文档库 最新最全的文档下载
当前位置:文档库 › 顶推法施工控制连续梁桥 蒋莹

顶推法施工控制连续梁桥 蒋莹

顶推法施工控制连续梁桥 蒋莹
顶推法施工控制连续梁桥 蒋莹

顶推法施工控制连续梁桥

J. F. Wang1; J. P. Lin2; and R. Q. Xu3

摘要:钢的低刚度U型梁顶推施工过程中导致了一种创新的顶推施工方法,解决多跨桥梁长复合开发的特殊要求。利用局部应力控制策略,避免底板局部屈服。对位于垂直曲线的复合桥的几何形状控制特性进行分析,可以建立和验证的控制策略。状态向量的概念引入几何形状控制和预测。田间试验结果显示,大多数的高程误差落入±1:0厘米范围。本文演示了高度精确的控制的几何形状可以实现通过所提出的方法。通过对组合桥几何形态的精确分析,可以及时发现和纠正错误。

关键词:10.1061 /(ASCE)be.1943-5592.0000737。?2015美国土木工程师学会。

作者关键词:组合桥;顶推法施工;钢U型梁;几何形态控制;状态向量。

导言

由于其显著的优点,如快速安装,大跨度的能力,经济学,美学,–钢混凝土组合结构得到了很好的研究和作为一个可靠的桥梁工程中结构类型。钢-混凝土组合结构,减少截面的大小,通过利用钢和混凝土的复合行动,这可以通过剪切连接(Jacques2000,Jung et al.2009)。顶推施工是一种复合材料桥梁建设的最流行的方法,它可以充分利用轻量化、高承载能力的钢梁可以减少设备和设施的要求(Marco 2002;Shao2007;Zellner and Svensson 1983)。

顶推施工方法已应用于许多工程(Fontanet al.2011;Marzouk et al. 2007),这2种类型的下水方式都是拖曳式下水和楔式下水。拖曳式发射,如图1所示,通常涉及拖梁预应力钢筋或钢绞线的地方使用(rosignoli 2000)。该技术应用在杭州江东大桥施工(Zhang et al. 2010)。另一方面,随着楔块的帮助下,梁可以取消和推出了楔式推法,这是应用于高架桥的建设(Buonomo。2004;Virlogeux 2006)。拖拽式推施工技术是比较成熟的,相当简单的过程,而建设成本相对较低。然而,难以在发射过程中控制各点的牵引负荷,并且该过程可以产生对桥墩可观的水平力。底板穿孔可安装拉锚装置和限流装置的定位的过程中是需要的。由于这些原因,有必要加强梁,码头,和临时码头,以满足施工要求。

楔式发射施工提供了良好的可控性,是相当有效的。此外,它更容易控制的横向力的临时和永久性的码头。然而,楔式的发射需要一个精确的液压同步控制系统,和楔和幻灯片必须是非常准确的。施工工艺复杂,难以控制。此外,它不能灵活地适应变化的斜坡或几何形状的梁。启动建设的策略可以产生良好的结果既不长,连续组合梁桥。因此,一个创新的顶推施工方法进行了探讨。引桥占越江桥梁或跨海桥梁大量。在一般情况下,混凝土桥梁的跨度为50米,60米,钢或复合桥的跨度为80

米,100米是用于经济和美学。采用顶推施工方法与跨度85米,六车道桥梁,最大支反力10000 kN ∽可以实现对钢U形梁。在发射过程中,所有的梁都受到正面和负面的时刻。此外,从支持部分,跨中截面底板的厚度减小,和最弱的位置位于跨中截面。没有竖向加劲肋承受反力除了在支持部分的。另外,没有临时加固措施底板,保持底板的局部应力状态在一个适当的水平,以防止局部屈服的发生是非常重要的(Tanner et al.。2013;Zhang and Luo2012)。

有在发射多跨钢U形梁施工多轮。这些梁的形状是通过一个multiround系统建设形成。需要高精度的钢梁装配,以确保安装质量。由于钢U形梁的结构和相对刚度较低,几何形状控制中的误差是不可避免的。但是,由于几何形态的变化,这些误差很难及时评估,如果在垂直曲线上的梁没有适当的控制,由于轴承位置的强迫位移,残余应力会增大。因此,重要的是要确保几何形状满足设计要求,进行控制和监测的几何形状的钢U形梁在增量启动建设。因此,这是至关重要的,以评估是否当前状态的几何形状是合理的,以便可以采取步骤,以纠正任何几何形状的错误。

桥梁工程中常用的四种施工控制方法:后控制方法、预测控制方法、自适应控制方法和最大容差法。后来的控制方法是指在不符合设计要求的情况下对所构造的结构进行修改。它仅适用于可调整的结构状态。预测控制方法考虑了所有的影响因素和设计目标,预测每一个施工阶段,并向预期状态移动建设。在当前施工阶段的错误可以得到纠正,在随后的施工阶段。自适应控制方法也被称为参数识别和校正方法。在施工控制开始时,控制系统的输出结果可能无法满足设计要求,由于某些设计参数可能不符合实际情况。通过系统辨识或参数估计,这些设计参数可以识别和纠正。最大容差法保证了误差不超过最大容差,仅适用于具有高安全冗余度的结构。

本文介绍了顶推施工,克服了上述缺陷的一种新方法。局部应力控制技术,避免了局部屈服的底部板。还提出了一种控制在垂直曲线上的复合桥钢U形梁的几何形状的方法。

项目背景

九堡大桥是世界上最大的10个跨钱塘江。它的总长度为1855米,主桥为连续组合梁–钢拱桥,和引桥具有恒定以跨度85米的整个跨度安排部分如下:55 米 + 2×85米78米21:785米(北引桥)+ 210米(3×主桥)+ 21:785米+78米+9 × 85米+55米(南法)。在九堡大桥跨径布置如图2所示。本文讨论了南方的方法。

在九堡大桥南的做法是多跨连续组合梁桥。其组合梁由混凝土桥面和钢U形梁组成。钢U形梁是由一个顶部法兰、Web、底板、空腹横梁,实腹横梁,腹板加劲肋,底板加劲肋。一个典型的九堡大桥断面如图3所示。如图所示,钢结构的顶宽为13.1米,底宽为11.06米。以这种方式,横向链路系统的总宽度为31.3米。在图4中所示的顶推法施工现场。

图1.拖式下水施工(作者)

图3.对九堡大桥南法标准剖面(单位:厘米):(a)与横梁;(b)无横梁

图2.九堡大桥跨径布置(单位:m)

图4.顶推法施工的现场(由作者的图像)

顶推施工技术

在顶推法施工过程中,在混凝土桥面安装前,组合梁的钢的U型梁具有较低的刚度。由于钢结构的薄弱和施工成本的不确定,底板穿孔和临时附加设施的安装是不可行的,在施工过程中,严格控制和精确的调整是必要的。梁的受迫位移应控制在一个安全的范围内。此外,发射系统应适应大吨位大跨度结构的发射应该改变几何图形实现长的多跨桥梁多点同步启动。要做到这一点,一个改进的顶推法建设技术的发展。

本文提出的多点同步顶推施工技术不同于常用的方法,其中梁推或拖过支点。发射装置包括钢滑块,导轨,液压千斤顶。在多点同步增量的过程中,梁经历了刚运动,没有一部分的梁受到任何横向力。滑块与导轨之间的摩擦是可以克服的,而桥梁结构是由发射杰克施加水平力向前推出。几乎没有水平力产生的墩顶推施工过程中,可以进行无底板的临时加固,从而显著降低建设成本。如图5所示,发射过程一般包括起升、下水、降下、退出等过程,施工顺序如下:

步骤1:整体吊装的桥梁结构。起升千斤顶被拉向上,并将钢U形梁从临时墩上分离出来。整个钢梁由顶推施工技术支撑。

步骤2:将钢制U形梁向前推。发射千斤顶向前移动,并提出了钢梁。这一过程是由内置滑动设备的滑动面进行的。在发射过程中,整个梁进行了刚性运动。

步骤3:降低起重设备。起升千斤顶逐渐卸下,并整体上降低了钢制U形梁。梁与下水装置分离,临时桥墩支撑。

步骤4:启动设备的重置。梁在临时墩上放置,并将其启动千斤顶返回到下一个增量启动周期。

图5中的构造序列。该方法将梁的纵向和横向两种运动分开,简化了液压控制系统的设计。

钢U型梁在垂直于底板的起升力作用下容易受到伤害。局部应力不受控制,特别是在薄弱部位,局部产生可能发生。增量长跨桥梁施工期间支持发射复合反应大。接触区域应靠近梁腹板,以避免局部屈服和足够大,以提供足够的摩擦,在发射过程中。

