文档库 最新最全的文档下载
当前位置:文档库 › 3.7第三章 磁场 章末总结 学案(人教版选修3-1)

3.7第三章 磁场 章末总结 学案(人教版选修3-1)

第三章磁场章末总结学案(人教版选修3-1)

一、“磁偏转”与“电偏转”的区别

所谓“电偏转”与“磁偏转”是分别利用电场和磁场对运动电荷施加作用,从而控制其运动方向,但电场和磁场对电荷的作用特点不同,因此这两种偏转有明显的差别.

动能的

变化

由于

F B始终不做功,所以其动能保

持不变

由于F E与粒子速度的夹角越来越

小,所以其动能不断增大,并且增

大得越来越快

例1 如图1所示,在空间存在一个变化的匀强电场和另一个变化的匀强磁场.从t=1 s开始,在A点每隔2 s有一个相同的带电粒子(重力不计)沿AB方向(垂直于BC)以速度v0射出,恰好能击中C点.AB=BC=l,且粒子在点A、C间的运动时间小于1 s.电场的方向水平向右,场强变化规律如图2甲所示;磁感应强度变化规律如图乙所示,方向垂直于纸面.求:

图1

图2

(1)磁场方向;

(2)E0和B0的比值;

(3)t=1 s射出的粒子和t=3 s射出的粒子由A点运动到C点所经历的时间t1和t2之比.

变式训练1图3所示,在y>0的空间中存在匀强电场,场强沿y轴负方向;在y<0的空间中,存在匀强磁场,磁场方向垂直xOy平面向外.一电荷量为q、质量为m的带正电的运动粒子,经过y轴上y=h处的点P1时速率为v0,方向沿x轴正方向;然后,经过x轴上x=2h处的P2点进入磁场,并经过y轴上y=-2h处的P3点,不计粒子重力.求:

(1)电场强度的大小;

(2)粒子到达P2时速度的大小和方向;

(3)磁感应强度的大小.

图3

二、有界匀强磁场问题

1.有界磁场及边界类型

(1)有界匀强磁场是指在局部空间存在着匀强磁场,带电粒子从磁场区域外垂直磁场方向射入磁场区域,经历一段

匀速圆周运动后,又离开磁场区域.

(2)边界的类型,如图4

图4

2.解决带电粒子在有界磁场中运动问题的方法

解决此类问题时,先画出运动轨迹草图,找到粒子在磁场中做匀速圆周运动的圆心位置、半径大小以及与半径 相关的几何关系是解题的关键.解决此类问题时应注意下列结论:

(1)刚好穿出或刚好不能穿出磁场的条件是带电粒子在磁场中运动的轨迹与边界相切.

(2)当以一定的速率垂直射入磁场时,运动的弧长越长,圆心角越大,则带电粒子在有界磁场中运动时间越长. (3)当比荷相同,速率v 不同时,在匀强磁场中运动的圆心角越大,运动时间越长.

例2 半径为r 的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A 点以速度v 0垂直磁场 方向射入磁场中,并从B 点射出.∠AOB =120°,如图5所示,则该带电粒子在磁场中运动的时间为( )

图5

A .2πr 3v 0

B .23πr 3v 0

C .πr 3v 0

D . 3πr

3v 0

变式训练2 图6是某离子速度选择器的原理示意图,在一半径R =10 cm 的圆柱形筒内有B =1×10-

4 T 的匀强磁场,

方向平行于圆筒的轴线.在圆柱形筒上某一直径两端开有小孔a 、b ,分别作为入射孔和出射孔.现有一束比荷 q

m =2×1011 C /kg 的正离子,以不同角度α入射,最后有不同速度的离子束射出.其中入射角α=30°,且不经碰撞而

直接从出射孔射出的离子的速度v 的大小是( )

图6

A .4×105 m /s

B .2×105 m /s

C .4×106 m /s

D .2×106 m /s 三、洛伦兹力作用下形成多解的问题

带电粒子在洛伦兹力作用下做匀速圆周运动,由于某些条件不确定,使问题出现多解. 1.带电粒子电性不确定形成多解

带电粒子由于电性不确定,在初速度相同的条件下,正、负带电粒子在磁场中运动轨迹不同. 2.磁场方向不确定形成多解

对于某一带电粒子在磁场中运动,若只知道磁感应强度的大小,而不能确定方向,带电粒子的运动轨迹也会不同. 3.临界状态不惟一形成多解

带电粒子在洛伦兹力作用下飞入有界磁场时,由于粒子运动轨迹呈圆弧状,因此,它可能穿过去了,也可能转 过大于180°的角度从入射界面这边反向飞出,于是形成了多解. 4.运动的重复性形成多解

带电粒子在部分是电场、部分是磁场的空间运动时,往往运动具有往复性,因而形成多解.

例3 如图7所示,长为L 的水平极板间,有垂直纸面向里的匀强磁场,磁感应强度为B ,板间距离为L ,极板不带电.

现有质量为m 、电荷量为q 的带正电粒子(重力不计),从左边极板间中点处垂直磁场以速度v 水平入射.欲使粒子 不打在极板上,可采用的办法是( )

图7

A .使粒子速度v <

BqL 4m B .使粒子速度v >5BqL

4m C .使粒子速度v >BqL 4m D .使粒子速度BqL 4m <v <5BqL

4m

变式训练3 如图8所示,左右边界分别为PP ′、QQ ′的匀强磁场的宽度为d ,磁感应强度大小为B ,方向垂直纸面

向里.一个质量为m 、电荷量为q 的微观粒子,沿图示方向以速度v 0垂直射入磁场.欲使粒子不能从边界QQ ′ 射出,粒子入射速度v 0的最大值可能是( )

图8

A .Bqd m

B .(2+2)Bqd m

C .(2-2)Bqd m

D .2Bqd

2m

【即学即练】

1. 三个完全相同的小球a 、b 、c 带有相同电量的正电荷,从同一高度由静止开始下落,当落下h 1高度后a 球进入水平 向左的匀强电场,b 球进入垂直纸面向里的匀强磁场,如图9所示,它们到达水平面上的速度大小分别用v a 、v b 、 v c 表示,它们的关系是( )

图9

A .v a >v b =v c

B .v a =v b =v c

C .v a >v b >v c

D .v a =v b >v c

2.设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图10所示,已知一离子在电场力和洛伦兹力的作 用下,从静止开始自A 点沿曲线ACB 运动,到达B 点时速度为零,C 点是运动的最低点,忽略重力,以下说法正

确的是( )

图10

A .离子必带正电荷

B .A 点和B 点位于同一高度

C .离子在C 点时速度最大

D .离子到达B 点时,将沿原曲线返回A 点

3.如图11所示的虚线区域内,充满垂直于纸面向里的匀强磁场和竖直向下的匀强电场.一带电粒子a(不计重力)以一 定的初速度由左边界的O 点射入磁场、电场区域,恰好沿直线由区域右边界的O ′点(图中未标出)穿出.若撤去该 区域内的磁场而保留电场不变,另一个同样的粒子b(不计重力)仍以相同初速度由O 点射入,从区域右边界穿出, 则粒子b( )

图11

A .穿出位置一定在O ′点下方

B .穿出位置一定在O ′点上方

C .运动时,在电场中的电势能一定减小

D .在电场中运动时,动能一定减小

4.如图12是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀 强磁场和匀强电场的强度分别为B 和E.平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1、A 2.平板S 下 方有磁感应强度为B 0的匀强磁场.下列表述正确的是( )

图12

A .质谱仪是分析同位素的重要工具

B .速度选择器中的磁场方向垂直纸面向外

C .能通过狭缝P 的带电粒子的速率等于E

B D .粒子打在胶片上的位置越靠近狭缝P ,粒子的荷质比越小

5.为了研究物质的微观结构,科学家必须用各种各样的加速器产生出速度很大的高能粒子.欧洲核子研究中心的粒子 加速器周长达27 km (图13中的大圆),为什么加速器需要那么大的周长呢?

