文档库 最新最全的文档下载
当前位置:文档库 › 最新-微电子工艺复习提纲资料

最新-微电子工艺复习提纲资料

最新-微电子工艺复习提纲资料
最新-微电子工艺复习提纲资料

2008级《微电子工艺》复习提纲

一、衬底制备

1.硅单晶的制备方法。

2.晶圆的处理工艺,晶圆晶向的表征方法。

3.理解最大固浓度的概念,硅的杂质源和掺杂特点。

二、外延生长

1.外延的定义和外延的几种方法。

2.四氯化硅氢气还原法外延制备硅的技术,理解温度、反应剂浓度、衬底晶向对生长速率

的影响。

3.理解硅的外延生长模型解释硅外延生长为平面生长技术。

4.硅外延多晶与单晶生长条件。

三、薄膜制备1-氧化

1.干法氧化,湿法氧化和水汽氧化三种方式的优缺点。

2.理解氧化厚度的表达式和曲线图。

3.温度、气体分压、晶向、掺杂情况对氧化速率的影响。

4.理解采用干法热氧化和掺氯措施提高栅氧层质量这个工艺。

四、薄膜制备2-化学气相淀积CVD

1.工艺中影响台阶覆盖、间隙填充的图形保真度的因素。

2.三种常用的化学气相淀积方式,在台阶覆盖能力,呈膜质量等各方面的优缺点。

3.CVD的Grove模型提出的影响薄膜淀积速率的两个因素。

4.本征SiO2,磷硅玻璃PSG,硼磷硅玻璃BPSG的特性和在集成电路中的应用。

5.热生长SiO2和CVD淀积SiO2膜的区别。

五、薄膜制备3-物理气相淀积PVD

1.两种真空蒸发方法和区别。

2.溅射的不同的种类。溅射与真空蒸发的比较。

3.等离子体的概念,高能粒子与芯片表面作用会发生的情况。

六、扩散和离子注入

1. 费克扩散方程。

2. 恒定表面源扩散和恒定杂质总量两种扩散方式下结深及杂质总量的计算。

以下给出五道例题,请大家注意,能自己做出来。

(1) 已知N-Si 衬底N B =1015cm -3,在1150℃作硼再分布扩散后测得Xj=2.5μm, N S =2×1019cm -3, D=6×10-13 cm 2/s, 求扩散时间t=_____min.(只保留整数部分)

扩散时间为44min.

(2) 已知N-Si 衬底N B =1015cm -3,硼预扩散温度为1000℃,D=2×10-14cm 2/s ,时间为20min,Ns=4×1020cm -3, 求通过单位表面积扩散到硅片内部得杂质总量Q=_____×1015cm -2.(答案保留三位有效数字)

杂质总量为2.21_×1015cm -2

(3) 某数字集成电路的埋层采用锑源箱法扩散,扩散温度为1200℃,扩散时间为2小时,试求n+埋层的厚度为_____μm 。已知Ns=6.4×1019cm -3, N B =2×1015cm -3,D=3×10-13cm 2/s, erfc -1(3.125×10-5)=2.9.

n+埋层的厚度为_2.69_μm

(4) 某硅晶体管基区硼预淀积的温度为950℃,衬底N B =2×1015cm -3,要求预淀积后的方块电阻为80Ω/□,试确定预淀积所需要的时间为_____min.(保留整数)已知电阻率σ=660Ω·cm -1, Ns=4×1020cm -3, erfc -1(2.5×10-5)=2.95 ,D=5×10-15cm 2

/s. j 1B j S 1R .x N x N σ-?=??????= ?????

21B S 11t .D N 2R erfc N σ-?? ? ?= ??? ? ? ?????

计算得到预淀积时间为34min 。

(5) 某集成电路采用的n 型外延层衬底浓度为N B =2×1016cm -3,晶体管基区硼预淀积的温度为950℃,时间为10min, N S1=4×1020cm -3,D 1=5×10-15cm 2/s, erfc -1(5×10-5)=2.89, 再分布的温度

为1180℃,D2=1×10-12cm2/s, 时间30分钟. 试求再分布后的结深为_____μm。(答案保留三位有效数字)。

预淀积后的杂质总量为Q(t)N

=

再扩散后的杂质分布为222

x/4D t

s2

N-

=

当N S2=N B时,结深为2.12um。

3.

4.理解硅扩散中扩硼(B),扩磷(P),扩砷(As)的图像。

5.理解扩散工艺中,时间t和温度T对掺杂浓度和结深的影响。

6.

7.理解离子注入的优势在于:注入离子剂量和注入能量分别控制掺杂浓度和形成的结深。

8.离子注入过程中可能出现的沟道效应及解决办法。

9.集成电路工艺中阱注入,源漏注入,阈值电压调整和LDD工艺中分别会采用的离子注

入工艺条件。

10.对离子注入工艺引入的损伤进行处理,杂质激活所采用的退火工艺。掌握普通热退火和

快速热退火的区别。

11.

12.理解硼(B)和磷(P)的退火特性。

七、光刻与刻蚀

1.

2.现代光刻工艺的基本步骤。

3.正胶和负胶的区别。

4.三种曝光方法的优缺点,投影步进光刻机的优势。

5.理解光刻的分辨率和特征尺寸的概念。

6.

7.理解光刻工艺对曝光强度,曝光深度和曝光剂量的要求。

8.湿法腐蚀与干法刻蚀各自的特点。

9.

10.硅的湿法腐蚀液和V型槽的腐蚀,SiO2的湿法腐蚀方法。

11.干法刻蚀通常将离子刻蚀和溅射刻蚀结合,保证刻蚀的各向异性和选择性。常用的干法

刻蚀系统:RIE,ICP,ECR等。

八、金属化

1.在接触层和互联层常用的金属薄膜,理解经常出现的铝楔和电迁移的现象。

2.金属化的一般工艺流程、理解Polycide、Salicide的概念。

3.

4.局部平坦化技术:BPSG/PSG回流,光刻胶回刻、SOG回刻等

5.化学机械抛光CMP技术

九、典型工艺流程

1.埋层双极晶体管的制作流程,理解埋层的作用及工艺制备中需要注意的问题。

2.BJT多晶硅发射极和基区自对准工艺。

3.

4.MOS自对准多晶硅栅源漏工艺。

5.