在杭州九堡大桥的建设,实际接触面积要尽可能窄。为满足这一要求,在工程施工的桥梁和梁之间的接口处使用了施工措施。如图6所示,在发射设备的顶部支架上安装了一个缓冲层。根据局部应力分析结果确定了垫层的宽度和长度。在垫层上放置一个橡胶板,以保证局部应力的均匀分布。在发射设备的顶部设置了缓冲层。它被定位在安装过程中根据主梁底板边缘。它被用来保证支撑反应扩散到钢的U形梁腹板。发射设备的照片如图7所示。

图5.顶推法技术的工作原理。

几何形状控制

几何形状控制特性分析

在顶推法施工过程中,由于几何形态的不断变化,使得结构的几何形态难以确定,但要根据荷载和边界条件来预测其几何形态。

图6.过渡垫片的布置

图7.设备(作者的图像)

图8.钢U型梁的变形

图9.装配基线的旋转角度如图8所示,装配平台上的钢梁段通常发生变形(Wu2007)。在确定下一步的装配角前,需要对这些变形进行分析,以保证施工完成后的几何形状和避免受迫位移。

如图9所示,之间存在不连续的装配基准。曲线桥几何形态的控制与直桥的控制有很大的不同。在施工过程中,应调整装配基准角,以避免强迫位移。

控制参数的选择与计算:每一轮的装配施工基线可能既不共线或装配平台平行钢的线形控制U 型梁在竖曲线。因此,一个新的控制参数,在前面的梁段的后端的角度,介绍。此参数允许一个确定最合适的位置安装的梁段。假设装配场线与水平线之间的夹角λ0,平台上的k跨端段段的我,在前梁段的后端的角度αC I,如图10所示。汇编码线与水平线之间的夹角λ可计算如下λ = αc i + β (1)

在β=角的装配基准和PiPi + 1之间。存在λ0和λ之间的不一致。如果差异超过了一定值,程序集可能会变得很难,如图10所示。在合理范围内调整一个有必要的调整范围,使装配基准与装配平台基本平行。

几何形状预测与控制

钢U型梁段在增量启动过程中的几何形态变化,应实时分析和控制的所有状态的顶推法的施工结构。在每一个工作条件下,有必要对其几何形态进行预测和控制。在任意给定状态下的几何形态分析。四个国家参与下水施工是(1)设计桥状态,(2)无应力状态,(3)组件状态,以及(4)增量启动状态。发射结束时应进行设计,是施工控制的目的,无应力的状态是一种无应力的状态。在发射过程中,装配状态和顶推法状态实际上是在发射过程中发生的,可以在启动状态下进行分析。在图11中显示了不同的几何形态状态之间的关系。它可以在图11中看到,误差分析和反馈是实现理想的桥状态的关键。

几何外形可以用里程和高度来描述,此外,还应为曲线梁提供轴位偏差。控制点的状态, i可以用一个状态向量r Φi = ?Si Hi T 的描述,其中Si和Hi指里程和高程i。然后,在启动建设各几何状态可以表示为ΦD(设计成桥状态),ΦN(无应力状态),ΦC(装配状态),或ΦL(发射状态)。无应力状态Φn可以表示

ΦN = ΦD + ΔD = fΦN i gi = 1, …, n (2)

其中n =控制点和Δa拱总数。它的值与计算所得到的总位移相反。对ΔD值可以根据误差辨识结果调整。使用ΦN,预装角θ我和梁段长度可计算如下:

θi = αN i ? 1 ?αN i (3)

其中αN i = arctan HN i ? HN i + 1 SN i ? SN i + 1 (4)

在顶推施工可分为刚性位移位移(ΔR)和弹性变形位移(ΔE)。每一发射施工阶段的应力状态可以表示如下:ΦNR = ΦN + ΔR = fΦNR i gi = 1, …, n (5)

图12.焊缝收缩校正

i在平台上的尾段(如图12所示)被选为参考段。坡角αC我和无应力状态ΦNR我尾段我= J 可以用来确定梁段Φ号,这里的无应力状态,αC我是已知的,其确切的值已经确定全面通过实地测

待组装可以如下计算出的区段的几何形状:

其中,由现场温度的变化和焊缝收缩的影响引起的,如图里程和仰角的ΔC变化。 12.可以计算如下:

其中T =现场温度;T0当梁正在下降=设计温度; μ钢=热膨胀系数;W0 =各焊缝的收缩量和N=梁段,其位置是固定的,但安装在当前段期间不焊接的数量。

假设已组装梁段的数量为m,在平台上的尾梁段的状态是已知的。然后将预测状态是φP,并且可以使用下面的表达式来确定:

其中ΔE可根据现场的边界和负载条件来计算。它包括由自重和强迫位移在支点的相对位移。

从现场的验证分析结果

在第一轮施工中,之间PS2a(图2)和PS3的梁段组装和发射。第二轮参与PS3和PS4和其他站点之间的梁段。共有11轮顶推施工。全站仪和水平仪分别测量里程和高程,分别为。可能推行基建过程中发生的错误是随机误差和装配误差。随机错误,如段制造误差,引起焊接变形的错误,并装配段时固定位置的错误,影响一个或两个相邻的

节段,并且可以在本地被消除。每一轮的建设之前,结束段上一轮在我组装的组装误差的影响应计算梁段的倾斜角度时予以考虑。否则,可能会发生一个大的被迫流离失所[如图式。(14)]。假设我是f分别为1和f 2,如图梁段的两端的控制点的标高误差。13.强迫位移,δF,可以计算如下:

其中桥跨距L =值和梁段i的两端的控制点之间10=距离。

第三轮施工中可作为几何形状控制的实施的例子。梁段和第三轮构造的控制点的示图。 14.参数列于表1中。

梁段SIJ年底的几何形状的控制点是M1{1821.676,17.092}和{M2}17.136和梁段骶髂关节αC=-0年底的倾斜角度:482°。因此,实际的基线的倾斜角为λ=-0:547°。结果表明,段SHI-1的端部比所述装配平台高2.8厘米,为实际应用可以接受的。

设计桥梁状态和弯度表2,无压力的状态ΦN显示可以用公式来计算。(2),组装状态ΦC可以使用等式来计算。(3)。结果列于表同样地,顶推可以使用等式来确定在预测状态φP。(13)。

为了评估几何形状控制的结果,并验证用于应力分析外倾角计算有限元模型,测定升高的精确度

和预测立面图首轮顶推的进行比较,并在控制点的标高在表3中示出。价值

是将梁段的平台的端部的控制点的距离。它可以从表3中,最大误差为1.0厘米,它表示采用有限元分析和实际测量之间的合理的协议中可以看出。

控制点的测量和预测高程的典型结果示于图15.从图中可以看出。15所测量海拔和海拔之间的误差的第二轮顶推后预测主要有±1:0厘米,而最大误差为1.1厘米测得的标高结果与预测值一致。测量点和启动过程完成之后他们的错误的立面图示于图16.横坐标值S表示,以杭州侧部分的距离。发现测点高程误差改变主要±1:0厘米,占错误的90.6%。误差大于1.0厘米的比-1较小:0厘米分别占6.0%和3.4%。 PS12和PS11之间的最大误差为-1:5厘米。 PS4和PS3之间的最大误差为1.3厘米。

预测的相对高差与测量的相对高差密切一致。

结论

1.一种改进顶推施工方法在本文中提出的。此方法分离大梁的垂直和水平运动,并简化了液压控制系统的设计。局部应力是公通过设置发射设备和钢的U形梁的底板之间的过渡垫控制。它适用于各种类型的桥梁的发射结构,特别是对薄壁钢梁与开口部分。所提出的顶推法施工的可行性由杭州市九堡大桥的成功建设了验证。

2.四个发射施工期间类型桥梁状态向量进行了定义,确定了它们之间的关系。这些状态向量统一的安装参数,确定边界条件,并在建筑几何形误差分析的决心。

致谢

作者想表达自己衷心感谢杭州市城市基础设施开发总公司,其提供的工程背景,并支持这项研究。作者也非常感谢浙江省自然科学基金(批准号:Y1110181)和中国国家自然科学基金项目(批准号:51108411和11172266)的支持。