图 13

6.匀强磁场方向垂直于xOy 平面,在xOy 平面内,磁场分布在以O 为中心的一个圆形区域内.一个质量为m 、电荷 量为q 的带电粒子由原点O 开始运动,初速度为v ,方向沿x 正方向.后来,粒子经过y 轴上的P 点,此时速度方 向与y 轴的夹角为30°,P 到O 的距离为L ,如图14所示.不计重力的影响.求磁场的磁感应强度B 的大小和xOy 平面上磁场区域的半径R.

图14

参考答案

知识体系构建

运动 F IL N BS 右 B I 左 B v mv qB 2πm

qB

解题方法探究

例1 (1)垂直纸面向外 (2)2v 0∶1 (3)2∶π

解析 (1)由题图可知,电场与磁场是交替存在的,即同一时刻不可能同时既有电场,又有磁场.根据题意,对于同一粒子,从点A 到点C ,它只受电场力或磁场力中的一种.粒子能在电场力作用下从点A 运动到点C ,说明受向右的电场力,又因场强方向也向右,故粒子带正电.因为粒子能在磁场力作用下由点A 运动到点C ,说明它受到向右的磁场力,又因其带正电,根据左手定则可判断出磁场方向垂直于纸面向外.

(2)粒子只在磁场中运动时,它在洛伦兹力作用下做匀速圆周运动.因为AB =BC =l ,则运动半径R =l.由牛顿第

二定律知:qv 0B 0=mv 20

R ,则B 0=mv 0ql

.

粒子只在电场中运动时,它做类平抛运动,从点A 到点B 方向上,有l =v 0t.

从点B 到点C 方向上,有a =qE 0m ,l =12at 2.解得E 0=2mv 20

ql ,则E 0B 0=2v 01

.

(3)t =1 s 射出的粒子仅受到电场力作用,则粒子由A 点运动到C 点所经历的时间t 1=l v 0,因E 0=2mv 20

ql ,则t 1=2mv 0qE 0.

t =3 s 射出的粒子仅受到磁场力作用,则粒子由A 点运动到C 点所经历的时间t 2=14 T ,因为T =2πm qB 0,所以t 2=πm

2qB 0

.

故t 1∶t 2=2∶π.

变式训练1 (1)mv 20

2qh (2) 2 v 0 方向与x 轴正向成45°角(第四象限内) (3)mv 0qh

解析 粒子运动的轨迹如图所示.

(1)设粒子从P 1运动到P 2的时间为t ,电场强度的大小为E ,粒子在电场中的加速度为a ,由牛顿第二定律及运动

学公式有:[来源:学_科_网] qE =ma ① v 0t =2h ② 12

at 2

=h ③ 由式①②③解得 E =mv 20

2qh

(2)粒子到达P 2时速度沿x 方向的分量仍为v 0,以v 1表示速度沿y 方向分量的大小,v 表示速度大小,θ表示速度和x 轴的夹角,则有 v 21=2ah ⑤

v = v 21+v 2

0⑥

tan θ=v 1

v 0

由式②③⑤解得v 1=v 0⑧ 由式⑥⑦⑧解得v = 2v 0⑨ θ=45°⑩

(3)设磁场的磁感应强度为B ,在洛伦兹力作用下粒子做匀速圆周运动,设r 为圆周运动的半径,由牛顿第二定律得

qvB =m v 2

r

.?

此圆周与x 轴和y 轴的交点分别为P 2、P 3,因为OP 2=OP 3=2h ,θ=45°,由几何关系可知,连线P 2P 3为圆轨道的直径,由此可求得 r = 2h.?

由式⑨⑩??解得B =mv 0

qh

.

例2 D [从AB 弧所对圆心角θ=60°,知t =16T =πm

3qB .但题中已知条件不够,没有此选项,另想办法找规律表示

t.由匀速圆周运动t =AB

v 0,从图示分析有R = 3r ,则:AB =R·θ= 3r ×π3=33πr ,则t =AB v 0= 3πr

3v 0

.D 正

确.]

变式训练2 C

例3 AB [粒子速度的大小将影响到带电粒子轨道半径,分析速度大时粒子运动情况和速度小时粒子的运动情况.问题归结为求粒子能从右边穿出的运动半径临界值r 1和从左边穿出的运动半径临界值r 2,轨迹如图所示.

粒子刚好从右边穿出时圆心在O 点,有r 21=L 2+????r 1-L 22

,得r 1=54

L. 又因为r 1=mv 1qB ,得v 1=5BqL 4m ,所以v >5BqL

4m

时粒子能从右边穿出.

粒子刚好从左边穿出时圆心在O ′点,有r 2=12×L 2=L 4,得v 2=qBL

4m

.

所以v <qBL

4m

时,粒子能从左边穿出.]

变式训练3 BC 即学即练

1.A [a 小球下落时,重力和电场力都对a 做正功;b 小球下落时,只有重力做功;c 小球下落时只有重力做功,重力做功的大小都相同.根据动能定理可知外力对a 小球所做的功最多,即a 小球落地时的动能最大,b 、c 小球落地时的动能相等.]

2.ABC [离子一开始向下运动,说明电场力方向向下,离子带正电,A 对;在A 与B 点离子的动能相等,据动能定理,电场力不做功,A 、B 电势相等,故A 、B 位于同一高度,B 对;运动轨迹上的各点,电势差U AC 最大,据动能定理,离子到达C 点时的动能最大,速度最大,C 对.离子到达B 点后又向下运动且向右偏转,故它不会沿原曲线返回A 点,D 错.]

3.C [粒子a 沿直线运动,说明电场力与洛伦兹力等大反向,O 、O′在同一水平线上,但由于不能确定粒子a 的带电性,去掉磁场后,不能确定电场力方向,也就不能确定b 粒子向哪偏转,b 到达右边界的位置不能确定,A 、B 错.但b 在偏转过程中,电场力一定对它做正功,其电势能减小,动能增加,C 对,D 错.]

4.ABC [质谱仪是测量带电粒子的质量和分析同位素的重要工具,A 对.速度选择器中电场力与洛伦兹力是一对

平衡力,即qvB =qE ,故v =E

B .据左手定则可以确定,速度选择器中的磁场方向垂直纸面向外,B 、

C 对.粒子在

匀强磁场中运动的半径r =mv qB ,即粒子的荷质比q m =v

Br

,由此看出粒子运动的半径越小,粒子打在胶片上的位置越

靠近狭缝P ,粒子的荷质比越大,D 错.]

5.由回旋加速器原理,带电粒子在磁场中做圆周运动,洛伦兹力提供向心力,即qvB =mv 2r ,得v =qBr

m

.[来

源:https://www.wendangku.net/doc/a017006791.html,]

故粒子经电场加速后离开加速器时的动能E k =12mv 2=12·q 2B 2r 2

m

可见在其他条件一定时,加速器的半径越大,粒子加速后的能量越大,即需加速器的周长大. 6.

3mv qL 3

3

L 解析 粒子在磁场中受洛伦兹力作用,做匀速圆周运动,设其半径为r ,则有:

qvB =m v 2

r

据此并由题意知,粒子在磁场中的轨迹的圆心C 必在y 轴上,且P 点在磁场区之外.过P 沿速度方向作延长线,它与x 轴相交于Q 点,作圆弧过O 点,与x 轴相切,并且与PQ 相切,切点A 即粒子离开磁场区的位置.这样也求得圆弧轨迹的圆心C ,如图所示.由图中几何关系得:L =3r

解得:B =3mv

qL

图中OA 的长度即圆形磁场区的半径R ,由图中几何关系可得:R =3

3L.

