文档库 最新最全的文档下载
当前位置:文档库 › 带电粒子在有界磁场中运动的临界问题1(题目)

带电粒子在有界磁场中运动的临界问题1(题目)

带电粒子在有界磁场中运动的临界问题1(题目)
带电粒子在有界磁场中运动的临界问题1(题目)

带电粒子在有界磁场中运动的临界问题(2)“临界问题”大量存在于高中物理的许多章节中,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。

一、解题方法

画图→动态分析→找临界轨迹。(这类题目关键

是作图,图画准了,问题就解决了一大半,余下的就只

有计算了──这一般都不难。)

二、常见题型(B为磁场的磁感应强度,v0为粒子进

入磁场的初速度)

三、应用举例:

第一类问题:

例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边

界为CD和EF。一电子从CD边界外侧以速率v0垂直匀强磁场射入,入

射方向与CD边界夹角为θ。已知电子的质量为m,电荷量为e,为使

电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?

第二类问题:

例2 如图3所示,水平线MN下方存在垂直纸面向里的磁感

应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子

源S,可在纸面内360°范围内发射质量为m、电量为e、速度为

v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远

距离OP=________,打在O点左侧最远距离OQ=__________。

【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀

强磁场,磁场方向垂直纸面向里。P为屏上的一小孔,PC与MN垂直。

一群质量为m、带电荷量为-q的粒子(不计重力),以相同的速率v,

从P处沿垂直于磁场的方向射入磁场区域。粒子入射方向在与磁场B

垂直的平面内,且散开在与PC夹角为θ的范围内,则在屏MN上被粒子

打中的区域的长度为()

A. B.

C. D.

第三类问题:

例3(2009年山东卷)如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为L,第一、四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴向右连续发射质量为m、电量为+q、速度相同、重力不计的带电粒子。在0~3t0时间内两板间加上如图乙所示的电压(不考虑极板边缘的影响)。

已知t=0时刻进入两板间的带电粒子恰好在t0时刻经极板边缘射入磁场。上述m、q、l、t0、B 为已知量。(不考虑粒子间相互影响及返回极板间的情况)

(1)求电压U0的大小。

(2)求t0/2时刻进入两板间的带电粒子在磁场中做圆周运动的半径。

(3)何时进入两板间的带电粒子在磁场中的运动时间最短?求此最短时间。

第四类问题:

例4 如图9所示,一个质量为m,带电荷量为+q的粒子

以速度v0从O点沿y轴正方向射入磁感应强度为B的圆形匀强磁

场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从x轴

上的b点穿过,其速度方向与x轴正方向的夹角为30°,粒子的

重力可忽略不计,试求:(1)圆形匀强磁场区域的最小面积;

(2)粒子在磁场中运动的时间;(3)b到O的距离。

第五类问题:

在xOy平面内有许多电子(质量为m、电荷量为e),从坐

沿不同方向射入第一象限,如图3

标原点O不断地以相同的速率v

所示。现加一个垂直于xOy平面向里,磁感应强度为B的匀强磁场,

要使这些电子穿过磁场区域后都能平行于x轴向x轴正向运动。求

符合该条件磁场的最小面积。

带电粒子在圆形磁场中运动的规律.

带电粒子在磁场中的运动 例 1. 如图所示,在宽度为 d 磁感应强度为 B 、水平向外的匀强磁场矩形区域内,一带电粒子以初速度 v 入射, 粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 A. 带电粒子的比荷 B. 带电粒子在磁场中运动的周期 C. 带电粒子的质量 D. 带电粒子在磁场中运动的半径变式 . 若带电粒子以初速度 v 从 A 点沿直径入射至磁感应强度为 B , 半径为 R 的圆形磁场, 粒子飞出时偏离原方向 60°,利用以上数据可求出下列物理量中的哪几个 应用 1、如图所示,长方形 abcd 长 ad = 0.6m ,宽 ab = 0.3m , O 、 e 分别是 ad 、bc 的中点,以 ad 为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场 ,磁感应强度 B =0.25T 。一群不计重力、质

量 m =3 ×10-7 kg 、电荷量 q =+2×10- 3C 的带电粒子以速度 v =5×l02m/s 沿垂直 ad 方向且垂直于磁场射入磁场区域( A . 从 Od 边射入的粒子, 出射点全部分布在 Oa 边 B . 从 aO 边射入的粒子, 出射点全部分布在 ab 边 C .从 Od 边射入的粒子,出射点分布在 Oa 边和 ab 边 D .从 aO 边射入的粒子,出射点分布在 ab 边和 bc 边 应用 2. 在以坐标原点 O 为圆心、半径为 r 的圆形区域内,存在磁感应强度大小为 B 、方向垂直于纸面向里的匀强磁场,如图 10所示。一个不计重力的带电粒子从磁场边界与 x 轴的交点 A 处以速度 v 沿 -x 方向射入磁场,恰好从磁场边界与 y 轴的交点 C 处沿 +y方向飞出。 (1请判断该粒子带何种电荷,并求出其比荷 q/m; (2若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了 60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间 t 是多少? 例 2. 如图所示, 一束电子流以不同速率, 由边界为圆形的匀强磁场的边界上一点 A , 沿直径方向射入磁场,已知磁感应强度方向垂直圆平面,则电子在磁场中运动时:( A 轨迹长的运动时间长 B 速率大的运动时间长 C 偏转角大的运动时间长 D 速率为某一值时不能穿出该磁场

