文档库 最新最全的文档下载
当前位置:文档库 › 循环伏安法定义+原理+参数设置

循环伏安法定义+原理+参数设置

循环伏安法定义+原理+参数设置
循环伏安法定义+原理+参数设置

一、循环伏安法(Cyclic Voltammetry)

一种常用的电化学研究方法。该法控制电极电势以不同的速率,随时间以三角波形一次

或多次反复扫描,电势范围是使电极上能交替发生不同的还原和氧化反应,并记录电流-电势

曲线。根据曲线形状可以判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。常用来测量电极反应参数,判断其控制步骤和反应机理,并观

察整个电势扫描范围内可发生哪些反应,及其性质如何。对于一个新的电化学体系,首选的

研究方法往往就是循环伏安法,可称之为―电化学的谱图‖。本法除了使用汞电极外,还可以

用铂、金、玻璃碳、碳纤维微电极以及化学修饰电极等。

1.基本原理

如以等腰三角形的脉冲电压加在工作电极上,得到的电流电压曲线包括两个分支,如果

前半部分电位向阴极方向扫描,电活性物质在电极上还原,产生还原波,那么后半部分电位

向阳极方向扫描时,还原产物又会重新在电极上氧化,产生氧化波。因此一次三角波扫描,

完成一个还原和氧化过程的循环,故该法称为循环伏安法,其电流—电压曲线称为循环伏安图。如果电活性物质可逆性差,则氧化波与还原波的高度就不同,对称性也较差。循环伏安

法中电压扫描速度可从每秒种数毫伏到1伏。工作电极可用悬汞电极,或铂、玻碳、石墨等

固体电极。

2.循环伏安法的应用

循环伏安法是一种很有用的电化学研究方法,可用于电极反应的性质、机理和电极过程

动力学参数的研究。但该法很少用于定量分析。

(1)电极可逆性的判断循环伏安法中电压的扫描过程包括阴极与阳极两个方向,因此从

所得的循环伏安法图的氧化波和还原波的峰高和对称性中可判断电活性物质在电极表面反应

的可逆程度。若反应是可逆的,则曲线上下对称,若反应不可逆,则曲线上下不对称。

(2)电极反应机理的判断循环伏安法还可研究电极吸附现象、电化学反应产物、电化学—化学耦联反应等,对于有机物、金属有机化合物及生物物质的氧化还原机理研究很有用。

3、循环伏安法的用途

(1)、判断电极表面微观反应过程

(2)、判断电极反应的可逆性

(3)、作为无机制备反应―摸条件‖的手段

(4)、为有机合成―摸条件‖

(5)、前置化学反应(CE)的循环伏安特征

(6)、后置化学反应(EC)的循环伏安特征

(7)、催化反应的循环伏安特征

二、循环伏安法相关问题:

1、利用循环伏安确定反应是否为可逆反应(一般这两个条件即可)

①.氧化峰电流与还原峰电流之比的绝对值等于1.

[有时对同一体系,扫描速率不同也会在一定程度上影响其可逆性的一般而言,扫描速

度对峰电位没有影响,但扫描速率越大其电化学反应电流也就越大.]

②.氧化峰与还原峰电位差约为59/n mV, n为电子转移量(温度一般是293K).

[但是一般我们实验时候不是在这个温度下,因此用这个算是有误差的,一般保证其值在100mv以下都算合理的误差.]

2、判断扩散反应或者是吸附反应:

改变扫描速率,看峰电流是与扫描速率还是它的二次方根成正比。

a.若是与扫描速率成线性关系,就是表面控制.

b. 若是与二次方根成线性关系, 就是扩散控制.

3、循环伏安曲线中氧化峰与还原峰的确定

还原峰:阴极反应的电流是阴极电流,对应的峰为还原峰,峰电位越正,峰电流越大,

越容易还原;

氧化峰:阳极反应的电流是阳极电流,对应的峰为氧化峰,峰电位越负,峰电流越大,

越容易氧化。

①、从电位上可以判断,对于同一氧化还原电对,通常氧化峰位于还原峰较正的位置上,也就说,峰电位较正的峰是氧化峰,峰电位较负的峰是还原峰,这是极化造成的结果。

②、看扫描方向:循环伏安法参数设置中有一项起始扫描极性(negtive 还是positive):正扫(从低电压向高电压扫描)是指从负电位到正电位,扫出的峰就是氧化峰;负扫(从高

电压向低电压扫描)是指从正电位到负电位,说明外加电路给电极上加电子,溶液中易发生

还原反应的离子(例如:三价铁离子) 向电极靠近,得到电子,从而发生还原反应,所以扫出

的峰就是还原峰。所以电位越负的话,说明还原性越强,所以扫出的峰就是还原峰。

[正向扫描是从电极上抽提电子的过程,而负向扫描则是给电极注入电子的过程,因此,

正扫是溶液中的离子在电极表面失去电子而被氧化,负扫是离子到电极表面得到电子而被还原,由此出现的峰分别为氧化峰和还原峰。]

③、失电子导致电流的产生。我们定义电流方向时是与电子传导方向相反,但是电流方

向必然和电子传导方向有对应关系。而负电流和正电流则代表两个不同的电流方向。当发生

正负电流转变时,必然是电子传导方向发生了转变。电子传导方向发生改变,必然是电化学

发生了氧化与还原反应的转变。所以说,电流方向的改变才是电化学反应方向的转变。

④、所谓氧化还原指的是工作电极上的物质的得电子或者失去电子,得与失关键看电极上的物质。氧化还原都是相对于工作电极讲的。在电极上的物质的氧化还原不是说电压低就

是还原,而是要看物质的状态。

电压与物质的状态有一个对应的关系。从负的电压向正扫时,物质会逐渐氧化,而不

是因为电压还是处于低的就是还原。在同一电压向正扫和向负扫将分别是氧化和还原,不是

看电压高低来决定是氧化还是还原

比如电解水就符合无论正扫还是反扫都一样,还有就是燃料电池催化剂,因为电极不参与反应,而反应物在电解液中,产物变成气态跑掉,也就是不可逆反应。而人家讲的是完全

可逆反应,也就是没有滞后效应,当然扫描方向一反就从还原变氧化了。

举例:(小木虫上的问题)

碱性环境下氢电极来说,当扫描电压从-0.8向更负的方向扫描时阴极上一直发生还原

反应,假设扫描中在-1.2电位出出现峰值,在-1.5处开始反向扫描,个人认为在反向扫描中电极上还是发生还原过程,怎么会像所有书上说的发生氧化过程呢?,难道反向扫描时整个阴

极阳极电位也发生了交换?

