文档库 最新最全的文档下载
当前位置:文档库 › 高速铁路精密测量课程课程标准

高速铁路精密测量课程课程标准

高速铁路精密测量课程课程标准
高速铁路精密测量课程课程标准

陕西铁路工程职业技术学院“高速铁路精密测量”课程标准

(适用工程测量技术专业)

课程类型: B类

执笔人:

课程团队:

审定人:

编制时间: 2017年3月30日

陕西铁路工程职业技术学院制表

二〇一七年三月

“高速铁路精密测量”课程标准

一、课程基本信息

二、学习情境学习情境1:平面控制测量学时:14学时

学习情境2:高程控制测量学时:12学时

学习情境3:构筑物变形监测学时:10学时

学习情境4:轨道施工测量学时:20学时

学习情境5:竣工测量学时:2学时

学习情境6:运营及养护维修测量学时:2学时

三、“高速铁路精密测量”课程考核评价

四、附录

《电子测量与仪器》课程标准

《电子测量与仪器》课程标准 一.课程信息 课程名称:电子测量与仪器课程类型:(电子、通信专业专业必修课)课程代码:(01010824)授课对象:(电子、通信专业) 学分:(4学分)先修课:(电子技术、高频电子线路等)学时:(64学时)后续课:(无)制定人:郑运刚制定时间:2011年7月16日星期六 二.课程性质、任务和目的 电子测量与仪器是电子信息、通信技术等专业的通用技术基础课程。包括电子测量的基本原理、测量误差分析和实际应用,主要电子仪器的工作原理,性能指标,电参数的测试方法,该领域的最新发展等。电子测量技术综合应用了电子、计算机、通信、控制等技术。通过本课程的学习,培养学生具有电子测量技术和仪器方面的基础知识和应用能力;通过本课程的学习,可开拓学生思路,培养综合应用知识能力和实践能力;培养学生严肃认真,求实求真的科学作风,为后续课程的学习和从事研发工作打下基础。 三.课程设计 (一).课程目标设计 (1)能力目标

1)能根据被测对象正确地选择测量方案和仪器; 2)熟练掌握常用电子测量仪器(通用电子示波器、信号源、电子电压表、计数器、扫频仪等)的正确操作; 3)能对测量结果进行正确的处理; 4)能对电子测量仪器进行基本维护和简单维修。 (2)知识目标 1)了解电子测量技术的基本知识; 2)了解常用电子测量仪器的用途、性能及主要技术指标; 3)掌握常用电子测量仪器的基本组成和工作原理。 (二)。课程课时分配 课时分配表 四.课程的主要内容与学时分配 (一)电子测量概论(2学时)(1)电子测量的意义、特点、内容;电子测量的基本对象——信号和系统的概念、分类;电子测量方法分类。(2学时) (二)基本测量理论与测量数据处理(6学时) (1)测量的基本概念、基本要素,测量误差的基本概念和计算方法;计量的基本概念,单位和单位制,基准和标准,量值的传递准则。(2学时) (2)测量误差的分类、估计和处理:随机误差的统计特性及减少方法,系统误差的判断及消除方法,粗大误差及判断准则。测量结果的处理步骤。(2学时)(3)有效数字的处理,测量数据的表示方法。(2学时)

《电子测量仪器与应用》-习题答案

答案 1.3.3任务知识点习题 4、 (1)×(2)× 11、400Hz 14、图(b),触发极性:正;触发电平:零 图(c) ,触发极性:负;触发电平:零 图(d) ,触发极性:负;触发电平:正 图(e) ,触发极性:正;触发电平:正 15、 (1)b c ; (2)a; (3)b; (4)a; (5)a c d b ; (6)a b b 16、 (1)连续扫描、触发扫描、自动扫描; (2)校准; (3)电子枪、偏转系统、荧光屏; (4)Y A、Y B、Y A±Y B、交替、断续、交替、断续 17 、 (1)√(2)√(3)√(4)×(5)√(6)√(7)× 1.3.5任务知识点习题 7、不能 2.2.2任务知识点习题 1、 图(a),周期:34μs、峰-峰值:5V 图(b),周期:38μs、峰-峰值:3.4V

图(c ),周期:44μs 、峰-峰值:44V 图(d ),周期:24μs 、峰-峰值:46V 3、 2kHz ,2V ,1.4V 4、 5MHz 5、 20MHz 6、 0.4Hz 7、 47.7 ns 8、 ??=120。 9、 X-Y 方式 、6 kHz 、4.5 kHz 2.3.2任务知识点习题 1、a 3、小 3.2.3任务知识点习题 2、 (1)4位表,无超量程能力 (2)2 1 4位表,如按2V 、20V 、200V 等分挡,没有超量程能力;若按1V 、10V 、100V 等分挡,则具有100%的超量程能力。 (3)4 3 3位表,如按5V 、50V 、500V 等分挡,则具有20%的超量程能力 4、ΔU =±0.0008V ,±2个字 5、 (1)B (2)A (3)A 6、 (1)√ (2)× (3)√ (4)× (5)√ (6)√ (7)× (8)× 7、 (1)地、信号;信号、地 (2)并、串 (3)机械调零,电气调零 (4)±2 (5)随机误差、系统误差

