文档库 最新最全的文档下载
当前位置:文档库 › The Hubble Deep Field South - STIS Imaging

The Hubble Deep Field South - STIS Imaging

The Hubble Deep Field South - STIS Imaging
The Hubble Deep Field South - STIS Imaging

a r X i v :a s t r o -p h /9912167v 1 8 D e c 1999

Accepted for publication in the Astronomical Journal,February 2000

The Hubble Deep Field South –STIS Imaging 1.

Jonathan P.Gardner 2,Ste?A.Baum 3,Thomas M.Brown 2,7,C.Marcella Carollo 4,8,9,Jennifer Christensen 3,Ilana Dashevsky 3,Mark E.Dickinson 3,Brian R.Espey 3,10,Henry C.Ferguson 3,Andrew S.Fruchter 3,Anne M.Gonnella 3,Rosa A.Gonzalez-Lopezlira 3,Richard

N.Hook 5,Mary Elizabeth Kaiser 2,4,Crystal L.Martin 3,8,Kailash C.Sahu 3,Sandra Savaglio 3,10,T.Ed Smith 3,Harry I.Teplitz 2,7,Robert E.Williams 3,Jennifer Wilson 3,11

ABSTRACT

We present the imaging observations made with the Space Telescope Imaging Spectrograph of the Hubble Deep Field –South.The ?eld was imaged in 4bandpasses:a clear CCD bandpass for 156ksec,a long-pass ?lter for 22–25ksec per pixel typical exposure,a near-UV bandpass for 23ksec,and a far-UV bandpass for 52ksec.The clear visible image is the deepest observation ever made in the UV-optical wavelength region,reaching a 10σAB magnitude of 29.4for an object of area 0.2square arcseconds.The ?eld contains QSO J2233-606,the target of the STIS spectroscopy,and extends 50′′×50′′for the visible images,and 25′′×25′′for the ultraviolet images.We present the images,catalog of objects,and galaxy counts obtained in the ?eld.

1.Introduction

The Space Telescope Imaging Spectrograph(STIS)(Kimble et al.1997;Woodgate et al.1998;Walborn&Baum1998)was used during the Hubble Deep Field–South(HDF–S) (Williams et al.1999)observations for ultraviolet spectroscopy(Ferguson et al.1999)and ultraviolet and optical imaging.In this paper we present the imaging data.

The Hubble Deep Field–North(HDF–N)(Williams et al.1996)is the best studied ?eld on the sky,with>1Msec of Hubble Space Telescope(HST)observing time(including follow-up observations by Thompson et al.1999and Dickinson et al.1999),and countless observations with ground-based telescopes(e.g.,Cohen et al.1996;Connolly et al.1997). Results obtained to date include a measurement of the ultraviolet luminosity density of the universe at z>2(Madau et al.1996),the morphological distribution of faint galaxies (Abraham et al.1996),galaxy-galaxy lensing(Hudson et al.1998),and halo star counts (Elson,Santiago&Gilmore1996).See Ferguson(1998)and Livio,Fall&Madau(1998) for reviews and further references.The HDF–S di?ers from the HDF–N in several ways. First,the installation of STIS and NICMOS on HST in1997February has enabled parallel observations with three cameras.In addition to the STIS data,the HDF–S dataset includes deep WFPC2imaging(Casertano et al.1999),deep near-infrared imaging(Fruchter et al. 1999),and wider-area?anking?eld observations(Lucas et al.1999).Second,the STIS observations were centered on QSO J2233-606,at z≈2.24,to obtain spectroscopy.Finally, the?eld was chosen in the southern HST continuous viewing zone in order to enable follow-up observations with ground-based telescopes in the southern hemisphere.

In section2we describe the observations.In section3we describe the techniques we used to reduce the CCD images.In section4we describe the reduction of the MAMA images.In section5we describe the procedures used to catalog the images.In section6we present some statistics of the data,including galaxy number counts and color distributions. Our purpose in this paper is to produce a useful reference for detailed analysis of the STIS images.Thus for the most part we refrain from model comparisons and speculation on the signi?cance of the results.We expect the STIS images to be useful for addressing a wide variety of astronomical topics,including the sizes of the faintest galaxies,the ultraviolet-optical color evolution of galaxies,the number of faint stars and white dwarfs in the galactic halo,and the relation between absorption line systems seen in the QSO spectrum and galaxies near to the line of sight.We also expect the observations to be useful for studying sources very close to the quasar,and perhaps for detecting the host galaxy of the quasar.However,this may require a re-reduction of the images,as the quasar is saturated in all of the CCD exposures,and there are signi?cant problems with scattered light and re?ections.

2.Description of the observations

The images presented here were taken in4di?erent modes,50CCD(Figure1),

F28X50LP(Figure2),NUVQTZ(Figure3),and FUVQTZ(Figure4).The50CCD and F28X50LP modes used the Charge Coupled Device(CCD)detector.The50CCD is a clear,?lterless mode,while the F28X50LP mode uses a long-pass?lter beginning at about 5500?A.The FUVQTZ and NUVQTZ used the Multi-Anode Microchannel Array(MAMA) detectors as imagers with the quartz?lter.The quartz?lter was selected to reduce the sky noise due to airglow to levels below the dark noise.The e?ective areas of the4modes are plotted in Figure5,along with a pseudo-B430bandpass constructed from the50CCD and F28X50LP?uxes.The MAMA?eld of view is a square,25′′on a side,and was dithered so that the observations include data on a?eld approximately30′′square.The50CCD mode is ?lterless imaging with a CCD.The?eld of view is a square50′′on a side,and the dithering extends to a square60′′on a side.The F28X50LP is a long-pass?lter that vignettes the ?eld of view of the CCD to a rectangle28×50′′.The observations were dithered to image the entire?eld of view of the50CCD observations,although the exposure time per point on the sky is thus approximately half the total exposure time spent in this mode.The original pixel scale is0.0244′′pix?1for the MAMA images,and0.05071′′pix?1for the CCD images. The?nal combined images have a scale of0.025′′pix?1in all cases.Table1describes the observations.The?lterless50CCD observations correspond roughly to V+I,and reach

a depth of29.4AB magnitudes at10σin a0.2square arcsecond aperture(320drizzled pixels).This is the deepest exposure ever made in the UV-optical wavelength region.

2.1.Selection of the Field

Selection of the?eld is described by Williams et al.(1999).The QSO is at

RA=22h33m37.5883s,Dec=?60?33′29.128′′(J2000).The errors on this position are estimated to be less than40milli-arcseconds(Zacharias et al.1998).The position of the QSO on the50CCD and F28X50LP images is x=1206.61,y=1206.32,and on the MAMA images is x=806.61,y=806.32.

2.2.Test Data

Test observations of the?eld were made in1997October.These data are not used in the present analysis.While the test exposures do not add signi?cantly to the exposure time, they would provide a one-year baseline for proper motion studies of the brighter objects.

2.3.Observing Plan

The STIS observations were scheduled so that the CCD was used in the orbits that were impacted by the South Atlantic Anomaly,and the MAMAs were used in the clear orbits.The observations were made in the continuous viewing zone,and therefore were all made close to the limb of the Earth.The G430M spectroscopy,all of which was read-noise limited,was done during the day or bright part of the orbit,while the CCD imaging was all done during the night or dark part of the orbit.The MAMA imaging,done with the quartz ?lter,is insensitive to scattered Earth light,and was therefore done during bright time.A more detailed discussion of the scheduling issues is given by Williams et al.(1999).The sky levels in the50CCD images were approximately twice the square of the read noise,so these data are marginally sky noise limited.The MAMA images are limited by the dark noise.

2.4.Dithering and Rotation

The images were dithered in right ascension(RA)and declination(Dec)in order to sample the sky at the sub-pixel level.In addition,variations in rotation of about±1degree were used to provide additional dithering for the WFPC2and NICMOS?elds during the STIS spectroscopic observations.The STIS imaging observations were interspersed with the STIS spectroscopic observations;therefore,all of the images were dithered in rotation as well as RA and Dec.

2.5.CR-SPLIT and pointing strategy

The CCD exposures were split into2or3cr-split s that each have the same RA, Dec,and rotation.This facilitates cosmic ray removal,although as discussed below,this was only used in the?rst iteration of the data reduction.The?nal50CCD image is the combination of193exposures making up67cr-split pointings.After standard pipeline processing,(including bias and dark subtraction,and?at?elding),each exposure is given a flt?le extension,and the cosmic-ray rejected combinations of each cr-split is given a crj?le extension.The?nal F28X50LP image is the combination of66exposures making up23cr-split pointings.The F28X50LP image included12pointings at the northern part of the?eld,one pointing at the middle of the?eld,and10pointings at the southern half of the?eld.

2.6.PSF observations

In order to allow for PSF subtraction of the QSO present in the center of the STIS 50CCD image,two SAO stars of about10mag were observed in the?lterless50CCD mode before and after the main HDF-S campaign.The stars are SAO255267,a G2star,and SAO255271,an F8star,respectively.These targets have spectral energy distributions in the STIS CCD sensitivity range similar to that of the QSO.For each star,32di?erent

cr-split exposures were taken.The following strategy was used:(i)four di?erent exposure times between0.1s and5s for each cr-split frame,to ensure high signal-to-noise in the wings while not saturating the center;(ii)a four-position dither pattern with quarter-pixel sampling and cr-split at each pointing with each exposure time;(iii)use of gain=4,to insure no saturation in the A-to-D conversion.During the observations for SAO255267, a failure in the guide star acquisition procedure caused the loss of its long-exposure(5s) images.Gain=4has a well-documented large scale pattern noise that must be removed,e.g., by Fourier?ltering,before a reliable PSF can be produced.These data are not discussed further in this paper,but are available from the HST archive for further analysis.

3.Reduction of the CCD Images

3.1.Bias,Darks,Flats and Masks

Standard processing of CCD images involves bias and dark subtraction,?at?elding,and masking of detector defects.The bias calibration?le used for the HDF-S was constructed from285individual exposures,combined together with cosmic-ray and hot-pixel trail rejection.

The dark?le was constructed from a“superdark”frame and a“delta”dark frame. The superdark is the cosmic-ray rejected combination of over100individual1200s dark exposures taken over the several months preceding the HDF-S campaign.The delta dark adds into this high S/N dark frame the pixels that are more than5σfrom the mean in the superdark-subtracted combination of14dark exposures taken during the HDF-S campaign. Calibration of the images with this dark frame removes most of the hot pixels but still leaves several hundred in each image.