解释:得失电子和你所在电位没有直接关系。扫描方向一个重要的基本概念是给电子

还是夺电子。简单的说,向正电位方向扫描时,工作电极是失去电子。这个失去是强迫性的。是外在电路强加的电流方向。也就是工作电极连接的是电源正极。这里还有个概念就是阴阳

极和正负极的问题。只要是失去电子就是阳极,在电解池是正极,在电池放电时负极。正扫

描对于工作电极就是正极,发生阳极反应。被氧化。负向扫描,外在电路强制换向,是负极,供给电子,阴极反应。因而在阴极是得到电子的。和你所在电势无关。

解释例子:负向扫描,工作电极得到电子,因而电极附近的质子得到电子,发生还原

反应,生成氢气析出。由于碱性水溶液,水是大量的,因而析氢的峰只会持续增大而不会减小,没有贫化效应,因而不会出完整的峰。

当你换向时,电极夺电子,此时若静置,电位会想正向,即平衡电位移动。这个电位

移动开始很快,后面变小。比如阶跃到某电位,一断电。电流会迅速减小,衰减规律有公式,自己看吧。但循环伏安扫描的扫速如果慢于静置时电位的移动速度。那么可想而知恒电位的

器件会自动变换电流的大小和方向以控制电位。所以在-1.2v你反向切换时,是否发生氧化

或者还原反应完全看你的扫速和静置时电位移动速度的差值。然而一旦有氧化反应发生,比

如吸附氢气的氧化必然会发生氧化反应。而且必然电流的正负也发生逆转。而反向后到这个

氧化峰出现之间的,比如在-1.2v到0.8之间电流绝对值的逐渐变小,对你的研究无任何参

考价值。这才是不纠结于此段电位到底是氧化反应还是还原反应的原因。如果你确切就是想

知道,那你极化到-1.2以后,测一个极化电压的时间变化曲线。再和你扫速做对比即可知道。

三、循环伏安测试的原理:

CV方法是将循环变化的电压施加于工作电极和参比电极之间,记录工作电极上得到的电流与施加的电压之间的关系曲线。这种方法也常被称为三角波线性电位扫描方法。当工作电

极被施加的扫描电压激发时,其上将产生响应电流。以该电流对电位作图,称为循环伏安图。

①、若电极反应为O+e-→R,反应前溶液中只含有反应粒子O 且O、R在溶液均可溶,

控制扫描起始电势从比体系标准平衡电势(φΘ)正得多的起始电势(φi)处开始势作正向电扫描,

电流响应曲线则如附图所示。

②、当电极电势逐渐负移到(φ0

)附近时,O开始在电极上还原,并有法拉第电流通过。

由于电势越来越负,电极表面反应物O的浓度逐渐下降,因此向电极表面的流量和电流就增加。当O的表面浓度下降到近于零,电流也增加到最大值Ipc,然后电流逐渐下降。当电势

达到(φr)后,又改为反向扫描。

③、随着电极电势逐渐变正,电极附近可氧化的R粒子的浓度较大,在电势接近并通过(φ0平)时,表面上的电化学平衡应当向着越来越有利于生成R的方向发展。于是R开始被氧化,并且电流增大到峰值氧化电流I pa,随后又由于R的显著消耗而引起电流衰降。整个曲线称为

―循环伏安曲线‖。

典型的循环伏安图如下图所示

该图是在1.0 mol/L KNO3电解质溶液中,6x10-3 mol/L K3Fe(CN)6在Pt工作电极上的反应

所得到的结果。扫描速度: 50 mV/s-1,铂电极面积: 2.54 mm2。

由图可见,起始电位Ei为+0.8 V (a点), 电位比较正的目的是为了避免电极接通后

Fe(CN)63-发生电解。然后沿负的电位扫描,如箭头所指方向,当电位至Fe(CN)63-可以还原时,即析出电位,将产生阴极电流(b点)。其电极反应为:

FeⅢ(CN)63- + e-→ FeⅡ(CN)64-

随着电位的变负,阴极电流迅速增加(b→d),直至电极表面的FeⅢ(CN)63-浓度趋近于零,电流在d点达到最高峰。然后电流迅速衰减(d→g), 这是因为电极表面附近溶液中的

Fe(CN)63-几乎全部电解转变为Fe(CN)64-而耗尽,即所谓的贫乏效应。当电压扫描至-0.15 V (f点)处,虽然已经转向开始阳极化扫描,但这时的电极电位仍然相当的负,扩散至电极表面的Fe(CN)63-仍然在不断还原,故仍呈现阴极电流,而不是阳极电流。当电极电位继续正向

变化至Fe(CN)64-的析出电位时,聚集在电极表面附近的还原产物Fe(CN)64-被氧化,其反应为:

Fe(CN)64-- e-→ Fe(CN)63-

这时产生阳极电流(i→k)。阳极电流随着扫描电位正移迅速增加,当电极表面的

Fe(CN)64-浓度趋于零时,阳极化电流达到峰值(j)。扫描电位继续正移,电极表面附近的

Fe(CN)64-耗尽,阳极电流衰减至最小(k点)。当电位扫描至0.8 V时,完成第一次循环,获得了循环伏安图。

简言之,在正向扫描(电位变负)时,Fe(CN)63-在电极上还原产生阴极电流而指示电极

表面附近它的浓度变化的信息。在反向扫描(电位变正)时,产生的Fe(CN)64-重新氧化产生

阳极电流而指示它是否存在和变化。因此,CV法能迅速提供电活性物质电极反应过程的可逆性,化学反应历程、电极表面吸附等许多信息。

循环伏安图中可以得到的几个重要参数是:阳极峰电流(i pa),阴极峰电流(i pc),阳极峰电位(E pa)和阴极峰电位(E pc)。

测量确定i p的方法是:沿基线作切线外推至峰下,从峰顶作垂线至切线,其间高度即为i p。E p可直接从横轴与峰顶对应处二读取。

对可逆氧化还原电对的式量电位Eθ与E pa和E pc的关系可表示为:

Eθ = (E pa - E pc) / 2 (1)

而两峰间的电位差为:

?E p = E pa– E pc≈ 0.056 / 2 (2)

对于铁氰化钾电对,其反应为单电子过程,可从实验中测出?Ep并与理论值比较。

对可逆体系的正向峰电流,由Randles-Savcik方程可表示为:

ip = 2.69 x 105 n3/2AD1/2v1/2 c (3)

其中:ip为峰电流(A),n为电子转移数,A为电极面积(cm2),D为扩散系数

(cm2/s), v为扫描速度(V/s),c为浓度(mol/L)。

由上式,ip与v1/2和c都是直线关系,对研究电极反应过程具有重要意义。在可逆电极反应过程中,ipa / ipc ≈ 1 (4)