6.MOS工艺里的侧墙工艺,LDD工艺,金属硅化物Saliside工艺。

7.CMOS的简要工艺流程:阱,隔离,栅(阈值电压调整,LDD),自对准源栅漏,金属

化(接触层,互连层),钝化。

8.识别给出的具体器件(标准埋层BJT,自对准多晶硅基区和发射区BJT,CMOS器件等)

工艺流程图。

9.读懂90年代CMOS结构图,认识图中相应的部分。

10.读懂BiCMOS工艺结构图。

11.掌握CMOS工艺里常用的英文缩写:IMD,PMD,STI,LOCOS,PSG,BPSG等。

12.

数字集成电路--电路、系统与设计(第二版)复习资料

第一章 数字集成电路介绍 第一个晶体管,Bell 实验室,1947 第一个集成电路,Jack Kilby ,德州仪器,1958 摩尔定律:1965年,Gordon Moore 预言单个芯片上晶体管的数目每18到24个月翻一番。(随时间呈指数增长) 抽象层次:器件、电路、门、功能模块和系统 抽象即在每一个设计层次上,一个复杂模块的内部细节可以被抽象化并用一个黑匣子或模型来代替。这一模型含有用来在下一层次上处理这一模块所需要的所有信息。 固定成本(非重复性费用)与销售量无关;设计所花费的时间和人工;受设计复杂性、设计技术难度以及设计人员产出率的影响;对于小批量产品,起主导作用。 可变成本 (重复性费用)与产品的产量成正比;直接用于制造产品的费用;包括产品所用部件的成本、组装费用以及测试费用。每个集成电路的成本=每个集成电路的可变成本+固定成本/产量。可变成本=(芯片成本+芯片测试成本+封装成本)/最终测试的成品率。 一个门对噪声的灵敏度是由噪声容限NM L (低电平噪声容限)和NM H (高电平噪声容限)来度量的。为使一个数字电路能工作,噪声容限应当大于零,并且越大越好。NM H = V OH - V IH NM L = V IL - V OL 再生性保证一个受干扰的信号在通过若干逻辑级后逐渐收敛回到额定电平中的一个。 一个门的VTC 应当具有一个增益绝对值大于1的过渡区(即不确定区),该过渡区以两个有效的区域为界,合法区域的增益应当小于1。 理想数字门 特性:在过渡区有无限大的增益;门的阈值位于逻辑摆幅的中点;高电平和低电平噪声容限均等于这一摆幅的一半;输入和输出阻抗分别为无穷大和零。 传播延时、上升和下降时间的定义 传播延时tp 定义了它对输入端信号变化的响应有多快。它表示一个信号通过一个门时所经历的延时,定义为输入和输出波形的50%翻转点之间的时间。 上升和下降时间定义为在波形的10%和90%之间。 对于给定的工艺和门的拓扑结构,功耗和延时的乘积一般为一常数。功耗-延时积(PDP)----门的每次开关事件所消耗的能量。 一个理想的门应当快速且几乎不消耗能量,所以最后的质量评价为。能量-延时积(EDP) = 功耗-延时积2 。 第三章、第四章CMOS 器件 手工分析模型 ()0 12' 2 min min ≥???? ??=GT DS GT D V V V V V L W K I 若+-λ ()DSAT DS GT V V V V ,,m in min = 寄生简化:当导线很短,导线的截面很大时或当 所采用的互连材料电阻率很低时,电感的影响可 以忽略:如果导线的电阻很大(例如截面很小的长 铝导线的情形);外加信号的上升和下降时间很慢。 当导线很短,导线的截面很大时或当所采用的互 连材料电阻率很低时,采用只含电容的模型。 当相邻导线间的间距很大时或当导线只在一段很短的距离上靠近在一起时:导线相互间的电容可 以被忽略,并且所有的寄生电容都可以模拟成接 地电容。 平行板电容:导线的宽度明显大于绝缘材料的厚 度。 边缘场电容:这一模型把导线电容分成两部分: 一个平板电容以及一个边缘电容,后者模拟成一 条圆柱形导线,其直径等于该导线的厚度。 多层互连结构:每条导线并不只是与接地的衬底 耦合(接地电容),而且也与处在同一层及处在相邻层上的邻近导线耦合(连线间电容)。总之,再多层互连结构中导线间的电容已成为主要因素。这一效应对于在较高互连层中的导线尤为显著,因为这些导线离衬底更远。 例4.5与4.8表格 电压范围 集总RC 网络 分布RC 网络 0 → 50%(t p ) 0.69 RC 0.38 RC 0 → 63%(τ) RC 0.5 RC 10% → 90%(t r ) 2.2 RC 0.9 RC 0 → 90% 2.3 RC 1.0 RC 例4.1 金属导线电容 考虑一条布置在第一层铝上的10cm 长,1μm 宽的铝线,计算总的电容值。 平面(平行板)电容: ( 0.1×106 μm2 )×30aF/μm2 = 3pF 边缘电容: 2×( 0.1×106 μm )×40aF/μm = 8pF 总电容: 11pF 现假设第二条导线布置在第一条旁边,它们之间只相隔最小允许的距离,计算其耦合电 容。 耦合电容: C inter = ( 0.1×106 μm )×95 aF/μm2 = 9.5pF 材料选择:对于长互连线,铝是优先考虑的材料;多晶应当只用于局部互连;避免采用扩散导线;先进的工艺也提供硅化的多晶和扩散层 接触电阻:布线层之间的转接将给导线带来额外的电阻。 布线策略:尽可能地使信号线保持在同一层上并避免过多的接触或通孔;使接触孔较大可以降低接触电阻(电流集聚在实际中将限制接触孔的最大尺寸)。 采电流集聚限制R C , (最小尺寸):金属或多晶至n+、p+以及金属至多晶为 5 ~ 20 Ω ;通孔(金属至金属接触)为1 ~ 5 Ω 。 例4.2 金属线的电阻 考虑一条布置在第一层铝上的10cm 长,1μm 宽的铝线。假设铝层的薄层电阻为0.075Ω/□,计算导线的总电阻: R wire =0.075Ω/□?(0.1?106 μm)/(1μm)=7.5k Ω 例4.5 导线的集总电容模型 假设电源内阻为10k Ω的一个驱动器,用来驱动一条10cm 长,1μm 宽的Al1导线。 电压范围 集总RC 网络 分布RC 网络 0 → 50%(t p ) 0.69 RC 0.38 RC 0 → 63%(τ) RC 0.5 RC 10% → 90%(t r ) 2.2 RC 0.9 RC 0 → 90% 2.3 RC 1.0 RC 使用集总电容模型,源电阻R Driver =10 k Ω,总的集总电容C lumped =11 pF t 50% = 0.69 ? 10 k Ω ? 11pF = 76 ns t 90% = 2.2 ? 10 k Ω ? 11pF = 242 ns 例4.6 树结构网络的RC 延时 节点i 的Elmore 延时: τDi = R 1C 1 + R 1C 2 + (R 1+R 3) C 3 + (R 1+R 3) C 4 + (R 1+R 3+R i ) C i 例4.7 电阻-电容导线的时间常数 总长为L 的导线被分隔成完全相同的N 段,每段的长度为L/N 。因此每段的电阻和电容分别为rL/N 和cL/N R (= rL) 和C (= cL) 是这条导线总的集总电阻和电容()()()N N RC N N N rcL Nrc rc rc N L DN 2121 (22) 22 +=+=+++?? ? ??=τ 结论:当N 值很大时,该模型趋于分布式rc 线;一条导线的延时是它长度L 的二次函数;分布rc 线的延时是按集总RC 模型预测的延时的一半. 2 rcL 22=RC DN = τ 例4.8 铝线的RC 延时.考虑长10cm 宽、1μm 的Al1导线,使用分布RC 模型,c = 110 aF/μm 和r = 0.075 Ω/μm t p = 0.38?RC = 0.38 ? (0.075 Ω/μm) ? (110 aF/μm) ? (105 μm)2 = 31.4 ns Poly :t p = 0.38 ? (150 Ω/μm) ? (88+2?54 aF/μm) ? (105 μm)2 = 112 μs Al5: t p = 0.38 ? (0.0375 Ω/μm) ? (5.2+2?12 aF/μm) ? (105 μm)2 = 4.2 ns 例4.9 RC 与集总C 假设驱动门被模拟成一个电压源,它具有一定大小的电源内阻R s 。 应用Elmore 公式,总传播延时: τD = R s C w + (R w C w )/2 = R s C w + 0.5r w c w L 2 及 t p = 0.69 R s C w + 0.38 R w C w 其中,R w = r w L ,C w = c w L 假设一个电源内阻为1k Ω的驱动器驱动一条1μm 宽的Al1导线,此时L crit 为2.67cm 第五章CMOS 反相器 静态CMOS 的重要特性:电压摆幅等于电源电压 → 高噪声容限。逻辑电平与器件的相对尺寸无关 → 晶体管可以采用最小尺寸 → 无比逻辑。稳态时在输出和V dd 或GND 之间总存在一条具有有限电阻的通路 → 低输出阻抗 (k Ω) 。输入阻抗较高 (MOS 管的栅实际上是一个完全的绝缘体) → 稳态输入电流几乎为0。在稳态工作情况下电源线和地线之间没有直接的通路(即此时输入和输出保持不变) → 没有静态功率。传播延时是晶体管负载电容和电阻的函数。 门的响应时间是由通过电阻R p 充电电容C L (电阻R n 放电电容C L )所需要的时间决定的 。 开关阈值V M 定义为V in = V out 的点(在此区域由于V DS = V GS ,PMOS 和NMOS 总是饱和的) r 是什么:开关阈值取决于比值r ,它是PMOS 和NMOS 管相对驱动强度的比 DSATn n DSATp p DD M V k V k V V = ,r r 1r +≈ 一般希望V M = V DD /2 (可以使高低噪声容限具有相近的值),为此要求 r ≈ 1 例5.1 CMOS 反相器的开关阈值 通用0.25μm CMOS 工艺实现的一个CMOS 反相器的开关阈值处于电源电压的中点处。 所用工艺参数见表3.2。假设V DD = 2.5V ,最小尺寸器件的宽长比(W/L)n 为1.5 ()()()()()()()() V V L W V V V V k V V V V k L W L W M p DSATp Tp M DSATp p DSATn Tn M DSATn n n p 25.125.55.15.35.320.14.025.1263.043.025.10.163.01030101152266==?==----?-???----=---= 分析: V M 对于器件比值的变化相对来说是不敏感 的。将比值设为3、2.5和2,产生的V M 分别为 1.22V 、1.18V 和 1.13V ,因此使PMOS 管的宽度小于完全对称所要求的值是可以接受的。 增加PMOS 或NMOS 宽度使V M 移向V DD 或GND 。不对称的传输特性实际上在某些设计中是所希望的。 噪声容限:根据定义,V IH 和V IL 是dV out /dV in = -1(= 增益)时反相器的工作点 逐段线性近似V IH = V M - V M /g V IL = V M + (V DD - V M )/g 过渡区可以近似为一段直线,其增益等于 在开关阈值V M 处的增益g 。它与V OH 及V OL 线的交点 用来定义V IH 和V IL 。点。