参考

Buonomo,M。,仆人,C.,Virlogeux,M。,克勒梅,J。,市政厅德戈耶,V。,和福尔诺,J.D.(2004)。“设计和米洛高架桥,建设”2004年Steelbridge,米洛,法国,165-182。

丰唐,A. N.,迪亚兹,J。M.,巴尔多米尔,A.,和埃尔南德斯,S.(2011)。“改进优化配方的逐步推出推出预应力混凝土桥梁的鼻子。”J.桥梁工程,10.1061 /(ASCE)EE.1943-5592.0000169(2011)16:3(461),461-470。雅克,B。(2000)。“钢- 混凝土组合桥梁的设计开发在法国。”J.构造方法。钢水库,55(1-3),229-243。荣格,R.,Heymel,U.,Reintjes,K. H.,和施赖伯,O.(2009)。“关于巴雷塔尔大桥示例所示复合桥梁预制部件的应用。”STAHLBAU,78(6),385-393。

马可,R.(2002)。大桥下水,托马斯德福,伦敦。Marzouk,M.,萨尔瓦多戴恩,H Z.和El说,M.(2007)。“计算机仿真的施工顶推桥梁中的应用。”J.土木工程。管理。,13(1),27-36。

Rosignoli,M。(2000)。“用于启动桥梁推力和引导装置。”J.桥主机,10.1061 /(ASCE)1084-0702(2000)5:1(75),75-83。

邵C. Y.(2007)。大跨度连续组合箱梁桥的关键技术研究,同济大学,上海,中国(在中国)。

坦纳,P.,路易斯Bellod,J.,桑斯,D和Hingorani,R.(2013)。“从归属于桥的不确定性事件的教训下水为例说明,”文明。工程。ENVIRON。SYST。,30(2),146-161。

Virlogeux,M。(2006)。)“过近米洛- 从早期设计到制作完成。塔恩河谷高架桥”。建筑技术,83(2),85-107(德国)

吴,G.(2007)。研究湘江三汊矶自锚式悬索桥,长沙大学的施工控制技术。科学技术,中国长沙(中国)。Zellner的,W.,和斯文森,H.(1983)。“结构的顶推。”J.结构体。英,10.1061 /(ASCE)0733-9445(1983)109:2(520),520-537。

张,Y.,罗,R.(2012)。“加载补丁和改进的钢箱梁顶推的措施。”J.构造方法。钢水库,68(1),11-19。张,Z. H.,张,J. Y.,浩W. S.,傣,J. G.,和珅,Y.(2010)。“杭州江东大桥设计为空间自锚式悬索桥,中国”结构体。工程。中间体,20(3),303-307。

悬浇连续梁0#块支架施工与安全控制参考文本

悬浇连续梁0#块支架施工与安全控制参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

悬浇连续梁0#块支架施工与安全控制 参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 近年来,随着国家铁路建设的大规模展开,一些客运 专线相继上马,京津、郑西、武广、广深港等均在建设之 中,由于铁路跨越线路长,跨越地形复杂,悬浇连续梁结 构得到了广泛的应用,而且都是控制性工程,连续梁悬浇 施工工序多,标准高,又多在高空作业,施工安全至关重 要。从我局管段悬浇施工的各方面安全控制进行介绍,为 以后类似工程提供借鉴。 1 工程概况 本悬浇连续梁位于京津城际铁路客运专线杨村特大桥 的578#墩至582#墩上,里程DK64+149.54~ DK64+381.24,全长231.5米,为一联45+2×70+45m

连续箱梁。纵向坡度为+4‰的直线段。梁体为单箱单室、变高度、变截面结构。箱梁顶宽13.4m,箱梁底宽6.7m,顶板厚度40至50cm,按折线变化,底板厚度40至 90cm,按直线线性变化,腹板厚48至80cm,厚度按折线变化,中支点处腹板局部加厚到165cm。全联在端支点、主跨跨中及中支点处共设7个横隔板,桥面板宽13.4m。中支点处梁高6.5m,边跨梁高为3.5m,梁底下缘按二次抛物线变化,边支座中心线至梁端0.75m。下部建筑为钻孔灌注桩基础,三层矩形承台,园端形墩柱,墩柱高分别为10.60m、11.60m、13.8m和14.8m。 2 现浇梁段0#块支架布置及受力计算 2.1 支架搭设 碗扣式脚手架直径为48mm,壁厚3.5mm。这种支架的优点是:轴心受力好,拆装工艺简单,且有各种长度规格(包括上下托螺杆),便于调整高度,但它的缺点是杆

桥梁监控方案参考

桥梁监控方案参考 Document number:BGCG-0857-BTDO-0089-2022

目录

XXXX连续箱梁桥施工监控方案 一、工程概况 ……。主箱梁预应力采用纵、横、竖三向预应力体系。主梁采用C50混凝士,按照悬臂现浇法施工。下部采用板式墩身,钻孔灌注桩基础。 本桥采用节段悬臂灌注法施工。先由0#段对称向两侧悬臂施工,形成单“T”,先合拢边跨,再合拢中跨,完成梁部施工。主梁最大悬臂施工长度64m,分成18个悬臂段,边跨直线段长22.85m,再边墩旁搭设支架现浇施工。 桥梁设计设计时速100km/h;设计荷载取按公路——I 级的倍,温度作用、汽车制动力及冲击力按《公路桥涵设计通用规范》(JTG D60-2004)规定计算。 二、施工控制的目的、意义 对于分节段悬臂浇筑施工的预应力混凝土连续梁桥来说,从开工到成桥要经过一个复杂的施工过程,结构要经过多次体系转换,结构内力和变形亦随之不断发生变化,并决定成桥后结构的受力及线形。由于各种因素的直接和间接影响,使得实际桥梁在施工过程中的每一状态几乎不可能与设计状态完全一致,施工控制就是在施工过程中根据施工监测所得的结构参数真实值进行施工阶段计算,确定出每个悬臂浇筑节段的立模标高,并在施工过程中根据施工监测的成果对

误差进行分析、预测和对下一立模标高进行调整,以此来保证施工沿着预定轨道(能达到成桥设计目标的施工路径)进行,从而保证主梁合拢段两悬臂端标高的相对偏差不大于规定值(±15mm),成桥后主梁各控制点的标高与设计值最大相差控制在30mm以内,成桥后主梁各控制截面的内力与设计值最大相差控制在10%以内。 总之,桥梁施工控制的目的就是保证施工过程中主桥结构的安全、桥梁顺利合拢、桥梁成桥受力状态及合拢后桥面线形良好。三、施工监控方法和依据 本桥采用悬臂施工,属于典型的自架设施工方法。由于连续梁桥在施工过程中的已成结构(悬臂梁段)几何状态(平面、立面)是无法事后调整的,所以,施工控制主要采用事前预测和事中控制法,主要体现在施工控制结构仿真分析、施工监测(包括结构变形与应力监测)、施工误差分析与后续施工状态预测、梁段施工立模标高提供等几个方面。 (一)施工控制方法 大跨度连续梁桥,悬臂施工中每个节段的受力状态达不到设计所确定的理想目标的重要原因是计算模型中计算参数的取值问题,主要包括混凝土弹性模量、材料的容重、徐变系数和预应力张拉力与施工中实际情况有一定的差距以及环境温度、临时荷载的影响。要得到比较准确的控制调整量,必须根据施工中实测到的结构反应来修正计算

桥梁监控测量方案

桥梁监控测量方案 导线控制测量、桥轴线测量控制、墩、台、桩定位测量、支座垫石施工放样和支座安装、桥面控制测量、高程控制测量 1、导线控制测量 利用设计单位提供的已知点,用全站仪(必要时用GPS)补测导线点,并形成三维导线控制网进行桥轴线平面位置控制。经环导闭合测量,角度闭合差、坐标闭合差均满足一级导线技术要求。 2、桥轴线测量控制 利用已知的控制点坐标及施工图提供的桥轴线控制点坐标,用坐标放线法进行各匝道桥桥轴线恢复测量。即以桥轴线长度作为一个边,而布置成闭合导线,再采用坐标法施放轴线上各点。 3、墩、台、桩定位测量 施工阶段测定桥轴线长度,目的就是为了建立起施工放样墩、台、桩的平面控制。墩、台、桩定位测量的内容就是准确定出桥墩、台、桩的中心位置和它的纵轴线。可根据设计单位提供的墩、台、桩设计坐标,按坐标反算求出坐标法的放样数据,用以施放墩、台、桩平面位置。同时采用坐标法,在不同曲线控制点、交点设站,直接测距,对施放的墩、台、桩位置进行复核验证。 (1)桩基础钻孔定位放样 根据设计图计算出每个桩基中心的放样数据,设计图纸中已给出的数据也应经过复核后方可使用。施工放样采用全站仪坐标法进行。 (2)承台施工放样 用全站仪坐标法放出承台轮廓线特征点,供安装模板用。通过吊线法和水平靠尺进行模板安装,安装完毕后,用全站仪测定模板四角顶口坐标,直至符合规范和设计要求。用水准仪进行承台顶面的高程放样,其精度应达到四等水准要求,用红油漆标示出高程相应位置。 (3)墩身放样 桥墩墩身形式多样,大型桥梁地般采用分离式矩形薄壁墩。墩身放样时,先在已浇筑承台的顶面上放出墩身轮廓线的特征点,供支模板用(首节模板要严格控制其平整度)。用全站仪测出模板顶面特征点的三维坐标,并与设计值相比较,