大学物理静电场知识点总结

大学物理静电场知识点总结 1. 电荷的基本特征:(1)分类:正电荷(同质子所带电荷),负电荷(同电子所带电荷)(2)量子化特性(3)是相对论性不变量(4)微观粒子所带电荷总是存在一种对称性 2. 电荷守恒定律 :一个与外界没有电荷交换的孤立系统,无论发生什么变化,整个系统的电荷总量必定保持不变。 3.点电荷:点电荷是一个宏观范围的理想模型,在可忽略带电体自身的线度时才成立。 4.库仑定律: 表示了两个电荷之间的静电相互作用,是电磁学的基本定律之一,是表示真空中两个静止的点电荷之间相互作用的规律 12 12123 012 14q q F r r πε= 5. 电场强度 :是描述电场状况的最基本的物理量之一,反映了电 场的基 0 F E q = 6. 电场强度的计算: (1)单个点电荷产生的电场强度,可直接利用库仑定律和电场强度的定义来求得 (2)带电体产生的电场强度,可以根据电场的叠加原理来求解 πεπε== = ∑? n i i 3 3i 1 0i q 11 dq E r E r 44r r (3)具有一定对称性的带电体所产生的电场强度,可以根据高斯定

理来求解 (4)根据电荷的分布求电势,然后通过电势与电场强度的关系求得电场强度 7.电场线: 是一些虚构线,引入其目的是为了直观形象地表示电场强度的分布 (1)电场线是这样的线:a .曲线上每点的切线方向与该点的电场强度方向一致 b .曲线分布的疏密对应着电场强度的强弱,即越密越强,越疏越弱。 (2)电场线的性质:a .起于正电荷(或无穷远),止于负电荷(或无穷远)。b .不闭合,也不在没电荷的地方中断。c .两条电场线在没有电荷的地方不会相交 8. 电通量: φ= ??? e s E dS (1)电通量是一个抽象的概念,如果把它与电场线联系起来,可以把曲面S 的电通量理解为穿过曲面的电场线的条数。(2)电通量是标量,有正负之分。 9. 高斯定理: ε?= ∑ ?? s S 01 E dS i (里) q (1)定理中的E 是由空间所有的电荷(包括高斯面内和面外的电荷)共同产生。(2)任何闭合曲面S 的电通量只决定于该闭合曲面所包围的电荷,而与S 以外的电荷无关 10. 静电场属于保守力:静电场属于保守力的充分必要条件是,电荷在电场中移动,电场力所做的功只与该电荷的始末位置有关,而与

高二数学第二章章末总结

章末总结 知识点一圆锥曲线的定义和性质 对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略;应用圆锥曲线的性质时,要注意与数形结合思想、方程思想结合起来.总之,圆锥曲线的定义、性质在解题中有重要作用,要注意灵活运用. 例1已知双曲线的焦点在x轴上,离心率为2,F1,F2为左、右焦点,P为双曲线上一点,且∠F1PF2=60°,S△PF1F2=123,求双曲线的标准方程. 知识点二直线与圆锥曲线的位置关系 直线与圆锥曲线一般有三种位置关系:相交、相切、相离. 在直线与双曲线、抛物线的位置关系中有一种情况,即直线与其交于一点和切于一点,二者在几何意义上是截然不同的,反映在代数方程上也是完全不同的,这在解题中既是一个难点也是一个十分容易被忽视的地方.圆锥曲线的切线是圆锥曲线的割线与圆锥曲线的两个交点无限靠近时的极限情况,反映在消元后的方程上,就是一元二次方程有两个相等的实数根,即判别式等于零;而与圆锥曲线有一个交点的直线,是一种特殊的情况(抛物线中与对称轴平行,双曲线中与渐近线平行),反映在消元后的方程上,该方程是一次的.

例2 如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于M(x1,y1),N(x2,y2)两点. (1)求x1x2与y1y2的值; (2)求证:OM⊥ON. 知识点三轨迹问题 轨迹是解析几何的基本问题,求解的方法有以下几种: (1)直接法:建立适当的坐标系,设动点为(x,y),根据几何条件直接寻求x、y之间的关系式. (2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点转换为已知动点.具体地说,就是用所求动点的坐标x、y来表示已知动点的坐标并代入已知动点满足的曲线的方程,由此即可求得所求动点坐标x、y之间的关系式. (3)定义法:如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程. (4)参数法:当很难找到形成曲线的动点P(x,y)的坐标x,y所满足的关系式时,借助第三个变量t,建立t和x,t和y的关系式x=φ(t),y=Φ(t),再通过一些条件消掉t就间接地找到了x和y所满足的方程,从而求出动点P(x,y)所形成的曲线的普通方程. 例3设点A、B是抛物线y2=4px (p>0)上除原点O以外的两个动点,已知OA⊥OB,OM⊥AB,垂足为M,求点M的轨迹方程,并说明它表示什么曲线? 知识点四圆锥曲线中的定点、定值问题 圆锥曲线中的定点、定值问题是高考命题的一个热点,也是圆锥曲线问题中的一个难点,解决这个难点没有常规的方法,但解决这个难点的基本思想是明确的,定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的某个点或值,就是要求的定点、定值.化解这类问题难点的关键就是引进变化的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.

《磁现象和磁场》教学设计

教学评估 《磁现象和磁场》教学设计 教材分析:磁场是此现象发生的根本原因,也是把电和磁联系到一起的纽带和桥梁,让学生去理解和掌握磁场的概念和性质,是非常有必要的。 学情分析:九年级学生积极性、主动性较强,不过基础较为薄弱,容易凭想象和感觉去判断问题。 【教学目标】 一、知识与技能:理解掌握磁场的性质,会画磁感线。 二、过程与方法:恰当的运用类比来让学生理解新知识,用实验进行探究总结,化无形为有形,化空泛为具体,把知识落实到点上。 三、情感态度价值观:培养学生勤于思考善于思考的习惯,拥有实事求是,尊重自然规律的科学态度,不怕困难勇于探究的信心和决心,产生将科学服务于人类的意识和行动,拥有振兴中华的使命感和责任感。 【教学重点】理解掌握磁场。 【教学难点】如何认识磁场的存在,同时怎样把无形的磁场转化成有形的研究对象。 【教学方法】本节课采用实验探究法,启发式教学法,以合作学习和探究性学习为主。 【教学准备】吹风机、布条、条形磁铁、磁针、铜、铝、铁、钢钉、大头针、橡皮筋、铁屑、牙签筒(用来装铁屑)、摆放小磁针的小底座、实验纸板、自制的内部具有磁铁的“地球”。 【教学过程】 教学过 程 教师活动学生活动设计意图 创设问题情境,导入新课。老师做演示实验,具有磁铁的小车靠近磁 铁就会运动起来,不让学生看到磁铁,给 学生猜想为什么小车会运动,从而导入新 课。 观察显现并 且进行思考 回答。 目的是调 动学生学 习积极 性。