对一个简单的电极反应过程,式(2)和式(4)是判断电极反应是否可逆体系的重要依据。

四、循环伏安法扫描

(1)打开CHI660B电化学工作站和计算机的电源预热10min;

(2)将三电极分别插入电极夹的三个小孔中,使电极浸入电解质溶液中。将CHI工作站的绿色(或黑色)夹头夹Pt盘电极,红色夹头夹Pt丝电极,白色夹头夹参比电极。

(3)点击―T‖(Technique)选中对话框中―Cyclic Voltammetry‖实验技术,点击―OK‖。点击―?‖(parameters)选择参数,―Init E‖为0.5V,―High E‖为0.5V,―Low E‖为-0.1V,

―Initial Scan‖为Negative,―Sensitivity‖在扫描速度大于10mV时选5×10-5,点击―OK‖。点击―?‖开始实验

(4)分别以5mV?s-1、10mV?s-1、20 mV?s-1、50 mV?s-1、80 mV?s-1、100 mV?s-1的扫描速率对5mmol?L-1K3Fe(CN)6+0.5 mol?L-1KCl体系进行循环伏安实验,求出Δ?p、I pc、I pa,了解I pc、I pa、Δ?p与扫描速率的关系。

(5)以10mV?s-1的扫描速率分别对20mmol?L-1、10mmol?L-1、5mmol?L-1、2mmol?L-1、1mmol?L-1的K3Fe(CN)6溶液进行循环伏安扫描,了解I pc、I pa、Δ p与浓度的关系。

(6)实验完毕,清洗电极、电解池,将仪器恢复原位,桌面擦拭干净。

注意事项

1、指示电极表面必须仔细清洗,否则严重影响循环伏安图图形。

2、为了使液相传质过程只受扩散控制,应在加入电解质和溶液处于静止下进行电解。

3、每次扫描之间,为使电极表面恢复初始条件,应将电极提起后再放入溶液中或用搅拌子搅拌溶液,等溶液静止1-2 min再扫描。

4、电极接线不能错误,避免电极夹头互碰导致仪器短路。

五、循环伏安法如何设置参数

分别是起始电势,最高电势,最低电势,最终电势,起始扫描(正极或负极),扫描速率,扫描圈数,采样间隔,静置时间和灵敏度。

起始电势可以设为开路电压,点击窗口,在control下拉菜单下,选择Open circuit Potential 就可以得到(开路电压每次查看都不同),若设为开路电位,则电流是从零开始增

加的。此时的电压值便是初始电位。

起始电势也可以是最高也可以是最低电位也可位于这两个电位之间。

起始电势和最终电势要么都和高电势一致,要么都和低电势一致,这样才能出现闭合的CV

最高电位和最低电位是你所测试体系的扫描范围(根据体系发生氧化还原反应的区间),要根据你的样品来决定,你可以先把范围设大点,再根据结果来调整。[ lnitE与lowE设置为

同一电位]。

扫描速度一般定在0.1就可以(视情况而定),灵敏度选第三个或者第四个,灵敏度设置大一些,但不要选太高了,如果过小,会造成电流过载(overload)。

扫描圈数一般设置为偶数。

参数设定如下:(仅供参考)

初始电位(Init E)——设为所测得的开路电位;

最高电位(High E)—即为开路电位;

最低电位(Low E)—比起始电位低0.5V;

终止电位(Final E)——系统给定;

扫描速率(Scan Rate)——设为0.01 V/S;

采样间隔(Sample Interval)——设为0.001 V/S;

初始电位下的极化时间或为停止时间(Quiet Time)——设为2S;

电流灵敏度(Sensitivity)——设为0.001 (按照合适的进行设置)。

循环伏安法及应用

循环伏安法及应用 摘要:本文主要介绍了电化学研究方法中的循环伏安法实验技术的基本原理及其在电极反应的可逆性、定量分析及电极制备方面的应用。 关键词:电化学;循环伏安法;原理;应用 一、循环伏安法的概念及原理 循环伏安法(CyclicVoltammetry)是一种常用的电化学研究方法。该法 控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,电 势范围是使电极上能交替发生不同的还原和氧化反应,并记录电流-电势曲 线。该法除了使用汞电极外,还可以用铂、金、玻璃碳、碳纤维微电极以 及化学修饰电极等。循环伏安法还可以改变电位以得到氧化还原电流方向。 循环伏安法中电压扫描速度可从每秒钟数毫伏到1伏。 若以等腰三角形的脉冲电压加在工作电极上,得到的电流—电压曲线包括两个分支,如果前半部分电位向阴极方向扫描,电活性物质在电极上还原,产生还原波,那么后半部分电位向阳极方向扫描时,还原产物又会重新在电极上氧化,产生氧化波。因此一次三角波形扫描,完成一个还原和氧化过程的循环,故该法称为循环伏安法,其电流—电压曲线称为循环伏安图。

二、循环伏安法的应用 对于一个新的电化学体系,首选的研究方法往往就是循环伏安法,可称之为“电化学的谱图”。可根据循环伏安图中曲线的形状判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。常用来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发生哪些反应,及其性质如何。 (一)、判断电极反应的可逆性 循环伏安法中电压的扫描过程包括阴极与阳极两个方向,因此可从所得的循环伏安法图的氧化波和还原波的峰高和对称性中来判断电活性物质在电极表面反应的可逆程度。如黄可龙等采用循环伏安法对4LiFePO 在水溶液中的电化学行 为进行了研究,结果表明,4LiFePO 在饱和3LiNO 溶液中具有良好的电化学可逆 性;黄宝美等研究了大豆黄素在玻碳电极的电化学行为,表明大豆黄素的电极过程具有吸附性和不可逆性。 循环伏安法有两个重要的实验参数,一个是峰电流之比,即 pc pa i i ;二是峰电流之差,即pc pa i i -。 (1)可逆 a.1pc pa i i =,且与电位扫描速率、转换电位E λ和扩散系数等无关; b.58p pa pc E E E mV n =-≈ (25℃) (2)部分可逆 58p pa pc E E E mV n =->(25℃) (3)完全不可逆,无逆向反应

电化学——循环伏安法应用

毕业设计(论文) 课题电化学分析——循环伏安法测电极性质 学院河南工业职业技术学院

专业应用化工技术 班级化工1202 姓名*** 学号********* 指导老师*** 日期****.**.** 目录 引言 电化学分析法概要 原电池与电解池 能斯特方程 电极的类型 标准电极电位与条件电极电位 循环伏安法简介

