常紧密的联系,一般情况下,无功功率是造成电网线路出现有功损耗的主要原因,同时也严重影响着电力系统电压的正确分布。由此可见,根据电网的实际情况,利用现有的无功调节手段,合理的调动无功,在满足安全运行约束的前提下,加强对无功优化的研究,对于提高电压质量、降低系统网损具有重要的意义。无功优化是实现电力系统安全和经济运行的重要手段。 1 无功优化的重要性 随着电力市场改革的不断深化,降低电网损耗,直接决定着电力电网公司的经济效益和供电效率,变得非常重要。降低网损,其主要途径就是要降低电网的无功潮流流动,通过无功优化,可以降低电网有功损耗和电压损耗,优化电网的无功潮流分布,改善电压质量,使用电设备安全可靠地运行。在保证现代电力系统的安全性和经济性方面,无功优化的重要性已经得到全球的关注。因此,电力系统中无功优化的重要性越来越为突出。 2 无功优化的基本思路 无功优化可分为无功运行优化和规划设计优化。其中无功运行优化是利用现有无功补偿装置,通过降低网损的方式,合理调节变压器分接头和发电机端电压,正确分析离线运行方式,实现无功实时或短期控制。而规划设计优化涉及的问题很多,也很复杂,不仅包括多时段,还要充分考虑多运行方式,确定补偿装置的地点、容量和投切时间,扣除补偿投资后的净收益,使得损耗电能减少的收益最大,而年运行费用与投资等年值之和最小。总之,电力系统的无功优化的基本思路,就是在满足电力系统无功负荷的需求下,根据电力系统的有功负荷、有功电

电力系统无功功率平衡与电压调整

电力系统无功功率平衡与电压调整 由于电力系统中节点很多,网络结构复杂,负荷分布不均匀,各节点的负荷变动时,会引起各节点电压的波动。要使各节点电压维持在额定值是不可能的。所以,电力系统调压的任务,就是在满足各负荷正常需求的条件下,使各节点的电压偏移在允许范围之内。 由综合负荷的无功功率一电压静态特性分析可知,负荷的无功功率是随电压的降低而减少的,要想保持负荷端电压水平,就得向负荷供应所需要的无功功率。所以,电力系统的无功功率必须保持平衡,即无功功率电源发出的无功功率要与无功功率负荷和无功功率损耗平衡。这是维持电力系统电压水平的必要条件。 一、无功功率负荷和无功功率损耗 1.无功功率负荷 无功功率负荷是以滞后功率因数运行的用电设备(主要是异步电动机)所吸收的无功功率。一般综合负荷的功率因数为0.6~O.9,其中,较大的数值对应于采用大容量同步电动机的场合。 2.电力系统中的无功损耗 (1)变压器的无功损耗。变压器的无功损耗包括两部分。一部分为励磁损耗,这种无功损耗占额定容量的百分数,基本上等于空载电流百分数0I %,约为 1%~2%。因此励磁损耗为 0/100Ty TN Q I S = (Mvar) (5-1-1) 另一部分为绕组中的无功损耗。在变压器满载时,基本上等于短路电压k U 的百分值,约为10%这损耗可用式(6-2)求得 2(%)()100k TN TL Tz TN U S S Q S = (Mvar) (5-1-2) 式中,TN S 为变压器的额定容量(MVA);TL S 为变压器的负荷功率(MVA)。 由发电厂到用户,中间要经过多级变压,虽然每台变压器的无功损耗只占每台变压器容量的百分之十几,但多级变压器无功损耗的总和可达用户无功负荷的75%~100%左右。 (2)电力线路的无功损耗。电力线路上的无功功率损耗也分为两部分,即并联电纳和串联电抗中的无功功率损耗。并联电纳中的无功损耗又称充电功率,与电力线路电压的平方成正比,呈容性。串联电抗中的无功损耗与负荷电流的平方成正比,呈感性。因此电力线路作为电力系统的一个元件,究竟是消耗容性还是感性无功功率,根据长线路运行分析理论,可作一个大致估计。对线路不长,长度不超过100km ,电压等级为220kV 电力线路,线路将消耗感性无功功率。对线路较长,其长度为300km 左右时,对220kV 电力线路,线路基本上既不消耗感性无功功率也不消耗容性无功功率,呈电阻性。大于300km 时,线路为电容性的。 二、系统综合负荷的电压静态特性 电力系统中某额定功率的用电设备实际吸收的有功功率和无功功率的大小是随电力网的电压变化而变的,尤其是无功功率受电压的影响很大。电力系统综

相关文档
相关文档 最新文档