新课教学1、回顾小学学习过的关于磁的知识。 2、让学生通过实验来回顾磁铁的性质 (条形磁铁做实验,用磁铁吸引一个 小实验盒中的铁、铝、镍、橡皮筋、 钢钉、大头针等) 提问:*磁铁能吸引什么? *磁铁各处的吸引力大小是否一样? *铁和钢靠近磁铁后有何性质,是否具有磁性? *指南针能指南北,实验中看看磁铁是否能指南北? 3、归纳出磁性,磁极和磁化的概念。(也 就是简单的表面磁现象) 4、指南针可以指南北,我们实验中的磁 铁做出来的是不是在指南北啊?做实验 指南北,该如何改进实验器材?把磁铁做 成磁针,放在几乎没有摩擦力的支架上, 红端总是指向北方,叫做北极,白端总指 向南方,叫做南极。 5、引导学生思考为什么指南针能指南北。 用指南针演示指南北,指南针指南北有 条件:不受到别的外界因素的干扰。 用木棍和气流来影响指南针,受到外界 干扰后不能指南北,说明磁铁周围存在 着物质干扰磁针,这种物质我们把它叫 做磁场。 磁场磁针 6、磁场看不见摸不着,该如何去研究磁 场呢?类比于如何去研究风来研究磁场。 打开电吹风做实验,让学生猜想风是向哪 吹(利用自制的可以吹循环风教具),引 入风向线的概念,以及使用风向线有什么 好处。学生思考归纳得出研究风的方法。 风布条 同理也可利用磁针来研究磁场 磁场磁针 学生在老师 引导下思 考,由实验 回顾总结磁 的一些简单 现象,从生 活中如何去 判断风这种 看不见的物 质的经验去 考虑如何研 究磁场这种 看不见摸不 着的物质。 明确本节 课的目 的。试验 强化学生 的认识, 加深学生 的思考, 类比归纳 使得学生 由不同的 现象中得 出相似的 研究方 法,学会 把无形的 物质变得 具体化。 推测 作用 作用 推测

实数章节复习知识点归纳,总结

第六章 实 数 一.知识结构图: 二.知识定义 算术平方根 正数a 的算术平方根记作: . 正数和零的算术平方根都只有 个,零的算术平方根是 ,负数 算术平方根。 ? ?? ==||2 a a () =2 a 例:1. 25的算术平方根是 ;16 的算术平方根是 。 2.已知一个自然数的算术平方根是a ,则该自然数的下一个自然数的算术平方根是( ) A .1+a B. 1+a C. 12+a D. 12+a 3.面积为11的正方形边长为x ,则x 的范围是( ) A .31<

4.若∣a∣=6,b=3,且ab0,则a-b= 。 平方根 正数a的平方根记作: . 一个正数有平方根,他们互为; 零的平方根是;负数平方根。 例1.16的平方根是( ) A.4 B. 4 ± ± C. 2 D. 2 2.一个正数x的两个平方根分别是a+2和a-4,则a=____,x=___。 3.已知2a-1的算术平方根式3,4是3a+b-1的算术平方根,求a+2b的平方根。 立方根

a 的立方根记作: . 一个 数有一个 的立方根;一个 数有一个 的立方根;零的立方 根是 。3 3a a -=- =3 3 a ()=3 3 a 例:1. 4 12=_____, 169 ± =_____,3 27 8-_____. 2.下列说法中正确的是( ) A 、81的平方根是±3 B 、1的立方根是±1 C 、 1=±1 D 、5-是 5的平方根的相反数 3.判断下列说法是否正确 (1) 的算术平方根是-3; (2) 225 的平方根是±15. (3)当x=0或2时,02=-x x (4)2 3 是分数 4.已知∣x ∣的算术平方根是8,那么x 的立方根是_____。 5.如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A ,则点A 表示的数是( )

3.1.10 章末总结

第一章 静电场 章末总结 学案 一、电场的几个物理量的求解思路 1.确定电场强度的思路 (1)定义式:E=F q . (2)库仑定律:E=kQ r 2(真空中点电荷). (3)电场强度的叠加原理,场强的矢量和. (4)电场强度与电势差的关系:E=U d (限于匀强电场). (5)导体静电平衡时,内部场强为零即感应电荷的场强与外电场的场强等大反向 E 感=-E 外. (6)电场线(等势面)确定场强方向,定性确定场强. 2.确定电势的思路 (1)定义式:Φ=E p q . (2)电势与电势差的关系:U AB =ΦA -ΦB . (3)电势与场源电荷的关系:越靠近正电荷,电势越高;越靠近负电荷,电势越低.

(4)电势与电场线的关系:沿电场线方向,电势逐渐降低. (5)导体静电平衡时,整个导体为等势体,导体表面为等势面. 3.确定电势能的思路 (1)与静电力做功关系:W AB=E p A-E p B,静电力做正功,电势能减小;静电力做负功,电势能增加. (2)与电势关系:E p=qΦp,正电荷在电势越高处电势能越大,负电荷在电势越低处电势能越大. (3)与动能关系:只有静电力做功时,电势能与动能之和为常数,动能越大,电势能越小. 4.确定电场力的功的思路 (1)根据电场力的功与电势能的关系:电场力做的功等于电势能的减少量,W AB=E p A-E p B. (2)应用公式W AB=qU AB计算: 符号规定是:所移动的电荷若为正电荷,q取正值;若为负电荷,q取负值;若移动过程的始点电势ΦA高于终点电势ΦB,U AB取正值;若始点电势ΦA低于终点电势ΦB,U AB取负值. (3)应用功的定义式求解匀强电场中电场力做的功:W=qEl cosθ. 注意:此法只适用于匀强电场中求电场力的功. (4)由动能定理求解电场力的功:W电+W其他=?E k. 即若已知动能的改变和其他力做功情况,就可由上述式子求出电场力做的功. 【例1】电场中有a、b两点,已知Φa=-500 V,Φb=1 500 V,将带电荷量为q=-4?10-9C的点电荷从a 移到b时,电场力做了多少功?a、b间的电势差为多少? 变式训练1 如图是一匀强电场,已知场强E=2?102N/C.现让一个电荷量q=-4?10-8C的电荷沿电场方向从M点移到N点,MN间的距离l=30 cm.试求: (1)电荷从M点移到N点电势能的变化; (2)M、N两点间的电势差. 二、电场力做功与能量转化 1.带电的物体在电场中具有电势能,同时还可能具有动能和重力势能等机械能,用能量观点处理问题是一种简捷的方法. 2.处理这类问题,首先要进行受力分析及各力做功情况分析,再根据做功情况选择合适的规律列式求解. 3.常见的几种功能关系 (1)只要外力做功不为零,物体的动能就要改变(动能定理). (2)静电力只要做功,物体的电势能就要改变,且静电力做的功等于电势能的减少量, W电=E p1-E p2.如果只有静电力做功,物体的动能和电势能之间相互转化,总量不变(类似机械能守恒).(3)如果除了重力和静电力之外,无其他力做功,则物体的动能、重力势能和电势能三者之和不变. 【例2】一个带负电的质点,带电荷量为2.0?10-9C,在电场中将它由a移到b,除电场力之外,其他力做功6.5?10-5J,质点的动能增加了8.5?10-5J,则a、b两点间的电势差Φa-Φb=____________. 变式训练2 如图所示,边长为L的正方形区域abcd内存在着匀强电场.质量为m、电荷量为q的带电粒子以速度v0从a点进入电场,恰好从c点离开电场,离开时速度为v,不计重力,求电场强度大小.

