文档库 最新最全的文档下载
当前位置:文档库 › 50 years in Fusion

50 years in Fusion

J Jacquinot, FEC 2008

50 years in Fusion

and

the Way Forward 1026watts, 0.01 W/m 3

Credits

Discussions with many colleagues and direct

input from:

R. Arnoux, H. Azechi, B. Bigot; D. Besnard, S.

Bourmaud, J. Ebrardt, Ph. Ghendrih, M. Kikuchi, R.

Stambaugh, G. Mank, A. Malaquias, D. Meade, E.

Oktay, M. Skoric, Q. Tran, H. Yamada

https://www.wendangku.net/doc/a918710160.html, 起重机立体停车设备电动葫芦https://www.wendangku.net/doc/a918710160.html, https://www.wendangku.net/doc/a918710160.html,

Case for fusion

Key milestones

Lessons from the past

The way forward

Energy: a major challenge for the 21st century China 2006: + 105 GW, 90% coal!

about the total installed power in France (107 GW)

Today: > 80 % of primary energy comes from fossil resources Gas & petrol consumption exceeds new discoveries

Increasing dependence for energy (> 50 % for EU)

Energy = 4000 billions Euros per year

Back to coal or do better ?

Moderate consumption, renewable energy, fission, fusion Fusion presents major advantages

Why Fusion ?

?Fuel

–Inexhaustible and well

distributed on earth

Deuterium: plentiful in the oceans

Radio toxicity Tritium: produced from Lithium

?Safety

–No run away effect

–No proliferation

?Wastes

–Neutron induced activation

(low radio toxicity < 100

years)

Years after shutdown

3 ways for fusion

gravitation :1.3 108m 3 1016s 109atm

Ion temperature : 100 million deg ?thermal energy = 10 keV

Sun

magnetic :

10 m 400 s 2 atm inertial :10-2m 10-8s 109atm

Tokamak

JET / ITER

Target compression

To ignite :

nT i τE ~ 1021m -3.keV.s ~ 1 bar.seconde

τE = energy confinement time

Confinement:Dimension:Duration:Pressure:

Milestones

?1932 -1958

–Fusion discovered

–Lawson criteria →Confinement or compression essential

?1958

–Fusion declassified (also Kurtchatov at Harwell in 1956)–Artsimovitch, Teller →international collaboration –Many labs created

?1968 -1990

–Tokamak breakthrough ; global stability

?1990 –2000+

–Scaling laws

–Fusion for real →Tok: Pfus > 10MW; 51018neutrons

→Tok + Stel : Duration >> minutes

→IF:600 times liquid , 10keV, 2x1013neutrons

?2000 to present

–Start of a new era →ITER + BA; NIF & LMJ

E s t a b l i s h p l a s m a p h y s i c s

S p i n -o f f o f p l a s m a s

They discover the neutron, fission & fusion

The stars then the criterion

J. D. Lawson 1923 –2008

nτE≥1.5x1020

Kadomtsev et al: plasma stability 111 papers : Aymar, Braguinsky,

Bierman, Dreicer, Drummond, Kerst, Lehnert, Myamoto, Rosembluth, Shafranov

Thoneman etc Just to name a few…

Spitzer: describes the Stellarator

Plasma physics is very difficult. Worldwide collaboration is needed

for progress Fusion technology is very complex. It is almost impossible to build a

fusion reactor in this century

L.A.Artsimovich E.Teller

Around 1958: Creation of many labs

An example:

Creutz, Bohr & Kerst in 59 at the dedication of the Jay Hopkins Lab Strong links with universities (US, Japan, Germany, France etc.)

Euratom -TEKES (1995)Finland (incl. Estonia)

Euratom -DCU (1996)Ireland

Euratom -?AW (1996)Austria

Eur -Hellenic Rep (1999)Greece (incl. Cyprus)

?Euratom -IPP.CR (1999)Czech Rep.