微电子工艺习题总结(DOC)

1. What is a wafer? What is a substrate? What is a die? 什么是硅片,什么是衬底,什么是芯片 答:硅片是指由单晶硅切成的薄片;芯片也称为管芯(单数和复数芯片或集成电路);硅圆片通常称为衬底。 2. List the three major trends associated with improvement in microchip fabrication technology, and give a short description of each trend. 列出提高微芯片制造技术相关的三个重要趋势,简要描述每个趋势 答:提高芯片性能:器件做得越小,在芯片上放置得越紧密,芯片的速度就会提高。 提高芯片可靠性:芯片可靠性致力于趋于芯片寿命的功能的能力。为提高器件的可靠性,不间断地分析制造工艺。 降低芯片成本:半导体微芯片的价格一直持续下降。 3. What is the chip critical dimension (CD)? Why is this dimension important? 什么是芯片的关键尺寸,这种尺寸为何重要 答:芯片的关键尺寸(CD)是指硅片上的最小特征尺寸; 因为我们将CD作为定义制造复杂性水平的标准,也就是如果你拥有在硅片某种CD的能力,那你就能加工其他所有特征尺寸,由于这些尺寸更大,因此更容易产生。 4. Describe scaling and its importance in chip design. 描述按比例缩小以及在芯片设计中的重要性 答:按比例缩小:芯片上的器件尺寸相应缩小是按比例进行的 重要性:为了优电学性能,多有尺寸必须同时减小或按比例缩小。 5. What is Moore's law and what does it predict? 什么是摩尔定律,它预测了什么 答:摩尔定律:当价格不变时,集成电路上可容纳的晶体管数,月每隔18个月便会增加1倍,性能也将提升1倍。 预言在一块芯片上的晶体管数大约每隔一年翻一番。 第二章 6. What is the advantage of gallium arsenide over silicon? 砷化镓相对于硅的优点是什么 答:优点:具有比硅更高的电子迁移率;减小寄生电容和信号损耗的特性;集成电路的速度比硅电路更快;材料的电阻率更大。 7. What is the primary disadvantage of gallium arsenide over silicon? 砷化镓相对于硅的主要缺点是什么 答:主要缺点:缺乏天然氧化物;材料的脆性;成本比硅高10倍;有剧毒性在设备,工艺和废物清除设施中特别控制。