磁现象和磁场(导)学案 (23)

第1节磁现象和磁场 【学习目标】 1、列举磁现象在生活、生产中的应用。 2、知道磁场的基本特性是对处在它里面的磁极或电流有磁场力的作用. 3、知道磁极和磁极之间、磁极和电流之间、电流和电流之间都是通过磁场发生相互作用的。重点:磁场的物质性和基本性 难点:磁场的物质性和基本特性。 【自主预习】 1.物体具有的吸引铁、钴、镍等物质的属性叫做;具有磁性的叫做磁体;磁体上磁性最强的部分叫做;磁体有两个磁极:南极、北极。同名磁极相互,异名磁极相互。 2.丹麦物理学家首先发现电流周围也存在着磁场。 3.磁场是存在于或电流周围空间的一种客观存在的;磁极和磁极间、磁极和电流间、电流和电流间的作用都是通过来传递的。 4.规定在磁场中的任意一点小磁针受力的方向亦即小磁针静止时北极所指的方向,就是那一点的磁场方向. 5.地球本身在地面附近空间产生的磁场,叫做。地球的周围存在着____.地球是一个大____,地球的地理两极与地磁两 极并不_____,极性和地理极性_____,地磁 场的分布大致就像一个磁铁外面的 磁场。如图所示,其间有一个交角.这就是 _______,磁偏角的数值在地球上不同地点 是不同的。 【典型例题】 一、电流的磁效应 【例1】以下说法中正确的是() A.磁极与磁极间的相互作用是通过磁场产生的 B.电流与电流间的相互作用是通过电场产生的

C.磁极与电流间的相互作用是通过电场与磁场共同产生的 D.磁场和电场是同一种物质 二、地磁场 【例2】下列说法正确的是() A.磁体上磁性最强的部分叫磁极,任何磁体都有两个磁极 B.磁体与磁体之间的相互作用是通过磁场而发生的 C.地球的周围存在着磁场,但地磁的两极与地理的两极并不重合,其间有一个交角这就是磁偏角,磁偏角的数值在地球上不同地点是相同的 D.在地球表面各点磁场强弱相同 三、关于磁场的方向 【例3】关于磁场方向的说法,下列叙述正确的是() A.小磁针N极的指向 B.小磁针S极的受力方向 C.小磁针N极的受力方向 D.以上说法都不对 四、磁现象的应用 【例4】如图所示,A为橡胶圆盘,其盘面竖直.B为紧贴A的毛皮,在靠近盘的中轴上有一个小磁针静止于图示位置.当沿图中箭头的方向转动把手C时,小磁 针将发生什么现象? 【课后练习】 1.下列关于磁场的说法中正确的是() A.磁场和电场一样,是客观存在的特殊物质 B.磁场是为了解释磁极间相互作用而人为规定的 C.磁极与磁极间是直接发生作用的 D.磁场只有在磁极与磁极、磁极与电流发生作用时才产生

初中物理所有章节知识点总结-全

初中物理所有章节知识点总结 【第一章机械运动】 1.测量长度的常用工具:刻度尺。测量结果要估读到分度值的下一位。2.刻度尺的使用方法: (1)使用前先观察刻度尺的零刻度线、量程和分度值; (2)测量时刻度尺的刻度线要紧贴被测物体; (3)读数时视线要与尺面垂直。 3.测量值和真实值之间的差异叫做误差,我们不能消灭误差,但应尽量减小误差。 4.减小误差方法:多次测量求平均值、选用精密测量工具、改进测量方法。5.误差与错误的区别:误差不是错误,错误不该发生,能够避免,而误差永远存在,不能避免。 6.物理学里把物体位置的变化叫做机械运动。 7.在研究物体的运动时,选作标准的物体叫做参照物。同一个物体是运动还是静止取决于所选的参照物,这就是运动和静止的相对性。 8.速度的计算公式: 1m/s=3.6km/h

【第二章声现象】 9.声是由物体的振动产生的。 10.声的传播需要介质,真空不能传声。 11.声速与介质的种类和介质的温度有关。15℃空气中的声速为340m/s。12.声音的三个特性是:音调、响度、音色。(音调与物体的振动频率有关;响度与物体的振幅有关;音色与发声体的材料和结构有关。) 13.控制噪声的途径:防止噪声的产生、阻断噪声的传播、防止噪声进入人耳。14.为了保证休息和睡眠,声音不能超过50dB;为了保证工作和学习,声音不能超过70 dB;为了保护听力,声音不能超过90 dB。 15.声的利用: (1)传递信息:例如声呐、听诊器、B超、回声定位。 (2)传递能量:例如超声波清洗钟表、超声波碎石。 【第三章物态变化】 16.液体温度计是根据液体热胀冷缩的规律制成的。 17.使用温度计前应先观察它的量程和分度值。

静电场知识点总结

第一章静电场知识点概括 【考点1】电场的力的性质 1.库仑定律:■ (1)公式:F =kQ q ..(2)适用条件:真空中的点电荷。 2. F E=— q用比值法定义电场强度E,与试探电荷q无关;适用于一切电场 Q E=V r 适用于点电荷 U E =一 d 适用于匀强电场 3. (1)意义:形象直观的描述电场的一种工具 (2)定义:如果在电场中画出一些曲线,使曲线上每一点的切线方向跟该点的场强方向一致,这样的曲线就叫做电场线。 说明:a.电场线不是真实存在的曲线。 b.静电场的电场线从正电荷出发,终止于负电荷(或从正电荷出发终止于无穷远,或来自于 无穷远终止于负电荷)。 J c.电场线上每一点的切线方向与该点的场强方向相同。 d.电场线的疏密表示场强的大小,场强为零的区域,不存在电场线。 e.任何两条电场线都不会相交。 f.任何一条电场线都不会闭合。 g.沿着电场线的方向电势是降低的。 【典例1】如图所示,M、N和P是以MN为直径的半圆弧上的三点,O点为半圆弧的 圆心,?MOP =60° ,电荷量相等、符号相反的两个点电荷分别置于M、N两点,这 时O点电场强度的大小为E I;若将N点处的点电荷移至P点,则O点的场强大小变为 E2,E i与E2之比为() A.1 : 2 B.2: 1 C. 2:3 方法提炼:求解该类问题时首先根据点电荷场强公式得出每一个点电荷产生的场强的大小和方向,再依据平行四边形定则进行合成。

【考点2】电场的能的性质 1.电势能E P、电势「、电势差U (1)电场力做功与路径无关,故引入电势能,W A B= E pA- E PB (2)电势的定义式:;:=E P q (3)电势差:UAB = ;:A -订 (4)电场力做功和电势差的关系:W A^= qU AB 沿着电场线方向电势降低,或电势降低最快的方向就是电场强度的方向。 2.电场力做功 定义:电荷q在电场中由一点A移动到另一点B时,电场力所做的功W AB简称电功。 公式:W AB ^ qU AB 说明:1.电场力做功与路径无关,由q、U AB决定。 2.电功是标量,,电场力可做正功,可做负功,两点间的电势差也可正可负。 3?应用W A^qU AB时的两种思路 < (1)可将q、U AB连同正负号一同代入,所得的正负号即为功的正负; (2)将q、U AB的绝对值代入,功的正负依据电场力的方向和位移(或运动) 方向来判断。 ‘4.求电场力做功的方法:①由公式W A^qU AB来计算。 ②由公式W = F COS来计算,只适用与恒力做功。 彳 ③由电场力做功和电势能的变化关系W AB=E P A - E pB L④由动能定理W电场力+ W其他力=E k 【典例2]如图所示,Xoy平面内有一匀强电场,场强为E,方向未知,电场线跟X轴的负方向夹角为

(物理必修一)第二章知识点总结

(物理必修一)第二章知识点总结

点通传奇专用第二章知识点总结 2.2匀变速直线运动的速度与时间的关系 一、匀变速直线运动 1.定义:沿着一条直线,且不变的运动. 2.匀变速直线运动的v t图象是一条. 分类:(1)速度随着时间的匀变速直线运动,叫匀加速直线运动. (2)速度随着时间的匀变速直线运动,叫做匀减速直线运动. 二、速度与时间的关系式 1.速度公式: 2.对公式的理解:做匀变速直线运动的物体,由于加速度a在数值上等于速度的变化量,所以at就是t时间内;再加上运动开始时物体的,就可以得到t时刻物体的. 一、对匀变速直线运动的认识 1.匀变速直线运动的特点 (1)加速度a恒定不变; (2)v t图象是一条倾斜的直线.