Euratom -HAS (1999)Hungary

Euratom –MEdC (1999)Romania

Euratom –Univ. Latvia Latvia (2002)

Euratom -IPPLM (2005)Poland

Euratom -MHEST (2005)Slovenia

Euratom –CU (2007)Slovakia

?Euratom –INRNE (2007)Bulgaria

Euratom –LEI (2007)Lithuania

Euratom -CEA (1958)France

Euratom –ENEA (1960)Italy (incl. Malta)

Euratom -IPP (1961)Germany

Euratom -FOM (1962)The Netherlands

?Euratom -FZJ (1962)Germany

?Euratom -Belgian State Belgium (1969)(incl. Luxembourg)

Euratom -RIS? (1973)Denmark

Euratom –UKAEA (1973)United Kingdom

?Euratom -VR (1976)Sweden

Euratom -Conf. Suisse Switzerland (1979)Euratom -FZK (1982)Germany

Euratom –CIEMAT (1986)Spain

Euratom –IST (1990)Portugal

Euratom 26 Fusion Associations

Joint construction of JET (1978)

Milestones (toroidal devices)

Period Phys. concepts Experimental/Technology

1958 -68Foundations:Spitzer (Stellarator, div),

Kadomsev, Rosembluth, Sagdeev,

Shafranov etc

Mirror machines:Ioffe stabilizes

interchange but micro instabilities

Tokamak breakthrough (1 keV on T3)

1969 -78Heating systems:NB, IC, EC; Current

drive:LH (Versator, Porkolab, Fish &

Karney)

Neo-classical theory -Bootstrap current

(Galeev, Bickerton, multipole TFTR)

TFR, Ormak (2keV), PLT (7keV) confirm

confinement and use heating (NB & IC)

Conf. degrades vs P but improves with H-

mode (Asdex ‘80) & pellet (Alcator C ‘83)

1979 -88Scaling laws(Goldston)

Limits:Beta (Troyon), density (Greenwald)

Russian gyrotrons (T10)

Divertor/H-mode phys (JFT2-a, JFT2-a)

Construction of many tokamaks

1989 -98Confinement barriers

GyroBohm scaling(wind tunnel and later

by simulation)

D/T > 10MW in TFTR & JET(+ beryllium

+Remote Handling); Divertor studies;

NNBI(LHD, JAERI)

1999 -08Advanced/hybrid Tokamak(DIII-D, JT-

60, Asdex-U, etc.)

Simulation:intermittency, zonal flows

1GJ on Tore Supra, 1.6GJ on LHD

Elm mitigation (DIII-D; JET)

Construction:ITER, EAST, KSTAR, ST1

Breakthrough in Kurtchatov (FEC 1968) T confirmed by UK Thomson scattering team

External diameter 13.5 m Plasma major radius 3.9 m Plasma minor radius 0.6 m Plasma volume 30 m 3Magnetic field 3 T Total weight 1500 t

NBI (Co)

NBI (Ctr)

Local Island Divertor (LID)

ECR 84 –168 GHz

ICRF 25-100 MHz

Large Helical Device

(LHD)

NBI (Perp)

NBI (Ctr)

JFT-1

JFT-2

Doublet III

JFT-2a JFT-2M

JT-60U/JT-60

JFT-2a (DIVA)

First Divertor Experiments in the world (1974-1979)

JFT-2M

Shell

Divertor coil Tokamak line Fusion Research in Japan (JAERI/JAEA)

Tokamak confinement with a noncircular cross section (1983-2004)

?H-mode physics

?Edge plasma control

?AMTEX (Advanced Material

Progress of Fusion Plasma Performance in JT-60U

?Highest DT-equivalent fusion gain

of 1.25

?Highest ion temperature of 45 keV

?Development of steady-state

tokamak operation scenario

?Confinement physics

?Divertor physics

?N-NB injection

Fusion for real: TFTR & JET

ITER basis

(5x1018n)

Establishing the ITER organization

Negotiations

Milestones for inertial confinement 1960 Laser innovation

Townes, Basov, Prochorow, Maiman

1969 1 keV and DD neutrons

France:Limeil (Floux et al)

1972 Implosion concept

Nuckolls

1986 10-keV temperature demo.