《电子测量与仪器》习题答案解析

《电子测量与仪器》习题参考答案 习题1 一、填空题 1.比较法;数值;单位;误差。 2.电子技术;电子技术理论;电子测量仪器。 3.频率;电压;时间。 4.直接测量;间接测量;时域测量;频域测量;数据域测量。 5.统一性;准确性;法制性。 6.国家计量基准;国家副计量基准;工作计量基准。 7.考核量值的一致性。 8.随机误差;系统误差;粗大误差。 9.有界性;对称性。 10.绝对值;符号。 11.准确度;精密度。 12.2Hz ;0.02%。 13.2/3;1/3~2/3。 14.分组平均法。 15.物理量变换;信号处理与传输;测量结果的显示。 16.保障操作者人身安全;保证电子测量仪器正常工作。 二、选择题 1.A 2.C 3.D 4.B 5.B 6.D 7.A 8.B 9.B 10.D 三、简答题 1.答:测量是用被测未知量和同类已知的标准单位量比较,这时认为被测量的真实数值是存在的,测量误差是由测量仪器和测量方法等引起的。计量是用法定标准的已知量与同类的未知量(如受检仪器)比较,这时标准量是准确的、法定的,而认为测量误差是由受检仪器引起的。 由于测量发展的客观需要才出现了计量,测量数据的准确可靠,需要计量予以保证,计量是测量的基础和依据,没有计量,也谈不上测量。测量又是计量联系实际应用的重要途径,可以说没有测量,计量也将失去价值。计量和测量相互配合,才能在国民经济中发挥重要作用。 2.答:量值的传递的准则是:高一级计量器具检定低一级计量器具的精确度,同级计量器具的精确度只能通过比对来鉴别。 3.答:测量误差是由于电子测量仪器及测量辅助设备、测量方法、外界环境、操作技术水平等多种因素共同作用的结果。 产生测量误差的主要原因有:仪器误差、影响误差、理论误差和方法误差、人身误差、测量对象变化误差。按照误差的性质和特点,可将测量误差分为随机误差、系统误差、粗大误差三大类。误差的常用表示方法有绝对误差和相对误差两种。 四、综合题 1.解:绝对误差 ΔX 1=X 1-A 1=9-10=-1V ΔX 2=X 2-A 2=101-100=1V 相对误差 1111 1%100100%A X A γ-=-?=?= 2 22 1 1%100 100%A X A γ=?=?= 2.解:ΔI m1= 1m γ× X m1 =± 0.5%×400=±2mA ,示值范围为100±2mA ;

电子测量仪器及应用练习题与答案

《电子测量仪器及应用》练习题与答案 一、填空 1.数字的舍入规则是:大于5时 ;小于5时 ;恰好等于5时,采用 的原则。入 ; 舍 ; 奇进偶不进 2.被测量在特定时间和环境下的真实数值叫作 。真值 3. 是低频信号发生器的核心,其作用是产生频率范围连续可调 、稳定的低频正弦波信号。主振电路 4.模拟式电压表是以 的形式来指示出被测电压的数值。 指示器显示 5.若测量值为196,而实际值为200,则测量的绝对误差 为 ,实际相对误差为 -4 , -2% 6.使用偏转因数div /m 10V 的示波器测量某一正弦信号,探极开关置于“×10”位置,从屏幕上测得波形高度为div 14,可知该信号的峰值为 ,若用电压表测量该信号,其指示值为 。 , 7.若设被测量的给出值为X ,真值为0X ,则绝对误差 X ?= ;相对误差ν= 。0X X X ?=- 00100%X X X ν-=?或者 0X X ν?= 8.所示为一定的触发“极性”(正或负)和“电平”(正或负)时示波器上显示的正弦波形,可判断触发 类型为 极性、 电平触发。正 正 9.在晶体管特性图示仪中电流的读取是通 过将电流加在 电阻上转换 成 ,然后再加到示波管的偏转板上 的。取样 电压 10.电子计数式频率计的测频准确度受频率计的 误差和 误差的影响。时基频率 1±量化 11.在交流电子电压表中,按检波器响应特性的不同,可将电 压表分为 均 值电压表, 峰 值电压表和 有效 值电压表。

12.若要在荧光屏上观测正弦波,应将电压加到垂直偏转板上,并将电压加到水平偏转板上。正弦波(或被测电压) 扫描 13.被测量的测量结果量值含义有两方面,即__数值______和用于比较的____单位___名称。 14.通用示波器结构上包括__水平通道(Y轴系统)__、__X通道(X轴系统)_和__Z通道(主机部分)_三个部分。 15.用模拟万用表电阻挡交换表笔测量二极管电阻两次,其中电阻小的一次黑表笔接的是二极管的___正(阳)__极。 16.数字万用表表笔与模拟万用表表笔的带电极性不同。对数字万用表红表笔接万用表内部电池的____正____极。 17.对以下数据进行四舍五入处理,要求小数点后只保留2位。 =;=。 18.相对误差定义为绝对误差与真值的比值,通常用百分数表示。 19.电子测量按测量的方法分类为直接测量、间接测量和组合测量三种。 20.为保证在测量80V电压时,误差≤±1%,应选用等于或优于级的100V量程的电压表。 21.示波器为保证输入信号波形不失真,在Y轴输入衰减器中采用__RC分压_ 电路。 22.电子示波器的心脏是阴极射线示波管,它主要由电子枪、偏转系统和荧光屏三部分组成。 23.没有信号输入时,仍有水平扫描线,这时示波器工作在__连续扫描__状态,若工作在_触发扫描_状态,则无信号输入时就没有扫描线。 24.峰值电压表的基本组成形式为__检波-放大__式。 25.电子计数器的测周原理与测频相反,即由被测输入信号控制主门开通,而用晶体振荡器信号脉冲进行计数。26.某测试人员在一项对航空发动机页片稳态转速试验中,测得其平均值为 20000 转 / 分钟(假定测试次数足够多)。其中某次测量结果为 20002 转 / 分钟,则此次测量的绝对误差△x = __2转/分钟__ ,实际相对误差= %____ 27.指针偏转式电压表和数码显示式电压表测量电压的方法分别属于 ______ 测量和______ 测量。模拟,数字 28.在测量中进行量值比较采用的两种基本方法是 ________ 和 ________ 。