微电子工艺复习重点

20XX级《微电子工艺》复习提纲 一、衬底制备 1.硅单晶的制备方法。 直拉法悬浮区熔法 1.硅外延多晶与单晶生长条件。 任意特定淀积温度下,存在最大淀积率,超过最大淀积率生成多晶薄膜,低于最大淀积率,生成单晶外延层。 三、薄膜制备1-氧化 1.干法氧化,湿法氧化和水汽氧化三种方式的优缺点。 干法氧化:干燥纯净氧气 湿法氧化:既有纯净水蒸汽有又纯净氧气 水汽氧化:纯净水蒸汽 速度均匀重复性结构掩蔽性 干氧慢好致密好 湿氧快较好中基本满足 水汽最快差疏松差 2.理解氧化厚度的表达式和曲线图。 二氧化硅生长的快慢由氧化剂在二氧化硅中的扩散速度以及与硅反应速度中较慢的一个因素决定;当氧化时间很长时,抛物线规律,当氧化时间很短时,线性规律。 3.温度、气体分压、晶向、掺杂情况对氧化速率的影响。 温度:指数关系,温度越高,氧化速率越快。 气体分压:线性关系,氧化剂分压升高,氧化速率加快 晶向:(111)面键密度大于(100)面,氧化速率高;高温忽略。 掺杂:掺杂浓度高的氧化速率快; 4.理解采用干法热氧化和掺氯措施提高栅氧层质量这个工艺。 掺氯改善二氧化硅特性,提高氧化质量。干法氧化中掺氯使氧化速率可提高1%-5%。 四、薄膜制备2-化学气相淀积CVD 1.三种常用的化学气相淀积方式,在台阶覆盖能力,呈膜质量等各方面的优缺点。 常压化学气相淀积APCVD:操作简单淀积速率快,台阶覆盖性和均匀性差 低压化学气相淀积LPCVD:台阶覆盖性和均匀性好,对反应式结构要求不高,速率相对 低,工作温度相对高,有气缺现象 PECVD:温度低,速率高,覆盖性和均匀性好,主要方式。 2.本征SiO2,磷硅玻璃PSG,硼磷硅玻璃BPSG的特性和在集成电路中的应用。 USG:台阶覆盖好,黏附性好,击穿电压高,均匀致密;介质层,掩模(扩散和注入),钝化层,绝缘层。 PSG:台阶覆盖更好,吸湿性强,吸收碱性离子 BPSG:吸湿性强,吸收碱性离子,金属互联层还有用(具体再查书)。 3.热生长SiO2和CVD淀积SiO2膜的区别。 热生长:氧来自气态,硅来自衬底,质量好

装饰材料与施工工艺课程标准

装饰材料与施工工艺课程标准 适用专业:电脑艺术设计 课程代码:12180 教学模式:理论教学与实践教学相结合 课程负责人: 一、课程的基本要素 1.课程性质 装饰材料与施工工艺是电脑艺术设计专业的一门核心专业课程。是联系装饰材料、装饰设计及装饰预算的一门综合性课程。 2.课程的基本理念及设计思路: 通过本课程的教学使学生能熟练掌握建筑装饰工程施工工艺的一般规律和方法;能正确使用建筑装饰材料和机具;掌握不同档次建筑装饰施工工艺的特殊规律和技巧;结合装饰材料课程所学内容,能在施工工艺上完善、补充设计,灵活运用材料和不同工艺去充分体现装饰效果;熟练掌握建筑装饰施工工艺的操作规程和施工验收规范。 3.课程的基本理念及设计思路: 二、课程的目标 1.知识目标 (1)理解和表现与基础造型有关的物品的结构和线条运用; (2)能表现与图形图像制作有关物象的质感,并能加以设计和创新;

(3)提高学生造型能力的同时提高学生的空间想象能力; (4)以结构为主适当加一些色彩塑造技法。 2.能力目标 (1)培养视觉的反应及增强接受视觉信息的能力,即敏锐的感受能力。(2)培养分析、洞悉、理解的心智思维,形成对事物特征的深刻把握,即富于理智的认识能力。 (3)培养开发想象能力,形成对未知领域的自觉探求,即创造意识。(4)培养技能的熟练掌握,达到对于视觉信息的有效表达,即富于技能的适应能力。 3、素质目标 (1)进行专业认知和专业探究; (2)培养学生搜集资料、阅读资料和利用资料的能力; (3)培养学生的自学能力,学会设计和创新,提高审美意识; (4)提高学生造型能力和抽象思维想象力。 三、课程内容的组织 教学内容和要求 总学时为120,其中理论40,专题设计作业80。

#《数字集成电路设计》复习提纲

《数字集成电路设计》复习提纲(1-7章) 2011-12 1. 数字集成电路的成本包括哪几部分? ● NRE (non-recurrent engineering) costs 固定成本 ● design time and effort, mask generation ● one-time cost factor ● Recurrent costs 重复性费用或可变成本 ● silicon processing, packaging, test ● proportional to volume ● proportional to chip area 2. 数字门的传播延时是如何定义的? 一个门的传播延时tp 定义了它对输入端信号变化的响应有多快。 3. 集成电路的设计规则(design rule)有什么作用? ? Interface between designer and process engineer ? Guidelines for constructing process masks ? Unit dimension: Minimum line width ? scalable design rules: lambda parameter (可伸缩设计规则,其不足:只能在有限 的尺寸范围内进行。) ? absolute dimensions (micron rules,用绝对尺寸来表示。) 4. 什么是MOS 晶体管的体效应? 5. 写出一个NMOS 晶体管处于截止区、线性区、饱和区的判断条件,以及各工作区的源漏电流表达式(考虑短沟效应即沟道长度调制效应,不考虑速度饱和效应) 注:NMOS 晶体管的栅、源、漏、衬底分别用G 、S 、D 、B 表示。 6. MOS 晶体管的本征电容有哪些来源? 7. 对于一个CMOS 反相器的电压传输特性,请标出A 、B 、C 三点处NMOS 管和PMOS 管各自处于什么工作区? V DD 8. 在CMOS 反相器中,NMOS 管的平均导通电阻为R eqn ,PMOS 管的平均导通电阻为R eqp ,请写出该反相器的总传播延时定义。 9. 减小一个数字门的延迟的方法有哪些?列出三种,并解释可能存在的弊端。 ? Keep capacitances small (减小CL ) ? Increase transistor sizes(增加W/L) ? watch out for self-loading! (会增加CL ) ? Increase VDD (????) V out V in 0.5 11.522.5