Japan 1x1013neutrons

US 2x1013neutrons

1989 High-density demo

US 100-200 times liquid density

Japan 600 times liquid density

US high convergence

US-NIF France-LMJ

光纤通信原理及应用

光纤通信原理及应用 摘要:光纤通信技术是利用半导体激光器等光电转换器将电信号转换成光信号,并使其在光纤中快速、安全地传输的一门新兴技术。光纤是一种理想的传输媒体,它具有传输时延低、高通信质量、高带宽、抗干扰能力强等特点。光纤在高速以太网中有着广泛的应用。论文主要分析了光电信号的转换、光纤通信的基本原理并介绍了光纤在通信领域中的一些应用。 关键词:光纤通信;光电转换;全反射 1. 引言 光纤是用光透射率高的电介质构成的光通路,它是一种介质圆柱光波导,它是用非常透明的石英玻璃拉成细丝,主要由纤芯和包层构成双层通信圆柱体。光纤通信就是在发送端利用半导体激光转换器将电信号转换成光信号并利用光导纤维传递光脉冲来进行通信,光波通过纤芯以全反射的方式进行传导,有光脉冲相当于1,没有光脉冲相当于0。同时,接收端利用光电二极管或半导体激光器做成光检测器,检测到光脉冲时将光信号还原成电信号。在由于可见光的频率非 常高,约为8 10MHz的量级,因此一能做到使用一根光个光纤通信系统的传输带宽远远大于其它的传输媒体的带宽。同时利用光的频分复用技术,就纤来同时传输多个频率很接近的光载波信号,使得光纤的传输能力成倍地提高。 2.理论模型 在光纤通信系统的发送端使用光电信号检测电路将电信号转换成光信号,并使得光信号以大于某一角度入射到光通道,此时光信号在光纤以全反射的方式不断向前传输,并在接收端再将光信号转换成电信号进行进一步的处理。 2.1 光电信号检测电路的基本原理 光电检测电路主要由光电器件、输入电路和前置放大器组成。其中,光电检测器件是实现光电转换的核心器件,它把被测光信号转换成相应的电信号;输入电路为光电器件正常的工作条件,进行电参量的变换并完成前置放大器的电路匹配;前置放大器能够放大光电器件输出的微弱电信号,并匹配后置处理电路与检测器件之间的阻抗。 2.1.1 光电信号输入电路的静态计算 图解计算法是利用包含非线性元件的串联电路的图解法对恒流源器件的输入电路进行计算。反射偏置电压作用下的光电二极管的基本输入电路如下:

光纤通信原理与技术课程教学大纲

《光纤通信原理与技术》课程教学大纲 英文名称:Fiber Communication Principle and its Application 学时:51 学分:3 开课学期:第7学期 一、课程性质与任务 通过讲授光纤通信技术的基础知识,使学生了解掌握光纤通信的基本特点,学习光纤通信系统的三个重要组成部分:光源(光发射机)、光纤(光缆)和光检测器(光接收机)。通过本课程的学习,学生将掌握光纤通信的基本原理、光纤通信系统的组成和系统设计的基本方法,了解光纤通信的未来与发展,为今后的工程应用和研究生阶段的学习打下基础。 二、课程教学的基本要求 要求通过课堂认真听讲和实验课,以及课下自学,基本掌握光纤通信的基础理论知识和应用概况,熟悉光纤通信在电信、通信中的应用,为今后的工作打下坚实的理论基础。 三、课程内容 第一章光通信发展史及其优点(1学时) 第二章光纤的传输特性(2学时) 第三章影响光纤传输特性的一些物理因素(5学时) 第四章光纤通信系统和网络中的光无源器件(9学时) 第五章光纤通信技术中的光有源器件(3学时) 第六章光纤通信技术中使用的光放大器(4学时) 第七章光纤传输系统(4学时) 第八章光纤网络介绍(6学时) 第九章光纤通信原理与技术实验(17课时) 四、教学重点、难点 本课程的教学重点是光电信息技术物理基础、电光信息转换、光电信息转换,光电信息技术应用,光电新产品开发举例。本课程的教学难点是光电信息技术物理基础。