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题 当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态。粒子进入有边界的磁场,由于边界条件的不同,而出现涉及临界状态的临界问题,如带电粒子恰好不能从某个边界射出磁场,可以根据边界条件确定粒子的轨迹、半径、在磁场中的运动时间等。如何分析这类相关的问题是本文所讨论的内容。 一、带电粒子在有界磁场中运动的分析方法 1.圆心的确定 因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。 2.半径的确定和计算 利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点: ①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。 ②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。 3.粒子在磁场中运动时间的确定

若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出 圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T 即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t 与运动轨迹的长短无关。 4.带电粒子在两种典型有界磁场中运动情况的分析 ①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。 a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标) b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标) c、带电粒子在磁场中经历的时间由得出。 ②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。

带电粒子在圆形磁场中运动的规律

带电粒子在磁场中的运动 例1.如图所示,在宽度为d 磁感应强度为B 、水平向外的匀强磁场矩形区域内,一带电粒子以初速度v 入射,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 A.带电粒子的比荷 B.带电粒子在磁场中运动的周期 C.带电粒子的质量 D.带电粒子在磁场中运动的半径 变式.若带电粒子以初速度v 从A 点沿直径入射至磁感应强度为B ,半径为R 的圆形磁场,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 应用1、如图所示,长方形 abcd 长 ad = 0.6m ,宽 ab = 0.3m , O 、e 分别是 ad 、bc 的中点,以 ad 为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场),磁感应强度 B =0.25T 。一群不计重力、质 量 m =3 ×10-7 kg 、电荷量 q =+2×10- 3C 的带电粒子以速度v =5×l02m/s 沿垂直 ad 方向且垂直于磁场射入磁场区域 ( ) A .从 Od 边射入的粒子,出射点全部分布在 Oa 边 B .从 aO 边射入的粒子,出射点全部分布在 ab 边 C .从Od 边射入的粒子,出射点分布在Oa 边和 ab 边 D .从aO 边射入的粒子,出射点分布在ab 边和bc 边 应用2.在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图10所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。 (1)请判断该粒子带何种电荷,并求出其比荷q/m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少? 例2.如图所示,一束电子流以不同速率,由边界为圆形的匀强磁场的边界上一点A ,沿直径方向射入磁场,已知磁感应强度方向垂直圆平面,则电子在磁场中运动时:( ) A 轨迹长的运动时间长 B 速率大的运动时间长 C 偏转角大的运动时间长 D 速率为某一值时不能穿出该磁场 变式.如右图所示,直角三角形ABC 中存在一匀强磁场,比荷相同的两个粒子沿AB 方向射入磁场,分别从AC 边上的P 、Q 两点射出,则 A.从P 射出的粒子速度大 B.从Q 射出的粒子速度大 C.从P 射出的粒子,在磁场中运动的时间长 D.两粒子在磁场中运动的时间一样长 例3.如右图所示,在半径为R 的圆形区域内充满磁感应强度为B 的匀强磁场,MN 是一竖直放置的感光板.从圆形磁场最高点P 垂直磁场射入大量的带正电、电荷量为q 、质量为m 、速度为v 的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动以下说法正确的是 A.只要对着圆心入射,出射后均可垂直打在MN 上 B.对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心 C.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长 D.只要速度满足m qBR v / ,沿不同方向入射的粒子出射后均可垂直打在MN 上(出射速度有什么关系?)若相同速率平行经过p 点的直径进入磁场,出射点又有什么规律?

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题的解题技巧 湖北省恩施高中 陈恩谱 带电粒子(质量m 、电量q 确定)在有界磁场中运动时,涉及的可能变化的参量有——入射点、入射速度大小、入射方向、出射点、出射方向、磁感应强度大小、磁场方向等,其中磁感应强度大小与入射速度大小影响的都是轨道半径的大小,可归并为同一因素(以“入射速度大小”代表),磁场方向在一般问题中不改变,若改变,也只需将已讨论情况按反方向偏转再分析一下即可。 在具体问题中,这五个参量一般都是已知两个,剩下其他参量不确定(但知道变化范围)或待定,按 已知参数可将问题分为如下10类(2 5C ),并可归并为6大类型。 所有这些问题,其通用解法是:①第一步,找准轨迹圆圆心可能的位置,②第二步,按一定顺序.....尽可能多地作不同圆心对应的轨迹圆(一般至少5画个轨迹圆),③第三步,根据所作的图和题设条件,找出临界轨迹圆,从而抓住解题的关键点。 类型一:已知入射点和入射速度方向,但入射速度大小不确定(即轨道半径不确定) 这类问题的特点是:所有轨迹圆圆心均在过入射点、垂直入射速度的同一条直线上。 【例1】如图所示,长为L 的水平极板间有垂直于纸面向内的匀强磁场,磁感应强度为B ,板间距离也为L ,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是 A .使粒子的速度v 5BqL 4m C .使粒子的速度v >BqL m D .使粒子的速度BqL 4m