连续梁施工控制要点

珠三角城际轨道交通网 广州至清远轨道交通GQZH-2标 连续梁施工控制要点中铁十一局集团广清城际GQZH-2标项目经理部 二○一四年八月

连续梁施工控制要点 引言:几个关键词定义 简支梁:两端为铰支承的梁。 连续梁:沿梁长方向有三处或三处以上由支座支承的梁。 连续刚构:梁与中间墩刚性连接的连续梁结构 悬臂浇筑法:在桥墩两侧设置工作平台,平衡地逐段向跨中悬臂浇筑混凝土梁体,并逐段施加预应力的施工方法。 一、连续梁支架系统 图1-1、支架钢管立柱图1-2、支架系统(1)主要施工工艺介绍 1、0#块及现浇段支架采用Φ630mm和800mm钢管立柱,钢管上横梁采用双拼56工字钢,纵向分配梁采用40工字钢,浇筑段坡度通过扇形排架来调整,扇形排架采用20工字钢,间距85cm。钢管之间剪刀撑采用20槽钢。 2、支架预压:预压荷载不小于最大施工荷载的1.2倍,预压加载分三级加载,分别为60%、100%、120%,第三级加载后最后两次沉落量观测平均值之差不大于2mm时,即可终止预压开始分级卸载。 图1-3、支架预压 (2)施工控制要点

1、钢管之间焊接要满焊,剪刀撑与钢管之间焊接采用钢板帮焊。控制好立柱倾斜度。 2、支架体系要严格按照方案执行。 3、扇形排架高度一定计算准确,直接决定了模板标高。 二、连续梁模板 图2-1、0#块模板安装 (1)主要施工工艺介绍 模板分底模、外模、内模。 连续梁模板采用大型钢模,先在平整场地将模板试拼,对模板尺寸及拼缝进行检查,发现问题及时与厂家联系。 图2-2、连续梁模板 (2)对于0#块及现浇段模板:先安装底模,待其标高和轴线调整到位,再安装外模。外模安装时先安装中间段再安装两端。待其调整到位进行底板及腹板钢筋安装,再安装内模,内模采用竹胶板。 普通节段模板:模板跟着挂篮一起行走,每节段只需对模板轴线、标高进行调整。 (2)施工控制要点 1、模板之间拼缝处理好,防止产生较大错台。模板标高、轴线要调整到位,

重点连续梁施工注意事项

连续梁施工注意事项 1、培训资料提到的支座安装的5个案例,很有现实意义,尤其是临时锁定的设置和解锁尤为重要,切忌连续梁在合龙前拆除临时锁定。三项目部跨金丽温1#特大桥两联连续梁的临时锁定需要再加固。 2、在进行支座安装前,需要认真审图,正确提取支座的型号、尺寸。安装时注意不同支座型号对号入座,方向以及偏移量不可安反。 支座的纵向预偏量按L=-(L1+L2)进行设置,除固定墩对应支座外均应设置。L1为箱梁在预应力、二期恒载及收缩徐变作用下引起的支座预偏量,此值图纸上已给出,L2为各支座处梁体由于实际合拢温度与设计温度(5 °~10 °)之间的温差引起的偏移量,该值根据?铁路桥涵钢筋混凝土和预应力混凝土结构设计规范(TB10002.3-2005)?给出的L2=0.0000118S(Ti-T0)计算得出,当为正值时向远离固定支座方向偏移。 3、连续梁钢筋加工时尤其注意变截面腹板钢筋尺寸,要标注型号,防止形成绑扎时没能按照正确位置摆放,造成面板出现腹板筋凸出过高或过低,同时注意混凝土保护层满足要求。 4、梁面预埋的挡砟墙、竖墙、遮板的纵向钢筋要顺直,防止扭曲后在进行该部分混凝土施工时切割移位的钢筋。

5、桥面纵、横向预应力波纹管在安装过程中必须要拉线;腹板波纹管安装要按照设计坐标认真定位;另外锚垫板安装要与模板密贴,并须与波纹管保持垂直状态。横向预应力固定端注意留足保护层厚度,挤压头外露钢绞线保证在5mm左右即可。 6、挂篮行走安全尤为重要,此项工序出现的安全事故太多。尤其跨铁路、公路时,项目副经理、总工、安全总监必须亲临现场指挥作业。 7、挂篮的前后吊杆预留的预埋空位置要准确,防止吊筋弯曲。另外吊筋的连接器在安装之前,需要将精轧螺纹钢对应的连接器拧紧的位置做好油漆标识。 8、T构两端对称均衡进行施工。悬臂施工中左右两侧出现不对称施工时应检算墩梁临时固结或刚构稳定性,要求稳定系数不小于1.5。 梁体在进行混凝土浇筑过程中,布料及捣固尤为重要,尤其在腹板波纹管下部位在、齿块端头需捣固密实,确保齿板及锚垫板处混凝土质量。底板齿板禁止采用翻浆混凝土浇筑,而应采用粗细骨料均匀的混凝土浇筑并振捣密实。为防止出现锚后裂缝,锚后螺旋筋应紧靠锚垫板并加设钢筋网片。 同时在腹板位置要预埋测温管,及时测温并记录完整。 9、连续梁浇筑后的覆盖养生、梁面成品保护、端头凿毛等必须加强控制。 10、连续梁每道工序施工测量的准确度尤为重要,杜绝反复

连续梁施工质量控制要点

连续梁施工质量控制要点 一、固结及支架控制要点 1)墩顶梁段临时固结约束,必须形成刚性体系,能承受中支点处最大不平衡弯矩和竖向支点反力。 2)临时固结可采用临时支墩与临时支座,临时支座与0#块通过预埋精扎螺纹钢筋或粗钢筋锚固方式来实现主墩与0#块的固结。 3)临时支墩可以采用钢管或钢管砼柱,采用时要和梁底固结设计,钢管或钢管砼柱要支立在箱梁腹板梁底位置,梁底要预埋钢板,钢板要锚固箱梁砼中。 二、支座安装控制要点 1)施工单位审核活动支座和固定支座平面布置图。 2)检查预留孔平面位置、孔位、深度。 3)检查支承垫石表面凿毛,清除预留孔中杂物。 4)检查支座上下座板是否水平安装固定。 5)锚栓孔,垫石顶面与支座板底面内压浆采用重力式压浆,自由高度大于3米,压力不小于1MPa。 三、0#块施工质量控制要点 墩顶现浇梁段(0#段)是悬灌的关键梁段,结构复杂,施工难度大,为三向预应力,管道多、钢筋密,技术要求及质量要求高,施工前要了解掌握整个梁的预应力管道布置情况和张拉步骤。

1)检查模板平整度,钢度,强度及稳定性,检查保护层厚度,垫块质量,数量,检查拉筋安装情况。 2)检查模板拼装缝隙,错台,几何尺寸是否满足设计要求。 3)检查锚固端,预留孔截面位置孔径和孔数,检查通风孔、泄水孔。 4)审核支架方案时支架杆件强度安全系数应大于1.3,抗倾覆稳定系数应大于1.5,具有足够的承载力和整体稳定性。 5)钢筋制作安装检查控制 ①钢筋绑扎前由测量人员复测模板的平面位置及高程,其中高程包括按支架计算挠度所设的预拱度,无误后方可进行钢筋绑扎。 钢筋安装程序:底板及腹板钢筋—安装纵向、竖向管道—安装内模、端模板—安装顶板底钢筋—安装横向、纵向预应力管道-安装顶板上层钢筋。 ②检查综合接地钢筋及连接钢筋、防撞墙、声屏障,接触网支柱即拉线预埋质量,检查挂蓝施工预埋件等情况。 6)预应力管道安装检查控制 ①预应束波纹管安装 a、检查纵向波纹管布置情况,三向预应力管道调整原则是先钢筋,后竖向、再横向保持纵向预应力管道位置不动。 b、钢束管道位置用定位钢筋固定,定位钢筋网片牢固焊接在钢筋骨架上,如管道位置与骨架相碰时,应保证管道位置不变。 c、波纹管的接头长度不小于30cm。