实验一常用电子测量仪器使用

实验一常用电子测量仪器 使用 Prepared on 24 November 2020

实验一常用电子仪器的使用 一、实验目的 1、学习电子电路实验中常用的电子仪器——示波器、低频信号发生器、直流稳压电源、交流毫伏表等的主要技术指标、性能及正确使用方法。 2、初步掌握用双踪示波器观察正弦信号波形和读取波形参数的方法。 二、实验原理 在模拟电子电路实验中,经常使用的电子仪器有示波器、低频信号发生器、直流稳压电源、交流毫伏表等。它们和万用电表一起,可以完成对模拟电子电路的静态和动态工作情况的测试。 实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如图1-1所示。接线时应注意,为防止外界干扰,各仪器的共公接地端应连接在一起,称共地。信号源和交流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。 图1-1 模拟电子电路中常用电子仪器布局图 一、数字示波器 示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,又能对电信号进行各种参数的测量。 示波器面板介绍

单踪示波模式 注意下列几点: 8. 频率显示 显示当前触发通道波形的频率值。UTILITY 菜单中的“频率计”设置为“开启”才能显示对应信号的频率值,否则不显示。 10.触发位移 使用水平 POSITION 旋钮可修改该参数。向右旋转使箭头(初始位置为屏幕正中央)右移,触发位移值(初始值为 0)相应减小;向左旋转使箭头左移,触发位移值相应增大。按下该键使参数自动恢复为 0,且箭头回到屏幕正中央。 11. 水平时基 表示屏幕水平轴上每格所代表的时间长度。使用 S/DIV 旋钮可修改该参数,可设置范围为~50S。 根据被测信号波形一个周期在屏幕坐标刻度水平方向所占的格数(div或cm)与“水平时基”指示值(t/div)的乘积,即可算得信号频率的实测值。 13. 电压档位 表示屏幕垂直轴上每格所代表的电压大小。使用 VOLTS/DIV 旋钮可修改该参数,可设置范围为 2mV~10V。

精密测量技术 (2)

精密测量技术 一、背景研究 随着社会的发展,普通机械加工的加工误差从过去的mm级向“m级发展,精密加工则从10 p,m级向炉级发展,超精密加工正在向nm级工艺发展。由此,制造业对精密测量仪器的需求越来越广泛,同时误差要求也越来越高。精密测量是精密加工中的重要组成部分,精密加工的误差要依靠测量准确度来保证。目前,对于测量误差已经由“m级向nm级提升,而且这种趋势一年比一年迅猛[1]。 二、概述 现代精密测量技术是一门集光学、电子、传感器、图像、制造及计算机技术为一体的综合性交叉学科,它和精密超精密加工技术相辅相成,为精密超精密加工提供了评价和检测手段;精密超精密加工水平的提高又为精密测量提供了有力的仪器保障。现代测量技术涉及广泛的学科领域,它的发展需要众多相关学科的支持,在现代工业制造技术和科学研究中,测量仪器具有精密化、集成化、智能化的发展趋势,作为下世纪的重点发展目标,各国在微/ 纳米测量技术领域开展了广泛的应用研究[1]。 三、测量技术及应用特点 3.1扫描探针显微镜 1981年美国IBM公司研制成功的扫描隧道显微镜(STM),将人们带到了微观世界。STM具有极高的空间分辨率(平行和垂直于表面的分辨率分别达到0.1nm 和0.01nm,即可分辨出单个原子),广泛应用于表面科学、材料科学和生命科学等研究领域,在一定程度上推动了纳米技术的产生和发展。与此同时,基于STM相似

原理与结构,相继产生了一系列利用探针与样品的不同相互作用来探测表面或界 面纳米尺度上表现出来性质的扫描探针显微镜(SPM),用来获取通过STM无法获取的有关表面结构和性质的各种信息,成为人类认识微观世界的有力工具。下面 介绍几种具有代表性的扫描探针显微镜。 (1)原子力显微镜(AFM):AFM利用微探针在样品表面划过时带动高敏感性的微悬臂梁随表面起伏而上下运动,通过光学方法或隧道电流检测出微悬臂梁的 位移,实现探针尖端原子与表面原子间排斥力检测,从而得到表面形貌信息。利用类似AFM的工作原理,检测被测表面特性对受迫振动力敏元件产生的影响,在探 针与表面10~100nm距离范围,可探测到样品表面存在的静电力、磁力、范德华力等作用力,相继开发磁力显微镜、静电力显微镜、摩擦力显微镜等,统称为扫描力显微镜。 (2)光子扫描隧道显微镜(PSTM): PSTM的原理和工作方式与STM相似,后者 利用电子隧道效应,而前者利用光子隧道效应探测样品表面附近被全内反射所激 起的瞬衰场,其强度随距界面的距离成函数关系,获得表面结构信息。 (3)其它显微镜:如扫描隧道电位仪(STP)可用来探测纳米尺度的电位变化;扫 描离子电导显微镜(SICM)适用于进行生物学和电生理学研究;扫描热显微镜(STM)已经获得血红细胞的表面结构;弹道电子发射显微镜(BEEM)则是目前唯一 能够在纳米尺度上无损检测表面和界面结构的先进分析仪器,国内也已研制成功。 3.2纳米测量的扫描X射线干涉技术 以SPM为基础的观测技术只能给出纳米级分辨率,不能给出表面结构准确的 纳米尺寸,是因为到目前为止缺少一种简便的纳米精度(0.10~0.01nm)尺寸测量 的定标手段。美国NIST和德国PTB分别测得硅(220)晶体的晶面间距为 192015.560±0.012fm和192015.902±0.019fm(飞米fm也叫费米,是长度单位,1fm相 当于10~15m)。日本NRLM在恒温下对220晶间距进行稳定性测试,发现其18 天的变化不超过0.1fm。实验充分说明单晶硅的晶面间距有较好的稳定性。扫描 X射线干涉测量技术是微/纳米测量中一项新技术,它正是利用单晶硅的晶面间