带电粒子在磁场中运动(I)

3.6 带电粒子在磁场中的运动(二) 主编:金生华 主审:张国平 班级 姓名 学号 教学目标: 1.学会寻找带电粒子在匀强磁场中做匀速圆周运动的圆心、半径 2.能够处理带电粒子在匀强磁场中做非完整匀速圆周运动时间 教学重难点: 1.如何确立带电粒子在匀强磁场中做匀速圆周运动的圆心、半径及运动时间 难点解析 1、如何确立带电粒子在匀强磁场中做匀速圆周运动的圆心、半径及 运动时间? (1)圆心的确定。因为洛伦兹力f 指向圆心,根据f ⊥v ,画出粒子运动轨迹上任意两 点(一般是射入和射出磁场的两点)的f 的方向,其延长线的交点即为圆心。 (2)半径的确定和计算。圆心找到以后,自然就有了半径(一般是利用粒子入、出磁 场时的半径)。半径的计算一般是利用几何知识,常用解三角形的方法及圆心角等于圆弧上弦切角的两倍等知识。 (3)在磁场中运动时间的确定。利用圆心角与弦 切角的关系,或者是四边形内角和等于360° 计算出圆心角θ的大小,由公式t=ο360 θ×T 可求出运动时间。有时也用弧长与线速度的比。 如图所示,还应注意到: ①速度的偏向角?等于弧AB 所对的圆心角θ。 ②偏向角?与弦切角α的关系为:?<180°,?=2α;?>180°,?=360°-2α; (4)注意圆周运动中有关对称规律 如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等; 在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。 典型例题 【例1】如图所示,一束电子(电量为e)以速度v 垂直射入磁感应强度为B ,宽度为d 的匀强 磁场中,穿过磁场时速度方向与电子原来入射方向的夹角是300,则电子的质量是多少?电子穿过磁场的时间是多少? 【例2】如图所示,匀强磁场的磁感应强度为B ,宽度为d ,边界为CD 和EF 。一电子从 CD 边界外侧以速率V 0垂直射入匀强磁场,入射方向与CD 边界间夹角为θ。已知电子的质量为m ,电荷量为e ,求: (1)为使电子能从磁场的另一侧EF 射出,电子的速率v0至少多大? (2)若电子从磁场的CD 一侧射出, 则电子在磁场中的运动时间是多少? 【例3】如图所示,分布在半径为r 的圆形区域内的匀强磁 场,磁感应强度为B ,方向垂直纸面向里。电量为 q 、质量为m 的带正电的粒子从磁场边缘A 点沿圆 的半径AO 方向射入磁场,离开磁场时速度方向偏 转了60°角。试确定:

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中, 如“圆周运动中小球能过最高点的速度条 件” “动量中的避免碰撞问题”等等, 这类题目中往往含有“最大”、 “最高”、“至少”、 “恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁 场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 、解题方法 画图T 动态分析T 找临界轨迹。 (这类题目关键是作图,图画准了,问题就解决了一大 半,余下的就只有计算了——这一般都不难。 ) 、常见题型 (B 为磁场的磁感应强度,V 。为粒子进入磁场的初速度) r ①旳方向一定,大小不确定一第一类 I 』确宦 < ②V 。犬小 一亦方向不确定——第二类 ■③旳大小、方向都不确定一第三类 分述如下: 第一类问题: 例1如图1所示,匀强磁场的磁感应强度为 B,宽度为d ,边界为CD 和EF 。一电子从 CD 边界 外侧以速率 V 。垂直匀强磁场射入,入射方向与CD 边界夹角为0。已知电子的质量为 m 电荷量为e ,为使电子能从磁场的另一侧 EF 射出,求电子的速率 v o 至少多大? 2.行不确宦 -①巾确定 ——第四类 {——五类

例2如图3所示,水平线 MN 下方存在垂直纸面向里的磁感应强度为 B 的匀强磁场,在 MN 线上某点O 正下方与之相距 L 的质子源S,可在纸面内360°范围内发射质量为 m 电量 为e 、速度为 V o =BeL / m 的质子,不计质子重力,打在 MN 上的质子在 O 点右侧最远距离 OP ,打在O 点左侧最 远距离 OO 。 分析:首先求出半径得r =L ,然后作出临界轨迹如图 4所示(所有从 S 发射出去的质子 做圆周运动的轨道圆心是在以 S 为圆心、以r =L 为半径的圆上,这类问题可以先作出这一圆 ——就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆) ,O 諒L , OQL 。 【练习】如图5所示,在屏MN 勺上方有磁感应强度为 B 的匀强磁场,磁场方向垂直纸面 向里。P 为屏上的一小孔,PC 与MN 垂直。一群质量为 m 带电荷量为一q 的粒子(不计重力), 分析:如图2,通过作图可以看到:随着 界EF 相切,然后就不难解答了。 第二类问题: V o 的增大,圆半径增大,临界状态就是圆与边