连续梁线形监控方案

1 工程概况 1、鲁南高铁花果峪特大桥DK212+220.5处跨S241省道,道路与线路为斜交,角度约30。,采用一联三孔(60+112+60)m的预应力混凝土双线连续箱梁跨越,梁全长233.5m。S241省道路面宽度为15米,公路交叉里程K13+747。桥型布置如图1-1所示。 图1-1 (60+112+60)m连续梁桥型布置图 (1)下部结构 本连续梁10#、13#边墩基础采用8-φ1.5m钻孔灌注桩,桩长分别为20.5m、15.0m,11#主墩基础采用12-φ1.8m钻孔灌注桩,桩长为15.0m,12#主墩基础采用12-φ1.8m 钻孔灌注桩,桩长为13.0m;10#、13#边墩承台尺寸:12.4×6.5×3m,边墩高度:10#墩10米;13#墩13.5米;11#主墩尺寸:14.0×10.3×4.0m,12#主墩尺寸:14.0×11.3×4.0m,桥墩采用圆端形实体直坡墩,10#、13#边墩高10.0m、13.5m,11#、12#主墩高9.0m、12.0m。 (2)梁部结构 箱梁为单箱单室、变高度、变截面箱梁,梁底、腹板、顶板局部向内侧加厚,均按直线线性变化。全联在端支点,中支点处设横隔板,横隔板设有孔洞,供检查人员通过。中支点处梁高9.017m,边支点处梁高5.017m。边支点中心线至梁端0.75m,梁缝分界线至梁端0.1m,边支座横桥向中心距离6.0m,中支座横桥向中心距离6.0m。桥面防护墙内侧净宽7.6m,桥梁宽12.6m,桥梁建筑总宽12.9m,底板宽7.0m。顶板厚度43.5-73.5cm,腹板厚度50cm~95cm,底板厚度50cm~90cm,腹、底板厚度均按折线变化。在梁体边支点、中支点共设4个横隔板,隔板中部设有孔洞,供检查人员通过。在0#段中跨梁侧底板处设φ1.0m进人洞,作为梁部桥墩检查通道。 梁体分11#、12#墩2个对称T构,单个T构分13个悬臂浇筑段,1(1')#段到4(4')#节段长度3.0m,5(5')#段到9(9')#节段长度3.5m,10(10')#节段到13(13')#节段长度 4.0m,14#边跨合龙段、14'#中跨合龙段节段长度均为 2.0m;0#段节段长度19.0m,重量1833.51t,15#边跨现浇段节段长3.75m,重量274t。连续梁悬臂段采用挂

连续梁桥施工

目录 摘要 (1) Abstract (2) 目录 (3) 第一章绪论 (4) 1.1选题背景4 第二章工程概况 (5) 2.1工程说明 (5) 2.1. 1地形地貌 (6) 2.1.2工程地质 (6) 2.1. 3 地震 (6) 2.1. 4 气候 (6) 2.1. 5 水文 (7) 2.2施工措施 (7) 2.2.1施工期间安全措施 (7) 2.2.2.确保工程质量的措施 (7) 2.2.3.工期保障措施 (7) 2.2.4.雨季施工及农忙季节的施工安排 (8) 2.2.5.环境保护和文明施工措施 (8) 第三章工程进度 (8) 3.1施工方法 (8) 3.1. 1路基的填料 (8) 3.1.2路基的压实 (9) 3.1. 3构造物两侧路基 (9) 3.1.4高填路基处理 (9) 3.1.5.其它施工注意事项 (11) 3.1. 8路基防护 (12) 3.2路基施工方案 (16) 3.2. 1施工准备 (16) 3.2.2人员及机具 (17) 3.2.3路基土石方填筑 (20) 3.2. 4质量保证措施 (20)

3.2.5安全保证措施 (21) 3.3劳动力计划 (21) 3.4主要材料计划表 (22) 3.5工程进度图 (23) 3. 5.1 主体工程进度图详见附表 (23) 3. 5. 2 附属工程进度图详见附表 (23) 3. 5. 3 土石方调配图详见附表 (23) 结论 (23) 致谢 (24) 参考文献: (25)

第一章绪论 1.1毕业设计的目的与意义 毕业设计的U的在于培养毕业生综合能力,灵活运用大学所学的各门基础课和专业课知识,并结合相关设讣规范,独立的完成一个专业课题的设计工作。设计过程中提高学生独立的分析问题,解决问题的能力以及实践动手能力,培养学生实事求是、谦虚谨慎的学习态度和刻苦钻研、勇于创新的精神,达到具备初步专业工程人员的水平,为将来走向工作岗位打下良好的基础。 桥梁的设讣需要综合考虑各方面的因素,其中包括桥址处地形、地貌、水文条件、工程地质、以及周围所处的环境等等,除此之外,任何一个设计都必须考虑怎样将经济性、美观性和实用性融入在设计当中。 本次设计为(40-60+40)m预应力栓连续梁,桥宽为28,分为两幅,设计时只考虑单幅的设计。梁体采用单箱双室箱型截面,全梁共分74个单元一般单元长度分为2m。顶板、底板、腹板厚度均不变。由于多跨连续梁桥的受力特点,黑近中间支点附近承受较大的负弯矩,而跨中则承受正弯矩,则梁高采用变高度梁,按二次抛物线变化。这样不仅使梁体自重得以减轻,还增加了桥梁的美观效果。 本次设计的预应力混凝土连续梁采用悬臂法施工。 本次设计中得到了魏永健、朱连波等儿位老师的悉心指导,在此表示衷心的感谢。 由于本人水平有限,且乂是第一次从事这方面的设计,难免出现错误,恳请各位老师批评指正。 1-2预应力混凝土连续梁桥概述 预应力混凝土连续梁桥以结构受力性能好、变形小、伸缩缝少、行车平顺舒适、造型简洁美观、养护工程量小、抗震能力强等而成为最富有竞争力的主要桥型之一。 山于普通钢筋混凝土结构存在不少缺点:如过早地出现裂缝,使其不能有效地釆用高强度材料,结构自重必然大,从而使其跨越能力差,并且使得材料利用率低。 为了解决这些问题,预应力混凝土结构应运而生,所谓预应力混凝土结构,就是在结构承担荷载之前,预先对混凝土施加压力。这样就可以抵消外荷载作用下混凝土产生的拉应力。自从预应力结构产生之后,很多普通钢筋混凝土结构被预应力结构所代替。 预应力混凝土桥梁是在二战前后发展起来的,当时西欧很多国家在战后缺钢的情况下,

预应力连续梁桥的施工控制

预应力连续梁桥的施工控制 摘要:在公路建设中,预应力连续梁桥由于施工方法灵活、适应性强、结构刚度大、通车平顺舒适、造型美观等优点,已经被广泛使用。连续梁桥结构受力特点独特, 为超静定结构,支座多设在弯矩最小的位置。施工时,逐段浇筑、X拉,先简支 后连续,有体系转换的要求,X拉一般采用一端X拉,不易控制。鉴于其施工复 杂,监理人员对各道工序监理时,须有一套完整的程序进行控制。 关键词:连续桥梁;施工过程;施工控制 1.地基处理 1.1地基承载力的要求 连续箱梁桥上部恒载及活载最终通过支架传递到大地中去。在施工时,一般采用搭设满堂支架整体现浇的施工方法。为保证支架具有足够的刚度和稳定性,防止支架沉陷,需要验算桥梁最不利荷载位置所对应的地基承载力,最不利荷载位置一般位于桥梁跨中。通过验算选择合适的地基处理方法。 1.2地基处理 可根据本地区的地质条件选择不同的处理方法。地质条件好的地区,处理方法可简单一些,原地面整平压实后做C15砼条形基础即可。对于地基承载力不够的地基,应将地表的泥浆或粘泥清理干净,下挖松散粘土,一般下挖深度为60cm,换填矿渣、石子等优良填筑材料,或用石灰缠拌分层碾压,并夯实平整,设置横坡,四周挖排水沟,以防积水而浸