微电子技术前沿复习(带答案的哦)

微电子前沿复习提纲 看一些微电子技术发展的知识 1.请给出下列英文缩写的英文全文,并译出中文: CPLD: Complex Programmable Logic Device复杂可编程逻辑器件 FPGA: Field-Programmable Gate Array 现场可编程门阵列 GAL:generic array logic 通用阵列逻辑 LUT: Look-Up-Table 显示查找表 IP: Intellectual Property 知识产权 SoC: System on Chip 片上系统 2.试述AGC BJT器件实现AGC特性的工作原理; 试说明为什么 AGC BJT的工作频率范围受限? AGC 即自动增益控制(Automatic Gain Control) ? AGC BJT器件实现AGC特性的工作原理:当输入增加时,输出会同时增加,我们 可利用双极型晶体管的大注入效应和大电流下的基区扩展--kirk效应,衰减增益, 使放大系数降低,则达到了稳定输出的目的。 ?工作频率范围受限原因: 1) 、自动增益控制特性与频率特性是相矛盾,实现AGC需要基区展宽,而器件 的工作频率与基区宽度的平方成反比,要实现大范围的自动增益控制,要求 宽基区,使得工作频率范围受限。 2) 、实现AGC要求基区大注入,基区掺杂浓度低时,易于发生大注入效应,而基 区掺杂浓度动愈低,器件高频噪声愈差,使得工作频率范围受限。 3.为什么双栅MOSFET具有良好的超高频(UHF)特性? 双栅MOSFET结构如图: 1) 、双栅MOS的端口 Gl靠近源极,对应的基区宽度短,加高频信号,称信号栅,可以实现超高频。 G2靠近漏极,对应的基区宽度较宽,有良好的AGC性能,加固定偏置或AGC电压,作增益控制栅。 2) 、它通过第二个栅极G2交流接地, 可在第一个栅极G1和漏极D之间起到有效的 静电屏蔽作用, 从而使得栅极与漏极之间的反馈电容(是Miller电容)大大减小,则 提高了频率。 4.为什么硅栅、耐熔金属栅能实现源漏自对准,而铝栅不行?实现

集成电路分析期末复习总结要点

集成电路分析 集成工业的前后道技术:半导体(wafer)制造企业里面,前道主要是把mos管,三极管作到硅片上,后道主要是做金属互联。 集成电路发展:按规模划分,集成电路的发展已经历了哪几代? 参考答案: 按规模,集成电路的发展已经经历了:SSI、MSI、LSI、VLSI、ULSI及GSI。它的发展遵循摩尔定律 解释欧姆型接触和肖特基型接触。 参考答案: 半导体表面制作了金属层后,根据金属的种类及半导体掺杂浓度的不同,可形成欧姆型接触或肖特基型接触。 如果掺杂浓度比较低,金属和半导体结合面形成肖特基型接触。 如果掺杂浓度足够高,金属和半导体结合面形成欧姆型接触。 、集成电路主要有哪些基本制造工艺。 参考答案: 集成电路基本制造工艺包括:外延生长,掩模制造,光刻,刻蚀,掺杂,绝缘层形成,金属层形成等。 光刻工艺: 光刻的作用是什么?列举两种常用曝光方式。 参考答案: 光刻是集成电路加工过程中的重要工序,作用是把掩模版上的图形转换成晶圆上的器件结构。 曝光方式:接触式和非接触式 25、简述光刻工艺步骤。 参考答案: 涂光刻胶,曝光,显影,腐蚀,去光刻胶。 26、光刻胶正胶和负胶的区别是什么? 参考答案: 正性光刻胶受光或紫外线照射后感光的部分发生光分解反应,可溶于显影液,未感光的部分显影后仍然留在晶圆的表面,它一般适合做长条形状;负性光刻胶的未感光部分溶于显影液

中,而感光部分显影后仍然留在基片表面,它一般适合做窗口结构,如接触孔、焊盘等。常规双极型工艺需要几次光刻?每次光刻分别有什么作用? 参考答案: 需要六次光刻。第一次光刻--N+隐埋层扩散孔光刻;第二次光刻--P+隔离扩散孔光刻 第三次光刻--P型基区扩散孔光刻;第四次光刻--N+发射区扩散孔光刻;第五次光刻--引线接触孔光刻;第六次光刻--金属化内连线光刻 掺杂工艺: 掺杂的目的是什么?举出两种掺杂方法并比较其优缺点。 参考答案: 掺杂的目的是形成特定导电能力的材料区域,包括N型或P型半导体区域和绝缘层,以构成各种器件结构。 掺杂的方法有:热扩散法掺杂和离子注入法掺杂。与热扩散法相比,离子注入法掺杂的优点是:可精确控制杂质分布,掺杂纯度高、均匀性好,容易实现化合物半导体的掺杂等;缺点是:杂质离子对半导体晶格有损伤,这些损伤在某些场合完全消除是无法实现的;很浅的和很深的注入分布都难以得到;对高剂量的注入,离子注入的产率要受到限制;一般离子注入的设备相当昂贵, 试述PN结的空间电荷区是如何形成的。 参考答案: 在PN结中,由于N区中有大量的自由电子,由P区扩散到N区的空穴将逐渐与N区的自由电子复合。同样,由N区扩散到P区的自由电子也将逐渐与P区内的空穴复合。于是在紧靠接触面两边形成了数值相等、符号相反的一层很薄的空间电荷区,称为耗尽层。简述CMOS工艺的基本工艺流程(以1×poly,2×metal N阱为例)。 参考答案: 形成N阱区,确定nMOS和pMOS有源区,场和栅氧化,形成多晶硅并刻蚀成图案,P+扩散,N+扩散,刻蚀接触孔,沉淀第一金属层并刻蚀成图案,沉淀第二金属层并刻蚀成图案,形成钝化玻璃并刻蚀焊盘。 表面贴装技术:电子电路表面组装技术(Surface Mount Technology,SMT), 称为表面贴装或表面安装技术。它是一种将无引脚或短引线表面组装元器件(简称SMC/SMD,中文称片状元器件)安装在印制电路板(Printed Circuit Board,PCB)的表面或其它基板的表面上,通过再流焊或浸焊等方法加以焊接组装的电路装连技术。[1]工艺流程简化为:印刷-------贴片-------焊接-------检修 有源区和场区:有源区:硅片上做有源器件的区域。(就是有些阱区。或者说是采用STI等隔离技术,隔离开的区域)。有源区主要针对MOS而言,不同掺杂可形成n或p型有源区。有源区分为源区和漏区(掺杂类型相同)在进行互联