An image mask was constructed to remove the remaining hot pixels and detector features.The individual cosmic-ray rejected HDF-S50CCD exposures were averaged

together without registration.The remaining hot pixels were identi?ed with the IRAF12 cosmicrays task.These pixels were included in a mask that was used to reject pixels during the drizzle phase.Pixels that were more than5σbelow the mean sky background were also masked,as were the30worst hot pixel trails,and the unilluminated portions of the detector around the edges.Hot pixel trails run along columns and are caused by high dark current in a single pixel along the column.

Flat?elding was carried out by the IRAF/STSDAS calstis pipeline using two reference ?les.The?rst,the pflat corrects for small-scale pixel-to-pixel sensitivity variations,but is smooth on large scales.This?le was created from ground-test data but comparisons to a preliminary version of the on-orbit?at revealed only a few places where the di?erence was more than1%.The CCD also shows a5-10%decrease in sensitivity near the edges due to vignetting.This illumination pattern was corrected by a low-order?t to a sky?at constructed from the?anking?eld observations.

3.2.Shifts and rotations

After pipeline processing,the CCD images were reduced using the IRAF/STSDAS package dither,and test versions called xdither,and xditherii.These packages include the drizzle software(Fruchter&Hook1998;Fruchter et al.1998;Fruchter1998).We used drizzle version1.2,dated1998February.The test versions di?er from the previously released version primarily in their ability to remove cosmic rays from each individual exposure,and include tasks that have not yet been released.

The xditherii package uses an iterative process to reject cosmic rays and determine the x and y sub-pixel shifts,which we summarize here.The standard pipeline rejects cosmic rays using each cr-split of2or3images.The resulting crj?les are used as the ?rst iteration,we determine the x and y shifts,and the?les are median combined.The resulting preliminary combination is then shifted back into the frame of each of the original exposures(flt?les),and a new cosmic ray mask is made.By comparing each exposure to a high signal-to-noise combination of all of the data,we are less likely to leave cosmic ray residuals.The x and y shifts are determined at each iteration as well.

The rotations used in combining the data were determined from the roll

12IRAF is distributed by the National Optical Astronomy Observatories,which are operated by the Association of Universities for Research in Astronomy,Inc.,under cooperative agreement with the National Science Foundation.

parameter in the jitter?les,using the program bearing.We did not seek to improve on these rotations via cross-correlation or any other method.We did use cross-correlation to determine the x and y shifts.

Determination of the sub-pixel x and y shifts was done with an iterative procedure. The?rst iteration was obtained by determining the centroid of the bright point source just west of the QSO,using the pipeline cosmic-ray rejected crj?les.We could not use cross-correlation in this?rst iteration,because the very bright star on the southern edge of the?eld was present on images taken at some,but not all,dither positions,which corrupted the cross-correlation.The source we used for centroiding was clearly visible on all of the 50CCD and F28X50LP frames.

Using these shifts(which were accurate to better than1pixel),we created a preliminary combined image.After pipeline processing and cosmic ray rejection,the drizzle program was used to shift and rotate each sc crj?le onto individual outputs,without combining them.We then used the task imcombine to create a median combination of the?les.This preliminary image was then shifted and rotated back into the frame of each individual exposure using the xdither task,blot,ready for the next iteration of the cosmic-ray rejection procedure.

3.3.Cosmic ray rejection

In this iteration,we discarded the crj?les,and went back to the flt?les,in which each exposure had undergone bias and dark subtraction and?at?elding,but not cosmic-ray rejection.Each exposure was compared to the blotted image,and a cosmic-ray mask for that exposure was created from all of the pixels that di?ered(positively or negatively)by more than a given threshold from the blotted image.In the version1.0released50CCD image,this threshold was set to be5σ.However,we believe that a small error in the sky level determination,introduced by the ampli?er ringing correction discussed below,meant that our rejection was approximately at the3σlevel.The cosmic ray masks were multiplied by the hot pixel masks discussed above,and resulted in about8%of the pixels being masked as either cosmic rays or hot pixels.This is,perhaps,overly conservative.A less conservative cut(after correcting the error in the sky value)would result in slightly higher exposure time per pixel,and thus an improvement of1-2%in the signal to noise ratio.The cosmic ray mask was combined with the hot pixel and cosmetic defect mask.

This problem with the sky value was corrected in the F28X50LP image,and a3σlevel was used in the cosmic ray rejection.

3.4.Ampli?er ringing correction

Horizontal features due to ampli?er ringing,varying in pattern from image to image, were present in most of the STIS CCD frames.When a pixel saw a highly saturated signal, the bias level was depressed in the readout for the next few rows.The very high signals causing this ringing came from hot pixels and from the saturated QSO.The signal-to-noise ratio in the overscan region of the detector was not su?cient to remove these features well.We removed them with a procedure that subtracted on a row-by-row basis,from each individual image,the weighted average of the background as derived from the innermost 800columns after masking and rejecting“contaminated”pixels.The masks included all visible sources,hot pixels,and cosmic-ray hits.The source mask was determined from the initial registered median-combined image,shifted back to the reference frame of each of the individual images.For the unmasked pixels in each row,the50highest and lowest were rejected and the mean of the remaining pixels was subtracted from the each pixel in that row.

Heavily smoothing the images reveals very slight horizontal residuals that were not removed by the present choice of parameters in this process.

3.5.Drizzling it all together

The?nal image combination was done by drizzling the ampli?er-ringing corrected pipeline products together onto a single output image.The exposures were weighted

by the square of the exposure time,divided by the variance,which is(sky+rn2+dark). The rotations were corrected so that North is in the+y direction,and the scale used was0.492999original CCD pixels per output pixel so that the?nal pixel scale is exactly 0.025arcsec/pixel.For the50CCD data we used a pixfrac=0.1,which is approximately equivalent to interleaving,where each input pixel falls on a single output pixel.For the F28X50LP data we used pixfrac=0.6,as a smaller pixfrac left visible holes in the

?nal image.See Fruchter&Hook(1998)for a discussion of the meaning of the drizzle parameters.The point spread functions of bright,non-saturated point sources are shown in Figure6.The sources selected are the point source just to the west of the quasar in the 50CCD and F28X50LP images,and the QSO in the MAMA images.

The?nal image is given in counts per second,which can be converted to magnitudes on the stmag system using the photometric zeropoints given by the photflam parameter supplied in the image headers.We used the pipeline photometric zeropoints for the50CCD and MAMA images,but revised the F28X50LP zeropoint by0.1magnitude based on

a comparison of STIS photometry of the HST calibration?eld inωCentauri with the ground-based photometry of Walker(1994).The zeropoints in the AB magnitude system which we used are26.386,25.291,23.887,and21.539,for the50CCD,F28X50LP,NUVQTZ and FUVQTZ respectively.We also supply the weight image,which is the sum of the weights falling on each pixel.For the F28X50LP image,we supply an exposure-time image, which is the total exposure time contributing to each pixel.We have multiplied this image by the area of the output pixels.The world coordinate system in the headers was corrected so that North is exactly in the+y direction,and the pixel scale is exactly0.025arcsec/pixel.

3.6.Window re?ection

A window in the STIS CCD re?ects slightly out-of-focus light from bright sources to the +x,?y direction(SW on the HDF-S images).The QSO is saturated in every50CCD and F28X50LP exposure.The window re?ection of the QSO is clearly visible in the F28X50LP image,but has been partially removed from the50CCD image by the cosmic-ray rejection procedure.We wish to emphasize that it has only been partially removed,and there are remaining residuals.These residuals should not be mistaken for galaxies near the QSO,nor should they be mistaken for the host galaxy of the QSO.There is additional re?ected light from the QSO(and from the bright star at the southern edge)evident in the images.We believe that the version1.0released images are not appropriate for searching for objects very close to or underlying the QSO,and that such a search would require re-processing the raw data with particular attention paid to the window re?ection,other re?ected light,and to the PSF of the QSO.The di?raction spikes of the QSO are smeared in the?nal images by the rotation of the individual exposures.

4.Reduction of the MAMA Images

The near-UV and far-UV images are respectively the weighted averages of12and25 registered frames,with total exposure times of22616s and52124s.The MAMAs do not su?er from read noise or cosmic rays,and the quasar is not saturated in any of the UV data.However,the MAMAs do have calibration issues that must be addressed.

4.1.Flats,Dark Counts,and Geometric Correction

Prior to combination,all frames were processed with CALSTIS,including updated high-resolution pixel-to-pixel?at?eld?les for both UV detectors.Geometric correction and rescaling were applied in the?nal combinations via the drizzle program.The quartz ?lter changes the far-UV plate scale relative to that in the far-UV clear mode,and so the relative scale between MAMA imaging modes was determined from calibration images of the globular cluster NGC6681.

Dark subtraction for the near-UV image was done by subtracting a scaled and

?at-?elded dark image from each near-UV frame.The scale for the dark image was determined by inspection of the right-hand corners of the near-UV image,because these portions of the detector are occulted by the aperture mask and thus only register dark counts.For the far-UV images,calstis removes a nearly?at dark frame,but the upper left-hand quadrant of STIS far-UV frames contains a residual glow in the dark current after nominal calibration.This glow varies from frame to frame and also appears to change shape slightly with time.To remove the residual dark current,the16far-UV frames with the highest count rates in the glow region were co-added without object registration but with individual object masks for the only two obvious objects in the far-UV frames(the quasar and bright spiral NNE of the quasar).We then?t the result with a cubic spline to produce a glow pro?le.This pro?le was then scaled to the residual glow in each processed frame and subtracted prior to the?nal drizzle.Even during observations with a strong dark glow,where the dark count rate is an order of magnitude higher than normal,it is still very low,reaching rates no higher than6×10?5cts sec?1pix?1.The glow thus appears as a higher concentration of ones in a sea of zeros,and the subtraction of a smooth glow pro?le from such quantized data over-subtracts from the zeros and under-subtracts from the ones. These e?ects are visible in the corrected data,even when smoothed out considerably in the?nal drizzled far-UV image.A low-resolution?at-?eld correction was applied to the far-UV frames after subtraction of the residual dark glow.The near-UV frames require no low-resolution?at?eld correction.