五、教学时数分配 教学时数51学时,其中理论讲授34学时,实践教学17学时。(教学时数具体见附表1和实践教学具体安排见附表2) 六、教学方式 理论授课以多媒体和模型教学为主,必要时开展演示性实验。 七、本课程与其它课程的关系 1.本课程必要的先修课程 《光学》、《电动力学》、《量子力学》等课程 2.本课程的后续课程 《激光技术》和《光纤通信原理实验》以及就业实习。 八、考核方式 考核方式:考查 具体有三种。根据大多数学生学习情况和学生兴趣而定其中一种。第一种是采用期末考试与平时成绩相结合的方式进行综合评定。对于理论和常识部分采用闭卷考试,期末考试成绩占总成绩的55%,实验成绩占总成绩的30%,作业成绩及平时考勤占总成绩的15%;第二种是采用课程设计(含市场调查报告)和平时成绩相结合的方式,课程设计占总成绩的55%,实验成绩占总成绩的30%,作业成绩及平时考勤占总成绩的15%。第三种是采用课程论文(含市场调查报告)和平时成绩相结合的方式,课程论文占总成绩的55%,实验成绩占总成绩的30%,作业成绩及平时考勤占总成绩的15%。 九、教材及教学参考书 1.主教材 《光纤通信原理与技术》,吴德明编著,科学出版社,第二版,2010年9月 2.参考书 (1)《光纤通信原理与仿真》,郭建强、高晓蓉、王泽勇编著,西南交通大学出版社,第一版,2013年5月 (2)《光通信原理与技术》,朱勇、王江平、卢麟,科学出版社,第二版,2011年8月

光传输通信基本原理

第一部分光传输通信基本原理 第一章、光纤通信原理 第一节、光纤通信的概念 一、光纤通信的概念 光纤通信概念:利用光纤来传输携带信息的光波以达到通信的目的。典型的光纤通信系统方框图如下: 模拟信息模拟信息 数字光纤通信系统方框图 从图中可以看出,数字光纤通信系统基本上由光发送机、光纤与光接收机组成。发送端的电端机把信息(如话音)进行模/数转换,用转换后的数字信号去

调制发送机中的光源器件LD,则LD就会发出携带信息的光波。即当数字信号为“1”时,光源器件发送一个“传号”光脉冲;当数字信号为“0”时,光源器件发送一个“空号”(不发光)。光波经低衰耗光纤传输后到达接收端。在接收端,光接收机把数字信号从光波中检测出来送给电端机,而电端机再进行数/模转换,恢复成原来的信息。就这样完成了一次通信的全过程。其中光发送机的调制方式有两种:直接调制也称内调制(一般速率小于等于2.5GB/S时);间接调制也称外调制(一般速率大于2.5GB/S时)。 二、光纤通信的特点 1、通信容量大 2、中继距离长 3、保密性能好 2、适应能力强 5、体积小、重量轻、便于施工和维护 6、原材料来源丰富,潜在的价格低廉 第二节、光纤的导光原理 一、全反射原理 我们知道,当光线在均匀介质中传播时是以直线方向进行的,但在到达两种不同介质的分界面时,会发生反射与折射现象,如图2.5所示。

图2.5 光的反射与折射 根据光的反射定律,反射角等于入射角。 根据光的折射定律: n Sin n Sin 1222θθ= (2.2) 其中n 1为纤芯的折射率,n 2为包层的折射率。 显然,若n 1>n 2,则会有θ2>θ1。如果n 1与n 2的比值增大到一定程度,则会使折射角θ2≥90°,此时的折射光线不再进入包层,而会在纤芯与包层的分界面上掠过(θ2=90°时),或者重返回到纤芯中进行传播(θ2>90°时)。这种现象叫做光的全反射现象,如图2.6所示。

《光通信原理与技术》课程教学大纲(正式)

《光通信原理与技术》课程教学大纲 课程中文名称:光通信原理与技术 课程英文名称:Optical Communication Technology 课程编号:ZF17402 课程性质:专业方向课 学时:(总学时54、理论课学时42、实验课学时12) 学分:3 适用对象:电子科学与技术专业本科学生 先修课程:电磁场与电磁波、通信原理等 课程简介:随着网络化时代的到来,人们对信息的需求与日俱增。现代光通信原理在现代信息科学技术中更是占有举足轻重的作用。通过本课程的学习,使学生掌握和了解光纤通信的原理,系统组成,关键技术及新技术,实际应用的光纤通信系统,以及当前光纤通信领域的最新动态,为今后从事与之相关的工作打下基础。 一、教学目标及任务 光通信原理与技术是电子科学与技术本科专业学生专业课程模块中的一门核心课程,通过本课程的学习,学生将掌握光纤通信的基本原理和光纤数字通信系统的组成,了解光纤通信的未来与发展,为进一步学习现代光纤通信技术打下基础。本课程对培养学生综合应用以前所掌握的光学和通信系统基本知识、模拟和数字通信基本知识等有良好的促进作用。 二、学时分配