2.分类 匀加速直线运动:速度随着时间均匀增大,加速度a与速度v同向. 匀减速直线运动:速度随着时间均匀减小,加速度a与速度v同向. 二、对速度公式的理解 1.公式v=v0+at中各量的物理意义 v0是开始计时时的瞬时速度,称为初速度;v是经时间t后的瞬时速度,称为末速度;at是在时间t内的速度变化量,即Δv=at. 2.公式的适用条件:做匀变速直线运动的物体 3.注意公式的矢量性 公式中的v0、v、a均为矢量,应用公式解题时,一般取v0的方向为正方向,若物体做匀加速直线运动,a取正值;若物体做匀减速直线运动,a取负值. 4.特殊情况 (1)当v0=0时,v=at,即v∝t(由静止开始的匀加速直线运动). (2)当a=0时,v=v0(匀速直线运动). 针对训练质点在直线上做匀变速直线运动,如图222所示,若在A点时的速度是5 m/s,经过3 s 到达B点时的速度是14 m/s,若再经4 s到达C点,则在C点时的速度多大? 答案26 m/s 对速度公式的理解 1.一辆以12 m/s的速度沿平直公路行驶的汽车,因发现前方有险情而紧急刹车,刹车后获得大小为4 m/s2的加速度,汽车刹车后5 s末的速度为() A.8 m/s B.14 m/s C.0 D.32 m/s 答案 C 2.火车机车原来的速度是36 km/h,在一段下坡路上加速度为0.2 m/s2.机车行驶到下坡末端,速度增加到54 km/h.求机车通过这段下坡路所用的时间. 答案25 s 12.卡车原来以10 m/s的速度在平直公路上匀速行驶,因为路口出现红灯,司机从较远的地方立即开始刹车,使卡车匀减速前进.当车减速到2 m/s时,交通灯恰好转为绿灯,司机当即放开刹车,并且只用了减速过程一半的时间卡车就加速到原来的速度.从刹车开始到恢复原速的过程用了12 s.求: (1)卡车在减速与加速过程中的加速度; (2)开始刹车后2 s末及10 s末的瞬时速度. 12、(1)-1 m/s2 2 m/s2(2)8 m/s 6 m/s 2.3匀变速直线运动的位移与时间的关系 一、匀速直线运动的位移 做匀速直线运动的物体在时间t内的位移x=v t,在速度图象中,位移在数值上等于v t图象与对应的时间轴所围的矩形面积. 二、匀变速直线运动的位移 1.由v t图象求位移: (1)物体运动的速度时间图象如图232甲所示,把物体的运动分成几个小段,如图乙,每段位移≈每段起始时刻速度×每段时间=对应矩形面积.所以整个过程的位移≈各个小矩形.

磁现象和磁场(导)学案 (2)

1磁现象和磁场 知识内容 磁现象和磁场 考试要求 必考加试 b b 课时要求1.了解磁现象,知道磁体、磁极、磁性、磁场等概念,知道磁体之间、磁体与通电导体之间、通电导体与通电导体之间的相互作用是通过磁场发生的.2.了解电流的磁效应,体会奥斯特发现电流的磁效应的重要意义.3.大致了解地磁场的分布情况和地磁两极的特点. 一、磁现象 1.磁性:物体具有的吸引铁质物体的性质称为磁性. 2.磁极:磁体的各部分磁性强弱不同,磁性最强的区域叫磁极. (1)磁体有两个磁极,一个叫N极(又叫北极),另一个叫S极(又叫南极). (2)同名磁极相互排斥,异名磁极相互吸引. 二、电流的磁效应 1.奥斯特实验:把导线沿南北方向放置在指向南北的磁针上方,通电时磁针发生了偏转.2.实验意义:奥斯特实验发现了电流的磁效应,即电流可以产生磁场,首先揭示了电与磁的联系. 三、磁场 1.磁体、电流间的相互作用 (1)磁体与磁体间存在相互作用. (2)通电导线对磁体有作用力,磁体对通电导线也有作用力. (3)通电导线之间也有作用力. 2.磁场:磁体与磁体之间、磁体与通电导线之间,以及通电导线与通电导线之间的相互作用,是通过磁场发生的,磁场是磁体或电流周围一种看不见、摸不着的特殊物质.

(1)地磁场:地球本身是一个磁体,N极位于地理南极附近,S极位于地理北极附近. (2)磁偏角:小磁针的指向与地理子午线之间的夹角,如图1所示. 图1 [即学即用]判断下列说法的正误. (1)首先发现电流的磁效应的是丹麦物理学家奥斯特,他发现电流的周围能产生磁场.(√) (2)大磁铁的磁性较强,对小磁针的作用力大,但小磁针对大磁铁的磁场力较小.(×) (3)任何两个磁体之间产生的磁场力总是大小相等、方向相反.(√) (4)磁极和磁极之间的相互作用是通过磁场产生的.(√) (5)电流和电流之间的相互作用是通过电场产生的.(×) (6)在地面上放置一个小磁针,小磁针的南极指向地磁场的南极.(×) 一、磁现象磁场 [导学探究](1)取一个条形磁铁,用一枚大头针分别靠近磁铁的两端和中部,观察到什么现象? (2)取两个条形磁铁,分别将它们的同名磁极、异名磁极相互靠近,观察到什么现象? (3)如图2所示,通电导线放在磁铁附近,悬挂导线的细线偏离竖直方向,说明通电导线受到力的作用,磁铁对通电导线的作用力是如何产生的? 图2 答案(1)磁铁能够吸引大头针,两端对大头针的吸引力较大,中间部分对大头针的吸引力较小. (2)同名磁极靠近,相互排斥;异名磁极靠近,相互吸引. (3)是通过磁场产生的.

初中数学各章节知识点总结(人教版)

七年级数学(上)知识点 人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容. 第一章、有理数 知识概念 1.有理数: (1)凡能写成 )0p q ,p (p q ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数; (2)有理数的分类: ① ??? ? ? ????????负分数 负整数负有理数零正分数正整数 正有理数有理数 ② ???????????????负分数正分数 分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ? a+b=0 ? a 、b 互为相反数. 4.绝对值: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2) 绝对值可表示为:?????<-=>=) 0a (a )0a (0) 0a (a a 或???<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0. 6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1? a 、b 互为倒数;若ab=-1? a 、b 互为负倒数. 7. 有理数加法法则:

交变电流章末总结

交变电流章末总结 要点一 交变电流的有效值 交变电流的有效值是根据电流的热效应规定的:让交流和直流通过相同阻值的电阻,如果让它们在相同的时间内产生的热量相等,就把这一直流的数值叫做这一交流的有效值. (1)只有正弦式交变电流的有效值才一定是最大值的2 2 倍. (2)通常所说的交变电流的电流、电压;交流电表的读数;交流电器的额定电压、额定电流;保险丝的熔断电流等都指有效值. 要点二 交变电流的“四值”的区别与联系 正弦式交变电流的电动势、电压和电流都有最大值、有效值、瞬时值和平均值.以电动势为例:最大值用E m 表示,有效值用E 表示,瞬时值用e 表示,平均值用E 表示,它们之间的关系是E =E m 2 ,e =E m sin ωt ,平均值不常用,必要时可用电磁感应定律直接求E =n ΔΦ Δt .特别要注意,有 效值和平均值是不同的两个物理量,在研究交变电流做功、电功率以及产生的热量时,只能用有效值;另外,各种交流电表指示的电压、电流和交流电器上标注的额定电压、额定电流,指的都是有效值,与热效应有关的计算,如保险丝的熔断电流等必须用有效值,在研究交变电流通过导体横截面的电荷量时,只能用平均值,千万不可混淆. 要点三 理想变压器 理想变压器的两个基本公式是:(1)U 1U 2=n 1 n 2 ,即对同一变压器的任意两个线圈,都有电压和匝数 成正比.(2)输入功率等于输出功率.无论有几个副线圈在工作,变压器的输入功率总等于所有 输出功率之和.需要引起注意的是:①只有变压器是一个副线圈时,才满足I 1I 2=n 2 n 1 ,但是变压关 系总满足U 1U 2=n 1 n 2 .②变压器的输入功率是由输出功率决定的. 要点四 远距离输电 1.在求解远距离输电问题时,一定要先画出远距离输电的示意图来,包括发电机、两台变压器,输电线等效电阻和负载电阻,并依次写出各部分的符号以便备用.一般设两个变压器的初次级线圈的匝数分别为n 1、n 1′、n 2、n 2′,相应的电压、电流、功率也应采用相应的符号来表示. 2.远距离输电的功率损失 在远距离输送电能计算线路功率损耗时常用关系式P 损=I 2线R 线计算. 其原因是I 线较易由公式I 线=P 输U 输求出,P 损=U 线I 线或P 损=U 2 线 R 线 ,则不常用,其原因是在一般情况下,U 线不易求出,且易把U 线和U 输相混淆而造成错误.远距离输电中的功率关系: P 输=P 线损+P 用户. 一、交变电流的产生规律 【例1】 如图所示,线圈的面积是0.5 m 2,共100匝;线圈电阻为1 Ω,外 接电阻为R =9 Ω,匀强磁场的磁感应强度为B =1 π T ,当线圈以300 r/min 的转速匀速旋转时,求: (1)若线圈从中性面开始计时,写出线圈中感应电动势的瞬时值表达式. (2)线圈转过1/30 s 时电动势的瞬时值多大? (3)电路中交流电压表和电流表的示数各是多大? 二、交变电流图象的考查 【例2】 一个面积为S 的矩形线圈在匀强磁场中以其一条边为轴做匀速转动,磁场方向与转轴垂直,线圈中感应电动势e 与时间t 的关系如图所示,感应电动势的最大值和周期可由图中读出,则磁场的磁感应强度B 为多大?在t =T /12时刻,线圈平面与磁感应强度的夹角为多大? 三、理想变压器的考查 【例3】 有两个输出电压相同的交变电源,第一个电源外接电阻为R 1;第二个电源外接一个理想变压器,变压器原线圈的匝数为n 1,副线圈的匝数为n 2,变压器的负载为一个阻值为R 2的电阻.今测得两个电源的输出功率相等,则两电阻的大小之比R 1∶R 2为( ) A .n 1∶n 2 B .n 21∶n 2 2 C .n 2∶n 1 D .n 22∶n 2 1

第1节《磁现象和磁场》学案

第1节《磁现象和磁场》学案 基础知识1、磁现象 天然磁石的主要成分是,现使用的磁铁多是用、、等金属或用制成的。天然磁石和人造磁铁都叫做,它们能吸引的性质叫磁性(。磁体的各部分磁性强弱不同,磁性最的区域叫磁极。能够自由转动的磁体,静止时指的磁极叫做南极(S极),指的磁极叫做北极(N极)。 2、电流的磁效应 (1)自然界中的磁体总存在着个磁极,同名磁极相互,异名磁极相互。 (2)丹麦物理学家奥斯特的贡献是发现了电流的,著名的奥斯特实验是把导线沿南北方向放置在指南针上方,通电时。 3、磁场:磁体与磁体之间、磁体与通电导体之间,以及通电导体与通电导体之间的相互作用是通过 发生的。 4、磁性的地球:地磁南极在地理极附近,地磁北极在地理极附近。 巩固练习 1、奥斯特实验说明了() A、磁场的存在 B、磁场具有方向性 C、通电导线周围存在磁场 D、磁体间有相互作用 2、下列关于磁场的说法中,正确的是( ) A、只有磁铁周围才存在磁场 B、磁场是假想的,不是客观存在的 C、磁场只有在磁极与磁极、磁极和电流发生作用时才产生 D.磁极与磁极,磁极与电流、电流与电流之间都是通过磁场发生相互作用 3、磁体与磁体间、磁体和电流间、电流和电流间相互作用示意图,以下正确的是() A、磁体磁场磁体 B、磁体磁场电流 C、电流电场电流 D、电流磁场电流 4、首先发现通电导线周围存在磁场的物理学家是( ) A.安培B.法拉第C.奥斯特D.特斯拉 5 、在做奥斯特实验时,下列操作中现象最明显的是 A、沿电流方向放置磁针,使磁针在导线的延长线上 B、沿电流方向放置磁针,使磁针在导线的正下方 C、电流沿南北方向放置在磁针的正上方 D、电流沿东西方向放置在磁针的正上方 6 关于地磁场,下列叙述正确的是() A.地球的地磁两极和地理两极重合B.我们用指南针确定方向,指南的一极是指南针的北极 C.地磁的北极与地理的南极重合D.地磁的北极在地理南极附近 1

人教版七年级数学上册各章知识点总结及对应章节经典练习

七年级上册各章知识点 第一章《有理数》 一、正数与负数 1.正数与负数表示具有相反意义的量。问:收入+10元与支出-10元意义相反吗? 2.有理数的概念与分类 ①整数和分数统称有理数,能写成两个整数之比的数就是有理数 。判断:有理数可分为正有理数和负有理数( 错,还有0) ②零既不是正数,也不是负数。判断:0是最小的正整数(错 ),正整数负整数统称整数(错,还有0 ),正分数负分数统称分数(对 ) ③有限小数和无限循环小数因都能化成分数,故都是有理数。判断:0是最小的有理数(错 ) ④无限不循环小数因为不能化成两个整数之比,固称为无理数,如π,π/2等。判断:整数和小数统称有理数(错,整数和分数统称有理数 )。 二、数轴 1.数轴三要素:原点、正方向、单位长度 (另:数轴是一条有向直线) 2.作用:1)描点:数形结合;2)比较大小:沿着数轴正方向数在逐渐变大;3)直观反映互为相反数的两个点的位置关系;4)绝对值的几何意义;5)有理数都在数轴上,但数轴上的数并非都是有理数。 3.数轴上点的移动规律:“正加负减”向数轴正方向(或负方向)则对应的数应加(或减) 4.数轴上以数a 和数b 为端点的线段中点为a 与b 和的一半(如何用代数式表示?) 三、相反数 1.定义:若a+b=0,则a 与b 互为相反数 特例:因为0+0=0,所以0的相反数是0 2.性质: ①若a 与b 互为相反数,则a+b= 0 ②-a 不一定表示负数,但一定表示a 的相反数(仅仅相差一个负号) ③若a 与b 互为相反数且都不为零,a b = -1 ④除0以外,互为相反数的两个数总是成双成对的分布在原点两侧且到原点的距离相等。 ⑤互为相反数的两个数绝对值相等,平方也相等。即:a =a -,()2 2a a =-