实验——循环伏安法测铁氰化钾的电极过程 循环伏安法在其他方面的应用 参考文献 附录——CHI600E电化学分析站的用户手册 引言 循环伏安法(CyclicVoltammetry)是一种常用的电化学分析方法。常用来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发生哪些反应,及其性质如何。通常利用CHI工作站进行循环伏安法测定电极反应参数。 关键词:电化学、循环伏安法、CHI工作站、电极 电分析化学法概要

一、什么是电化学分析? 定义: 应用电化学的基本原理和实验技术,利用物质的电学或电化学性质来进行分析的方法称之为电化学分析法。通常是使待分析的试样溶液构成一个化学电池(原电池或电解池),通过测量所组成电池的某些物理量(与待测物质有定量关系)来确定物质的量(See Fig.)。 二、电化学分析法的分类 利用物质的电学及电化学性质来进行分析的方法称为电分析化学法: 第一类电分析化学法是通过试液的浓度在某一特定实验条件下与化学电池中某些物理量的关系来进行分析的。 属于这类分析方法的有:电位分析法(电位),电导分析(电阻),库仑分析法(电量),伏安分析法(i—E关系曲线)等。 第二类电分析化学法是以电物理量的突变作为滴定分析中终点的指示,所以又称为电容量分析法。属于这类分析方法的有:电位滴定,电导滴定,电流滴定等。 第三类电分析化学法是将试液中某一个待测组分通过电极反应转化为固相,然后由工作电极上析出物的质量来确定该组分的量。称为电重量分析法(电子做“沉淀剂”),即电解分析法。 按照国际纯粹与应用化学协会(IUPAC)的推荐,电化学分析

循环伏安法知识小结

利用循环伏安确定反应就是否为可逆反应 1、氧化峰电流与还原峰电流绝对值相等,即二者绝对值比值始终为一,与扫描速率,换向电势,扩散系数无关。 2。氧化峰与还原峰电位差约为59mV 利用循环伏安确定反应就是否为可逆反应 1。氧化峰电流与还原峰电流之比得绝对值等于1?2.氧化峰与还原峰电位差约为(59/n)mV (25摄氏度时) 一般这两个条件即可 判断扩散反应或者就是吸附反应: 改变扫描速率,瞧峰电流就是与扫描速率还就是它得二次方根成正比,若就是与扫描速率成线性,就就是表面控制过程,与二次方根成线性,就就是扩散控制 利用循环伏安确定反应就是否可逆 1:氧化峰与还原峰得电流比就是否相等,若相等则可逆、?有时对同一体系,扫描速率不同也会在一定程度上影响其可逆性得一般而言,扫速越大其电化学反应电流也就越大。?2:氧化峰与还原峰电位差等于59/nmV,若大于,则就是准可逆体系、 这种确定onset potential得方法得依据就是什么呢?我瞧有得文献上直接就是作一条切线,但这样误差也很大,很主观随意。 以前我们老师上电极过程动力学得时候说准确得onset potential其实就是很难被确定得。只能估计大致得范围、求法可以说有好几种,据我所知就有两种,一种就是楼上说得切线法,一种就是我说

得10%或20%法哪种方法不重要,重要得只在自己得样品之间比。另外,我不知道您得样品就是什么,就我所熟知得电催化剂而言,其实评价它得好坏,起始电位固然重要,但更瞧重它得峰形以及质量单位电流密度、 、切线法就是有这个问题,所以用峰高得10%来定,人为因素要小一些啦。其实说来说去又变成了起始电位测不准啦! 循环伏安法中对电流正负得认为规定 很多书上都把还原反应电流规定为正,一般不说正电流或负电流,而说阳极电流或阴极电流。阳极反应得电流就是阳极电流,对应得峰为氧化峰,阴极反应得电流就是阴极电流,对应得峰为还原峰。 电流得正负就是人为规定得,习惯上还原峰电流规定为正,氧化峰电流为负,但就是也有相反得情况,不能按照电流得正负来区分氧化峰或还原峰,从电位上可以判断,通常氧化峰位于还原峰较正得位置上,也就说,峰电位较正得峰就是氧化峰,峰电位较负得峰就是还原峰,这就是极化造成得结果。 瞧扫描方向,由正向负方向扫出得峰就就是还原峰,由负往正方向扫就就是氧化峰,也就就是对应得负扫与正扫,我们用得就是上海辰华得工作站,也就是颠倒得,一般我们把数据导出再用ORIGIN75处理数据,把图形倒过来。习惯上,将流入电极表面得电流,定义为负,流出电极表面得电流定义为正,前者为阴极,还原,后者为氧化。 仪器得cv图,可以根据扫描电位得方向,向负电位方向扫,肯定就是先出现得还原电流峰,所以哪个先出来,就就是还原峰,不用拘泥于坐

循环伏安法原理及结果分析

循环伏安法原理及结果 分析 Revised as of 23 November 2020

循环伏安法原理及应用小结 1 电化学原理 电解池 电解池是将电能转化为化学能的一个装置,由外加电源,电解质溶液,阴阳电极构成。 阴极:与电源负极相连的电极(得电子,发生还原反应) 阳极:与电源正极相连的电极(失电子,发生氧化反应) 电解池中,电流由阳极流向阴极。 循环伏安法 1)若电极反应为O+e-→R,反应前溶液中只含有反应粒子O,且O、R在溶液均可溶,控制扫描起始电势从比体系标准平衡电势(φ平)正得多的起始电势(φi)处开始势作正向电扫描,电流响应曲线则如图0所示。 图0 CV扫描电流响应曲线 2)当电极电势逐渐负移到(φ平)附近时,O开始在电极上还原,并有法拉第电流通过。由于电势越来越负,电极表面反应物O的浓度逐渐下降,因此向电极表面的流量和电流就增加。当O的表面浓度下降到近于零,电流也增加到最大值Ipc,然后电流逐渐下降。当电势达到(φr)后,又改为反向扫描。 3)随着电极电势逐渐变正,电极附近可氧化的R粒子的浓度较大,在电势接近并通过(φ平)时,表面上的电化学平衡应当向着越来越有利于生成R的方向发展。于是R开始被氧化,并且电流增大到峰值氧化电流Ipa,随后又由于R的显着消耗而引起电流衰降。整个曲线称为“循环伏安曲线”