三、教学内容及教学要求 第一章光纤通信概论(4学时) 教学要求: 1.了解光纤通信发展的历史; 2.理解光纤通信系统在当今通信领域的重要地位和作用及基本组成。 教学重点与难点: 1.光纤通信发展的历史; 2.光纤通信系统的基本组成。 教学内容: 第一节光纤通信发展史 1.什么是光纤通信; 2.光纤通信中光的作用及特性; 3.光纤通信的优势; 第二节光纤通信系统 1.光发射机; 2.光纤; 3.光接收机; 4.光放大器; 本章习题要点: 光纤通信系统就其基本组成而言有三部分:光发射机、光纤和光接收机,学生应掌握它们的概念和作用。作为光传输煤质的光纤,其衰减特性决定了它的工作波长以及光系统的作用距离,这种局限可由光放大器大大缓解。光纤的色散则限制了传输数据的速率。输入到光纤中光强的大小对光纤特性也有影响,这就是非线性效应。通信容量作为光纤通信系统的主要性能指标也应掌握。 第二章光纤(8学时) 教学要求: 1.了解光纤的种类及其不同的用途; 2.理解阶跃和梯度光纤的光线理论,了解用光线法分析多模光纤的传输原理; 3.理解单模光纤的波动理论。掌握用波动理论讨论单模光纤中的模式特性,光纤中模式的概念,光纤的单模条件; 4.掌握光纤的损耗及色散概念及特性; 5.了解光纤的带宽概念。 教学重点与难点: 1.数值孔径、传播时延、时延差的概念及影响因素;; 2.光纤单模传输条件;

(整理)光纤通信原理及基础知识

偏振模色散受限的最大理论传输距离 B 当比特率大于10Gbs 偏振模色散必须考虑降低光纤偏振模色散值 改进光纤的几何形状导致裸纤的旋转 10 PMD ps4 km 25 Gbs 10 Gbs 40 Gbs 30 180km llkm lkm 10 1600 km 100 km 6km 05 6400 km 400 km 25km 02 40000 km 2500 km 156km 光纤的光学及传输特 性参数之一------偏振模色散受限的最大理 论传输距离光纤的基本参数固有和非固有的偏振模色散原因包层 中心为椭圆包层偏心进入气体侧压涂层椭圆涂层偏心非固有 原因侧压弯曲扭曲光纤的光学及传输特性参数之一------偏振 模色散光纤的基本参数定义光纤作为单模光纤工作的最 短波长工作波长超过此波长时只能传输基模此时光纤为单模光纤工作波长低于此波长 时除基模外高次模也可传输此时光纤为多模光纤光纤的光学及 传输特性参数之一------截止波长光纤的基本参数弯曲损耗 宏观弯曲损耗是指光纤在以远远大于光纤外径的曲率半径弯曲时所 引入的附加损耗微观弯曲损耗是指光纤受到不均匀应力的 作用光纤轴产生的微小不规则弯曲所引入的附加损耗光纤的光学及 传输特性参数之一------弯曲损耗光纤的基本参数衰减系数 色散系数截止波长弯曲损耗 1310nm波长处036dBkm 1550nm 波长处022dBkm 1310nm波长处 0ps nmkm 1550nm波长处19ps nmkm cc1260nm 以75mm为直径松绕100圈1550nm波长处附加衰减005dB

光纤通信原理及技术

光纤通信原理及技术 目录 引言 (1) 正文 (1) 第1章概述 (1) 1.1光纤通信的基本概念 (1) 1.1.1光纤通信的定义 (1) 1.1.2光纤通信发展过程 (1) 1.1.3光纤通信的优点 (2) 1.2光纤通信系统的构成及分类 (2) 1.2.1光纤通信系统的基本构成 (2) 1.2.2光纤通信系统分类 (2) 第2章光纤 (3) 2.1光纤基本的概念 (3) 2.1.1光纤基本结构 (3) 2.1.2光纤分类 (3) 2.1.3 光缆结构及类型 (3) 2.2 光纤传感原理 (4) 2.2.1 光纤传感器的优点 (4) 2.2.2光纤传感器的基本工作原理 (4) 2.3 光纤传感器的分类 (5) 2.3.1 光纤传感器的分类(三种方式) (5) 2.3.2 功能型光纤传感器 (5) 2.3.3 非功能型光纤传感器 (6) 2.3.4 强度调制型光纤传感器 (6) 2.3.5 偏振调制型光纤传感器 (7) 2.3.6 频率调制型光纤传感器 (7) 2.3.7 波长调制型光纤传感器 (8) 2.3.8 相位调制型光纤传感器 (8) 2.3.9 时分调制型光纤传感器 (8) 第3章光端机 (9) 3.1光端机的功能 (9) 3.2光端机基本组成 (9) 第4章复用技术 (9) 4.1光复用技术概述 (9)