电子测量与仪器课后习题答案

电子测量与仪器课后习题答案清华大学出版出版 简述计量与测量之间的联系和区别。 1.答:测量是用被测未知量和同类已知的标准单位量比较,这时认为被测量的真实数值是存在的,测量误差是由测量仪器和测量方法等引起的。计量是用法定标准的已知量与同类的未知量(如受检仪器)比较,这时标准量是准确的、法定的,而认为测量误差是由受检仪器引起的。 由于测量发展的客观需要才出现了计量,测量数据的准确可靠,需要计量予以保证,计量是测量的基础和依据,没有计量,也谈不上测量。测量又是计量联系实际应用的重要途径,可以说没有测量,计量也将失去价值。计量和测量相互配合,才能在国民经济中发挥重要作用。 量值传递的准则是什么 2.答:量值的传递的准则是:高一级计量器具检定低一级计量器具的精确度,同级计量器具的精确度只能通过比对来鉴别。 简述高频信号发生器的基本组成及各组成部分的功能。 1.答:高频信号发生器主要由主振级、调制级、内调制振荡器、输出级、监视器和电源等六部分组成。各部分的功能是:(1)主振级。其作用是产生高频等幅载波信号,也叫高频振荡器。(2)调制级。将主振级产生的高频等幅载波信号与调制信号发生器产生的音频调制信号(400Hz或1KHz)同时送到调制级后,从调制级输出的就是载有音频信号的已调波了。(3)内调制振荡器。其作用是产生内调制信号的,也叫内调制振荡器,一般的高频信号发生器产生的内调制信号有400Hz和1kHz两种。(4)输出级。其作用主要是对已调信号进行放大和滤波,然后在此基础上通过衰减器对输出电平进行较大范围的调节和输出阻抗的变换,以适应各种不同的需要。(5)监视器。监视器主要用来测量输出信号的载波的电平和调幅系数,显示输出信号的频率、幅度、波形等,对输出信号进行监视。(6)电源。电源供给各部分所需的直流电压。 频率合成的实现方法有那几种各有何优缺点 3.答:频率合成的方法一般有两种:直接合成法与间接合成法。直接合成法的优点是频率的稳定度高,频率转换速度快,频谱纯度高,频率间隔小,可以做到以下。缺点是它需要大量的混频器、滤波器、分频器及倍频器等,电路单元多,设备复杂,体积大而显得笨重,造价贵。间接合成法也称为锁相合成法,它通过锁相环来完成频率的加、减、乘、除(即完成频率的合成)。锁相环具有滤波作用,其通频带可以做得很窄,且中心频率易调,又能自动跟踪输入频率,因而可以省去直接合成法中所使用的大量滤波器、混频器及分频器等,有利于简化结构,降低成本,易于集成。 基本锁相环有哪几个组成部分各起什么作用为什么可以把锁相环看成是一个以输入频率为中心的窄带滤波器 4.答:锁相环路是间接合成法的基本电路,它是完成两个电信号相位同步的自动控制系统。基本锁相环由鉴相器(PD)、环路低通滤波器(LPF)和电压控制振荡器(VCO)等三部分组成。其工作原理是:将输出信号U o中的一部分反馈回来与输入信号U i共同加到鉴相器PD上进行相位比较,其输出端的误差电压UФ同两个信号的瞬时相位差成比例。误差电压UФ经环路低通滤波器LPF滤掉其中的噪音以后,用来控制压控振荡器VCO,使其振荡频率向其输入频率靠拢,直至锁定。此时,两信号的相位差保持某一恒定值,因而,鉴相器的输出电压也为一直流电压,振荡器就在此频率上稳定下来。也就是说,锁相环路的最终输出信号频率就是其输入信号频率,因而可以把锁相环看成是一个以输入频率为中心的窄带滤波器。 试述脉冲信号发生器的工作原理。

如何理解电子测量仪器的精度指标

如何理解电子测量仪器的精度指标 精确度是衡量电子测量仪器性能最重要的指标,通常由读数精度、量程精度两部分组成。本文结合几个具体案例,讲述误差的产生、计算以及标定方法,正确理解精度指标能够帮助您选择合适的仪器仪表。 一、测量误差的定义 误差常见的表示方法有:绝对误差、相对误差、引用误差。 1)绝对误差:测量值x*与其被测真值x之差称为近似值x*的绝对误差,简称ε。 计算公式:绝对误差 = 测量值 - 真实值; 2)相对误差:测量所造成的绝对误差与被测量(约定)真值之比乘以100%所得的数值,以百分数表示。 计算公式:相对误差 =(测量值 - 真实值)/真实值×100%(即绝对误差占真实值的百分比); 3)测量的绝对误差与仪表的满量程值之比,称为仪表的引用误差,它常以百分数表示。引用误差=(绝对误差的最大值/仪表量程)×100% 引用误差越小,仪表的准确度越高,而引用误差与仪表的量程范围有关,所以在使用同一准确度的仪表时,往往采取压缩量程范围,以减小测量误差 举个例子,使用万用表测得电压1.005V,假定电压真实值为1V,万用表量程10V,精度(引用误差)0.1%F.S,此时万用表测试误差是否在允许范围内? 分析过程如下: 绝对误差:E = 1.005V - 1V = +0.005V; 相对误差:δ=0.005V/1V×100%=0.5%; 万用表引用误差:10V×0.1%F.S=0.1V; 因为绝对误差0.005V<0.1V,所以10V量程引用误差0.1%F.S的万用表,测量1V相对误差为0.5%,仍在误差允许范围内。 二、测量误差的产生 绝对误差客观存在但人们无法确定得到,且绝对误差不可避免,相对误差可以尽量减少。误差组成成分可分为随机误差与系统误差,即:误差=测量结果-真值=随机误差+系统误差因此任意一个误差均可分解为系统误差和随机误差的代数和系统误差: 1)系统误差(Systematic error) 定义:在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。 产生原因:由于测量工具(或测量仪器)本身固有误差、测量原理或测量方法本身理论的缺陷、实验操作及实验人员本身心理生理条件的制约而带来的测量误差。 特性:是在相同测量条件下、重复测量所得测量结果总是偏大或偏小,且误差数值一定或按一定规律变化。 优化方法:方法通常可以改变测量工具或测量方法,还可以对测量结果考虑修正值。 2)随机误差。 定义:随机误差又叫偶然误差,是指测量结果与同一待测量的大量重复测量的平均结果之差。产生原因:即使在完全消除系统误差这种理想情况下,多次重复测量同一测量对象,仍会由于各种偶然的、无法预测的不确定因素干扰而产生测量误差。 特点:是对同一测量对象多次重复测量,测量结果的误差呈现无规则涨落,可能是正偏差,也可能是负偏差,且误差绝对值起伏无规则。但误差的分布服从统计规律,表现出以下三个