经典三电极体系 经典三电极体系由工作电极(WE)、对电极(CE)、参比电极(RE)组成。在电化学测试过程中,始终以工作电极为研究电极。 其电路原理如图1,附CV图(图2):扫描范围,扫描速度50mV/S,起始电位0V。 图1 原理图图2 CBZ的循环伏安扫描图图2所示CV扫描结果为研究电极上产生的电流随电位变化情况图。 1)横坐标Potential applied(电位)为图1中电压表所测,即 Potential applied=P(WE)-P(RE) 所有的电位数值都是相对于氢离子的电位值,规定在标准情况下,氢离子的电位为0。当恒电位仪向工作电极提供负的电位时,其电源连接情况如图1所示,即工作电极与电源的负极相连,作为阴极工作发生还原反应;反之则作为阳极发生氧化反应。 图3 恒电位仪电路图 图3所示为恒电位仪电路图,我没看明白,请翟老师帮我看看。 2)纵坐标所示电流为工作电极上通过的电流,电流为正(流出电极表面)则有电子流入电极CBZ失电子发生氧化反应;电流为负则电子流出电极,CBZ得电子发生还原反应。 2 电化学工作站操作 工作电极在测试之前应先用较大扫速扫描以活化电极,否则可能出现扫描曲线持续波动的现象; 3 数据挖掘

循环伏安法细则

利用循环伏安确定反应是否为可逆反应 1.氧化峰电流与还原峰电流绝对值相等,即二者绝对值比值始终为一,与扫描速率,换向电势,扩散系数无关。 2.氧化峰与还原峰电位差约为59mV 利用循环伏安确定反应是否为可逆反应 1.氧化峰电流与还原峰电流之比的绝对值等于1 2.氧化峰与还原峰电位差约为(59/n)mV (25摄氏度时) 一般这两个条件即可 判断扩散反应或者是吸附反应: 改变扫描速率,看峰电流是与扫描速率还是它的二次方根成正比~~ 若是与扫描速率成线性,就是表面控制过程~ 与二次方根成线性,就是扩散控制~~ 偶认为,,, 给6楼纠正下,是59/n,n为电子转移量(亚铁-铁,n=1)温度一般是293K下确定,但是一般我们实验时候不是在这个温度下,因此用这个算是有误差的,一般保证其值在100mv以下都算合理的误差,随着扫描速度的变大,这个值 ... 循环伏安测试的基本电位条件设定是根据你的研究电机与参比电极决定 利用循环伏安确定反应是否可逆 1:氧化峰和还原峰的电流比是否相等,若相等则可逆。 有时对同一体系,扫描速率不同也会在一定程度上影响其可逆性的

一般而言,扫速越大其电化学反应电流也就越大。 2:氧化峰和还原峰电位差等于59/nmV,若大于,则是准可逆体系。 这种确定onset potential的方法的依据是什么呢?我看有的文献上直接是作一条切线,但这样误差也很大,很主观随意。不知道Electrochimica Acta 53 (2007) 811–822这篇文献中的这种求onset potential的方法的依据是什么。 Quote: Originally posted by crossin at 2009-4-28 17:29: The onset is defined as the potential at which 10% or 20% of the current value at the peak potential was reached. (Electrochimica Acta 53 (2007) 811–822) 不是“依据(accord)”,而是“定义(define)” 以前我们老师上电极过程动力学的时候说准确的onset potential其实是很难被确定的。 只能估计大致的范围。 求法可以说有好几种,据我所知就有两种,一种是楼上说的切线法,一种是我说的10%或20%法 哪种方法不重要,重要的只在自己的样品之间比。

循环伏安法原理及结果分析

循环伏安法原理及应用小结 1 电化学原理 1.1 电解池 电解池是将电能转化为化学能的一个装置,由外加电源,电解质溶液,阴阳电极构成。 阴极:与电源负极相连的电极(得电子,发生还原反应) 阳极:与电源正极相连的电极(失电子,发生氧化反应) 电解池中,电流由阳极流向阴极。 1.2 循环伏安法 1)若电极反应为O+e-→R,反应前溶液中只含有反应粒子O,且O、R在溶液均可溶,控制扫描起始电势从比体系标准平衡电势(φ平)正得多的起始电势(φi)处开始势作正向电扫描,电流响应曲线则如图0所示。 图0 CV扫描电流响应曲线 2)当电极电势逐渐负移到(φ平)附近时,O开始在电极上还原,并有法拉第电流通过。由于电势越来越负,电极表面反应物O的浓度逐渐下降,因此向电极表面的流量和电流就增加。当O的表面浓度下降到近于零,电流也增加到最大值Ipc,然后电流逐渐下降。当电势达到(φr)后,又改为反向扫描。 3)随着电极电势逐渐变正,电极附近可氧化的R粒子的浓度较大,在电势接近并通过(φ平)时,表面上的电化学平衡应当向着越来越有利于生成R的方向发展。于是R开始被氧化,并且电流增大到峰值氧化电流Ipa,随后又由于R的显著消耗而引起电流衰降。整个曲线称为“循环伏安曲线” 1.3 经典三电极体系 经典三电极体系由工作电极(WE)、对电极(CE)、参比电极(RE)组成。在电化学测试过程中,始终以工作电极为研究电极。 其电路原理如图1,附CV图(图2):扫描范围-0.25-1V,扫描速度50mV/S,起始电位0V。

图1 原理图图2 CBZ的循环伏安扫描图 图2所示CV扫描结果为研究电极上产生的电流随电位变化情况图。 1)横坐标Potential applied(电位)为图1中电压表所测,即 Potential applied=P(WE)-P(RE) 所有的电位数值都是相对于氢离子的电位值,规定在标准情况下,氢离子的电位为0。当恒电位仪向工作电极提供负的电位时,其电源连接情况如图1所示,即工作电极与电源的负极相连,作为阴极工作发生还原反应;反之则作为阳极发生氧化反应。 图3 恒电位仪电路图 图3所示为恒电位仪电路图,我没看明白,请翟老师帮我看看。 2)纵坐标所示电流为工作电极上通过的电流,电流为正(流出电极表面)则有电子流入电极CBZ失电子发生氧化反应;电流为负则电子流出电极,CBZ得电子发生还原反应。 2 电化学工作站操作 工作电极在测试之前应先用较大扫速扫描以活化电极,否则可能出现扫描曲

循环伏安法及应用

循环伏安法及应用

电池反应实际上是一个氧化还原 反应。反应粒子在电极表面上进 行的氧化(失去电子)反应叫阳 极反应;相应的还原(获得电子) 反应叫阴极反应。 电极电位可表示氧化还原反应的 难易程度。 由左图可知,电极反应速度一般 由以下几个因素来控制: (1)物质传递; (2)吸附与脱附过程; (3)电子传递过程 电极表面电化学反应示意图

电荷移动速度k和物质传输速度m对电流电位曲线的影响 反应慢,具有足够的传输能力 为了使反应加速必须加电压 反应快,受到传输能力限制 为了增加传输能力必须增加反应物浓 度或进行搅拌