4.2.Shifts and Rotations

Currently,geometrically corrected NUVQTZ and FUVQTZ frames do not have the same plate scale.Although geometric correction,rotation,and rescaling is applied during the?nal summation of individual calibrated frames,we?rst produced a set of calibrated frames that included these corrections,in order to accurately determine the relative shifts between them;this information was then used in conjunction with these corrections in

the?nal drizzle.All near-UV and far-UV frames were geometrically corrected,rescaled to 0.025′′pix?1,and rotated to align North with the+y image axis.The roll angle speci?ed in the jitter?les was used to determine the relative roll between frames,and the mean

di?erence between the planned roll and the jitter roll determined the absolute rotation.

It is di?cult to determine accurate roll angles from the images themselves,because of the scarcity of objects in the MAMA images.All near-UV and far-UV frames were then cross-correlated against one of the far-UV frames to provide shifts in the output coordinate system.Note that centroiding on the quasar in all far-UV and near-UV frames yields the same shifts as cross-correlation,within0.1pixel.

4.3.Drizzling

The calibrated frames were drizzled to a1600×1600pixel image,including the above corrections,rescaling,rotations,and shifts.We updated the world coordinate system in the image headers to exactly re?ect the plate scale,alignment,and the astrometry of the quasar.

For both the far-UV and near-UV frames,individual pixels in each frame were weighted by the ratio of the exposure time squared to the dark count variance;this weights the exposures by(S/N)2for sources that are fainter than the background.Although the variations in the far-UV dark pro?le are smooth,the near-UV dark pro?le is an actual sum of dark frames,and so we smoothed the near-UV dark pro?le to determine the weights. With this weighting algorithm,pixels in the upper left-hand quadrant of a given far-UV image contribute less when the dark glow is high,and contribute more when it is low.The statistical errors(cts s?1)in the?nal drizzled image,for objects below the background(e.g., objects other than the quasar),are given by the square root of the?nal drizzled weights?le.

The drizzle“dropsize”(pixfrac)was0.6,thus improving the resolution over a pixfrac of1.0(which would be equivalent to simple shift-and-add).The1600×1600pixel format contains all dither positions,and pixels outside of the dither pattern are at a count rate of zero.The pixel mask for each near-UV input frame included the occulted corners of the detector,a small number of hot pixels,and pixels with relatively low response(those with values≤0.75in the high-resolution?at?eld).The pixel mask for each far-UV frame included hot pixels and all pixels?agged in the data quality?le for that frame.When every input pixel drizzled onto a given output pixel was masked,that pixel was set to zero.

4.4.Window Re?ection

As with the CCD,a window re?ection of the QSO appears in the near-UV image. This re?ection appears≈0.2′′east of the QSO itself,and should not be considered an astronomical object.

5.Cataloging

5.1.Cataloging the Optical Images

The catalog was created using the SExtractor package(Bertin&Arnouts1996), revision of1998November19,with some minor modi?cations that were done for this application.We used two separate runs of SExtractor,and manually merged the resulting output catalogs.The?rst run used a set of parameters selected to optimize the detection of faint sources while not splitting what appeared to the eye to be substructure in a single object.We varied the parameters detect mincont, back filtersize.We decided to use a detection threshold corresponding to an isophote of0.65σ.Sources were required a minimum area of16connected pixels above this threshold.Deblending was done when the?ux in the fainter object was a minimum of 0.03times the?ux in the brighter object.The background map was constructed on a grid of60pixels,and subsequently?ltered with a3×3median?lter.Prior to cataloging,the image was convolved with a Gaussian kernel with full width half maximum of3.4pixels.As discussed in Fruchter&Hook(1998),the e?ects of drizzling on the photometry is no more than2%,and in our well-sampled50CCD?eld,the e?ects should be much less than this. This e?ect is smaller than other uncertainties in the photometry of extended objects.

The second run of SExtractor was optimized to detect objects that lay near the QSO and the bright star at the southern edge of the image.These objects tend to be blended in with the point source at the lower detection threshold.Although our catalog might include galaxies that are associated with absorption lines in the quasar spectrum, we did not attempt to subtract the quasar light from the image,and so the catalog does not include objects within3′′of the quasar.The parameters used for the second run were the same as for the?rst run,with the exception of the detect

detected in the second run were added to the catalog generated by the?rst run,and?agged accordingly.Objects from the second run that were not confused with the quasar or the bright star were not included.The isophotal photometry of objects from the second run will not be consistent with the photometry of objects from the?rst run,because a di?erent isophote was used.Eight objects were added to the catalog in this way.

In addition,26objects from the?rst SExtractor run were clearly spurious due to the di?raction spikes of the QSO and the bright star.These were manually deleted from the catalog.

Photometry of the F28X50LP image was done with SExtractor run in two-image mode,in which the objects were detected and identi?ed on the50CCD image,but the photometry was done in the other band.Isophotes and elliptical apertures are thus determined by the extent of the objects on the50CCD images.Objects detected in

the F28X50LP image but not on the50CCD image are impossible,since it has a lower throughput and shorter exposure time.

5.2.Cataloging the Ultraviolet Images

Fluxes in the UV were calculated outside of SExtractor because it had some problems handling quantized low-signal data.To determine the gross?ux,we summed the countrate within the area for each object appearing in the SExtractor50CCD segmentation map.We then created an object mask by“growing”each object in the segmentation map,using the IDL routine dilate,until it subtended an area three times its original size.The resulting mask excludes faint emission outside of the SExtractor isophotes for all known objects in the?eld.The sky was calculated from those exposed pixels within a151×151pixel box centered on each object,excluding pixels from the mask. The mean countrate per pixel in this sky region was used to determine the background for each object(the median is not a useful quantity when dealing with very low quantized signals),and thus the net?ux.Statistical errors per pixel for objects at or below the background are determined from the drizzle weight image raised to the?1/2power.The statistical errors for the gross?ux and sky?ux were calculated using this pixel map of statistical errors,and thus underestimate the errors for bright objects such as the quasar.

Some objects that are fully-exposed in the CCD image do not fall entirely within the exposed area of the MAMA images;for these objects,we calculated the UV?ux in the exposed area only,without correcting for the incomplete exposure,and?agged such objects accordingly.Objects were also?agged if the sky-box described above did not contain at

least100pixels(e.g.,the quasar).For these objects,we calculated a global sky value from a larger685×670pixel box,roughly centered in each MAMA image,that only includes areas fully exposed in the dither pattern,and excludes pixels in the object mask.When the net?ux incorporates this global sky value,they have been?agged accordingly.We do not expect or see any evidence for objects in the ultraviolet images that do not appear on the 50CCD image.

5.3.The Catalog

The catalog is presented in Table2,which contains a subset of the photometry.The full catalogs are available on the World Wide Web.For each object we report the following parameters:

ID:The SExtractor identi?cation number.The objects in the list have been sorted by right ascension(?rst)and declination(second),and thus are no longer in catalog order. In addition,the numbers are no longer continuous,as some of the object identi?cations from the?rst SExtractor run have been removed.Objects from the second SExtractor run have had10000added to their identi?cation numbers.These identi?cation numbers provide a cross-reference to the segmentation maps.

HDFS

J223333.69?603346.0, at RA22h33m33.69s,Dec60deg33′46.0′′,epoch J2000.

x,y:The x and y pixel positions of the object on the50CCD and F28X50LP images. To get the x and y pixel positions on the MAMA images,subtract400from each.

m i,m a:The isophotal(m i)and“mag

auto”is an elliptical Kron(1980)magnitude,determined from the sum of the counts in an elliptical aperture.The semi-major axis of this aperture is de?ned by2.5times the?rst moments of the?ux distribution within an ellipse roughly twice the isophotal radius.However if the aperture de?ned this way would have a semi-major axis smaller than than3.5pixels,a3.5pixel value is used.

clr-lp:Isophotal color,50CCD?F28X50LP,in the AB magnitude system,as determined in the50CCD isophote.SExtractor was run in two-image mode to determine

the photometry in the F28X50LP image,using the50CCD image as the detection image. When the measured F28X50LP?ux is less than2σ,we determine an upper limit to the color using the?ux plus2σwhen the measured?ux is positive,and2σwhen the measured ?ux is negative.We did not clip the50CCD photometry.

nuv-clr,fuv-clr:Isophotal colors,NUVQTZ-50CCD and FUVQTZ-50CCD,in the AB magnitude system.Photometry in the MAMA images are discussed above.Photometry of objects falling partially outside the MAMA image are?agged and should not be considered reliable.When the measured?ux is less than2σ,we give lower limits to the color as discussed above.

r h:The half-light radius of the object in the50CCD image,given in milli-arcseconds. The half-light radius was determined by SExtractor to be the radius at which a circular aperture contains half of the?ux in the“mag

30mag.The turnover fainter than this is due to incompleteness;the counts do not turn over for astrophysical or cosmological reasons.

6.2.Colors and Dropouts

The50CCD-F28X50LP colors of objects in the STIS images are plotted as points

in Figure8.Flagged objects have been removed from the sample.For comparison,we plot K–corrected(no-evolution)colors of the template galaxies in the Kinney et al.(1996) sample as a function of redshift on the left of the?gure.The LP?lter is able to distinguish blue galaxies at z<2.5,but becomes dominated by the noise for blue galaxies fainter than 28mag,and loses color resolution at z>3,where the Lyαforest dominates the color in these bandpasses.

Because the F28X50LP bandpass is entirely contained within the50CCD bandpass, it is possible,by subtracting an appropriately scaled version of the measured F28X50LP ?ux from the50CCD?ux,to construct a pseudo-B430measurement(see Figure5).This pseudo-B430is combined with the NUVQTZ and the F28X50LP measurements in a color-color diagram in Figure9.NUV drop-outs,indicated on this?gure by the dashed line,are those objects with blue colors in the visible,but red colors in the UV,indicative of galaxies at z>~1.5.These galaxies show blue colors characteristic of rapid star formation, while the red NUV to optical color is due to the Lyman break and absorption by the Lyαforest.The selection criteria were determined using the models of Madau et al.(1996).In an inset to Figure9,we plot the e?ciency of these criteria for selecting galaxies of high redshift.The solid line is the fraction of all of the models that meet these criteria,while the dotted line is the fraction of those models with ages<108years and foreground-screen extinction less than A B=2.These criteria are very e?cient at?nding young,star-forming galaxies at1.5

In Figure10we give a FUV-NUV vs NUV-50CCD color-color plot showing FUV dropouts,where the Lyman break is passing through the FUV bandpass at z>0.6.Of the 17galaxies in the MAMA?eld with NUV magnitudes brighter than28.4,only3have a clear signature of a Lyman break at0.60.6.