精密工程控制测量在高速铁路建设中的应用

精密工程控制测量在高速铁路建设中的应用 【摘要】在高速铁路建设过程中,使用精密工程控制测量能够更好的对工程精度以及其他方面进行较好的把控。高精度仪器以及科学的工作方法在布设控制网中的应用能够在很大程度上降低一些工程误差,进而让高速铁路工程以及相关的施工控制网符合工程预期制定的精度,这同时也为高速铁路施工精度打下了坚实的基础。以精密工程测量概述为基础,着重分析了高速铁路精密工程测量的主要内容以及特点,以实际为出发点对进行了探讨高速铁路精密工程测量精度指标。 【关键词】高速铁路;精密工程;控制测量 【Abstract】 In the process of high-speed railway construction, the use of precision engineering control survey can better accuracy in engineering and other aspects of good control. High precision instruments and scientific working methods in the application of the construction control network can largely reduce some engineering error, thus let the high speed railway construction and related construction control network in line with the project set by the expected accuracy, it also laid a solid foundation for high speed railway construction

实验一 常用电子仪器使用练习

实验一常用电子仪器使用练习、用万用表 测试二极管、三极管 模拟电子技术基础实验常用的电子仪器有: 1、通用示波器20MHZ 2、低频信号发生器 HG1021型 3、晶体管毫伏表:DA-16 4、万用表(500型)或数字万用表 5、直流稳压电源+12V、500mA 为了在实验中能准确地测量数据,观察实验现象,必须学会正确地使用这些仪器的方法,这是一项重要的实验技能,因此以后每次实验都要反复进行这方面的练习。 一、实验目的 (一)学习或复习示波器、低频信号发生器、晶体管毫伏表及直流稳压电源的使用方法。 (二)学习用万用表辨别二极管、三极管管脚的方法及判断它们的好坏。 (三)学习识别各种类型的元件。 二、实验原理 示波器是一种用途很广的电子测量仪器。利用它可以测出电信号的一系列参数,如信号电压(或电流)的幅度、周期(或频率)、相位等。 通用示波器的结构包括示波管、垂直放大、水平放大、触发、扫描及电源等六个主要部分,各部分作用见附录。YX4320型波器。 三、预习要求 实验前必须预习实验时使用的示波器、低频信号发生器,万用表的使用说明及注意事项等有关资料。 四、实验内容及步骤 (一)电子仪器使用练习 1、将示波器电源接通1至2分钟,调节有关旋钮,使荧光屏上出现扫描线,熟悉“辉度”、“聚焦”、“X轴位移”、“Y轴位移”等到旋钮的作用。 2、启动低频信号发生器,调节其输出电压(有效值)为1~5V,频率为1KHZ,

用示波器观察信号电压波形,熟悉“Y轴衰减”和“Y轴增幅”旋钮的作用。 3、调节有关旋钮,使荧光屏上显示出的波形增加或减少(例如在荧光屏上得到一个、三个或六个完整的正弦波),熟悉“扫描范围”及“扫描微调”旋钮的作用。 4、用晶体管毫伏表测量信号发生器的输出电压。将信号发生器的“输出衰减”开关置0db、20db、40db、60db位置,测量其对应的输出电压。测量时晶体管毫伏表的量程要选择适当,以使读数准确。注意不要过量程。 (二)用万用表辨别二极管的极性、辨别二极管e、b、c各极、管子的类型(PNP 或NPN)及其好坏。 1、利用万用表测试晶体二极管。 (1)鉴别正、负极性 万用表欧姆档的内部电路可以用图1-1(b)所示电路等效,由图可见,黑棒为正极性,红棒为负极性。将万用表选在R×100档,两棒接到二极管两端如图1-1(a),若表针指在几KΩ以下的阻值,则接黑棒一端为二极管的正极,二极管正向导通;反之,如果表针指向很大(几百千欧)的阻值,则接红棒的那一端为正极。 (2)鉴别性能 将万用表的黑棒接二极管正极,红棒接二极管负极,测得二极管的正向电阻。一般在几KΩ以下为好,要求正向电阻愈小愈好。将红棒接二极管的正极,黑棒接二极管负极,可测量出反向电阻。一般应大于200KΩ以上。 2、利用万用表测试小功率晶体三极管 晶体三极管的结构犹如“背靠背”的两个二极管,如图1-2所示。测试时用R ×100档。

最新安捷伦电子测量仪器使用及维护建议

安捷伦电子测量仪器使用及维护建议

安捷伦电子测量仪器使用及维护建议 版本. 03.08 Agilent Technologies Co. SSU 蔡宏编辑

-----------Be Professional , Be Expert------- 目录 静电的危害及防护 (3) 微波接头的使用及养护常识 (12) 电子测量仪器及其系统的环境要求 (16) 仪器硬件故障的最终确认 (21) 附录一:部分种类仪器的用户检验步骤及注意事项 (23) 附录二:Agilent仪器常见故障现象及可能原因分析 (27) 附录三:参考资料 (29)