4.2波分复用(WDM)的基本原理 (10) 4.3波分复用(WDM)系统结构 (10) 4.4波分复用系统优点 (10) 第5章同步数字系列(SDH) (10) 5.1 基本概念 (10) 5.2 SDH帧结构 (11) 第6章现代光纤网络 (11) 第7章未来的全光网络 (12) 第8章光纤通信技术的发展趋势 (12) 结束语 (13) 参考文献 (13) 引言 计算机的发明使得信息资源的利用更加有效,而网络技术的诞生又使信息资源的应用达到更加充分和完善的地步。信息全球化促进了经济全球化,经济全球化又推到了信息全球化。信息全球化中光纤通信以其独特的优越性,已经成为现代通信发展的主流方向,现在世界上绝大部分的通信业务都是采用光纤通信方式传送的。特别是,以光纤作为主要传输介质的互联网已遍布全球各地,没有光纤通信,就没有今天因特网(Internet)的巨大规模,现代信息社会的发展也就不可能这样快速。 第1章概述 1.1 光纤通信的基本概念 1.1.1光纤通信的定义 光纤通信是以光波作为传输信息的载波、以光纤作为传输介质的一种通信。光纤通信中用户通过电缆或双绞线与发送端和接收端相连,发送端将用户输入的信息(语音、文字、图形、图像等)经过处理后调制在光波上,然后入射到光纤内传送到接收端,接收端对收到的光波进行处理,还原出发送用户的信息并输送给接受用户。 根据光纤通信的以上特点,可以看出光纤通信归属于光通信和有线通信的范畴。 1.1.2光纤通信发展过程 大体说来,光纤通信的发展经历了以下四个阶段。 1.20世纪60年代的研究探索阶段 1966年英籍华人科学家高锟(Charles Kao)发表了名为“用于光频率的介质纤维表面波导”的论文,提出了用石英光纤做光波导进行光纤通信的新概念。该论文是打开现代光纤技术大门的钥匙,具有重要的指向性意义。 2. 20世纪70年代的技术起步阶段