7.Conclusions

We have presented the STIS imaging observations that were done as part of the Hubble Deep Field–South campaign.The50CCD image is the deepest image ever made in the UV-optical wavelength region,and achieves a point source resolution near the di?raction limit of the HST.We have presented the catalog,and some statistics of the data.These data will be useful for the study of the number and sizes of faint galaxies,the UV-optical color evolution of galaxies,the number of faint stars and white dwarfs in the galactic halo, and the relation between absorption line systems seen in the QSO spectrum and galaxies near to the line of sight.Follow-up observations of the HDF-South?elds by southern hemisphere ground-based telescopes,by HST,and by other space missions will also greatly increase our understanding of the processes of galaxy formation and evolution.

The images and catalog presented here are available on the World Wide Web at:

.

We would like to thank all of the people who contributed to making the HDF-South campaign a success,including those who helped to identify a target quasar in the southern CVZ,and those who helped in planning and scheduling the observations.JPG,TMB, and HIT wish to acknowledge funding by the Space Telescope Imaging Spectrograph Investigation De?nition Team through the National Optical Astronomical Observatories, and by the Goddard Space Flight Center.CLM and CMC wish to acknowledge support by NASA through Hubble Fellowship grants awarded by STScI.

REFERENCES

Abraham,R.G.,Tanvir,N.R.,Santiago,B.X.,Ellis,R.S.,Glazebrook,K.,&van den Bergh,S.1996,MNRAS,279,L47

Bertin,E.,&Arnouts,S.1996,A&AS,117,393

Casertano,S.,et al.1999,in preparation

Cohen,J.G.,Cowie,L.L.,Hogg,D.W.,Songaila,A.,Blandford,R.,Hu,E.M.,Shopbell, P.1996,ApJ,471,L5

Connolly,A.J.,Szalay,A.S.,Dickinson,M.,SubbaRao,M.U.,&Brunner,R.J.1997, ApJ,486,L11

Dickinson et al.1999,ApJ,in press,astro-ph/9908083

Elson,R.A.W.,Santiago,B.X.,&Gilmore,G.F.1996,New Astronomy,1,1 Ferguson,H.C.,1998,Reviews in Modern Astronomy,11,83

Ferguson,H.C.,et al.1999,in preparation

Fruchter,A.S.,&Hook,R.N.1998,astro-ph/9808087

Fruchter,A.S.et al.1998,in1997HST Calibration Workshop,ed.S.Casertano et al.

(STScI)

Fruchter,A.S.1998,https://www.wendangku.net/doc/a517650699.html,/~fruchter/dither/dither.html

Fruchter,A.S.et al.1999,in preparation

Hudson,M.J.,Gwyn,S.D.J.,Dahle,H.,&Kaiser,N.1998,ApJ,503,531

Kimble,R.A.,et al.1997,ApJ,492,L83

Kinney,A.L.,Calzetti,D.,Bohlin,R.C.,McQuade,K.,Storchi-Bergmann,T.,&Schmitt,

H.R.1996,ApJ,467,38

Kron,R.G.1980,ApJS,43,305

Livio,M.,Fall,S.M.,&Madau,P.(eds.)1998,The Hubble Deep Field:proceedings of the Space Telescope Science Institute Symposium11,(New York:Cambridge

University Press)

Lucas,R.A.,et al.1999,in preparation

Madau,P.,Ferguson,H.C.,Dickinson,M.E.,Giavalisco,M.,Steidel,C.C.&Fruchter,A.

1996,MNRAS,283,1388

Oke,J.B.1971,ApJ,170,193

Thompson,R.I.,Storrie-Lombardi,L.J.,Weymann,R.J.,Rieke,M.J.,Schneider,G., Stobie,E.,&Lytle,D.1999,117,17

Walborn,N.,&Baum,S.1998,STIS Instrument Handbook,version2.0,(Baltimore: STScI),https://www.wendangku.net/doc/a517650699.html,/instruments/stis.

Walker,A.R.1994,PASP,104,828

Williams,R.E.,et al.1996,AJ,112,1335

Williams,R.E.,et al.1999,in preparation

Woodgate,B.E.,et al.1998,PASP,110,1183

Zacharias,N.,et al.1998,BAAS,193,75.09

NOTE:The resolution of this image has been reduced.Full resolution images are available at:https://www.wendangku.net/doc/a517650699.html,/~gardner/hdfs/stispaper.

Fig.1.—The50CCD image.The image is displayed on a log scale,and has been clipped between1×10?5and5×10?2counts per second.The?eld of view of the image is0.8357 square arcminutes.

NOTE:The resolution of this image has been reduced.Full resolution images are available at:https://www.wendangku.net/doc/a517650699.html,/~gardner/hdfs/stispaper.

Fig.2.—The F28X50LP image.The image is displayed on a log scale,and has been clipped between1×10?5and5×10?2counts per second.The?eld of view of the image is0.8326 square arcminutes.

如何写先进个人事迹

如何写先进个人事迹 篇一:如何写先进事迹材料 如何写先进事迹材料 一般有两种情况:一是先进个人,如先进工作者、优秀党员、劳动模范等;一是先进集体或先进单位,如先进党支部、先进车间或科室,抗洪抢险先进集体等。无论是先进个人还是先进集体,他们的先进事迹,内容各不相同,因此要整理材料,不可能固定一个模式。一般来说,可大体从以下方面进行整理。 (1)要拟定恰当的标题。先进事迹材料的标题,有两部分内容必不可少,一是要写明先进个人姓名和先进集体的名称,使人一眼便看出是哪个人或哪个集体、哪个单位的先进事迹。二是要概括标明先进事迹的主要内容或材料的用途。例如《王鬃同志端正党风的先进事迹》、《关于评选张鬃同志为全国新长征突击手的材料》、《关于评选鬃处党支部为省直机关先进党支部的材料》等。 (2)正文。正文的开头,要写明先进个人的简要情况,包括:姓名、性别、年龄、工作单位、职务、是否党团员等。此外,还要写明有关单位准备授予他(她)什么荣誉称号,或给予哪种形式的奖励。对先进集体、先进单位,要根据其先进事迹的主要内容,寥寥数语即应写明,不须用更多的文字。 然后,要写先进人物或先进集体的主要事迹。这部分内容是全篇材料

的主体,要下功夫写好,关键是要写得既具体,又不繁琐;既概括,又不抽象;既生动形象,又很实在。总之,就是要写得很有说服力,让人一看便可得出够得上先进的结论。比如,写一位端正党风先进人物的事迹材料,就应当着重写这位同志在发扬党的优良传统和作风方面都有哪些突出的先进事迹,在同不正之风作斗争中有哪些突出的表现。又如,写一位搞改革的先进人物的事迹材料,就应当着力写这位同志是从哪些方面进行改革的,已经取得了哪些突出的成果,特别是改革前后的.经济效益或社会效益都有了哪些明显的变化。在写这些先进事迹时,无论是先进个人还是先进集体的,都应选取那些具有代表性的具体事实来说明。必要时还可运用一些数字,以增强先进事迹材料的说服力。 为了使先进事迹的内容眉目清晰、更加条理化,在文字表述上还可分成若干自然段来写,特别是对那些涉及较多方面的先进事迹材料,采取这种写法尤为必要。如果将各方面内容材料都混在一起,是不易写明的。在分段写时,最好在每段之前根据内容标出小标题,或以明确的观点加以概括,使标题或观点与内容浑然一体。 最后,是先进事迹材料的署名。一般说,整理先进个人和先进集体的材料,都是以本级组织或上级组织的名义;是代表组织意见的。因此,材料整理完后,应经有关领导同志审定,以相应一级组织正式署名上报。这类材料不宜以个人名义署名。 写作典型经验材料-般包括以下几部分: (1)标题。有多种写法,通常是把典型经验高度集中地概括出来,一

最新小学生个人读书事迹简介怎么写800字

小学生个人读书事迹简介怎么写800字 书,是人类进步的阶梯,苏联作家高尔基的一句话道出了书的重要。书可谓是众多名人的“宠儿”。历来,名人说出关于书的名言数不胜数。今天小编在这给大家整理了小学生个人读书事迹,接下来随着小编一起来看看吧! 小学生个人读书事迹1 “万般皆下品,惟有读书高”、“书中自有颜如玉,书中自有黄金屋”,古往今来,读书的好处为人们所重视,有人“学而优则仕”,有人“满腹经纶”走上“传道授业解惑也”的道路……但是,从长远的角度看,笔者认为读书的好处在于增加了我们做事的成功率,改善了生活的质量。 三国时期的大将吕蒙,行伍出身,不重视文化的学习,行文时,常常要他人捉刀。经过主君孙权的劝导,吕蒙懂得了读书的重要性,从此手不释卷,成为了一代儒将,连东吴的智囊鲁肃都对他“刮目相待”。后来的事实证明,荆州之战的胜利,擒获“武圣”关羽,离不开吕蒙的“运筹帷幄,决胜千里”,而他的韬略离不开平时的读书。由此可见,一个人行事的成功率高低,与他的对读书,对知识的重视程度是密切相关的。 的物理学家牛顿曾近说过,“如果我比别人看得更远,那是因为我站在巨人的肩上”,鲜花和掌声面前,一代伟人没有迷失方向,自始至终对读书保持着热枕。牛顿的话语告诉我们,渊博的知识能让我们站在更高、更理性的角度来看问题,从而少犯错误,少走弯路。