泡地基,导致地基下陷。对一些不易处理的软弱地基,可采用20cm的混凝土硬化。 2.支架搭设 1)支架方式的选择:根据就地取材、施工方便的原则,一般采用碗扣式支架或钢管支架。 2)间距、步距的确定:根据最不利位置荷载大小,查阅《公路施工手册》,确定支架杆的间距、步距,尽可能保证安全系数较大。在支架的底部,为分担上部传递的荷载,增大支架与地基的接触面积,可垫以枕木或预制混凝土块,混凝土块的大小可采用80cm×40cm×15cm。 3)支架稳定性的验算:支架确定后,应当验算其稳定性,由剪应力验算支架斜向剪力,并适当增加斜向杆,抵消其剪力影响,满足横向杆架立稳定。 4)底模下方木的验算:在支架的顶部,一般采用12cm×15cm×250cm的方木作为横梁,方木的排列间距为20cm—40cm,并验算方木的最大挠度,为保证底板的平整度,方木的尺寸大小应当统一。 3.模板的铺设 1)模板的选择:为保证混凝土表面的光洁度及平整度,底模板一般采用比较经济的竹胶板,因为其强度、刚度满足要求,韧性、光洁度上佳,周转次数多,模板的接缝容易处理,减少了投资。从现场操作来看,效果比较理想。侧模一般采用大块钢模,以备于架设和固定。 2)模板的铺设:模板铺设时,各个截面的形状、尺寸应准确,满足图纸、规X要求。为确保混凝土面的平整、光滑,应刷以脱模剂,如发现模板有超过允许偏差变形值时,应立即纠正。 4.预压 1)预压的目的:在支架搭设完毕后,由于其刚度的限制,在大地及支架中存在着非弹性变形及弹性变形。为消除非弹性变形,测量弹性变形的大小,防止因支架变形而造成混

挂篮悬浇连续梁桥的施工监控

第1题 施工监测一般要求什么时间进行 A.早晨日出之前 B.晚上太阳落山之后 C.没有要求随时都可以测 D.根据施工的进度确定 答案:A 您的答案:A 题目分数:7 此题得分:7.0 批注: 第2题 临时锚固一般何时拆除 A.全桥合拢之后 B.边跨合拢之后 C.中跨合拢之前 D.边跨合拢之前 答案:B 您的答案:B 题目分数:7 此题得分:7.0 批注: 第3题 挂篮一般由哪个单位设计? A.设计单位 B.监控单位 C.施工单位 D.业主委托第三方 答案:C 您的答案:C 题目分数:7 此题得分:7.0 批注: 第4题 立模标高的精度是多少? A.?5mm B.?10mm C.?2mm D.-2mm,+5mm

答案:A 您的答案:A 题目分数:7 此题得分:7.0 批注: 第5题 立模标高中的预拱度数值是如何确定的 A.施工监控单位自己计算确定 B.由设计单位提供的数值确定 C.根据经验确定 D.施工监控单位计算后请设计单位确认后确定 答案:D 您的答案:D 题目分数:2 此题得分:2.0 批注: 第6题 桥梁施工监控工作开展过程中需要和哪些单位联系 A.建设单位 B.设计单位 C.监理单位 D.施工单位 E.质监站 答案:A,B,C,D 您的答案:A,B,C,D 题目分数:7 此题得分:7.0 批注: 第7题 挂篮预压的目的是什么? A.验证设计 B.消除非弹性变形 C.获取荷载-变形曲线 D.检验临时锚固的性能 答案:A,B,C 您的答案:A,B,C 题目分数:7 此题得分:7.0 批注:

第8题 施工控制的工作内容有哪些? A.有限元分析计算 B.通过立模指令指导现场施工 C.对施工监测数据进行分析,对现场的安全状况进行分析,及时预警 D.有异常情况时,及时组织各参建方共同商讨解决方案 答案:A,B,C,D 您的答案:A,B,C,D 题目分数:7 此题得分:7.0 批注: 第9题 施工监测的内容有哪些? A.梁体的应力 B.挂篮预压的变形观测 C.温度监测 D.梁体的变形观测 E.主墩的沉降观测 答案:A,B,C,D,E 您的答案:A,B,C,D,E 题目分数:7 此题得分:7.0 批注: 第10题 关于合拢段施工哪些说法是正确的? A.边跨合拢段施工时可以不进行配重 B.未来避免混凝土开裂,中跨预应力张拉要快,不宜进行分批张拉 C.合拢段施工的时机宜选择在一天当中温度最低的时段 D.中跨合拢段预应力张拉前主墩墩顶的支座的临时锚固要解除 E.边跨合拢段施工结束后,可以解除主墩的临时锚固 答案:D,E 您的答案:D,E 题目分数:7 此题得分:7.0 批注: 第11题 挂篮有哪几个部分组成?

预应力混凝土连续梁桥施工方法

预应力混凝土连续梁桥施工方法 预应力混凝土连续梁桥不但具有可靠的强度、抗震能力及抗裂性,而且具有行车舒适平稳、养护工作量小、伸缩缝小、造型美观、设计及施工经验成熟等一系列优点,是目前桥梁结构中的常见桥型。本文主要介绍了江苏省青阳辅道桥的施工方法,此桥梁跨径198m,设计为54m+90m+54m的三跨连续变截面箱梁,悬臂施工法施工。 标签:预应力混凝土连续梁;悬臂施工法;验算 预应力混凝土连续梁桥具有一系列优点。连续梁桥是一种常见的结构体系。它具有变形小,结构刚度好,行车平顺舒适,伸缩缝少,抗震能力强,养护简单等优点。连续梁桥可以说是现代技术比较成熟的一种桥型,特别是高速路的发展使连续梁桥达到了最广泛的应用。它与简支梁桥在结构上的不同之处是:简支梁桥以跨为单位,各跨梁在支点上断开;而连续梁桥则是由若干跨梁组成一联,再由一联或多联组成整桥,各跨梁在支点上连续通过。 1、发展现状 自60年代中期在德国莱茵河上的采用悬臂浇筑施工法建成Bendorf桥以来,悬臂浇筑施工法得到不断改进、完善和推广应用,从而使得预应力混凝土连续梁桥成为许多国家广泛采用的桥型之一,因此巨大的时代潮流促使工程人去不断推进预应力混凝土连续桥的发展。 我国自50年代中期开始修建预应力混凝土连续梁桥,至今已有几十年的历史了,比欧洲起步晚,但是发展却很迅速。在预应力材料的选择及施工设备,施工技术等,都达到了世界先进水平。 建立四通八达的现代交通网,大力发展交通运输事业,对于发展国民经济,加强全国人民的团结,促进文化交流和巩固国防等方面,都具有重要的作用。在交通网中,桥梁占据着重要的地位,因此桥梁的建设显得十分重要。特别是近几年来国家大力发展高速公路高速铁路等,对桥梁的平稳性、舒适性提出了更高的要求,因此混凝土连续梁桥无疑成为了建设道路的首选。 2、工程概况 青阳港辅道桥是江苏省苏州市下辖的县级市昆山的一座辅道桥。青阳港辅道桥分南北两幅建于原青阳港大桥南北两侧,北辅道桥桥梁起讫点桩号分别为FBK7+950.0、FBK8+814.0,桥梁全长864m,其中在桩号FBK8+531.375~FBK8+680.765间的桥梁平面位于R=3479.625m的左偏圆曲线上;南辅道桥桥梁起讫点桩号分别为FCK8+018.0、FCK8+882.0,桥梁全长804m,其中在桩号FCK8+531.375~FBK8+682.515间的桥梁平面位于R=3520.375m的左偏圆曲线上。全桥行车道及非机动车道均为向外2%横坡,人行道为向内1.5%横坡。

连续梁施工控制要点

珠三角城际轨道交通网 至轨道交通GQZH-2标 连续梁施工控制要点

中铁十一局集团广清城际GQZH-2标项目经理部 二○一四年八月

连续梁施工控制要点 引言:几个关键词定义 简支梁:两端为铰支承的梁。 连续梁:沿梁长方向有三处或三处以上由支座支承的梁。 连续刚构:梁与中间墩刚性连接的连续梁结构 悬臂浇筑法:在桥墩两侧设置工作平台,平衡地逐段向跨中悬臂浇筑混凝土梁体,并逐段施加预应力的施工方法。 一、连续梁支架系统 图1-1、支架钢管立柱图1-2、支架系统(1)主要施工工艺介绍 1、0#块及现浇段支架采用Φ630mm和800mm钢管立柱,钢管上横梁采用双拼56工字钢,纵向分配梁采用40工字钢,浇筑段坡度通过扇形排架来调整,扇形排架采用20工字钢,间距85cm。钢管之间剪