带电粒子在匀强磁场中的运动

带电粒子在匀强磁场中的运动 四会中学邱又香 知识与能力目标 1.理解洛伦兹力对粒子不做功 2.理解带电粒子的初速度方向与磁感应强度垂直时,粒子在匀强磁场中做匀速圆周运动 3.推导半径,周期公式并解决相关问题 道德目标 培养学生热爱科学,探究科学的价值观 教学重点 带电粒子在匀强磁场中做匀速圆周运动的半径公式和周期公式, 并能用来解决有关问题。 教学难点 带电粒子在匀强磁场中做匀速圆周运动的条件 对周期公式和半径公式的定性的理解。 教学方法 在教师指导下的启发式教学方法 教学用具 电子射线管,环行线圈,电源,投影仪, 教学过程 一引入新课 复习:1 当带电粒子以速度v平行或垂直射入匀强磁场后,粒子的受力情况; 2 回顾带电粒子垂直飞入匀强电场时的运动特点,让学生猜想带电粒子垂直飞入匀强磁场的运动情况。 二.新课 1.运动轨迹 演示实验利用洛伦兹力演示仪,演示电子射线管内的电子在匀强磁场中的运动轨迹,让学生观察存在磁场和不存在磁场时电子的径迹。 现象:圆周运动。 提问:是匀速圆周运动还是非匀速圆周运动呢? 分析:(1)首先回顾匀速圆周运动的特点:速率不变,向心力和速度垂直且始终在同一平面,向心力大小不变始终指向圆心。 (2)带电粒子在匀强磁场中的圆周运动的受力情况是否符合上面3个特点呢? 带电粒子的受力为F洛=qvB ,与速度垂直故洛伦兹力不做功,所以速度v不变,即可得洛伦兹力不变,且F洛与v同在垂直与磁场的平面内,故得到结论:带电粒子在匀强磁场中做匀速圆周运动 结论:1、带电微观粒子的质量很小,在磁场中运动受到洛伦兹力远大于它的重

力,因此可以把重力忽略不计,认为只受洛伦兹力作用。 2、沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做匀速圆周运动,洛伦兹力提供做向心力,只改变速度的方向,不改变速度的大小。 2.轨道半径和周期 ? 例:一带电粒子的质量为m ,电荷量为q ,速率为v ,它在磁感应强度为B 的匀强磁场中做匀速圆周运动,求轨道半径有多大? 由 得 可知速度越大,r 越大。 周期呢? 由 得 与速度半径无关。 实验:改变速度和磁感强度观测半径r 。 例1:一个质量为m 、电荷量为q 的粒子,从容器下方的小孔S1飘入电势差为U的加速电场,然后经过S3沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到照相底片D上求: (1)求粒子进入磁场时的速率 (2)求粒子在磁场中运动的轨道半径 解:由动能定理得:qU = mv 2 /2, 解得: m qU v 2= 粒子在磁场中做匀速圆周运动得半径为:R =mv/qB=m m qU /2/qB=B q mU 2/2 ? 例2:如图,从粒子源S 处发出不同的粒子其初动量相同,则表示电荷量最小的带正电粒子在匀强磁场中的径迹应是( ) S mv R qB =2m T qB π=2v qvB m R =2R T v π=

带电粒子在有界磁场中运动(超经典)..

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 一、解题方法 画图→动态分析→找临界轨迹。(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。) 二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度) 分述如下: 第一类问题: 例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?

分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。 第二类问题: 例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。 分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆 ──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。 【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。P为屏上的一小孔,PC与MN垂直。一群质量为m、带电荷量为-q的粒子(不计重力),

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题 “带电粒子在磁场中的运动”是历年高考中的一个重要考点,而“带电粒子在有界磁场中的运动” 则是此考点中的一个难点.其难点在于带电粒子进入设定的有界磁场后只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,它要求考生根据带电粒子运动的几何图形去寻找几何关系,然后应用数学工具和相应物理规律分析解决问题.下面举例谈谈带电粒子在不同形状有界磁场中运动的一些临界问题. 一、 带电粒子在“圆形磁场区域”中的运动 例1、如图1,半径为cm r 10=的匀强磁场区域边界跟y 轴相切于坐标原点O ,磁感强度T B 332.0=,方向垂直纸面向里.在O 处有一放射源S ,可向纸面各个方向射出速度为s m v /102.36?=的粒子.已知α粒子质量kg m 27 1064.6-?=, 电量C q 19 10 2.3-?=,试画出α粒子通过磁场空间做圆周运动的 圆心轨道,求出α粒子通过磁场空间的最大偏角. 解析:设粒子在洛仑兹力作用下的轨道半径为R ,由 R v m Bq v 2 = 得 cm m m Bq mv R 2020.010 2.3332.0102.31064.619 6 27==?????==-- 虽然α粒子进入磁场的速度方向不确定,但粒子进场点是确定的,因此α粒子作圆周运动的圆心必落在以O 为圆心,半径cm R 20=的圆周上,如图2中虚线. 由几何关系可知,速度偏转角总等于其轨道圆心角.在半径R 一定的条件下,为使α粒子速度偏转角最大,即轨道圆心角最大,应使其所对弦最长.该弦是偏转轨道圆的弦,同时也是圆形磁场的弦.显然最长弦应为匀强磁场区域圆的直径.即α粒子应从磁场圆