读书的好处是显而易见的,但是,在社会发展日新月异的今天,依然不乏对读书,对知识缺乏认知的人,《今日说法》中我们反复看到农民工没有和用人单位签订劳动合同,最终讨薪无果;屠户不知道往牛肉里掺“巴西疯牛肉”是犯法的;某父母坚持“棍棒底下出孝子”,结果伤害了孩子的身心,也将自己送进了班房……对书本,对知识的零解读让他们付出了惨痛的代价,当他们奔波在讨薪的路上,当他们面对高墙电网时,幸福,从何谈起?高质量的生活,从何谈起? 读书,让我们体会到“锄禾日当午,汗滴禾下土”的艰辛;读书,让我们感知到“四海无闲田,农夫犹饿死”的无奈;读书,让我们感悟到“为报倾城随太守,西北望射天狼”的豪情壮志。 读书的好处在于提高了生活的质量,它填补了我们人生中的空白,让我们不至于在大好的年华里无所事事,从书本中,我们学会提炼出有用的信息,汲取成长所需的营养。所以,我们要认真读书,充分认识到读书对改善生活的重要意义,只有这样,才是一种负责任的生活态度。 小学生个人读书事迹2 所谓读一本好书就是交一个良师益友,但我认为读一本好书就是一次大冒险,大探究。一次体会书的过程,真的很有意思,咯咯的笑声,总是从书香里散发;沉思的目光也总是从书本里透露。是书给了我启示,是书填补了我无聊的夜空,也是书带我遨游整个古今中外。所以人活着就不能没有书,只要爱书你就是一个爱生活的人,只要爱书你就是一个大写的人,只要爱书你就是一个懂得珍惜与否的人。可真所谓

浅析语义场理论对英语词汇教学的启发

浅析语义场理论对英语词汇教学的启发 201010815437 朱友秀指导老师:邱志芳 [摘要]正如英语语法在英语的学习中不可忽视一样,英语词汇教学在英语学习中也起着举足轻重的作用,如果不用方法和技巧,要记住那么多的单词和短语是一件既枯燥又令人头痛的事,而语义场理论为词汇教学提供了系统的理论依据。它用归纳分类和丰富的联想的方法在词与词之间建立起各种各样的联系,使得记忆它们不再那么乏味和单调,本文浅析语义场理论对英语词汇教学的几点启发并以此扩大学生的词汇量,从而提高英语教学与学习的效率,从而实现快乐地学习的目标。 [关键词] 语义场;英语词汇教学;启发 1 引言 词汇是语言的建筑基石和语言意义的载体,它维系着语音和语法。语言若离开了词汇,就无所谓语言。[1]因此词汇学习是英语学习的重要组成部分,掌握词汇的多与少,直接影响学生语言能力的发展与提高。传统的词汇教学没有注意词汇之间的有机联系,学生对词汇的掌握主要靠大量的孤立式强化记忆,而语义场理论认为语言系统中的词汇在语义上是相互联系的,它们共同构成一个完整的词汇系统,为词汇教学提供了系统的理论依据,本文浅析语义场理论对英语词汇教学的几点启发。 1.1 语义场理论 语义场理论(semantic field theory亦称field theory)最早是20世纪20-30年代由德国与瑞士的一些学者提出的。其中最著名的是德国学者特雷尔(J. Trier )。[2]该理论认为:语言系统中的词汇在语义上是相互联系的,它们共同构成一个完整的词汇系统。该理论主要包含三层涵义:其一,语言中的某些词,可以在一个共同的概念的支配下,结合在一起组成一个语义场。[3]例如,由tiger、lion、elephant、bear、dog、cat、pig等词组成animal这个语义场;其二,属于同一语义场的词,不仅在语义上相关,而且在语义上是相互制约、相互规定的。其三,指这个完整的词汇系统是很不稳定的,处于不断变化之中。 1.2 语义场的类型 根据对共同义素的分析角度不同,语义场相应的区分为不同的类型,主要包括:分类义场、上下义场、同义义场、反义义场等。[4] (1)分类语义场。分类语义场是由类义词(因为组成义位的某些义素相同而以类相聚的一群词语)组成的语义聚合体。[5]例如以matter为义素的语义场可以分为solid、liquid、gas等三个分义场,Change 这个义场包括chemical change和physical change,像这样的列子数不胜数。 (2)上下义义场。上下义义场是指一词在上表示总的概念,两个或三个以上的词在下,表示具体概念,在上者称为上义词,在下者称为下义词。上下义义场又分为两元的和多元的。[6]两元的是指一个上义词只包括两个下义词,例如parent这个义场包括father和mother两个词,children这个义场包括son 和daughter。多元的是指一个上义词包括三个或三个以上的下义词,如vehicle这个义场包括car、bus、truck、train等多个词,plant这个义场包括tree, flower, grass, vegetable等。 (3)同义义场。同义义场是指由指称意义相同的义素形成的语义聚合体。在同义义场中,绝对同义词是比较少见的,许多同义词在中心意义上相似的,但其在语体风格、感情色彩、搭配关系上等存在着差别。[7]比如dad和father的语体不同, dad是口语而father是书面语,;再比如pretty girl中的pretty是小巧玲珑的意思,是褒义词而tiny man中的tiny是一种不正常的小的意思,是贬义词,pretty和tiny的感情色彩不同;再比如对……严格,可以有be strict with…与be strict to…两种词组,它们的搭配不同,be strict with sb.,而be strict to sth.。 (4)反义义场。反义义场是由意思相反、相对或矛盾的属于同一词性的和同一范畴的一组词构成的

个人先进事迹简介

个人先进事迹简介 01 在思想政治方面,xxxx同学积极向上,热爱祖国、热爱中国共产党,拥护中国共产党的领导.利用课余时间和党课机会认真学习政治理论,积极向党组织靠拢. 在学习上,xxxx同学认为只有把学习成绩确实提高才能为将来的实践打下扎实的基础,成为社会有用人才.学习努力、成绩优良. 在生活中,善于与人沟通,乐观向上,乐于助人.有健全的人格意识和良好的心理素质和从容、坦诚、乐观、快乐的生活态度,乐于帮助身边的同学,受到师生的好评. 02 xxx同学认真学习政治理论,积极上进,在校期间获得原院级三好生,和校级三好生,优秀团员称号,并获得三等奖学金. 在学习上遇到不理解的地方也常常向老师请教,还勇于向老师提出质疑.在完成自己学业的同时,能主动帮助其他同学解决学习上的难题,和其他同学共同探讨,共同进步. 在社会实践方面,xxxx同学参与了中国儿童文学精品“悦”读书系,插画绘制工作,xxxx同学在班中担任宣传委员,工作积极主动,认真负责,有较强的组织能力.能够在老师、班主任的指导下独立完成学院、班级布置的各项工作. 03 xxx同学在政治思想方面积极进取,严格要求自己.在学习方面刻苦努力,不断钻研,学习成绩优异,连续两年荣获国家励志奖学金;作

为一名学生干部,她总是充满激情的迎接并完成各项工作,荣获优秀团干部称号.在社会实践和志愿者活动中起到模范带头作用. 04 xxxx同学在思想方面,积极要求进步,为人诚实,尊敬师长.严格 要求自己.在大一期间就积极参加了党课初、高级班的学习,拥护中国共产党的领导,并积极向党组织靠拢. 在工作上,作为班中的学习委员,对待工作兢兢业业、尽职尽责 的完成班集体的各项工作任务.并在班级和系里能够起骨干带头作用.热心为同学服务,工作责任心强. 在学习上,学习目的明确、态度端正、刻苦努力,连续两学年在 班级的综合测评排名中获得第1.并荣获院级二等奖学金、三好生、优秀班干部、优秀团员等奖项. 在社会实践方面,积极参加学校和班级组织的各项政治活动,并 在志愿者活动中起到模范带头作用.积极锻炼身体.能够处理好学习与工作的关系,乐于助人,团结班中每一位同学,谦虚好学,受到师生的好评. 05 在思想方面,xxxx同学积极向上,热爱祖国、热爱中国共产党,拥护中国共产党的领导.作为一名共产党员时刻起到积极的带头作用,利用课余时间和党课机会认真学习政治理论. 在工作上,作为班中的团支部书记,xxxx同学积极策划组织各类 团活动,具有良好的组织能力. 在学习上,xxxx同学学习努力、成绩优良、并热心帮助在学习上有困难的同学,连续两年获得二等奖学金. 在生活中,善于与人沟通,乐观向上,乐于助人.有健全的人格意 识和良好的心理素质.