循环伏安法 三角波电位进行扫描,所获得的电流响应与电位信号的关系,称为循环伏安扫描曲线。 开始扫描,工作电极电位电位不断变负,物质在负极还原;反向扫描时,物质在电极发生氧化反应。因此,在一个三角波扫描中可完成个还原氧化过程的循环。 原理:在电极上施加一个线性扫 描电压,以恒定的变化速度扫描, 当达到某设定的终止电位时,再 反向回归至某一设定的起始电位, 循环伏安法电位与时间的关系 (见图)

循环伏安法 若电极反应为O+e→R,反应前溶液 中只含有反应粒子O、且O、R在溶 液均可溶,控制扫描起始电势从比 体系标准平衡电势正得多的起始电 势φ 处开始势作正向电扫描,电流响 i 应曲线则如右图所示。 当电极电势逐渐负移到φ0 附近时,O开始在电极上还原,并有法拉第电流通过。 平 由于电势越来越负,电极表面反应物O的浓度逐渐下降,因此向电极表面的流量和电 ,然后电流逐渐下流就增加。当O的表面浓度下降到近于零,电流也增加到最大值I pc 降。当电势达到φ 后,又改为反向扫描。 r 随着电极电势逐渐变正,电极附近可氧化的R粒子的浓度较大,在电势接近并通 时,表面上的电化学平衡应当向着越来越有利于生成O的方向发展。于是R开过φ0 平 ,随后又由于R的显著消耗而引起电流衰始被氧化,并且电流增大到峰值氧化电流I pa 降。整个曲线称为“循环伏安曲线”。

实验十 循环伏安法分析

实验十循环伏安法分析 一、实验目的 1.仔细阅读理解本讲义和相关资料,掌握循环伏安法的基本原理。 2.熟练使用循环伏安法分析的实验技术。 二、实验原理 循环伏安法(Cyclic Voltammetry, 简称CV)往往是首选的电化学分析测试技术,非常重要,已被广泛地应用于化学、生命科学、能源科学、材料科学和环境科学等领域中相关体系的测试表征。 现代电化学仪器均使用计算机控制仪器和处理数据。CV测试比较简便,所获信息量大。采用三电极系统的常规CV实验中,工作电极(The Working Electrode, 简称WE)相对于参比电极(the Reference Electrode,简称RE)的电位在设定的电位区间内随时间进行循环的线

表1. 图1的实验条件和一些重要解释

零,所以RE的电位在CV实验中几乎不变,因此RE是实验中WE电位测控过程中的稳定参比。若忽略流过RE上的微弱电流,则实验体系的电解电流全部流过由WE和对电极(The Counter Electrode,简称CE)组成的串联回路。WE和CE间的电位差可能很大,以保证能成功地施加上所设定的WE电位(相对于RE)。CE也常称为辅助电极(The Auxiliary Electrode, 简称AE)。 分析CV实验所得到的电流-电位曲线(伏安曲线)可以获得溶液中或固定在电极表面的组分的氧化和还原信息,电极|溶液界面上电子转移(电极反应)的热力学和动力学信息,和电极反应所伴随的溶液中或电极表面组分的化学反应的热力学和动力学信息。与只进行电位单向扫描(电位正扫或负扫)的线性扫描伏安法(Linear Scan Voltammetry,简称LSV)相比,循环伏安法是一种控制电位的电位反向扫描技术,所以,只需要做1个循环伏安实验,就可既对溶液中或电极表面组分电对的氧化反应进行测试和研究,又可测试和研究其还原反应。 循环伏安法也可以进行多达100圈以上的反复多圈电位扫描。多圈电位扫描的循环伏安实验常可用于电化学合成导电高分子。 图1为3 mmol L-1 K4Fe(CN)6 + 0.5 mol L-1 Na2SO4水溶液中金电极上的CV实验结果。实验条件和一些重要的解释列于表1中。 三、仪器和试剂 仪器:CHI400电化学工作站 磁力搅拌器 铂片工作电极 铅笔芯对电极 KCl饱和甘汞电极 试剂:K3Fe(CN)6(分析纯或优级纯) KNO3(分析纯或优级纯) 溶液及其浓度:1.0 mol L-1 KNO3水溶液。实验中每组学员使用30.0 mL。 0.100 mol L-1 K3Fe(CN)6水溶液储备液。实验中每组学员使用100 L微量注射 器依次注射适量体积的0.100 mol L-1 K3Fe(CN)6水溶液到30 mL的1.0 mol L-1 KNO3水溶液中,详见如下4.3.节。

循环伏安法在测定电极反应性质方面的应用

循环伏安法在测定电极反应性质方面的应用 聂凯斌 (环境与化学工程学院应用化学ys1310202011) 摘要:本文主要利用电化学工作站进行循环伏安法(Cyclic Voltammetry)在测定电极反应性质方面的应用的研究,循环伏安法是一种常用的电化学研究方法,该法控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,电势范围是使电极上能交替发生不同的还原和氧化反应,并记录电流-电势曲线。本文主要介绍循环伏安法的基本原理,以及通过循环伏安法,对电极反应进行电化学分析,根据曲线形状可以判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。常用来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发生哪些反应,及其性质如何。对于一个新的电化学体系,首选的研究方法往往就是循环伏安法,可称之为“电化学的谱图”。本法除了使用汞电极外,还可以用铂、金、玻璃碳、碳纤维微电极以及化学修饰电极等。 关键词:循环伏安法,电极,可逆

1 循环伏安法的基本原理及研究进展 如以竿腰三角形的脉冲电压(如图1)加在工作电极上,得到的电流- 电压曲线包括两个分支,如果前半部分电位向阴极方向扫描,电活性物质在电极上还原,产生还原波,那么后半部分电位向阳极方向扫描时,还原产物又会重新在电极上氧化,产生氧化被。因此一次三角波扫描,完成一个还原和氧化过程的循环,故该法称为循环伏安法,其电流一电压曲线称为循环伏安图(如图2)。 图1 三角波电压图2循环伏安极化曲线循环伏安法(Cyclic V oltammetry)一种常用的电化学研究方法。该法控制电极电势以不同的速率,随时间以三角波形可以判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。常用来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发生哪些反应,及其性质如何。对于一个新的电化学体系,首选的研究方法往往就是循环伏安法,可称之为“电化学的谱图”。实验中使用的工作电极除了使用汞电极外,还可以用铂电极、金电极、玻璃电极、悬汞、汞膜电极、碳纤维微电极以及化学修饰电极等。 2 循环伏安法的运用 2.1 循环伏安法分析系统的三电极体系 ①工作电极:指在测试过程中可引起试液中待测组分浓度明显变化的电极,又称研究电极,是指所研究的反应在该电极上发生。一般来讲,对工作电极的基本要求是:工作电极可以是固体,也可以是液体,各式各样的能导电的固体材料均能用作电极。(1)所研究的电化学反应不会因电极自身所发生的反应而受到影响,并且能够在较大的电位区域中进行测定;(2)电极必须不与溶剂或电解液组分发生反应;(3)电极面积不宜太大,电极表面最好应是均一平滑的,且能够通过简单的方法进行表面净化等等。 工作电极的选择:通常根据研究的性质来预先确定电极材料,但最普通的“惰性”固体电极材料是玻碳(铂、金、银、铅和导电玻璃)等。采用固体电极时,为了保证实验的重现性,必须注意建立合适的电极预处理步骤,以保证氧化还原、表面形貌和不存在吸附杂质的可重现状态。在液体电极中,汞和汞齐是最常用的工作电极,它们都是液体,都有可重现的均相表面,制备和保持清洁都较容易,同时电极上高的氢析出超电势提高了在负电位下的工作窗口记被广泛用于电化学分析中。