高中物理带电粒子在匀强磁场中的运动

第四节带电粒子在匀强磁场中的运动 一、带电粒子在匀强磁场中的运动 1.若v∥B,带电粒子不受洛伦兹力,在匀强磁场中做____________运动. 2.若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v做_______运动. (1)向心力由洛伦兹力提供:qvB=__________=__________; (2)轨道半径公式:R=mv qB ; (3)周期:T=2πR v = 2πm qB (周期T与速度v、轨道半径R无关); (4)频率:f=1 T = qB 2πm ; (5)角速度:ω=2π T =__________. 二、带电粒子在有界磁场中的运动 1.分析方法:找圆心、求半径、确定转过的圆心角的大小是解决这类问题的前提,确定轨道半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t和转过的圆心角α之间的关系作为辅助. (1)圆心的确定 ①基本思路:与速度方向垂直的直线和图中弦的中垂线一定过圆心. ②两种情形 a.已知入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图所示,图中P为入射点,M为出射点).b.已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图所示,图中P为入射点,M为出射点). (2)半径的确定 用几何知识(勾股定理、三角函数等)求出半径大小. (3)运动时间的确定 粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为α时,其运动时间为: t= α 360° T(或t= α 2π T). 2.规律总结 带电粒子在不同边界磁场中的运动 (1)直线边界(进出磁场具有对称性,如图) (2)平行边界(存在临界条件,如图) (3)圆形边界(沿径向射入必沿径向射出,如图)

带电粒子在磁场中的临界极值问题

带电粒子在磁场运动的临界与极值问题考点解读 解决此类问题的关键是:找准临界点. 找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R和速度v(或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下: (1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切. (2)当速度v一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长. (3)当速率v变化时,圆周角越大,运动时间越长. 典例剖析 1.磁感应强度的极值问题 例1 如图所示,一带正电的质子以速度v0从O点垂直射入,两个板间存在垂直纸面向里的匀强磁场.已知两板之间距离为d,板长为d,O点是板的正中间,为使质子能从两板间射出,试求磁感应强度应满足的条件(已知质子的带电荷量为e,质量为m). 2.偏角的极值问题 例2 在真空中,半径r=3×10-2 m的圆形区域内有匀强磁场,方向如图所示,磁感应强度B=0.2 T,一个带正电的粒子以初速度v0=1×106 m/s从磁场边界上直径ab的一端a射入 磁场,已知该粒子的比荷q m=1×10 8 C/kg,不计粒子重力. (1)求粒子在磁场中做匀速圆周运动的半径; (2)若要使粒子飞离磁场时有最大偏转角,求入射时v0与ab的夹角θ及粒子的最大偏转角. 3.时间的极值问题 例3如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经

电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=45°,孔Q到板的下端C 的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,求: (1)两板间电压的最大值U m; (2)CD板上可能被粒子打中的区域的长度x; (3)粒子在磁场中运动的最长时间t m. 4.面积的极值问题 例4如图12所示,一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第一象限所示的区域。为了使该质点能从x轴上的b点以垂直于Ox轴的速度v射出,可在适当的地方加一个垂直于xy平面、磁感应强度为B的匀强磁场。若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径。重力忽略不计。 《带电粒子在磁场运动的临界与极值》反馈训练 1. 一个质子和一个α粒子沿垂直于磁感线方向从同一点射入一个匀

带电粒子在有界磁场中运动的临界问题_教案[1]