集成电路工艺认识实习报告

集成电路工艺认识实习报告 1.专题一MEMS(微机电系统)工艺认识 1.1 重庆大学微系统研究中心概况 重庆微光机电工程技术研究中心依托于重庆大学,主要合作单位有中国电子科技集团公司第二十四研究所等。中心主要从事MEMS设计、研发及加工关键技 术研究、产业化转化和人才培养。 中心建立了面向西南地区的“MEMS器件及系统设计开发联合开放实验室,拥有国际先进的MEMS和CMOS电路设计及模拟软件,MEMS传感器及微型分析仪 器的组装和测试设备。 1.2主要研究成果 真空微电子压力传感器、集成真空微电子触觉传感器、射频微机械无源元件、硅微低电压生化分析系统、折衍混合集成微小型光谱分析仪器、全集成硅微二维加速度传感器、集成硅微机械光压力传感器、硅微加速度阵列传感器、硅微力平衡电容式加速度传感器、反射式混合集成微型光谱分析系统、微型振动式发电机系统、真空微电子加速度传感器 1.3微系统中心主要设备简介 1.3.1. 反应离子刻蚀机 1.3.2双面光刻机 1.3.3. 键合机 1.3.4. 探针台

1.3.5. 等离子去胶机 1.3.6. 旋转冲洗甩干机 1.3.7. 氧化/扩散炉 1.3.8. 低压化学气相淀积系统 1.3.9. 台阶仪 1.3.10. 光学三维形貌测试仪 1.3.11. 膜厚测试仪 1.3.1 2. 感应耦合等离子体(ICP)刻蚀机

1.3.13. 箱式真空镀膜机 1.3.14. 槽式兆声清洗机 1.3.15.射频等离子体系统 1.4MEMS的主要特点 体积小,重量轻,材料省,能耗低;完整的MEMS一般是由微动力源、微致动器、微传感器组成,智能化程度高,集成度高;MEMS整体惯性小,固有频率高,响应快,易于信号实时处理;由于采用光刻、LIGA等新工艺,易于批量生产,成本低;MEMS可以达到人手难于达到的小空间和人类不能进入的高温,放射等恶劣环境,靠MEMS的自律能力和对微机械群的遥控,可以完成宏观机械难于完成的任务。 1.5MEMS器件的应用 1.5.1 工业自动控制领域 应用MEMS器件对“温度、压力、流量”三大参数的检测与控制,目前普遍采用有微压力、微流量和微测温器件 1.5.2生物医学领域 微型血压计、神经系统检测、细胞组织探针和生物医学检测,并证实MEMS器件具有再生某些神经细胞组织的功能。

微电子工艺技术 复习要点4-6

第四章晶圆制造 1. CZ法提单晶的工艺流程。说明CZ法和FZ法。比较单晶硅锭CZ、MCZ和FZ三种生长方法的优缺点。 1、溶硅 2、引晶 3、收颈 4、放肩 5、等径生长 6、收晶。 CZ法:使用射频或电阻加热线圈,置于慢速转动的石英坩埚内的高纯度电子级硅在1415度融化。将一个慢速转动的夹具的单晶硅籽晶棒逐渐降低到熔融的硅中,籽晶表面得就浸在熔融的硅中并开始融化,籽晶的温度略低于硅的熔点。当系统稳定后,将籽晶缓慢拉出,同时熔融的硅也被拉出。使其沿着籽晶晶体的方向凝固。 FZ法:即悬浮区融法。将一条长度50-100cm 的多晶硅棒垂直放在高温炉反应室,加热将多晶硅棒的低端熔化,然后把籽晶溶入已经熔化的区域。熔体将通过熔融硅的表面张力悬浮在籽晶和多晶硅棒之间,然后加热线圈缓慢升高温度将熔融硅的上方部分多晶硅棒开始熔化。此时靠近籽晶晶体一端的熔融的硅开始凝固,形成与籽晶相同的晶体结构。当加热线圈扫描整个多晶硅棒后,便将整个多晶硅棒转变成单晶硅棒CZ法优点:单晶直径大,成本低,可以较好控制电阻率径向均匀性。缺点:石英坩埚内壁被熔融的硅侵蚀及石墨保温加热元件的影响,易引入氧、碳杂质,不易生长高电阻率单晶 FZ法优点:1、可重复生长,单晶纯度比CZ法高。2、无需坩埚石墨托,污染少。3、高纯度,高电阻率,低碳,低氧。缺点:直径不如CZ法,熔体与晶体界面复杂,很难得到无位错晶体,需要高纯度多晶硅棒作为原料,成本高。 MCZ:改进直拉法优点:较少温度波动,减轻溶硅与坩埚作用,降低了缺陷密度,氧含量,提高了电阻分布的均匀性 2.晶圆的制造步骤【填空】 1、整形处理:去掉两端,检查电阻确定单晶硅达到合适的掺杂均匀度。 2、切片 3、磨片和倒角 4、刻蚀 5、化学机械抛光 3. 列出单晶硅最常使用的两种晶向。【填空】 111.100. 4. 说明外延工艺的目的。说明外延硅淀积的工艺流程。 在单晶硅的衬底上生长一层薄的单晶层。 5. 氢离子注入键合SOI晶圆的方法 1、对晶圆A清洗并生成一定厚度的SO2层。 2、注入一定的H形成富含H的薄膜。 3、晶圆A翻转并和晶圆B键合,在热反应中晶圆A的H 脱离A和B键合 4、经过CMP和晶圆清洗就形成键合SOI晶圆 6. 列出三种外延硅的原材料,三种外延硅掺杂物【填空】 6名词解释:CZ法提拉工艺、FZ法工艺、SOI、HOT(混合晶向)、应变硅 CZ法:直拉单晶制造法。FZ法:悬浮区融法。SOI:在绝缘层衬底上异质外延硅获得的外延材料。HOT:使用选择性外延技术,可以在晶圆上实现110和100混合晶向材料。应变硅:通过向单晶硅施加应力,硅的晶格原子将会被拉长或者压缩不同与其通常原子的距离。 第五章热处理工艺