语义场理论和英语词汇教学

语义场理论和英语词汇教学 语义学是一门崭新的学科,把语义学用于大学英语教学更是一个全新的内容。英语教学中,很大的一部分内容就是如何把语义学的理论融入到词汇教学当中,使学生能熟练掌握词汇,并能得体地、恰当地运用它们。英国语言学家威尔金斯曾经说过:“没有语法,人们表达的事物寥寥无几,而没有词汇,人们则无法表达任何事物”(Wilkins,1978:111)。由此可见,词汇教学在语言教学中占有重要的地位。目前,我国的大学生英语的学习时间都有5到8年,然而很多学生一谈到英语词汇的学习,都感到头痛。他们普遍存在着下列问题:(1)不能有效巩固已学的单词;(2)不能在特定的语境中恰当地运用单词;(3)错误地使用词的形式,例如:“Be seated, ladies and gentlemen”(formal),“Have a seat”(informal),“Take a pew”(colloquial);(4)不能地道地使用词汇,例如:“no other corner of our planet”;(5)不能有效地把词汇使用在有意义的语境中等。如果能把语义学理论引入英语教学之中,用语义学的原理分析和认识词汇,从而运用更加科学有效的方法提高词汇教学,并从中总结和找出一定的规律,这对提高学生学习英语的兴趣,提高他们掌握英语词汇的能力,进而更好地、恰当地并且得体地使用词汇,都有重要的现实意义。这种理论与实践的结合是很有意义的。 语义学中的语义场理论可帮助学生重温、联想所学词汇,使之变成长期记忆。语义场理论是德国学者J. Tries(伍谦光,1995:94)最先提出来的。根据这一理论,我们知道,尽管语言词汇数目巨大,浩如烟海,但它们并不是杂乱无章的。语义场理论把一种语言的词汇看成是完整的、在语义上相关联的,将一个词与其它词联系起来,而形成语义场。实际上它就是语言中的某些词在一个概念支配下组成一个语义场。例如,在“animal”这个概念下,“cat,dog,horse,tiger,elephant”等单词构成一个语义场,根据词义上的类属关系,看它们是否是上、下义的关系,进而可以推出它们的层次结构。从上面的例句,可以得出从属“animal”这个概念的有“horse,dog,cat and etc.”,每个场下面还可以再分出若干个“子场”,“子场”下面可再分出“次子场”等等,这样就可以使词汇体系及词义系统有次序地展现出来。如果我们了解词与词之间的各种关系,为多个单词设立多种形式的语义场,这样就便于记忆和使用词汇。如表示颜色的语义场有:red,yellow,blue,black,purple,orange等词;还有表示相反意义的语义场如accept/refuse;buy/sell;easy/difficult;true/false等等。通过记忆 laugh(笑)、smile(微笑)、grin(露齿而笑)、giggle(格格地笑、傻笑)、roar(哄笑、大笑)guffaw(捧腹大笑)、mock(嘲笑)、jeer(讥笑)等词,学生不仅弄清了这些词的细微区别,而且学会了正确地使用它们。通过语义场的词汇学习,常常可带出一长串词汇,这样不仅扩大了词汇量,而且不易忘记,所以运用语义场理论学习词汇是扩大词汇量的一种科学有效的好方法。根据德国心理学家H. Ebbinghauss的遗忘曲线学说:复习所需时间比初学所需时间要少得多,复习次数越多,需要时间越少,遗忘速度越慢,因此单词在初学后要马上不断地重复记忆,使之成为长久记忆。同时,运用语义场理论,学生可以对词汇体系进行分析研究,有次序地展现语言的词汇系统。更重要的是,通过语义场,他们能清楚地看到词义之间的相互依存关系和结构层次关系,这样有助于联想和重温所学的词汇。 英语教学的根本目的在于培养学生的语言交际能力 ,因此我们的教学必须把语义摆在一个重要的位置 ,而不能仅仅以语法和结构作为教学的中心。语法结构和意义之间往往存在歧义的问题。结构分析的诸多缺陷可以在意义层次的研究中得到弥补 ,将结构和意义结合起来进行分析和研究的方法对教学产生了深远的指导意义。我们的词汇教学不应该是一味强求词汇量的扩增 ,追求强记效果 ,而是要深入地剖析词汇并把它们联结成一个网络。(Tylor ,1993)如果我们在词汇教学中单纯追求扩大词汇量 ,要求学生死记硬背单词 ,其结

词义分析和语义场

(一)什么是词义 客观事物(这里指人脑以外的所有事物,包括一切生物、非生物、事件以及它们的行动、状态、性质等等)反映在人脑中,产生感觉(sensation),知觉(perception),表象(representation);人脑把感觉、知觉、表象加以概括和抽象,形成概念(concept)。人们用语言形式把概念固定下来,成为人们交流思想的符号(sign),这就是有一定意义的词。也就是说,词的意义的"人"赋予它的,难怪英国语言学家帕特里奇(Eric Partridge)说过,"Words have no meaning; peope have meaning for them"(词本无义,人赋予之)。传统语义学家通常用三角图形来说明词义,称"词义三角"(triangle of significance): 意义(概念)Meaning (Concept) 词Word 形式Form……所指对象Referent 这个图形表示:第一,词有两个方向--"形式"和"意义(概念)"。"形式"首先是指词的语音形式,也就是平常所说的发音,其次是指词的书面形式,也就是平常的说的拼写;与此相对的是词的意义(其核心部分是概念),也就是词的内容。每个词都有一定的形式和意义;这两方面缺一不可,统一在每个词中。第二,词义与所指对象联接在一起--一方面,词义在客观世界中是有所指的,另一方面,词义又是客观世界的某一(或某些)事物在语言中的反映。客观世界是无穷无尽、无限丰富的,客观世界的事物之间存在着细微的千差万别。人类语言无法完完全全地准确表达客观世界。一种语言无论词汇多么浩瀚、词义多么丰富,都不足以完完全全地准确反映客观世界。 现代语义学家对"词义三角"提出很多批评,涉及哲学、心理学等各个领域。但是如果我们从学习语言的实用目的出发,粗浅地分析词义、解释有关词义的种种现象,传统语义学提出的"词义三角"还是能说明一些问题的。 (三)词义分析和语义场 前面已经提到,词义是词的内容,每个词有一个或几个意义,每个词义又可以进一步分析成若干个语义成分(semantic compo-nents)或语义特征(semantic features)作为区别性特征(distinctive features)。叶姆斯列夫(Hjelmslev)在本世纪四十年代出版的《语言理论导论》中应用于语义成分分析了"公羊、母羊、男人、女人、男孩、女孩、公马、母马"这组词。至于语义成分分析法(componential analysis)则是美国的人类学家威廉·古迪纳夫(W. H. Doodenough)于1956年提出来的。此后,美国语言学家奈达(Nida)、卡兹(Katz)和福德(Fodor)等人进一步发展了这种方法。举个最简单的例子:man, woman, boy, girl都属于"人"(human)这个语义范围(即语义场,semantic field),以"人"(human)这一共同的语义成分为核心,以男性(male)女性(female),成年(adult 每个词的语义又可以分别通过区别性特征表示为: man: +人+ 成年+ 男性 woman: +人+ 成年-男性 boy: +人- 成年+ 男性 girl: +人- 成年- 男性 把每个词义分析成若干语义成分可以帮助我们比较完整地了解词义,以及词与词之间的关系。例如:adult和grown-up这一对同义词就可以表示为:+ 人+成年,另外再表明它们的文体区别,前者是正式用语,后者是非正式用语。又如man这个词的多义性可以表示为:它有两个词义,第一个词义是+ 人+ 成年+ 男性,第二个词义是+ 人。 词义研究的另一种理论是所谓的"语义场"(semantic field),这个理论最早是由德语言学家特里尔(Jost Trier)在本世纪三十年代初提出来的。他认为,每个词都身居其亲属概念之间,这些词相互之间以及它们特指的那个词一起构成了一个自成系统的整体,这种结构可称为"词场"(das Wortfeld)或语言符号场(das Spraches Zeichenfeld)。其实,语义场就是同一词类的词由于它们之间紧密的联系而形成的一个词汇小体系,这些词具有它们的共有语义成分,体现了它们的概念核心。属于同一个语义场的词除了具有共同的语义成分以外,还具有各种非共同语义成分作为区别性特征。按照区别性特征的不同,语义场可以分为同义、近义类义、反义等几种。同义语义场里的词的概念意义相同,关联意义有差别;近义语义场里的词的共同语义成分的含义在程度上有细微的差别;类义语义场里的词在非共同语义成分的种别上有差异;反义语义场里的词的非共同语义成分的含义截然相反或者相对。各个语义场之间也呈现着包含、并列、部分覆盖等错综复杂的关系。用语义场的概念

优秀党务工作者事迹简介范文

优秀党务工作者事迹简介范文 优秀党务工作者事迹简介范文 ***,男,198*年**月出生,200*年加入党组织,现为***支部书记。从事党务工作以来,兢兢业业、恪尽职守、辛勤工作,出色地完成了各项任务,在思想上、政治上同党中央保持高度一致,在业务上不断进取,团结同事,在工作岗位上取得了一定成绩。 一、严于律己,勤于学习 作为一名党务工作者,平时十分注重知识的更新,不断加强党的理论知识的学习,坚持把学习摆在重要位置,学习领会和及时掌握党和国家的路线、方针、政策,特别是党的十九大精神,注重政治理论水平的提高,具有坚定的理论信念;坚持党的基本路线,坚决执行党的各项方针政策,自觉履行党员义务,正确行使党员权利。平时注重加强业务和管理知识的学习,并运用到工作中去,不断提升自身工作能力,具有开拓创新精神,在思想上、政治上和行动上时刻同党中央保持高度一致。 二、求真务实,开拓进取 在工作中任劳任怨,踏实肯干,坚持原则,认真做好学院的党务工作,按照党章的要求,严格发展党员的每一个步骤,认真细致的对待每一份材料。配合党总支书记做好学院的党建工作,完善党总支建设方面的文件、材料和工作制度、管理制度等。

三、生活朴素,乐于助人 平时重视与同事间的关系,主动与同事打成一片,善于发现他人的难处,及时妥善地给予帮助。在其它同志遇到困难时,积极主动伸出援助之手,尽自己最大努力帮助有需要的人。养成了批评与自我批评的优良作风,时常反省自己的工作,学习和生活。不但能够真诚的指出同事的缺点,也能够正确的对待他人的批评和意见。面对误解,总是一笑而过,不会因为误解和批评而耿耿于怀,而是诚恳的接受,从而不断的提高自己。在生活上勤俭节朴,不铺张浪费。 身为一名老党员,我感到责任重大,应该做出表率,挤出更多的时间来投入到**党总支的工作中,不找借口,不讲条件,不畏困难,将总支建设摆在更重要的位置,解开工作中的思想疙瘩,为攻坚克难铺平道路,以支部为纽带,像战友一样团结,像家庭一样维系,像亲人一样关怀,践行入党誓言。把握机遇,迎接挑战,不负初心。

语义场的论文

关于“笑”的动词语义场分析 12092班杨乐1209114072

一、摘要 语义场理论日益受到语言学家的重视,语义场理论也发展得越来越完善。语义场理论传入我国大陆后,我们运用此理论对汉语义位系统的研究也开始了。本文运用义素分析法,对关于常见的“笑”的动词语义场进行分析,从几个最小语义场入手,对动词进行深入探究。 二、关键词 义素分析法、语义场、动词、笑、义位 三、引言 1、语义场理论的简介 (1)语义场的定义 语义场是指义位形成的系统。如果若干个义位含有相同的表彼此共性的义素和相应的表彼此差异的义素,因而连结在一起,互相规定、互相制约、互相作用,那么这些义位就构成一个语义场。语义场可分为分类义场、部分义场、顺序义场、关系义场、反义义场、两极义场、部分否定义场、同义义场、枝干义场和描绘义场十种类型。从现代语义学的观点来看,一组同义词(不包括等义词)或一组反义词的义位以及一组意义上紧密联系的义位,构成一个最简单的义位系统,是一个最小的子语义场。 (2)语义场的兴起与发展演变趋势 洪堡特是普通语言学的奠基人,他初步具有语义场的概念。最早