带电粒子在有界磁场中运动的临界问题 此类问题的解题关键是寻找临界点,寻找临界点的有效方法是: ① 轨迹圆的缩放: 当入射粒子的入射方向不变而速度大小可变时,粒子做圆周运动的圆心一定在入射点所受洛伦兹力所表示的射线上,但位置(半径R )不确定,用圆规作出一系列大小不同的轨迹图,从圆的动态变化中即可发现“临界点”. 例1 一个质量为m ,带电量为+q 的粒子(不计重力),从O 点处沿+y 方向以初速度射入一个边界为矩形的匀强磁场中,磁场方向垂直于xy 平面向里,它的边界分别是y=0,y=a,x=-1.5a,如图所示,那么当B 满足条件_________时,粒子将从上边界射出:当B 满足条件_________时,粒子将从左边界射出:当B 满足条件_________时,粒子将从下边界射出: 例2 如图9-8所示真空中宽为d 的区域内有强度为B 的匀强磁场方向如图,质量m 带电-q 的粒子以与CD 成θ角的速度V0垂直射入磁场中。要使粒子必能从EF 射出,则初速度V0应满足什么条件?EF 上有粒子射出的区域? 【审题】如图9-9所示,当入射速度很小时电子会在磁场中转动一段圆弧后又从同一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从另一侧射出,当速率大于这个临界值时便从右边界射出,依此画出临界轨迹,借助几何知识即可求解速度的临界值;对于射出区域,只要找出上下边界即可。 【解析】粒子从A 点进入磁场后受洛伦兹力作匀速圆周运动,要使粒子必能从EF 射出,则 相应的临界轨迹必为过点A 并与EF 相切的轨迹如图9-10所示,作出A 、P 点速度的垂线相 交于O/即为该临界轨迹的圆心。 临界半径R0由d Cos θR R 00=+ 有: θ += Cos 1d R 0; 故粒子必能穿出EF 的实际运动轨迹半径R ≥R0 即: θ+≥ = Cos 1d qB mv R 0 有: )Cos 1(m qBd v 0θ+≥ 。 图9-8 图9-9 图9-10

带电粒子在磁场中运动的临界问题

带电粒子在磁场中运动的临界问题 一、“矩形”有界磁场中的临界问题 【例1】如图所示,一足够长的矩形区域abcd 内充满方向垂直纸面向里、磁感应强度为B 的匀强磁场,在ad 边中点O ,方向垂直磁场向里射入一速度方向跟ad 边夹角θ=30°、大小为v 0的带正电粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力不计,求 (1)粒子能从ab 边上射出磁场的v 0大小范围。 (2)若粒子速度不受上述v 0大小的限制,求粒子在磁场中运动的最长时间。 解析: (1)①假设粒子以最小的速度恰好从左边偏转出来时的 速度为v 1,圆心在O 1点,如图 (甲),轨道半径为R 1,对应圆轨迹与ab 边相切于Q 点,由几何知识得:R 1+R 1sin θ=0.5L 由牛顿第二定律得1 211R v m B qv =; 得m qBL v =1 ②假设粒子以最大速度恰好从右边偏转出来,设此时的轨道半径 为R 2,圆心在O 2点,如图 (乙),对应圆轨迹与dc 边相切于P 点。 由几何知识得:R 2=L 由牛顿第二定律得2 222R v m B qv =;得m qBL v =2 粒子能从ab 边上射出磁场的v 0应满足 m qBL v m qBL ≤ ≤3 (2)如图 (丙)所示,粒子由O 点射入磁场,由P 点离开磁场,该圆弧对应运行时间最长。粒子在磁场内运行轨迹对应圆心角为πα35= 。而απ 2T t m = 由R v m qvB 2=,得qB mv R = ,qB m T π2= qB m t m 35π= 【练习1】如图所示,宽度为d 的有界匀强磁场,磁感应强度为B ,MM ′和NN ′是它的两条边界线,现有质量m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入,要使粒子不能从边界NN ′射出,粒子最大的入射速度v 可能是( ) A .小于 m qBd B .小于( ) m qBd 22+ C .小于 m qBd 2 D .小于( ) m qBd 22— 解析:BD

高中物理带电粒子在磁场中的运动知识点汇总

难点之九:带电粒子在磁场中的运动 一、难点突破策略 (一)明确带电粒子在磁场中的受力特点 1. 产生洛伦兹力的条件: ①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用. ②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小: 当电荷运动方向与磁场方向平行时,洛伦兹力f=0; 当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ; 当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ 3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功. (二)明确带电粒子在匀强磁场中的运动规律 带电粒子在只受洛伦兹力作用的条件下: 1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动. 2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动. ①向心力由洛伦兹力提供: R v m qvB 2 = ②轨道半径公式: qB mv R = ③周期: qB m 2v R 2T π=π= ,可见T 只与q m 有关,与v 、R 无关。 (三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的 物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。 1. “带电粒子在匀强磁场中的圆周运动”的基本型问题 (1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。确定半径和给定的几何量之间的关系是解题的基础, 有时需要建立运动时间t 和转过的圆心角α之间的关系( T 2t T 360t πα=α= 或)作为辅助。圆心的确定,通常有以下 两种方法。 ① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。 ② 已知入射方向和出射点的位置,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图9-2,P 为入射点,M 为出射点)。 (2)半径的确定和计算:利用平面几何关系,求出该圆的可能半径或圆心角。并注意以下两个重要的特点: 图9-1 图9-2 图9-3