工程材料与材料成形工艺课程标准

《金属工艺学》课程标准 课程代码: 课程名称:金属工艺学 适用专业(群):制造类 1.前言 1.1课程性质 1、课程的性质 《金属工艺学》是制造类专业必修的一门专业技术基础课,课程着重介绍机械制造中的工程材料与热处理及冷、热加工方法,热加工方法包括铸造生产、锻造生产、焊接生产,以及零件的冲压和挤压生产等内容,冷加工方法包括车、铣、刨、磨等加工方法。主要研究上述生产方法的工艺过程、工艺特点、工艺质量的控制和质量问题的分析以及它们的应用场合。 2、本课程与前后课程之间的联系 《金属工艺学》是制造类专业学生选择工程材料、学习机械制造方法和制造工艺及装备的先行课程,为后续专业课程的学习打下基础。 1.2课程的教学设计 课程的指导思想: (1)坚持以高职教育培养目标为依据,遵循“以应用为目的,以必需、够用为度”的原则,以“掌握概念、强化应用、培养技能”为重点,力图做到“理论联系实际、加强实践、突出应用”。 (2)符合学生的认识过程和接受能力,符合由浅入深、由易到难、循序渐进的认识规律。 (3)把创新素质的培养贯穿于教学中,采用行之有效的教学方法,注重提高学生分析和解决问题的能力。 (4)强调以学生发展为中心,帮助学生学会学习。 (5)注意与相关的专业技术“接口”。 课程的设计思路: (1)根据课程目标确定课程内容标准。

(2)根据课程内容特征确定必修内容。 (3)根据各专业的需求确定选修内容。 实现目标的学习领域:金属材料的力学性能与常用热处理、铸造生产、锻压生产、焊接生产。 2.课程目标 总体目标:通过本课程的学习,使学生较系统地了解机械加工方法,掌握常用工程材料与热处理及冷、热加工方法的实质、基本原理与工艺特点;了解各种主要加工设备、工具的结构和工作原理,具有选用工程材料的初步能力;具备选择毛坯加工方法和切削成形方法以及工分析的初步能力。培养分析零件结构工艺性和选择加工方法的初步能力;培养学生树立崇尚科学精神,坚定求真、求实和创新的科学态度,形成科学的人生观和世界观,逐步学会从不同的角度提出问题、分析问题并能应用所学知识解决问题,不断培养应用意识,养成严谨求实的科学态度以及质疑和独立思考的学习习惯,从而为学习其他后续课程和今后工作奠定必要的基础。 具体目标:通过学习,使学生了解常用金属材料的机械性能和工艺性能以及常用金属的热处理工艺,提高在机械设计和制造过程中合理选材的能力;通过学习,使学生了解到,机械零件的制造方法,除了常用的切削加工以外,还有铸造、锻造、冲压、挤压、拉拔和焊接等加工方法,这些制造方法有他们各自的优点,分别适用于各自的场合;了解各种加工方法的基本概念、工艺特点,各种加工方法的优缺点和适用场合,如何解决制造过程中出现的各种工艺问题,提高解决实际问题的能力;通过实习,进一步增强实践认识,使学生的动手能力得到提高。 3.课程内容 3.1课程内容与学时分配

集成电路制造工艺流程

集成电路制造工艺流程 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

晶体加工工艺总结

晶体加工工艺总结(德清华瑞光学) 晶体加工 1、方解石:光轴面抛光后不能用白胶布保护,必需用黑胶布。光轴面B=Ⅲ,用玻璃盘细磨,细磨光圈半个左右。抛光:用绸布(真丝布)绑在抛光好的平玻璃板上,一定要平,然后用704粘合剂均匀地涂在绸布上,未干时放在平玻璃板上轻轻磨一下,然后等完全干透。 2、白宝石、红宝石:要求B=Ⅳ,θ=1′,N=1,ΔN=1/2。一般用钢盘加研磨膏抛光,钢盘一定要改好。如果B要求较高,可用特殊胶盘。细磨一定要好。 3、磁光(旋光)晶体:YIG、GGG。细磨一定用碳化硼280#,20#,抛光先用宝石粉W2.5抛亮后,再用刚玉微粉W1.5抛,用水晶作垫子。 4、BBO,微潮,磨砂用302#、302.5#。在铁盘或玻璃盘上磨。抛光用CeO2可抛好。晶体易开裂,加工时及加工前后均应注意保持恒温。并要求选取无包裹的纯单晶加工,有方向要求。BBO晶体较软,易划伤,抛光面不可与任合物擦拭。BBO晶体易潮解,抛光后置于红外灯下烘干,然后置于密封干燥的容器中保存。 5、氟化钙(CaF2)B=Ⅲ,可用CeO2抛好。用302#、303#磨砂,用宝石粉抛亮后,改用钻石粉水溶液抛光圈和道子。用宝石粉W1抛光很快,然后用W0.5 抛光圈和道子。用聚胺树脂作抛光模范,也可用宝石粉抛亮后用氧化铬抛光,胶盘用软胶盘,工件最好抛高光圈,但不必高太多。 6、LBO材料硬度与K9相似,点胶上盘,如封蜡可用电烙铁直接封,研磨、抛光同K9玻璃相似,用CeO2抛光。 7、氟锂锶锂:软晶体、易坏,B=Ⅱ,上盘用红外灯慢慢加热。在清洗时不可多擦表面,否则易出道子。用氟化锂做保护片,W1.5刚玉粉抛亮后改用W0.5钻石微粉水溶液抛光。用CeO2抛光也可抛好。(500目) 8、KTP晶体:硬度和ZF相差不多,用ZF做保护片,进行抛光。KD*P、KT*P,用软胶盘(一般用特殊配制的胶盘),也可用1#(天较冷)2#(天较热)号胶盘,抛光后用洗砂倒边。KD*P易潮解、易碎,抛光时温度、湿度要求较高。 9、双45°LN电光Q开关:双45°LN电光Q开关是一种利用LN晶体作材料加工成的斜方棱镜,有六个加工面,其中四个面抛光,另两个面只须定向和研磨。在四个抛光面中,入射面、出射面为晶体Y晶面。入射面、出射面的夹角为45°±1′,电极面为X晶面,须镀金。加工时首先要确定Y基准面,X、Y晶面的衍射角为θ(110)=17°24′和θ(300)=31°12′。上盘用石膏模固定,配盘材料用LN或与LN相似的K9玻璃。加工时入射面、出射面主要控制几何尺寸和平行度,技术要求:N=1/4、B=Ⅲ,θ≤10〞。加工第一个45°反射面主要控制角度和塔差,第二个45°反射面除控制零件的长度外,还要控制光线经过四个抛光面反射后所反映出来的综合平行度。由于光线在晶体内部经过四次反射,因此测量综合平行度只是分划板读数的1/4n(n为LN折射率)通常要求θ≤10〞。LN电光Q开关的两个45°反射面的粗糙程度的好坏与晶体抗激光损伤能力密切相关。LN属于铁电晶体,当抛光级剂选用不当时会出现抛不亮或返毛现象,可通过选高熔点的抛光剂或在溶液中加入HCL或肥皂粉,如果仍不行须重新磨砂。 10、Mg2SiO4 (镁橄榄石)晶体,莫氏硬度为7,抛光较难。 1、用聚胺树脂硬胶盘加W3.5、W2.5宝石研磨膏抛光,大约要5~6小时,一天左右可抛亮。 2、抛亮厚用W0.5钻石微粉水溶液改光圈。低光圈较难改。 11、SeZn晶体,软晶体。磨砂用302#、302.5#在玻璃盘上,抛光用软胶盘,先用W1.