提出语义场的概念并进行了认真研究的,是一些德国和瑞士的结构主义语言学家,其中最出名的是特里尔。特里尔的语义场理论是20世纪30年代提出来的。乌尔曼认为特里尔的理论在语义学的历史上开辟了一个新阶段。这一理论后来由他的学生和威斯皆伯进一步发展了。威斯皆伯在30年代曾与特里尔合作,第二次世界大战以后他又继续钻研语义场的理论。结构主义语义学家正确的指出语义场的理论是他们的主要成就。但是在三四十年代,语义场理论的影响是很有限的。到了50年代,乔姆斯基提出了转换生成语法,美国人类语言学家提出义素分析法,语义研究日益受到重视。语义场的理论才引起普遍的注意。当然,50年代以后,人们研究语义场的理论较之三四十年代已有相当的发展了。语义场的理论传入我国大陆后,我们运用这一新理论对汉语义位系统的研究也开始了。语义场可以进一步分作词汇场和联想场两类。 2、本文研究的研究内容 本文运用义素分析法,对关于“笑”的动词语义场进行分析,在表达的感情、声音的不同、嘴角上扬程度(表达感情的激烈程度)、语言类笑容四个不同角度列出最小语义子场,分析常见的关于“笑”的动词的意义。

主要事迹简介怎么写(2020年最新)

主要事迹简介怎么写 概括?简要地反映?个单位(集体)或个?事迹的材料。简要事迹不?定很短,如果情况 多的话,也有?千字的。简要事迹虽然“简要”,但切忌语?空洞,写得像?学?期末鉴定。 ?应当以事实来说话。简要事迹是对某单位或个?情况概括?简要地反映情况,?如有三个??很突出,就写三个??,只是写某???时,要把主要事迹突出出来。 简要事迹?般来说,?少要包括两个??的内容。?是基本情况。简要事迹开头,往往要??段?字来表述?些基本情况。如写?个单位的简要事迹,应包括这个单位的?员、 承担的任务以及?段时间以来取得的主要成绩。如写个?的简要事迹,应包括该同志的性 别、出?年?、参加?作时间、籍贯、民族、?化程度以及何时起任现职和主要成绩。这 样上级组织在看了材料的开头,就会对这个单位或个?有?个基本印象。?是主要特点。 这是简要事迹的主体部分,最突出的事例有?个??就写成?块,并按照?定的逻辑关系进 ?排列,把同类的事例排在?起,?个??通常由?个?然段或?个?然段组成。 写作时,特别要注意以下四点: 1.?第三?称。就是把所要写的对象,是集体的?“他们”来表述,是个?的称之为“他(她)”。 (她)”,单位可直接写名称,个?可写其姓名。 为了避免连续出现?个“他们”或“他 2.掌握好时限。?论是单位或个?的简要事迹,都有?个时间跨度,既不要扯得太远,也不 要故意混淆时间概念,把过去的事当成现在的事写。这个时间跨度多长,要根据实际情况 ?定。如上级要某个同志担任乡长以来的情况就写他任乡长以来的事迹;上级要该同志两年 来的情况,就写两年来的事迹。当然,有时为了需要,也可适当地写?点超过这个时间的 背景情况。 3.?点他?的语?。就是在写简要事迹时,可?些群众的语?或有关?员的语?,这样会给??种?动、真切的感觉,衬托出写作对象?较?的思想境界。在?他?语?时,可适当加?,但不能造假。 4.?事实说话。简要事迹的每?个??可分为多个层次,?个层次先??句话作为观点,再???两个突出的事例来说明。?事实说话时,要尽量把?个事例说完整,以给?留下深 刻印象。

从语义场理论视角看中西方颜色词意义异同

从语义场理论视角看中西方颜色词意义异同 摘要:特里尔提出的语义场理论对分析词义有重要影响。颜色词语义场中各成分具有共同语义特征,但人在此基础上对颜色产生的感觉联想会引起感情变化,使颜色具有感情价值,从而传递出丰富的文化涵义,于是就出现了各颜色在中西方文化中相互区别的象征意义。语义场理论既有助于我们掌握语义场跟具体词义的关系,同时也可以让我们在中西方文化的对比中更好地掌握各颜色丰富的象征意义。 关键词:语义场理论;语义场类型;颜色语义场;象征意义 中图分类号:H0-0文献标识码:A 文章编号:1003—0751(2009)06—0241—03 一 德国学者特里尔(Trier)首先提出词汇相互间关系构造的理论,即语义场理论。他指出,语义场是单个词和整个词汇之间的现实存在。作为整体的一部分,它们具有与词相同的特征,即可以在语言结构中被组合,同时还具有词汇系统的性质,即由更小的单位组成。 特里尔的语义场理论主要是针对词汇之间的聚合关系的。根据这个理论,词可以在一个共同的语义概念的支配下,相互集结在一起形成一个语义场。例如,色彩词和家族亲属词就是各自处于某种语义场的词汇,支配语义场的共同概念往往是个语义特征。 所以语义场是指在词义上具有某种关联的词集合在一起并且互相规定、互相制约、互相作用而形成的一个聚合体。这种聚合体的主要特征是:聚合体中的各个词都具有共同意义特征,同时又具有区别意义特征。共同意义特征使得不同的字能够聚合在一起,区别意义特征使得不同的词能够相互区别。 语义场理论认为,一种语言词汇中的词在语义上是互相联系的,这些词共同构成一个完整的词汇系统,并且这个词汇系统是不断变化的。这就表明了一个词的词义只有在词作为某个整体中的一个部分时才能显示出来,词只有在词义场中才有意义。① 客观世界万事万物的联系是系统的,词语的语义场系统就是对外部世界的系统编码,它组成了语言的总语义场。语言总语义场是由各子语义场构成的开放系统,这种体系由两种关系构成,即垂直方向的上下义关系(纵聚类关系)和水平方向的相互区别关系(横组合关系)。聚类关系和组合关系是组成语言系统的一个纲,是我们观察、分析、归纳错综复杂的语言现象的一把总钥匙。要分析语义系统的结构关系,必须先确定其结构成分。我们把组成语义系统的基本结构成分称为“义位”。在现代汉语中,义位与义位之间的关系形成了很多类型的语义场。其常见种类有: 1.类属义场 其词义所表达的义位之间有一个种类属与分类的关系。类属义场的成员同属于一个较大的类,比如“杨树、榆树、椿树、橡树”同属树木类,“红色、白色、黑色、黄色、绿色”同属颜色类。典型的还有“亲属场”、“金属场”、“家具场”等都是类属义场。 2.序列义场 序列义场是一种局部的词义现象。它向我们展示的是词义之间的次序和级差现象。如“春、夏、秋、冬”和“优、良、中、差”等。根据其意义类型,序列义场还可以进一步分为时间序列、空间序列、数量序列和等级序列等。 3.关系义场 关系义场一般由两个成员组成,二者处于某种关系的两端,互相对立、互相依靠。如:“老师、学生”便是因教育关系形成的语义场。

最新树立榜样的个人事迹简介怎么写800字

树立榜样的个人事迹简介怎么写800字 榜样是阳光,温暖着我们的心;榜样如马鞭,鞭策着我们努力奋斗;榜样似路灯,照亮着我们前进的方向。今天小编在这给大家整理了树立榜样传递正能量事迹作文,接下来随着小编一起来看看吧! 树立榜样传递正能量事迹1 “一心向着党”,是他向着社会主义的坚定政治立场;“人的生命是有限的,可是,为人民服务是无限的,我要把有限的生命投入到无限的为人民服务中去”,是他的至理名言;“甘学革命的“螺丝钉”,是他干一行爱一行、钻一行的爱岗敬业态度。他——雷锋,是我们每一个人的“偶像”…… 雷锋的事迹传遍大江南北,他,曾被人们称为可敬的“傻子”。一九六零年八月,驻地抚顺发洪水,运输连接到了抗洪抢险命令。他强忍着刚刚参加救火工作被烧伤的手的疼痛,又和战友们在上寺水库大坝连续奋战了七天七夜,被记了一次二等功。望花区召开了大生产号召动员大会,声势很大,他上街办事,正好看到这个场面,他取出存折上在工厂和部队攒的200元钱,那时,他的存折上只剩下了203元,就跑到望花区党委办公室要为之捐献出来,为建设祖国做点贡献,接侍他的同志实在无法拒绝他的这份情谊,只好收下一半。另100元在辽阳遭受百年不遇洪水的时候,他捐献给了正处于水深火热之中的辽阳人民。在我国受到严重的自然灾害的情况下,他为国家建设,为灾区捐献出自已的全部积蓄,却舍不得喝一瓶汽水。就这样,他毫不犹豫的捐出了自己的所有积蓄,不求功名,不求名利,只求自己心安理得,只求为

革命献出自己的微薄之力,甘愿做革命的“螺丝钉”——在一次施工任务中,他整天驾驶汽车东奔西跑,很难抽出时间学习,他就把书装在挎包里,随身带在身边,只要车一停,没有其他工作时,就坐在驾驶室里看书。他曾经在自己的日记中写下这样一段话:”有些人说工作忙,没时间学习,我认为问题不在工作忙,而在于你愿不愿意学习,会不会挤时间来学习。要学习的时间是总是有的,问题是我们善不善于挤,愿不愿意钻。一块好好的木板,上面一个眼也没有,但钉子为什么能钉进去呢?这就是靠压力硬挤进去的。由此看来,钉子有两个长处:一个是挤劲,一个是钻劲。我们在学习上也要提倡这种”钉子“精神,善于挤和钻。”这就是他,用自己的实际行动来证明自己,用自己的亲生经历来感化世人,用自己的所作所为来传颂古今……人们都拼命地学习他的精神,他的精神被不同肤色的人所敬仰。现在,一切都在变,但是,那些决定人类向前发展的基本要素没有变,那些美好的事物没有变,那些所谓的“螺丝钉”精神没有变——而这正是他的功劳,是他开启了无私奉献精神的大门,为后人树立了做人的榜样…… 这就是他,一位中国家喻户晓的全心全意为人民服务的楷模,一位共产主义战士!他作为一名普通的中国人民解放军战士,在他短暂的一生中却助人无数。而且,伟大领袖毛泽东主席于1963年3月5日亲笔为他题词:“向雷锋同志学习”。 正是因为如此,全国刮起了学习雷锋的热潮。雷锋已经离开我们很长时间了。但是雷锋的精神却深深地在所有中国人心中扎下了根,现在它已经长成一株小树。正以其顽强的生命力,茁壮成长。我坚信,

论语义场理论.