知识讲解_带电粒子在磁场中的运动 提高

带电粒子在磁场中的运动 编稿:周军审稿:隋伟 【学习目标】 1.掌握带电粒子在匀强磁场中做匀速圆周运动的特点和解决此类运动的方法。 2.理解质谱仪和回旋加速器的工作原理和作用。 【要点梳理】 要点一:带电粒子在匀强磁场中的运动 要点诠释: 1.运动轨迹 带电粒子(不计重力)以一定的速度v进入磁感应强度为B的匀强磁场中: (1)当v∥B时,带电粒子将做匀速直线运动; (2)当v⊥B时,带电粒子将做匀速圆周运动; (3)当v与B的夹角为θ(θ≠0°,90°,180°)时,带电粒子将做等螺距的螺旋线运动. 说明:电场和磁场都能对带电粒子施加影响,带电粒子在匀强电场中只在电场力作用下,可能做匀变速直线运动,也可能做匀变速曲线运动,但不可能做匀速直线运动;在匀强磁场中,只在磁场力作用下可以做曲线运动.但不可能做变速直线运动. 2.带电粒子在匀强磁场中的圆周运动 如图所示,带电粒子以速度v垂直磁场方向入射,在磁场中做匀速圆周运动,设带电粒子的质量为m,所带的电荷量为q. (1)轨道半径:由于洛伦兹力提供向心力,则有 2 v qvB m r =,得到轨道半径 mv r qB =. (2)周期:由轨道半径与周期之间的关系 2r T v π =可得周期 2m T qB π =. 说明:(1)由公式 mv r qB =知,在匀强磁场中,做匀速圆周运动的带电粒子,其轨道半径跟运动速率 成正比. (2)由公式 2m T qB π =知,在匀强磁场中,做匀速圆周运动的带电粒子,周期跟轨道半径和运动速率 均无关,而与比荷q m 成反比. 注意: mv r qB =与 2m T qB π =是两个重要的表达式,每年的高考都会考查.但应用时应注意在计算说明 题中,两公式不能直接当原理式使用. 要点二:带电粒子在匀强磁场中做圆周运动的问题分析要点诠释:

带电粒子在匀强磁场中的运动-各个方向

高二物理选修3-1第三章磁场第六节带电粒子在匀强磁场中的运动有界磁场向各个方向运动专题专项训练 习题集 【知识点梳理】 在有界的磁场中从同一点向各个方向发射出去的相同的带电粒子在运动中,存在两种情况。当它们的速度大小不同时,在磁场中运动的半径不同,相同的带电粒子,在相同的磁场中运动的半径与速度成正比。当它们的速度大小相同时,在磁场中运动的半径相同,它们运动圆心的轨迹是在同一个圆周上。这个圆是以发射点为圆心,以带电粒子在此磁场中运动的半径为半径的圆。 【典题强化】 1.如图所示,在直角三角形abc区域内存在垂直于纸面向外的匀强磁场,磁感应强度大小为B,∠a=60°,∠b=90°,边长ab=L。一个粒子源在b点将质量为m,电荷量为q的带负电 粒子以大小和方向不同的速度射入磁场,在磁场中运动时间最长的粒子中, 速度的最大值是() A.qBL/3m B.qBL/3m C.qBL/2m D.qBL/m 2.如图所示,在直角三角形abc区域内存在垂直于纸面向外的匀强磁场,磁感应强度大小为B,∠a=600,∠b=900,边长ac=L。一个粒子源在a点将质量为m、电荷量为q的带正电粒 子以大小和方向不同的速度射入磁场,在磁场中运动时间最长的粒子中,速 度的最大值是() A.qBL/2m B.qBL/6m C.qBL/4m D.qBL/6m 3.如图所示,在xOy平面内有一半径为r的圆形磁场区域,其内分布着磁感应强度为B方向垂直纸面向里的匀强磁场,圆形区域边界上放有圆形的感光胶片,粒子打在其上会感光。在 磁场边界与x轴交点A处有一放射源A,发出质量为m,电量为q的粒子沿垂直 磁场方向进入磁场,其方向分布在由AB和AC所夹角度内,B和C为磁区边界 与y轴的两个交点.经过足够长的时间,结果光斑全部落在第Ⅱ象限的感光胶片 上,则这些粒子中速度最大的是() A.qBr/2m B.qBr/2m C.qBr/m D.(2+)qBr/m 4.如图所示,在半径为R的圆形区域内,有匀强磁场,磁感应强度为B,方向垂直于圆平面(未画出)。一群比荷都为α的负离子体以相同速率v0(较大),由P点在纸平面内向不同方向射入磁场中发生偏转后,又飞出磁场,则下列说法正确的是(不计重力)() A.离子飞出磁场时的动能一定相等 B.离子在磁场中运动半径不一定相等 C.沿PQ方向射入的离子飞出时偏转角最大 D.由Q点飞出的离子在磁场中运动的时间最长 5.如图所示,在半径为R的圆形区域内,有匀强磁场,方向垂直于圆平面(未画出).一群相同的带电粒子以相同速率v0,由P点在纸平面内向不同方向射入磁场.当磁感应强度大小为B1时,所有粒子出磁场的区域占整个圆周长的1/3;当磁感应强度大小减小为B2时,这些粒子在磁场中 运动时间最长的是2πR/3v0.则磁感应强度B1、B2的比值(不计重力)是()

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 一、解题方法 画图→动态分析→找临界轨迹。(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。) 二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)

分述如下: 第一类问题: 例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?