循环伏安法与线性扫描伏安法

循环伏安法 原理: 循环伏安法(CV )是最重要的电分析化学研究方法之一。该方法使用的仪器简单,操作方便,图谱解析直观,在电化学、无机化学、有机化学、生物化学等许多 研究领域被广泛应用。 循环伏安法通常采用三电极系统,一支工作电极(被研究物质起反应的电极),一支参比电极(监测工作电极的电势),一支辅助(对)电极。外加电压加在工作电极与辅助电极之间,反应电流通过工作电极与辅助电极。 对可逆电极过程(电荷交换速度很快),如一定条件下的Fe(CN)63-/4-氧化还原体系,当电压负向扫描时,Fe(CN)63- 在电极上还原,反应为: Fe(CN)63-+e - → Fe(CN)64- 得到一个还原电流峰。当电压正向扫描时,Fe(CN)64-在电极上氧化,反应为: Fe(CN)64- - e - → Fe(CN)63- 得到一个氧化电流峰。所以,电压完成一次循环扫描后,将记录出一个如图2所示 的氧化还原曲线。扫描电压呈等腰三角形。如果前半部扫描(电压上升部分)为去极 化剂在电极上被还原的阴极过程,则后半部扫描(电压下降部分)为还原产物重新被氧化的阳极过程。因此.一次三角波扫描完成一个还原过程和氧化过程的循环,故称为循环伏安法。 应用领域: 循环伏安法能迅速提供电活性物质电极反应的可逆性,化学反应历程,电活性物质的吸附等许多信息。循环伏安法可用于研究化合物电极过程的机理、双电层、吸附现象和电极反应动力学.成为最有用的电化学方法之一。 如通过对未知研究体系的CV 研究,可以获研究对象的反应电位或和平衡电位, 估算反应物种的量,以及判断反应的可逆性。 电化学反应中物种反应的量可以依据Faraday 定律估算,, 其中m 为反应的摩尔量, n 为电极反应中的得失电子数,F 为 图2 氧化还原cv 曲线图 图1 cv 图中电势~时间关系

循环伏安技术的原理及应用---电化学基础..

循环伏安技术 摘要:简单介绍了电化学测试的一些基本知识,并重点介绍了一种最常见、最重要的电化学测试技术-循环伏安技术。分别从循环伏安技术的发展、原理及应用方面对其进行了介绍。 关键词:电化学测试,循环伏安,原理,应用 1 电化学测试的基本知识 电极电势、通过电极的电流是表征复杂的微观电极过程特点的宏观物理量。电化学测量的主要任务是通过测量包含电极过程各种动力学信息的电势、电流两个物理量,研究它们在各种极化信号激励下的变化关系,从而研究电极过程的各个基本过程。 基于电化学的测量规律、按照对应出现的时间顺序,电化学测量大致可以分为三类。第一类是电化学热力学性质的测量方法,基于Nernst方程、电势-pH图、法拉第定律等热力学规律;第二类是依靠单纯电极电势、极化电流的控制和测量进行的动力学性质的测量方法,研究电极过程的反应机理,测定过程的动力学参数;第三类是在电极电势、极化电流的控制和测量的同时,结合光谱波谱技术、扫描探针显微技术,引入光学信号等其他参量的测量,研究体系电化学性质的测量方法。 在电化学反应过程中,电极中包括四个基本过程: 1)电荷传递过程(charge transfer process):电化学步骤。

2)扩散传质过程(diffusion process):主要是指反应物和产物在电极界面静止液层中的扩散过程。 3)电极界面双电层的充电过程(charging process of electric double layer):非法拉第过程。 4)电荷迁移过程(migration process):主要是溶液中离子的电迁移过程,也称为离子导电过程。 另外,还可能有电极表面的吸脱附过程、电结晶过程、伴随电化学反应的均相化学反应过程。 因此,要进行电化学测量,研究某一个基本过程,就必须控制实验条件,突出主要矛盾,使该过程在电极总过程中占据主导地位,降低或消除其它基本过程的影响,通过研究总的电极过程研究这一基本过程,这就是电化学测量的基本原则。 电化学测量的主要分为三个步骤:1)实验条件控制;2)实验结果的测量;3)实验结果解析。在电化学测试中,一般采用三电极体系进行测量。 图1 三电极体系电路示意图

循环伏安法定义+原理+参数设置

一、循环伏安法(Cyclic Voltammetry) 一种常用的电化学研究方法。该法控制电极电势以不同的速率,随时间以三角波形一次 或多次反复扫描,电势范围是使电极上能交替发生不同的还原和氧化反应,并记录电流-电势曲线。根据曲线形状可以判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。常用来测量电极反应参数,判断其控制步骤和反应机理,并观 察整个电势扫描范围内可发生哪些反应,及其性质如何。对于一个新的电化学体系,首选的 研究方法往往就是循环伏安法,可称之为“电化学的谱图”。本法除了使用汞电极外,还可以 用铂、金、玻璃碳、碳纤维微电极以及化学修饰电极等。 1.基本原理 如以等腰三角形的脉冲电压加在工作电极上,得到的电流电压曲线包括两个分支,如果 前半部分电位向阴极方向扫描,电活性物质在电极上还原,产生还原波,那么后半部分电位 向阳极方向扫描时,还原产物又会重新在电极上氧化,产生氧化波。因此一次三角波扫描, 完成一个还原和氧化过程的循环,故该法称为循环伏安法,其电流—电压曲线称为循环伏安图。如果电活性物质可逆性差,则氧化波与还原波的高度就不同,对称性也较差。循环伏安 法中电压扫描速度可从每秒种数毫伏到1伏。工作电极可用悬汞电极,或铂、玻碳、石墨等 固体电极。 2.循环伏安法的应用 循环伏安法是一种很有用的电化学研究方法,可用于电极反应的性质、机理和电极 过程动力学参数的研究。但该法很少用于定量分析。 (1)电极可逆性的判断循环伏安法中电压的扫描过程包括阴极与阳极两个方向,因此从所得的循环伏安法图的氧化波和还原波的峰高和对称性中可判断电活性物质在电极表面反 应的可逆程度。若反应是可逆的,则曲线上下对称,若反应不可逆,则曲线上下不对称。(2)电极反应机理的判断循环伏安法还可研究电极吸附现象、电化学反应产物、电化学—化学耦联反应等,对于有机物、金属有机化合物及生物物质的氧化还原机理研究很有用。 3、循环伏安法的用途 (1)、判断电极表面微观反应过程 (2)、判断电极反应的可逆性 (3)、作为无机制备反应“摸条件”的手段 (4)、为有机合成“摸条件” (5)、前置化学反应(CE)的循环伏安特征