静电的危害及防护 引言. 我们在确定自己的研究课题或找到解决方案时,下一步往往就是准备好完成课题或解决方案所需的软硬件手段.而测量仪器是人们必备的硬件设施.在得到仪器后,如何高效地使用仪器,或如何避免仪器的人为损坏,能够更长时间地为我们服务,就自然而然地成为我们必须关心的环节了. 静电的危害 那么哪些因素可以影响或威胁到仪器的正常使用呢?了解电子测量仪器或微电子的工程师所想到的第一个词,我想必定是”静电放电”(ESD).的确,静电是我们再熟悉不过的一种现象了,除了偶而轻微电击或讨厌的静电吸附外,对我们大多数人来讲,静电似乎并不是什么了不起的问题.过去,许多从事电子工业的人也并不认为静电放电是使电子元件乃至整个电子设备损坏的一个主要原因.许多人不相信静电放电的严重性,甚至怀疑是否真正存在.这也难怪,因为要判断或检查ESD(静电放电简称-Electrostatic Discharge)所引起的失效比较困难,有些元

京沪高速铁路精密控制测量技术设计书

京沪高速铁路精密控制测量技术设计书 二○○六年十二月

目录 1.任务概况 (1) 2.作业依据 (1) 3.基本技术要求 (1) 4.B级GPS点测量 (3) 4.1点名及点号 (3) 4.2标石 (3) 4.2.1类型 (3) 4.2.2规格 (3) 4.2.3制作 (5) 4.2.4中心标志 (5) 4.3控制点布设要求 (5) 4.3.1选点 (5) 4.3.2埋石 (6) 4.3.3施测概略经纬度 (6) 4.3.4点之记 (6) 4.3.5拍照 (7) 4.4 GPS观测及内业数据处理 (7) 4.4.1坐标基准 (7) 4.4.2时间 (7) 4.4.3 GPS B级网技术、精度指标 (7) 4.4.4设站 (8) 4.5大地点联测 (9) 4.6内业数据处理 (9) 4.7上交资料清单 (10) 5.二等水准测量 (12) 5.1水准线路布设 (12) 5.2 水准点选点 (12) 5.3 水准点编号 (13) 5.4水准点标石及点之记 (13) 5.5水准测量 (17) 5.6 联测 (19) 5.7计算 (19) 5.8 上交成果 (20) 6.项目质量管理 (20) 附录1:B级GPS点之记的绘制 (21) 附录2:B级GPS观测手簿 (23)

京沪高速铁路精密控制测量技术设计书 京沪高速铁路精密控制测量技术设计书 1.任务概况 根据部工管中心《关于保证无碴轨道控制测量精度的通知》及院生产安排,对京沪高速铁路徐州至上海段(DK665+100~DK1309+150),正线长度646.207km。的线路,施测基础平面控制网(B级GPS平面控制网)、线下施工控制测量(C级GPS平面控制网、既有四等GPS网联测)及二等水准高程控制网。制定本技术设计书。 2.作业依据 《客运专线无碴轨道铁路工程测量技术暂行规定》; GB/T18314-2001《全球定位系统(GPS)测量规范》; BT10054-97《全球定位系统(GPS)铁路测量规程》; GB12879-91《国家一、二等水准测量规范》; CH1002-95《测绘产品检查验收规定》; CH1003-95《测绘产品质量评定标准》; 本《技术设计书》。 3.基本技术要求 平面坐标系采用30分带宽的投影,采用WGS-84椭球参数,保证投影长度变形值不大于10mm/km。中央子午线见表: 第1页

电子测量技术及仪器解析

电子测量知识点总结 电子测量课程的设置是使学生通过本课程的学习,能培养知识、能力和素质综合发展的重要环节,为学生增加必要的电子测量的基础理论和实践知识,能解决今后工作中所遇到的一些技术问题。为此,该课程开办的特点: ?本课程是以电子测量的基础知识、基本测量原理和方法为基础,注重联系实际、提高能力,正确使用、操作各种电子测量仪器。 ?本课程以典型的电子测量仪器组成、原理、性能和使用操作为主线,全面掌握电子测量技术,并能与现代科学技术发展相适应。 ?本课程具有很强的实践性,加强电子测量的实验环节,才能理论联系实际,提高学生的综合应用能力。 在移动通信领域及电子行业中无论是从事生产、研发、系统集成、工程建设、设备质量检验、系统验收、网络互连和管理、设备故障排除、维护和检修以及系统升级等工作都需要通过不同的测试方法及由测试仪器提供的准确、可靠的测量和监控、检测数据来确保系统(设备)的正常运行。电子测量仪器的功能与应用电子信息科学是现代科学技术的象征,它的三大支柱是:信息获取(测量技术)、信息的传输技术(通信技术)、信息的处理技术(计算机技术),三者中信息的获取是首要的,而电子测量是获

取信息的重要手段。电子测量主要应用电子科学的原理、方法和设备对各种电量、电信号、元器件、电路及电子设备的特性和参数进行测量,同时还通过各种传感器把非电量转换成电量来测量。因此,电子测量技术在通信电子领域有着极其重要的意义。 广大同学在大一第二学期学习电子测量这门课程应该重点从电子测量的任务及特点;常用电子测量仪器的分类和测量方法;电子测量仪器的主要技术指标;电子测量仪器的功能与应用等方面重点学习。另外还需要掌握相关电子测量领域里边的相关概念。以下是一些相关知识点的总结: 第一章绪论 1、电子测量的内容及任务? 1)电能量测量 电能量测量包括各种频率和波形下的电压、电流和功率等的测量。 2)电信号特性及所受干扰的测量 电信号特性测量包括信号的波形、时间/频率、相位、脉冲参数、失真度、调幅度、调频指数、信号的频谱、信/噪比以及数字信号的逻辑状态等测量。 3)元器件和电路参数的测量 电路的元器件参数测量包括电阻、电容、电感、阻抗、品质因数及电子器件(例如,电子管、晶体管等)和无源器件(例如,功分器、耦合器、衰减器等)等参数的测量。电子线路的测量,测量电路的频率响应、增益、通带宽度、相位移、延时、衰减等参