半导体集成电路工艺复习

第一次作业: 1,集成时代以什么来划分?列出每个时代的时间段及大致的集成规模。答: 类别时间 数字集成电路 模拟集成电路MOS IC 双极IC SSI 1960s前期 MSI 1960s~1970s 100~500 30~100 LSI 1970s 500~2000 100~300 VLSI 1970s后期~1980s后期>2000 >300 ULSI 1980s后期~1990s后期 GSI 1990s后期~20世纪初 SoC 20世纪以后 2,什么是芯片的集成度?它最主要受什么因素的影响? 答:集成度:单个芯片上集成的元件(管子)数。受芯片的关键尺寸的影响。 3,说明硅片与芯片的主要区别。 答:硅片是指由单晶生长,滚圆,切片及抛光等工序制成的硅圆薄片,是制造芯片的原料,用来提供加工芯片的基础材料;芯片是指在衬底上经多个工艺步骤加工出来的,最终具有永久可是图形并具有一定功能的单个集成电路硅片。 4,列出集成电路制造的五个主要步骤,并简要描述每一个步骤的主要功能。 答:晶圆(硅片)制备(Wafer Preparation); 硅(芯)片制造(Wafer Fabrication):在硅片上生产出永久刻蚀在硅片上的一整套集成电路。硅片测试/拣选(Die T est/Sort):单个芯片的探测和电学测试,选择出可用的芯片。 装配与封装(Assembly and Packaging):提供信号及电源线进出硅芯片的界面;为芯片提供机械支持,并可散去由电路产生的热能;保护芯片免受如潮湿等外界环境条件的影响。 成品测试与分析(或终测)(Final T est):对封装后的芯片进行测试,以确定是否满足电学和特性参数要求。 5,说明封装的主要作用。对封装的主要要求是什么。 答:封装的作用:提供信号及电源线进出硅芯片的界面;为芯片提供机械支持,并可散去由电路产生的热能;保护芯片免受如潮湿等外界环境条件的影响。 主要要求:电气要求:引线应当具有低的电阻、电容和电感。机械特性和热特性:散热率应当越高越好;机械特性是指机械可靠性和长期可靠性。低成本:成本是必须要考虑的比较重要的因素之一。 6,什么是芯片的关键尺寸?这种尺寸为何重要?自半导体制造业开始以来,芯片的关键尺寸是如何变化的?他对芯片上其他特征尺寸的影响是什么? 答:芯片上器件的物理尺寸被称为特征尺寸;芯片上的最小的特征尺寸被称为关键尺寸,且被作为定义制造工艺水平的标准。 为何重要:他代表了工艺上能加工的最小尺寸,决定了芯片上的其他特征尺寸,从而决定了芯片的面积和芯片的集成度,并对芯片的性能有决定性的影响,故被定义为制造工艺水平的标准。

手工艺制作 课程标准

《手工艺制作》课程标准 一、课程基本信息 课程代码:适用专业:产品设计 学时数:54 学分: 3 先修课程:造型基础、构成基础后续课程:产品模型制作 二、课程性质 课程的类型:专业基础课程 本课程是产品设计制作的一门专门化方向课程,是学生学习立体造型技艺的实践性课程。目的是培养学生立体造型观念和立体形态塑造能力,提高学生的艺术素养。同时,通过教学实训使学生能够了解相关的产品造型知识,掌握一定的产品形态塑造和模型制作技能,为今后从事产品造型设计制作打下良好的造型基础,也为职业生涯的可持续发展做好准备。 三、课程教学目标 通过任务引领的项目训练活动,使学生了解手工艺的基础知识,掌握手工艺制作的方法和一般造型规律,引导学生了解工艺美术的特点,正确认识立体造型的体积概念、空间概念以及形态表现的关系,掌握基本的手工加工方法和技能,同时提高学生的艺术感知能力和鉴赏能力。 职业能力目标: 1、了解工艺制作的基本材料、工具知识以及制作方法。 2、能用手工技能表现工业产品造型。 3、能制作有一定技艺特点的小型工艺品。 四、课程设置与设计思路 本课程以就业为导向,通过与产品设计制作相关的工厂企业的调查,对产品设计制作专门化方向所涵盖的工作岗位进行工作任务与职业能力分析,以专业设计与制作的工作任务为引领,以基础造型能力为主线,以工业产品相关企业应具备的岗位职业能力为依据,选择与工作任务和工业产品造型设计制作职业技能鉴定相关的、学生比较感兴趣的操作内容,按照能力掌握的难易程度,以循序渐进的方式组合,由浅入深、从易到难地培养学生的装饰表现能力。 本课程以产品设计典型内容为载体组织教学活动,按照产品三维造型设计工作过程设计教学过程,将工作任务与基础知识、基础技能的学习和掌握紧密联系起来。强调动手能力的培养,使学生能多接触材料,了解工艺,增强学生的直观体验,增加学生的职业知识,激发学生的学习热情和兴趣。 五、教学内容与学时分配 表1. 课程项目(学习情境)内容与学时分配表

相关文档
相关文档 最新文档