静电场章末总结

高二物理《静电场》 章末总结 使用时间: 一、电场的几个物理量的求解思路 1.确定电场强度的思路 (1)定义式:E =F q 。 (2) 点电荷场强决定式:E =kQ r 2 (真空中点电荷)。 (3)电场强度的叠加原理,场强的矢量和。 (4)电场强度与电势差的关系:E =U d (限于匀强电场)。 (5)导体静电平衡时,内部场强为零即感应电荷的场强与外电场的场强等大反向 E 感=-E 外。 (6)电场线(等势面)确定场强方向,定性确定场强。 2.确定电势的思路 (1)定义式:=E p q 。 (2)点电荷电势决定式:r kQ = ? (真空中点电荷)。 (3) 电势的叠加,代数和。 (4)电势与电势差的关系:U AB =A -B 。 (5)电势与场源电荷的关系:越靠近正电荷,电势越高;越靠近负电荷,电势越低。 (6)电势与电场线的关系:沿电场线方向,电势逐渐降低。

(7)导体静电平衡时,整个导体为等势体,导体表面为等势面。 3.确定电势能的思路 (1)与静电力做功关系:W AB=E pA-E pB,静电力做正功,电势能减小;静电力做负功,电势能增加。 (2)与电势关系:E p=q p,正电荷在电势越高处电势能越大,负电荷在电势越低处电势能越大。 (3)与动能关系:只有静电力做功时,电势能与动能之和为常数,动能越大,电势能越小。4.确定电场力的功的思路 (1)根据电场力的功与电势能的关系:电场力做的功等于电势能的减少量,W AB=E pA-E pB。 (2)应用公式W AB=qU AB计算:(计算时带入正负号)。 (3)应用功的定义式求解匀强电场中电场力做的功:W=qElcos。 注意:此法只适用于匀强电场中求电场力的功。 (4)由动能定理求解电场力的功:W电+W其他=E k.。 即若已知动能的改变和其他力做功情况,就可由上述式子求出电场力做的功。 (5)看移动电荷与固定电荷(或者主要的固定电荷)的位置关系。 【例1】电场中有a、b两点,已知a=-500 V,b=1 500 V,将带电荷量为q=-410-9C 的点电荷从a移到b时,电场力做了多少功a、b间的电势差为多少 变式训练1如图是一匀强电场,已知场强E=2102N/C。现让一个电 荷量q=-410-8C的电荷沿电场方向从M点移到N点,MN间的距 离l=30 cm。试求: (1)电荷从M点移到N点电势能的变化; (2)M、N两点间的电势差。 二、电场力做功与能量转化 1.带电的物体在电场中具有电势能,同时还可能具有动能和重力势能等机械能,用能量观点处理问题是一种简捷的方法。

高中物理选修3_1第二章章末知识总结

第二章 单元复习 一、知识点回顾: 1、电源、电源电动势; 1、闭合电路的欧姆定律; 2、闭合电路欧姆定律的应用; 3、电池组; 4、电阻的测量。 二、基本知识点: (一)、电源、电源电动势: 1、电源的概念: (1)电源是把其它形式的能转化为电能的一种装置。 (2)电源供电原理:在电源部非静电力做功,其它形式的能转化为电能,在电源的外部电路,电场力做功,电能转化为其它形式的能。 2、电源的电动势: (1)电源电动势大小等于没有接入电路时两极之间的电压,(电源电动势的大小可用阻极大的伏特表粗略测出) (2)电动势的符号:E ,国际单位是伏特(符号为V );是一个标量,但有方向,在电源部由负极指向正极。 (3)电动势的物理意义:表征电源把其它形式的能转化为电能的本领,电动势是由电源本身的性质决定的,电动势在数值上等于在把其它形式的能转化为电能的时,1C 电量所具有的电能的数值。 3、电压和外电压: (1)闭合电路的组成:电路:电源部的电路其电阻称为电阻,电阻所降落的电压称为电压; (2)外电路:电源外部的电路,其两端电压称为外电压或路端电压。 (3)、外电压的关系:E = U + U' 。 (4)注意:在电路闭合时U < E ; (二)、闭合电路的欧姆定律: 1、闭合电路的欧姆定律的容: (1)闭合电路里的电流,跟电源的电动势成正比,跟整个电路的电阻成反比。 公式:I = r R E ;

(2)从闭合电路欧姆定律中,还可导出电路功率的表达式: EI = U I + U'I = I 2R + I 2r 。 (3)、定律的适用条件:外电路为纯电阻电路。 2、闭合电路欧姆定律的应用: 路端电压变化的讨论: (1)当R 增大时,I 减小,U'=I r 减小,U 增大;当R 时,I = 0 ,U =E (最大); R 0 时 ,I = r E ,U = 0 ; (2)当R 减小时,U 减小,当3、闭合电路欧姆定律的应用(二) 应用闭合电路的欧姆定律分析电路中有关电压、电流、电功率的方法; (1)分析电路中的电压、电流、电阻时,一般先由闭合电路欧姆定律确定电路的总电流、路端电压,再结合部分电路的欧姆定律分析各部分电路的参数。 (2)分析电源的电动势、电阻时,可将(1)中的分析顺序逆进行。 (3)分析电路的功率(或能量)时可用公式EI = U I + U'I = I 2R + I 2r 其中EI 为电源的总功率(或消耗功率),U I= I 2R 为电源的输出功率(或外电路的消耗功率);U'I= I 2 r 为电源部损耗功率,要注意区分。 (三)电池组: 1、串联电池组: (1)连接方法:前一个电池的负极与后一个电池的正极相连依次连接而成。 (2)串联电池组的特点: 电动势E = E 1 + E 2+E 3+………; 电阻:r = r 1 + r 2+r 3 ………..; 当用相同电池串联时:E 串= nE ;r 串 = nr ; (3)注意:串联电池组允许通过的电流跟单个电池相同;串联时,不要部分电池接反;不要新旧电池混合串联。 (四)电阻的测量: 1、伏安法测电阻: (1)原理和方法:利用电压表和电流表测出电阻两端的电压U 和通过的电流I ,用欧

磁场知识点归纳总结

? 本章共有四个概念、两个公式、两个定则。 五个概念:磁场、磁感线、磁感强度、匀强磁场 两个公式:安培力 F=BIl (Il⊥B) 洛伦兹力 f =qvB (v⊥B) 两个定则: 安培定则——判断电流的磁场方向 左手定则——判断磁场力的方向 1.磁场 ⑴永磁体周围有磁场。 ⑵电流周围有磁场(奥斯特实验)。 分子电流假说: 物质微粒内部存在着环形分子电流。 磁现象的电本质:磁体的磁场和电流的磁场都是由电荷的运动产生的。 ⑶在变化的电场周围空间产生磁场(麦克斯韦) 2.磁场的基本性质 磁场对放入其中的磁极和电流有磁场力的作用 3.磁感应强度 : (定义式) 适用条件: l 很小(检验电流元),且 l⊥B 。磁感应强度是矢量。 单位是特斯拉,符号 1T=1N/(A m) 方向:规定为小磁针在该点静止时N极的指向 4. 磁感线 ⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N极的指向。磁感线的疏密表示磁场的强弱。磁感线都是闭合曲线。(2)要熟记常见的几种磁场的磁感线: (3)安培定则(右手螺旋定则): 对直导线,四指指磁感线环绕方向; 对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。 (4)地磁场:地球的磁场与条形磁体的磁场相似。 主要特点是:地磁场B的水平分量(Bx)总是从地球南极指向北极,而竖直分量(By)则南北相反,在南半球垂直地面向上,在北半球垂直地面向下;在赤道表面上,距离地球表面相等的各点磁感应强度相等,且水平向北. ?如图所示,a、b是直线电流的磁场,c、d是环形电流的磁场,e、f是螺线管电流的磁场,试在各图中补画出电流方向或磁感线方向. 3、如图所示,一束带电粒子沿着水平方向平行地飞过磁针上方时,磁针的S极向纸内偏转,则这束带电粒子可能是 ( BC ) A.向右飞行的正离子束 B.向左飞行的正离子束 max F B Il = S N

相关文档
相关文档 最新文档