《电子测量仪器及应用》题库

《电子测量仪器及应用》题库 一、填空 1.数字的舍入规则是:大于5时 入 ;小于5时舍;恰好等于5时, 采用 奇进偶不进 的原则。 2.被测量在特定时间和环境下的真实数值叫作 真值 。 3. 主振电路 是低频信号发生器的核心,其作用是产生频率范围连续 可调 、稳定的低频正弦波信号。 4.模拟式电压表是以 指示器显示 的形式来指示出被测电压的数值。 5.若测量值为196,而实际值为200,则测量的绝对误差为 -4 , 实际相对误差为 -2% 。 6.使用偏转因数div /m 10V 的示波器测量某一正弦信号,探极开关置于 “×10”位置,从屏幕上测得波形高度为div 14,可知该信号的峰值为 0 .7V ,若用电压表测量该信号,其指示值为 。 7.若设被测量的给出值为X ,真值为0X ,则绝对误差 X ?=0X X X ?=- ;相对误差00100%X X X ν-=?或者0 X X ν?=。 ' 8.所示为一定的触发“极性”(正或负)和“电平”(正或负)时示波器 上显示的正弦波形,可判断触发类型为 正 极性、正 电平触发。 9. 在晶体管特性图示仪中电流的读取是通过将电流加在 电阻上转换成取样,然后再加到示波管的偏转板 电压 上的。

图1 10.电子计数式频率计的测频准确度受频率计的时基频率误差和 1 量化误差的影响。 11.在交流电子电压表中,按检波器响应特性的不同,可将电压表分 为电压表,值电压表和值电压表。 12.若要在荧光屏上观测正弦波,应将正弦波(或被测电压) 电压加到垂直偏转板上,并将扫描电压加到水平偏转板上。 13.被测量的测量结果量值含义有两方面,即_数值_和用于比较的_单位_名称。 ] 14.通用示波器结构上包括__水平通道(Y轴系统)__、_垂直通道 (X轴系统)_和_ Z通道(主机部分)_三个部分。 15.用模拟万用表电阻挡交换表笔测量二极管电阻两次,其中电阻小的一次黑表笔接的是二极管的_正(阳)_极。 16.数字万用表表笔与模拟万用表表笔的带电极性不同。对数字万用表红表笔接万用表内部电池的__正_极。 17.对以下数据进行四舍五入处理,要求小数点后只保留2位。 =__ _; =___________。 18.相对误差定义为绝对误差与真值的比值,通常用百分数表示。 19.电子测量按测量的方法分类为直接测量、间接测量和组合测量三种。

(完整版)电子测量仪器的分类及应用

电子测量仪器的分类及应用 电子测量仪器按其工作原理与用途,大致划为以下几类。 1.多用电表 模拟式电压表、模拟多用表(即指针式万用表VOM)、数字电压表、数字多用表(即数字万用表DMM)都属此类。这是经常使用仪表。它可以用来测量交流/直流电压、交流/直流电流、电阻阻值、电容器容量、电感量、音频电平、频率、晶体管NPN或PNP电流放大倍数β值等。 2.示波器 示波器是一种测量电压波形的电子仪器,它可以把被测电压信号随时间变化的规律,用图形显示出来。使用示波器不仅可以直观而形象地观察被测物理量的变化全貌,而且可以通过它显示的波形,测量电压和电流,进行频率和相位的比较,以及描绘特性曲线等。 3.信号发生器 信号发生器(包括函数发生器)为检修、调试电子设备和仪器时提供信号源。它是一种能够产生一定波形、频率和幅度的振荡器。例如:产生正弦波、方波、三角波、斜波和矩形脉冲波等。 4.晶体管特性图示仪 晶体管特性图示仪是一种专用示波器,它能直接观察各种晶体管特性曲线及曲性簇。例如:晶体管共射、共基和共集三种接法的输入、输出特性及反馈特性;二极管的正向、反向特性;稳压管的稳压或齐纳特性;它可以测量晶体管的击穿电压、饱和电流、自或a参数等。 5.兆欧表 兆欧表(俗称摇表)是一种检查电气设备、测量高电阻的简便直读式仪表,通常用来测量电路、电机绕组、电缆等绝缘电阻。兆欧表大多采用手摇发电机供电,故称摇表。由于它的刻度是以兆欧(MΩ)为单位,故称兆欧表。 6.红外测试仪 红外测试仪是一种非接触式测温仪器,它包括光学系统、电子线路,在将信息进行调制、线性化处理后达到指示、显示及控制的目的。目前已应用的红外测温仪有光子测温和热测温仪两种,主要用于电热炉、农作物、铁路钢轨、深埋地下超高压电缆接头、消防、气体分析、激光接收等温度测量及控制场合。 7.集成电路测试仪 该类仪器可对TI1、PM0S、CM0S数字集成电路功能和参数测试,还可判断抹去字的芯片型号及对集成电路在线功能测试、在线状态测试。