刀撑采用20槽钢。 2、支架预压:预压荷载不小于最大施工荷载的1.2倍,预压加载分三级加载,分别为60%、100%、120%,第三级加载后最后两次沉落量观测平均值之差不大于2mm时,即可终止预压开始分级卸载。 图1-3、支架预压 (2)施工控制要点 1、钢管之间焊接要满焊,剪刀撑与钢管之间焊接采用钢板帮焊。控制好立柱倾斜度。 2、支架体系要严格按照方案执行。 3、扇形排架高度一定计算准确,直接决定了模板标高。 二、连续梁模板

图2-1、0#块模板安装 (1)主要施工工艺介绍 模板分底模、外模、模。 连续梁模板采用大型钢模,先在平整场地将模板试拼,对模板尺寸及拼缝进行检查,发现问题及时与厂家联系。 图2-2、连续梁模板 (2)对于0#块及现浇段模板:先安装底模,待其标高和轴线调整到位,再安装外模。外模安装时先安装中间段再安装两端。待其调

悬浇梁桥施工监控

施工监控的意义、原则、方法和依据 2.1施工监控的意义 桥梁悬臂施工中,由于施工荷载的变化、新浇筑混凝土重量的误差、结构弹性模量的变化、挂篮的重量和移动的位置、温度的变化、结构体系调整以及混凝土的收缩与徐变等均会影响结构的变形和内力,而这众多的因素在设计阶段是无法准确确定的,这些因素的改变均可能引起桥梁结构线形与内力的改变,影响施工质量,甚至危及桥梁安全。为了使施工能按照设计意图进行,确保施工安全并最终达到设计的理想状态,通过对箱梁实施施工全过程的跟踪监控监测,对控制参数进行实时调整,以确保施工中结构的安全、箱梁最终线形平顺、内力分布合理,使成桥状态的外形和内力符合设计要求,确保桥梁施工安全和正常运营。 对于悬臂施工的预应力混凝土连续梁结构来说,施工控制就是根据施工监测所得的结构参数真实值进行施工阶段的结构仿真分析,确定出每个悬臂浇筑阶段的立模标高,并在施工过程中根据施工监测的成果对误差进行分析、预测下一节段立模标高及进行相应的调整,以此来保证成桥后桥面线形、合龙段两悬臂端标高的相对偏差不大于规定值。同时监测平面线形是否满足有关规范的要求,并在施工过程中监测结构应变是否在设计及规范允许的范围内,保证结构安全。 施工监控的意义主要体现在以下几个方面: 1)设计图纸的要求是施工的目标,在为实现设计目标而必须经历的施工过程中,通过施工监控,可对施工状态进行实时识别(监测)、调整(纠偏)、预测,使施工处于有效的控制之中,确保设计目标安全、顺利实现是至关重要的。 2)通过对桥梁施工过程中的结构受力、变形及稳定进行监测控制,使施工中的结构处于最优状态。施工监控是施工质量控制体系的重要组成部分,是保证桥梁建设质量的重要手段,是对桥梁建设质量的宏观调控,是桥梁施工质量控制的补充与前提。 3)监控单位配合监理,辅助业主,指导施工,解决桥梁施工质量控制过程中的关键技术问题。 4)通过施工监控,可取得在成桥后无法得到的桥梁部分“参数”,建立档案,为后期桥梁的管理与养护,提供依据。 5)将施工监控与桥梁荷载试验结合起来,可以得到仅靠荷载试验无法取得的桥梁恒

预应力砼连续箱梁顶推法施工方法

预应力砼连续箱梁顶推法施工方法 顶推法施工适应于截面等高,跨径70-80m以内,平曲线以竖曲线为同曲率的预应力砼连续梁。顶推法施工不受通车、通航及水情、气候的影响,梁段在桥头实行工厂化施工、质量、工期易于控制和保证。 一、施工方法 1.施工准备 (1)根据桥跨数量、设备条件、场地情况及工期要求,确定预制、顶推的方案。 (2)在桥台后面的桥轴线位置的引道或引桥上设置预制场。对于纵坡小于1.5%的桥梁,预制场地设在上坡桥台后面,如纵 坡大于1.5%则设在下坡的桥台后面。为了加速施工进度并有 条件时,也可在桥两端设预制场地,从两岸相对顶推。如桥头 引道直线长度受到限制,也可在引桥或靠岸一孔上设置“临空 式”的预制台座。 (3)预制场布设时应考虑梁身分段和每段是全断面整体浇筑还是全断面分次浇筑的长度,梁身前面设导梁时,应考虑拼装导 梁的场地,此外,还应考虑拼装第一跨预出时,梁体本身的稳 定安全度。 (4)在引道上的预制场必须将地基先辗压密平,并采取排水措施,使其不沉陷、不积水,如地基承载力不足时,宜选用桩基 础。在平整、密实的地基浇注砼台座,砼基础台座尺寸必要满 足强度、刚度、稳定性要求,在引桥上的预制台座、临时墩的

墩的基础、装配式大梁、横梁、纵梁均应进行设计计算,使台座的强度、刚度(挠度及基础的沉降)和稳定性均符合设计要求。 (5)当用顶推修建的桥梁是设在竖曲线上时,台后预制段各台座支点的标高,应在同一半径的竖曲线圆弧轨迹上。 (6)为减小顶推时产生的内力,以节省临时张拉束,采用设置导梁、临时墩、墩旁临时撑架、斜缆索加固或两端对顶跨中合拢梁段等措施。 (7)系梁可用贝雷桁架或万能杆件拼制,并可在导梁底部用加劲弦杆或型钢分段加劲,导梁设置的长度一般为顶推跨径的 0.6-0.8倍,刚度为主梁的1/9-1/15。最好将导梁从根部至前 端拼成变刚度或分段变刚度。主梁端部的顶板、底板内预埋厚钢板或型钢伸出梁端与导梁连接,主梁端应设横隔梁加固,导梁与箱梁接头处应用预应力束连接以防梁端接头处砼开裂。(8)如跨径较大,现场条件允许时,可在设计跨径中间设置临时墩以减小顶推跨径,临时墩一般采用装配式空心钢筋砼柱,并利用斜拉索或水平索拉柱临时墩,锚碇在永久桥墩上,以加强临时墩抵抗水平力的能力。 2.梁段预制 (1)梁段浇注可根据条件及技术要求采取一次全断面浇注或分底板、腹顶板两次浇注或底、腹、顶板三次浇注,可以等全截面完成后再向前顶推。