无线光通信的原理和核心部件的一些思考

无线光通信的原理和核心部件的一些思考 发表时间:2018-12-17T14:31:34.300Z 来源:《防护工程》2018年第27期作者:吴峥[导读] 需要发射出数据信号,然后借助光信号进行传输,最终接收完成信息传输任务。 联通(广东)产业互联网有限公司摘要:现阶段,随着科技水平的不断提升,在很大程度上促进着我国通信行业的发展。通信技术作为通信行业的重要支撑力量,在很大程度上决定着传输效率。以往传统的无线电以及光纤通信技术,虽然不会受到地形方面的影响,信道容量非常大,但是传输效率却非常慢。在这种情况下,我们积极的应用无线光通信技术,不仅不会受到地形因素的影响,而且还有着较强的保密性以及较快的传输效率。基 于此,本文深入浅出地阐述了无线光通信原理;其次分析了无线光通信核心部件;最后探讨了无线光通信优缺点。关键词:无线光通信;优缺点;研究分析 一、无线光通信原理概述无线光通信技术的的工作原理,主要包含着以下三个方面的内容:首先,需要发射出数据信号,然后借助光信号进行传输,最终接收完成信息传输任务。无线光通信系统应用的是光电转换技术,在调制完成电信号对光发射机的光源之后,借助具备天线功能的光学望远镜来传输光信号,在望远镜接受到信号后,将信号全部集中在光电检测器,其次信号到达接收机后,完成光信号转换成电信号,然后经过调制调解器,完成信息读取工作,最终接入无线光信号。但是,在这一过程当中需要我们指出的是,光波信号的不同,其透过率也是存在着一定的差异的。在这种情况下,我们要想更加有效的提升透过率以及系统功率,我们就必须要选择更高性能的波段窗口,来确保光信号的稳定传输。 二、无线光通信核心部件分析(一)无线光通信发射机无线光信号主要是借助发射机所产生的,通过将不同类型的电信号,在经过调制解调器的转换之后,成为光信号。无线光通信并不是借助光缆进行传输的,因此光信号主要是椭圆光斑,是由激光管芯激发进而产生的。在这一过程当中,光学行为耦合替代了以往的同轴耦合,传输距离越远的话,那么耦合准值也就越高。我们在设定耦合准值的过程当中,需要充分结合光学耦合效率来进行,避免影响到信号的接收。此外,我们在借助发射机发射光信号的过程当中,应积极的做好人眼防护措施,避免造成危害。(二)无线光通信光学天线无线光信号并不会受到光纤输送路径方面的影响,因而在实际的发射过程当中,往往会存在一定的发散角,导致信号出现泄露的现象。在这种情况下,我们要想最大限度的确保最终的接受准确度,我们就应在接收端设置一套光学天线系统,充分借助其凸、凹透镜的聚焦原理,更好的聚集光信号,降低信号的泄露。光学天线的增益效果和天线的孔径存在密切的关联,如果孔径过大或者过小的话,都会在一定程度上影响着最终的接收效益。在这种情况下,我们在选取天线孔径的时候,就需要充分的结合我们的实际工作状况来进行。除此之外,我们还要严格的设定聚光斑点尺寸的精确度,切实提高光信号的接收效率。(三)无线光通信接收机光信号在传播的整个过程当中,所存在的反射以及折射的现象,会产生码间串扰现象。不仅如此,光信号如果受到空气散射的话,也会消耗信号。在这种情况下,我们在选择接收机的时候,就必须要选择一些有着信号接收灵敏度较强、滤波作用较强的接收机。除此之外,我们都知道无线光信号的传输环境是非常复杂的,因此也就会有非常多的因素影响到光信号,这也就需要无线光通信接收机具备更加广泛的接收范围。(四)无线光通信辅助系统无线光通信辅助系统可以说是一套完善的瞄准跟踪伺服系统,这一系统能够实现对光学天线的自动校准,以此来最大限度的确保光纤通信过程当中的可靠高效的传输链路连接。无线光辅助通信系统,在一定程度上增加了通信系统的经济成本以及设备空间,因此厂家往往会将光学天线和收发器两者进行有机的融合,进而制成一体化的机器。对于输送距离比较近的通信系统,我们可以采用高倍望远镜来取代无线光辅助系统,这能够有效的降低经济成本支出。 三、无线光通信优缺点探讨(一)无线光通信的优点无线光通信技术的最大优势,就是其传输效率非常快,并且有着丰富的频谱资源。无线光通信主要是采用无线激光,然后结合波分复用技术,能够有效的将信号传输效率提升到10Gbit/s,这和以往传统的宽带传输速率相比较而言,得到了极大的提升。丰富的频谱资源,这充分的体现在并不需要申请频率许可证的红外光传输上,这一传输技术并不会受到相关技术协议的影响,并且其抗干扰能力也非常强,这也就赋予了无线光通信更大的优势。在经济成本方面,无线光通信和传统的通信技术相比较而言,也得到了一定的降低,并且其适用范围更加的广泛,不会受到地形方面的影响。(二)无线光通信的劣势在这里需要我们注意的是,无线光通信技术也是存在着一定的劣势的,其传输质量,经常受大气环境因素影响,因此在应用场合方面,也就受到了一定的限制。气象因素也会在很大程度上影响到无线光传输的性能,举个例子来说,如果出现大雾天气的话,就会导致光信号出现发散的现象;在面对雨天天气的时候,就会在一定程度上增加光信号的衰减损耗。在这种情况下,我们在使用无线光通信技术的过程当中,就应积极的结合微波通信,然后将其作为备份节点,以此来提高光通信性能。与此同时,由于无线光通信频谱并不具备频率许可证书,因此在实际的应用过程当中,也就存在着一系列的安全问题。例如:激光射频系统,如果在使用的过程当中存在不规范的现象的话,那么我们在远视的过程当中,极有可能会受到一定的伤害。在这种情况下,我们就应加快构建更加完善的无线光通信安全使用标准,确保操作规范。结语

相关文档