高速铁路精密工程测量问题研究 田文斌

高速铁路精密工程测量问题研究田文斌 发表时间:2019-09-04T09:54:44.790Z 来源:《防护工程》2019年12期作者:田文斌胡泽金 [导读] 精密工程测量技术是工程测量的重要组成部分,已广泛地应用到高速铁路、大型水库等基础工程建设领域。 中国建筑土木建设有限公司北京 100000 摘要:轨道施工质量对高速铁路形势安全起到关键作用。高速铁路列车行驶速度250~350km/h,轨道必须具有非常高的平顺性和精确的几何线性参数、精度要求保持在毫米级范围内的特点,要求我们必须建立一套与之相适应的、能满足高速铁路勘测设计、施工建设和运营维护各个阶段要求且十分完整、高效、高精度的精密工程测量体系。高速铁路精密工程测量技术体系已成为高速铁路建设成套技术的一个重要组成部分,在高速铁路勘测设计、施工建设和运营维护中起到了决定性的作用。 关键词:高速铁路;精密工程;测量问题 引言 精密工程测量技术是工程测量的重要组成部分,已广泛地应用到高速铁路、大型水库等基础工程建设领域。为了确保高速铁路建设和运营安全、高效、顺利,必须要进行高速铁路的精密工程测量,因此对测量技术的准确性提出了更为严格的要求,必须建立一套高速铁路精密工程测量技术。我国高铁的安全运行验证了高速铁路精密工程测量技术的科学性、先进性、适用性和可靠性。 1高速铁路精密工程测量技术概述 高速铁路精密工程测量的主要目的是建立各级平面与高程控制网,在控制网的作用下,保证高速铁路工程能够按照设计线型进行施工,确保高速铁路轨道铺设精度,最终保证高速列车能够平稳安全运行。影响高速铁路轨道铺设精度的因素中,精密工程测量技术的可靠性是其中重要因素。在进行高速铁路轨道铺设时,必须重视两方面工作,一方面是要严格按照高速铁路工程设计线型进行施工,也就是说,在铺设高速铁路轨道时一定要确保轨道线型几何参数的精确度与可靠性;另一方面就是确保高速铁路轨道铺设的平顺性,要将轨道线型参数控制在合理范围内,一般要控制在毫米级范围内,才能确保高速铁路轨道铺设的平顺性。 2控制网布设 (1)CPⅠ。在布设过程中以B级静态测量方式进行,一般在设计中,网点的测量距离为50~100km,完成连续测量的基准网点设置后,需要按照每3~4km的距离再布设一个单点,即使是布设作业难度较大的地段,布设点之间的距离不能小于1km。在特大桥梁与特长隧道布设过程中,要根据具体情况适当增加CPⅠ控制点,并且要确保相邻布设点间有良好的透视性,各个透视点间有一个相邻的透视方向,实现三网合一的目标。在处理转换关系简化问题时,要充分考虑CPⅠ控制网联测控制点至少为三个国家或者城市控制点。CPⅠ控制网大多应用在工程勘测、工程施工以及工程运维中坐标基准勘测过程中,是确保坐标基准准确性的重要技术。 (2)CPⅡ。主要应用在工程勘测与工程施工过程中,CPⅡ的主要作用是为工程勘测与工程施工提供基准,通常在布设过程中,需要使用全站仪与C级GPS静态控制测量相结合的方式完成布设工作。一般在布设CPⅡ控制点时,需要注意两个控制点的测量距离在800~1000m之间。另外,还要注意的是在布设难度较大的地段进行布设作业时,要保证控制点的距离不能小于600m。通常CPⅡ控制网的布设点要根据线路走向进行设置,在线路中线与布设点之间的距离要在50~100m之间。在CPⅡ控制网布设过程中,要对布设点的位置进行严格考察与设置,确保布设点位置符合相关测量要求。 (3)CPⅢ。CPⅢ的主要作用是为高速铁路轨道铺设以及高速铁路运维提供有效的良好的控制基准,CPⅢ是在CPⅡ的基础上发展而来的。在具体设置过程中,采用沿着高速铁路线路两侧布设五等导线测量的方式完成布设作业。高程控制多用三等水准,将控制点嵌入到墙体侧面的点位内,要注意确保控制点的点位与高程位置都要比高速铁路轨道标记的螺栓前缘上侧高。 3水准网的稳定性控制 已经建成高铁的运营复测数据分析表明,许多地段存在着较为严重的沉降情况,甚至导致了铁路限速,在这些地区,如果没有稳定的控制点,控制网复测往往会出现控制基准稳定性无法判定的情况。为了在这些区段进行变形监测,必须要从可靠的稳定控制点(国家基岩点)引出,监测工作往往费时、费力。《客运专线无砟轨道铁路工程测量暂行规定》中没有对铁路高程控制网中深埋及基岩点进行要求。在京津城际、京沪高速铁路实施过程中,由于沿线地质条件非常复杂,存在多个不均匀沉降漏斗区,有些地方地表沉降非常严重,因此采用了深埋水准基点的控制方式。多次复测证明,相对于地面控制标石,深埋点具有显著的抗沉降性,可为铁路的运营、维护、监测提供长效的高程基准支持。因此,《高速铁路工程测量规范》对深埋标石做了如下的要求:在地表沉降不均与及地质不良地区,宜按每10km设置一个深埋水准点,每50km设置一个基岩水准点。基岩水准点和深埋水准点应尽量利用国家或其他测绘单位埋设的稳定基岩水准点和深埋水准点。因此,在地表沉降不均匀与及地质不良地区,基岩水准点应当作为线路水准基点的高一级控制点,每50km设置一个。深埋水准点是线路水准基点的同级控制点,但其较之一般水准点抗沉降性好,在控制网复测过程可作为区段稳定性判断的重要依据。深埋水准点可以选择稳定的老旧建筑基础、大型桥台基础等替代;也可以选择国家或其他测绘单位埋设的基岩、水准点作为深埋控制桩(不兼容的情况下可不采用原国家控制成果,仅作为本条线路的深埋控制)。 4长大隧道贯通后水准控制网处理 在跨越大江大河及长大隧道时,水准采用绕行观测或者跨河观测的方式,桥梁铺架施工完成或隧道贯通后,对水准测量而言,新的贯通条件产生了,路线会大大缩短,在一定范围内的闭合精度也会大大提高。以某山区铁路隧道高程控制为例:设计隧道长度约10km,受地形及交通条件影响,水准绕行路线达到100km。按照二等水准的观测方法实施,隧道贯通前符合路线闭合差限差为40.0mm;贯通后限差为12.6mm,精测网高程在隧道贯通后可能会产生断高。若前期未做任何附加考虑,甚至在隧道贯通测量之前进行了隧道段的精密测量,将会给后期施工造成较大的影响。因此,在此类特殊的施工条件下,必须对工点的精密测量进行专项设计。 (1)根据水准绕行设计观测成果计算隧道两端高程控制点间闭合差。 (2)根据斜井闭合条件、贯通路线及水准限差估算贯通后两端高程控制点间闭合差;每公里水准测量的全中误差按下式计算。

相关文档
相关文档 最新文档