分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。 第二类问题: 例2 如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN 线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN 上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。

分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。 【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向

有界磁场问题及磁场中的临界问题

有界磁场问题 直线边界磁场 1、如图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面向里,磁感强度为B.一带负电的粒子(质量为m、电荷量为q)以速度v0从O点射入磁场,入射方 向在xy平面内,与x轴正向的夹角为θ.求: (1)该粒子射出磁场的位置 (2)该粒子在磁场中运动的时间.(粒子所受重力不计) 2、如图所示直线MN上方有磁感应强度为B的匀强磁场。正、负电子同时从同一点O以与MN成30°角的同样速度v 射入磁场(电子质量为m,电荷为e),它们从磁场中射出 时相距多远?射出的时间差是多少? 圆形边界磁场 1、如图所示,带负电的粒子垂直磁场方向进入圆形匀强磁场区域,出磁场时速度偏离原方向60°角,已知带电粒子质量m=3×10-20kg,电量q=10-13C,速度v0=105m/s,磁场区域的半径R=3×10-1m,不计重力,求磁场的磁感应强度。 2、如图所示,虚线所围区域内有方向垂直纸面向里的匀强磁场,磁感应强度为B。一束电子沿圆形区域的直径方向以速度v射入磁场,电子束经过磁场区后,其运动的方向与原入射方向成θ角。设电子质量为m, 电荷量为e,不计电子之间的相互作用力及所受的重力。求: (1)电子在磁场中运动轨迹的半径R; (2)电子在磁场中运动的时间t; (3)圆形磁场区域的半径r。

磁场中的临界问题 放缩法找临界 1、在真空中宽d的区域内有匀强磁场B,质量为m,电量为e,速率为v的电子从边 界CD外侧垂直射入磁场,入射方向与CD夹角θ,为了使电子能从磁场的另一侧边界 EF射出,v应满足的条件是:() A.v>eBd/m(1+sinθ)B.v>eBd/m(1+cosθ) C.v>eBd/msinθD.v<eBd/mcosθ 2、如图所示,一足够长的矩形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场,在ad 边中点O方向垂直磁场射入一速度方向跟ad边夹角θ=300、大小为v0的带电粒子,已知粒子质量为m、电量为q,ab边足够长,ad边长为L,粒子的重力不计。求:⑴.粒子能从ab边上射出磁场的v0大小范围。 ⑵.如果带电粒子不受上述v0大小范围的限制,求粒子在磁场中运动的最长时间。 平移法找临界 1、如图,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60T,磁场内有一块平面感光板ab,板面与磁场方向平行,在距ab的距离L=16cm处,有一个点状的放射源S,它向各个方向发射α粒子,α粒子的速度都是v=4.8x106 m/s,已知α粒子的电荷与质量之比q/m=5.0x107C/kg现只考虑在图纸平面中运动的α粒子,求ab上被α粒子打中的区域的长度.

解决带电粒子在有界磁场中运动的临界问题的两种方法

解决带电粒子在有界磁场中运动的临界问题的两种方法 此类问题的解题关键是寻找临界点,寻找临界点的有效方法是: ①轨迹圆的缩放: 当入射粒子的入射方向不变而速度大小可变时,粒子做圆周运动的圆心一定在入射点所受洛伦兹力所表示的射线上,但位置(半径R)不确定,用圆规作出一系列大小不同的轨迹图,从圆的动态变化中即可发现“临界点”. 例1一个质量为m,带电量为+q的粒子(不计重力), 从O点处沿+y方向以初速度射入一个边界为矩形的匀强 磁场中,磁场方向垂直于xy平面向里,它的边界分别是 y=0,y=a,x=-1.5a,如图所示,那么当B满足条件_________ 时,粒子将从上边界射出:当B满足条件_________时, 粒子将从左边界射出:当B满足条件_________时,粒子 将从下边界射出: 例2 如图9-8所示真空中宽为d的区域内有强度为B的匀强磁场方向如图,质量m带电-q的粒子以与CD成θ角的速度V0垂直射入磁场中。要使粒子必能从EF射出,则初速度V0应满足什么条件?EF上有粒子射出的区域? 【审题】如图9-9所示,当入射速度很小时电子会在磁场中转动一段圆弧后又从同一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从另一侧射出,当速率大于这个临界值时便从右边界射出,依此画出临界轨迹,借助几何知识即可求解速度的临界值;对于射出区域,只要找出上下边界即可。 【解析】粒子从A点进入磁场后受洛伦兹力作匀速圆周运动,要使粒子必能从EF射出,则 相应的临界轨迹必为过点A并与EF相切的轨迹如图9-10所示,作出A、P点速度的垂线相交于O/即为该临界轨迹的圆心。 临界半径R0由 d Cosθ R R0 = + 有: θ + = Cos 1 d R0 ; 故粒子必能穿出EF的实际运动轨迹半径R≥R0 即: θ + ≥ = Cos 1 d qB mv R0 有: ) Cos 1( m qBd v0 θ + ≥ 。 图9-8 图9-9 图 9-10

相关文档
相关文档 最新文档