连续梁桥施工方案

连续梁桥施工方案 一、工程概况 天桥为上跨机耕天桥。上构为四跨4x20预应力变截面钢筋混凝土连续箱梁,梁宽5.5m ;下构为柱式桥墩、肋式桥台、两层明挖扩大基础。桥墩墩身、扩大基础均为C20片石砼;桥台台身为C25砼,扩大基础为C15砼;梁体为C30砼。 二、施工准备 天桥施工之前,首先将临时便道修通,以便不影响原道路行车。同时做好征地拆迁等一切 准备工作。 三、施工方案 一)下构施工 基础施工 1、施工要点 (1)本合同段地处膨胀土地段,明挖基础开挖后,应严格进行验槽,及时施工和回填封闭,以减少各种自然因素对基坑的不利影响;如实际承载力与设计有出入时,应报请有关部门同意并采取相应处理措施。基坑开挖土方以挖掘机开挖为主,人工辅助修整基坑。采取放坡开挖为主,基坑排水采用集水坑法。基坑放坡的坡度根据现场地质情况和地下水的情况具体确定。当开挖深度大于4m的基坑时,采用分台阶放坡开挖方案。 (2)片石砼施工严格按图纸设计进行。石料应坚韧、密实、坚固与耐久,能抵抗风化和水流的冲蚀,质地适当细致,色泽均匀,无缝隙、开裂及结构缺陷。石料不得含有妨碍水泥浆的正常粘结或有损于外露面外观的污泥、油质或其它有害物质。填充片石的数量不超过砼体积的25%,片石厚度不小于150mm,片石不得接触钢筋或预埋件。 (3)砼采用现场搅拌,吊车辅助浇注,插入式振捣器振捣。 2、施工注意事项 (1)基础开挖应报请相关部门检查、测量基础平面位置和现有地面标高并获得批准后实施。(2)坑顶边缘留有护道,避免在此范围内加载,以保持边坡稳定,静载距坑缘不小于0.5m,动载距坑缘不小于1.0m。荷载距坑缘距离应满足不使土体坍塌为限。 (3)使用机械开挖,不得破坏基底土的结构,可在设计高程上保持一定厚度(约30cm), 由人工开挖,做好垫层。 (4)基坑开挖不宜间断。开挖好的基础应及时进行灌注基础混凝土施工。避免开挖后的基 坑暴露过久,影响基坑的承载力。 (5)、在施工期间,应维护天然水道并使地面排水畅通无阻;基础挖方应始终保持良好的排水,在挖方的整个施工期间都不致遭受水的危害。 (6)砼灌注完成后,及时养护。当结构物与流动性的地表水或地下水接触时,应采取防水措施,保证混凝土在浇筑后7d之内不受水的冲刷。当环境水有侵蚀作用时,应保证混凝土在浇筑后10d内以及其强度达到设计等级的70%以前,不得受水的侵袭。 (7)基础砼拆模后经相关部门许可,方可按要求及时分层回填夯实。 2、墩台身施工 钉桩放线:基础施工完毕后,用光电测距仪精确定出各台、墩的中心桩号以及轴线控制桩。 (1)桥台台身 ①根据台轴线控制桩,弹出台身的立模边线,以便立模; ②根据测量的边线调整预埋的钢筋,搭设支架安装台身钢筋。 ③立模:大面采用大块钢模板。 ④砼采用现场搅拌,吊车配合浇注, 砼浇注高度超过2m时应采用串筒下料以免砼离析,同时

连续梁挂篮施工安全控制措施(2021年)

连续梁挂篮施工安全控制措施 (2021年) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0630

连续梁挂篮施工安全控制措施(2021年) (1)挂篮上使用的所有配件、器具,必须符合国家质量检验标准及受力要求。 (2)施工过程中必须佩戴安全帽、安全带、穿防滑鞋,遵守项目部的相关规章制度。 (3)施工过程中,必须有一名经验丰富的、体力充沛的人员,进行协调统一指挥。 (4)砼浇筑前必须对挂篮上所有锚点及吊点进行检查,必须符合技术交底要求后,方可进行砼浇筑施工。 (5)挂篮应进行使用前的调试组拼,调试组拼后,要进行仔细地检查各部件联接牢固情况,各接头焊缝是否合格,杆件是否变形等现象,各联接配件是否齐全,尺寸是否按设计要求,发现问题及时整改。

(6)及时准备机具设备并进行检查 ①千斤顶:在使用前应对各部位所使用的千斤顶大小,按技术要求准备好,并进行调试检查,不合格的千斤顶不能使用。 ②倒链:使用前要进行仔细地检查倒链的每一个链环接头是否会脱焊,各齿倒顺要灵活,吊重的吨位要符合设计要求,禁止使用小吨位的倒链代替大吨位使用,确保施工过程中的安全。钢丝绳的使用安全:在挂篮上各部位所使用的钢丝绳粗细要严格按照设计要求进行准备,不得任意使用不合格的钢丝绳。钢丝绳两头的吊环要用穿绳法,重要部位禁止使用U型卡做绳头吊环,防止使用过程中绳头滑脱,发生安全事故。 ③精轧钢及螺母:使用前精轧钢必须为新购合格的,并且不能存在变形。吊杆下吊点必须采用双螺母,螺母下端精轧钢必须留有2道以上的丝扣。 ④螺母垫片:螺母垫片必须采用2cm厚以上钢板或2根16以上槽钢制作的扁担梁,它们的长度必须大于挂篮各主横梁或压梁的宽度,不得局部受力。

轨道双线预应力混凝土连续梁桥施工监控方案

轨道双线预应力混凝土连续梁桥施工 监控方案

西南交通大学 SOUTHWEST JIAOTONG UNIVERSIT Y 新建铁路怀邵衡线 怀化至衡阳段客货共线 (60+100+60)m有咋轨道双线预应力混凝土 连续梁桥施工监控方案 西南交通大学峨眉校区

二O—五年五月

文档仅供参考目录 1 工程概况................... 2 监控的目的、原则、方法及主要工作. ................ 2.1 监控目的.................. 2.2 监控原则.................. 2.3 控制方法.................. 2.4 主要工作.................. 3 施工监控内容................. 3.1 施工监控主要依据. ......................... 3.2 仿真分析计算、施工阶段及控制工况划分..... 3.3 基础资料及试验数据的收集........... 3.4 施工过程结构变位、温度及裂缝观测........ 3.5 施工过程中结构应力—应变测量......... 3.6 精度控制及预警系统.............. 3.7 拟投入本项目主要设备仪器一览表........ 4 施工控制的管理体系. ............................ 4.1 监控实施中的总体要求............. 4.2 施工监控控制体系............... 4.3 施工监控的组织体系.............. 4.4 施工监控体系中的信息采集........... 4.5 施工监控中的实时监测体系及结构安全预报体系错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签

连续梁线形监控方案

新建铁路郑州至开封城际铁路工程(60+100 +60) m 连续梁 施工监控方案

郑州铁路局科学技术研究所二o—年七月

.word 格式, 4.2.1技术体系 4.2.2组织体系 4.2.3协调体系 5.4.1主梁线形监测 5.4.3线形控制的实施 1概述 1.1项目概况 1.2技术标准 1.3监控方案制定依据 2施工监控的目标 3施工监控的目的和任务 4拟采用的施工监控方法和体系 4.1 施工监控方法 4.2 施工监控体系 . 1 .1 .3 5.6 施工控制报告 1.5 6施工监控技术方案的保障措施 附表一:主梁施工控制数据指令表 15 16 附表二:梁段观测表 .18. 附表三:梁段模板变形观测表 2.Q. 附表四:桥梁实际参数测试表 22. 附表五:主梁轴线偏移及基础沉降观测表 23. .5. 4.3 对施工监控技术体系的进一步说明 4.3.1施工控制计算 4.3.2误差分析 .6. 4.3.3施工误差容许度指标 7. 5施工控制的主要工作 7. 5.1 实际参数的测试 5.2 实时控制 1.Q 5.3 监控计算 1Q 5.4 几何控制 12 .12. 14

1概述 1.1项目概况 新建铁路郑州至开封城际铁路工程(60+100+60) m预应力混凝土连续梁为单线、有砟曲线桥。主梁为单箱单室截面,中支点梁高7 m,跨中梁高4 m ,梁顶宽8.5 m,梁底宽5.5 m。顶板厚度除梁端附近外均为41.5 cm ;底板厚度38 cm至85. 2 cm,在梁高变化段范围内按抛物线变化,边跨端块处底板由38 cm渐变至108 cm ;腹板厚40 cm至75 cm,按折线变化,边跨端块处腹板厚由40 cm渐变至60 cm。全桥在端支点、中支点及跨中处共设5个横隔板,横隔板设有孔洞,供检查人员通过。全桥共分55个梁段,0号梁段长度13 m,普通梁段长度为 3.0?4.0 m,合拢段长2.0 m,边跨现浇直梁段长11.65 m。主梁两个边跨直梁段和主墩0#块均采用支架法施工,其余梁段均采用挂篮对称悬臂施工。悬臂段施工完毕后,先合拢边跨,再合拢中跨。 为保证本桥在施工过程中的安全和施工质量,成桥后线形满足设计要求,运营后环境因素 及列车荷载等对线形的影响规律,并结合本桥的施工方案特制定本桥的施工监控方案。 1.2技术标准 (1)铁路等级:联络线; (2)桥上线路:单线,有砟轨道,曲线半径R=400 m,轨顶至梁顶高0.826m ; (3)设计行车速度:不大于80 km/h ; (4)设计活载:ZK活载; (5)牵引类型:电力; (6)环境:一般大气环境,作用等级为T2,冻融环境为D1。 1.3监控方案制定依据 (1) <新建时速200?250公里客运专线铁路设计暂行规定》铁建设函[2005]140号); (2) 〈铁路桥涵基本设计规范》(TB10002.1-2005);

相关文档
相关文档 最新文档