[论文关键词]语义场义素分析价值[论文摘要]“语义场理论”是现代语义学中十分重要的理论之一。语义场具有其特有的性质和一定的研究价值。而从语言学角度可以说义素分析法是一种确定语义场和词语义位关系的比较准确可靠的方法。本文将对义素分析及语义场的性质和价值进行初步探讨。“语义场理论”是现代语义学中十分重要的理论之一。20世纪30年代,最早由德国学者特雷尔提出应用于语义学中。语义场作为具有某种共同或者相近语义的语言单位构成的一个集具有其特有的性质和一定的研究价值。而从语言学角度可以说义素分析法是一种确定语义场和词语义位关系的比较准确可靠的方法。一、义素分析义素分析法源于布拉格学派的音位学。布拉格学派认为音位是语音切分的基本单位,即最小的声音意义载体。音位的对立关系是音位学理论中的基本概念。音位对立体现的是两种声音的区别特征。音位学理论后来被美国人类语言学家运用到词语的意义分析中提出了义素分析法。法国结构语义学创始人之一格雷马斯将义素分析法运用于话语的语义分析,此后,义素分析被语言学界普遍接受,并且将其运用到语言及言语的语义研究中。与音位可以分解为区别性特征一样,语义也可分解为区别性特征。一个意义分解成的最小的语义特征就是义素。义素是语义的微观层次,在语言体系中和在言语中直接观察不到。义素的组合才是现实的一项语义,词典学中叫义项。人在说话时能以不同的方式表达同一个思想,听话时能理解不同话语的相同语义。一个初学外语的人,往往竭力逐词再现他听到的话,忘记了一个词,便难以表达思想。所以,一个人如果真正掌握了一种语言就能用自己的话复述思想。这就意味着他在心里已把语义分解为义素,然后把又把义素组合成语义,并组成表达同一思想的不同话语。平常说的“换句话说”就是这种现象。总之,义素分析法将词语义位分解为最小语义单位,可以正确地将具有共同语义成分的词语置入同一个语义场,分析词语义位之间的关系;能够准确地区分词语的意义并在言语活动中选择恰当的词语,从而完成有效交际。因此,从语言学角度可以说义素分析法是一种确定语义场和词语义位关系的比较准确可靠的方法。二、语义场理论“语义场理论”是现代语义学中十分重要的理论之一。语义场理论属于结构主义语言学理论,持客观主义语言哲学观。“场”原是物理原术语,是物质存在的一种基本状态。实物之间的相互作用依靠有关的场来实现。“场”理论研究的是事物或现象之间的相互关系,有某种关系的事物或现象必然或可能聚集在同一个“场”内。传统语义学关于词义的“聚合关系”和“组合关系”研究成果为“语义场”理论奠定了基础。20世纪30年代,“语义场理论”是由德国学者特雷尔最先提出的。特雷尔认为,在一个语义场的范围内,各个词之间是相互联系的,每个词的意义取决于这个语义场内与之相邻的诸词的意义。语言是一个由多个系统组成的多平面、多层级的独立的体系。其中词汇系统中的词语在语义上互相联系、互相依存。词语的意义不是孤零零地存在于词汇系统中,而是在这种相互依存的关系中得以显现和确定。“意义就是指号之间的一种关系,被定义者和定义者之间的一种关系”(沙夫,1979:247)。因此表示同一个或者同一类概念的词语的义位形成一个集合,即一个语义场。(一)语义场具有的性质 1.语义场内语义的联系性语义场内每个词语之间都相互依存并能相互解释。在汉语亲属场中“哥哥”与“弟弟”相对,俄语中“брат”(兄弟)则与“сестра”(姐妹)相对。汉语中用“姐姐”、“妹妹”来补充,它不仅区分男女,而且分出长、幼,而俄语中只区分男、女。在一个语义

大学生先进事迹简介怎么写

大学生先进事迹简介怎么写 苑xx,男,汉族,1990年07月22日出生,中国共青团团员,入党积极分子,现任xx学院电气优创0902班班长,担任xx学院09级总负责人、xx学院团委学生会科创部干事、xx学院文艺团主持部部长。 步入大学生活一年以来,他思想积极,表现优秀,努力向党组织靠拢,学习刻苦,品学兼优,工作认真负责,脚踏实地,生活勤俭节约,乐于助人。一直坚持多方面发展,全面锻炼自我,注重综合能力、素质拓展能力的培养。再不懈的努力下获得了多项荣誉: ●获得09-10学年xx大学“百佳千优”(文化体育)一等奖学金和“百佳千优”(班级建设)二等奖学金; ●获得09-10学年xx大学“优秀学生干部”荣誉称号; ●2010年xx大学普通话知识竞赛中获得一等奖; ●2010年xx大学主持人大赛中获得一等奖,被评为金话筒; ●xx学院首届“大学生文明修身”活动周——再生比赛中获得一等奖; ●xx学院首届“大学生文明修身”活动周——演讲比赛中获得一等奖。 一、刻苦钻研树学风 作为班长,他在学习方面,将班级同学分成各个学习小组,布置每日学习任务,分组竞争,通过开展各项趣味学习活动,全面调动班级同学的积极性,如:排演英语戏剧、文学常识竞答、数学辅导小组等。他带领全班同学努力学习、勤奋刻苦,全班同学奖学金获得率达91%,四级通过率达66%。 二、勤劳负责建班风

在日常班级工作中,他尽心尽力,通过网络组织建立班级博客,把班级的日常情况,班级比赛,特色主题班会等活动,及时上传到 班级博客,以方便更多同学了解自己的班级,也把班级的魅力、特色,更全面、更具体的展现出来。 在班级建设中,他带领全班同学参加学院组织的各项文体活动中也收获颇多: ●在xx学院首届“大学生文明修身”活动周中荣获第二名, ●xx学院首届乒乓球比赛中荣获第一名、精神文明奖, ●在xx学院“迎新杯”男子篮球赛中荣获第四名、最佳组织奖。 除了参加学院组织的各项活动外,为了进一步丰富班级同学们的课余生活,他在班级内积极开展各式各样的课余活动: ●普通话知识趣味比赛,感受中华语言的魅力,复习语文文学常识,为南方同学打牢普通话基础,推广普通话知识。 ●“我的团队我的班”主题班会活动中,创办特色活动“情暖你我心”天使行动,亲切问候、照顾其他同学的生活、学习方面细节 小事,即使在寒冷的冬天,也要让外省的同学感受到家一样的温暖。 ●“预览科技知识”科技宫之行,作为现代大学生,不能只顾书本知识,也要跟上时代,了解时代前沿最新科技。 ●感恩节“感谢我们身边的人”主题班会活动,在这个特殊的节日里,他带领同学们通过寄贺卡、送礼物等方式,来感谢老师辛勤 的付出;每人写一封家书,寄给父母,感谢父母劳苦的抚育,把他们 的感激之情,转化为实际行动来感化周围的人;印发感恩宣传单,发 给行人,唤醒人们的感恩的心。 三、热情关怀暖人心 生活中,他更能发挥榜样力量,团结同学,增强班级凝聚力。时刻观察每一位同学的情绪状态,在心理上帮助同学。他待人热情诚恳,积极帮助生活中有困难的同学:得知班级同学生病高烧,病情 严重,马上放下午饭,赶到同学寝室,背起重病同学到校医院进行

个人事迹简介

个人事迹简介 我是来自计算机与与软件学院的学生,现在为青年志愿者协会的干事,在班级担任生活委员。在过去的一年里,我注重个人能力的培养积极向上,热心公益,服务群众,奉献社会,热忱的投身于青年支援者的行动中!一年时间虽短,但在这一年的时间里,作为一名志愿者,我确信我成长了很多,成熟了很多。“奉献、友爱、互助、进步”这是我们志愿者的精神,在献出爱心的同时,得到的是帮助他人的满足和幸福,得到的是无限的快乐与感动。路虽漫漫,吾将上下而求索!在以后的日子里,我会在志愿者事业上做的更好。 在思想上,我积极进取,关心国家大事,并多次与同学们一起学习志愿者精神,希望我们会在新的世纪里继续努力,发扬我国青年的光传统,不懈奋斗,不断创造,奋勇前进,为实现中华民族的伟大复兴做出了更大的贡献。 在学习上刻苦认真,抓紧时间,不仅学习好学科基础知识,更加学好专业课知识,在课堂上积极配合老师的教学,乐意帮助其它同学,有什么好的学习资料,学习心得也与他们交流,希望大家能共同进步。在上一个年度总成绩在班级排名第四,综合考评在班级排名第二。在工作中,我认真负责,出色的完成老师、同学交给的各项任务,所以班级人际关系良好。

此外参加了学院组织的活动,并踊跃地参加,发挥自己的特长,为班级争得荣誉。例如:参加校举办的大合唱比赛并获得良好成绩;参加了计算机与软件学院党校学习并顺利结业;此外,参加了计算机与软件进行的“计算机机房义务打扫与系统维护”的活动。在这些活动中体验到了大学生生活的乐趣。 现将多次参与各项志愿活动汇报如下:2013年10月26日,参加计算机与软件学院团总支实践部、计算机与软件学院青年志愿者协会组织“志愿者在五福家园的健身公园开展义务家教招新活动”;2013年11月7日,参加组成计算机与软件学院运动员方阵在田径场参加学院举办的学校运动会;2013年12月5日,参与学校学院组织的”一二.五“大合唱比赛;2014年3月12日,参加由宿舍站长组织义务植树并参与植树活动;2014年3月23日,在计算机与软件学院团总支书记茅老师的带领下,民俗文化传承协会、计算机与软件学院青年志愿者协会以及学生会的同学们参观了“计算机软件学院的文化素质教育共建基地--南京市民俗博物馆”的活动;2014年3月26日,参加有宿舍站长组织的“清扫宿舍公寓周围死角垃圾”的活动;2014年4月5日,参加由校青年志愿者协会、校实践部组织的“南京市雨花台扫墓”活动,2014年4月9日,作为班级代表参加计算机软件学院组织部组织的“计算机应用office操作大赛”的活动。 在参与各项志愿活动的同时,我的学习、工作、生活能力得到了提高和认可,丰富生活体验,提供学习的机会,提供学习的机会。

相关文档