循环伏安法知识小结

利用循环xx确定反应是否为可逆反应 1.氧化峰电流与还原峰电流绝对值相等,即二者绝对值比值始终为一,与扫描速率,换向电势,扩散系数无关。 2.氧化xx与还原xx电位差约为59mV 利用循环xx确定反应是否为可逆反应 1.氧化峰电流与还原峰电流之比的绝对值等于1 2.氧化峰与还原峰电位差约为(59/n)mV (25摄氏度时) 一般这两个条件即可 判断扩散反应或者是吸附反应: 改变扫描速率,看峰电流是与扫描速率还是它的二次方根成正比,若是与扫描速率成线性,就是表面控制过程,与二次方根成线性,就是扩散控制 利用循环xx确定反应是否可逆 1:氧化峰和还原峰的电流比是否相等,若相等则可逆。 有时对同一体系,扫描速率不同也会在一定程度上影响其可逆性的一般而言,扫速越大其电化学反应电流也就越大。 2:氧化峰和还原峰电位差等于59/nmV,若大于,则是准可逆体系。 这种确定onset potential的方法的依据是什么呢?我看有的文献上直接是作一条切线,但这样误差也很大,很主观随意。 以前我们老师上电极过程动力学的时候说准确的onset potential其实是很难被确定的。只能估计大致的范围。求法可以说有好几种,据我所知就有两种,一种是楼上说的切线法,一种是我说的10%或20%

法哪种方法不重要,重要的只在自己的样品之间比。另外,我不知道你的样品是什么,就我所熟知的电催化剂而言,其实评价它的好坏,起始电位固然重要,但更看重它的峰形以及质量单位电流密度。 、切线法是有这个问题,所以用峰高的10%来定,人为因素要小一些啦。其实说来说去又变成了起始电位测不准啦! 循环xx法中对电流正负的认为规定 很多书上都把还原反应电流规定为正,一般不说正电流或负电流,而说阳极电流或阴极电流。阳极反应的电流是阳极电流,对应的峰为氧化峰,阴极反应的电流是阴极电流,对应的峰为还原峰。 电流的正负是人为规定的,习惯上还原峰电流规定为正,氧化峰电流为负,但是也有相反的情况,不能按照电流的正负来区分氧化峰或还原峰,从电位上可以判断,通常氧化峰位于还原峰较正的位置上,也就说,峰电位较正的峰是氧化峰,峰电位较负的峰是还原峰,这是极化造成的结果。 看扫描方向,由正向负方向扫出的峰就是还原峰,由负往正方向扫就是氧化峰,也就是对应的负扫和正扫,我们用的是上海辰华的工作站,也是颠倒的,一般我们把数据导出再用ORIGIN75处理数据,把图形倒过来。习惯上,将流入电极表面的电流,定义为负,流出电极表面的电流定义为正,前者为阴极,还原,后者为氧化。 仪器的cv图,可以根据扫描电位的方向,向负电位方向扫,肯定是先出现的还原电流峰,所以哪个先出来,就是还原峰,不用拘泥于坐标轴。循环伏安测试的原理: 1.若电极反应为O+e-→R,反应前溶液中只含有反应粒子O、且O、R在溶液均可溶,控制扫描起始电势从比体系标准平衡电势(φ 平)正得多的起始电势(φ i)处开始势作正向电扫描,电流响应曲线则如附图所示。 2.当电极电势逐渐负移到(φ

循环伏安法简介

循环伏安 简介 在这一节中,将引入两个紧密相关的伏安形式 *线性扫描伏安 *循环伏安 我们将看到如何进行这些测量以研究电极反应的电子传递机理和传输特性。 线性扫描 在线性扫描伏安(LSV)中,施加一个电位范围,非常类似于电位阶跃测量。然而在LSV中,电位从低限扫描到高限,如下图所示。 电压扫描速度(v) 从直线的斜率计算,显然,改变扫描范围所用的时间,就可以改变扫描速度。 记录的线性扫描伏安的特性取决于下列因素:

*电子传递反应的速度 *电活性粒子的化学反应 *电压扫描速度 在LSV测量中,电流响应被作图为电压的函数,而不是时间的函数,这与电位阶跃不同。例如,如果我们回到Fe3+/Fe2+系统 随后可以看到一个用只包含单Fe3+的电解液进行的单电压扫描的伏安图。 扫描从电流/电压图的左侧开始,这里没有电流。当电压向右扫描时(向更加还原值),开始出现电流,最终在下降之前达到一个峰值。为了理解这个行为,我们需要考虑电压对建立于电极表面的平衡的影响。如果我们考虑Fe3+到Fe2+的还原,电子传递速度与电压扫描速度相比要快!因此,在电极表面,一个平衡被建立,与热力学预测的相同。可以从平衡电化学回忆起Nernst方程预测的浓度和电压(电位差)之间的关系,

这里E为施加电位差,E o为标准电极电位。所以,当电压从V1扫描V2到时,平衡位臵从电极表面反应物没有转换的V1移动到全转换的V2。伏安行为的确切形式可以通过考虑电压和物质传递效应来理解。当电位从V1开始扫描时,表面平衡开始改变,电流开始出现: 随着电压从初始值继续扫描,电流在增加;平衡位臵继续向右移动,有更多的反应物被转换。峰值出现了,由于在某些点上,电极上部的扩散层已经足够增长,所以向电极方向的反应物流量速度已经不能满足Nernst方程的要求。在这种情况下,电流开始下降,正如在电位阶跃测量中一样。事实上,电流的下降服从Cottrell方程所预测的相同行为。 上面的伏安行为在一个单独扫描速度下被记录。如果改变扫描速度,电流响应也会改变。下图表示一系列在不同扫描速度下记录的,只含Fe3+的电解液中的线性扫描伏安。

循环伏安法知识小结培训资料

循环伏安法知识小结

利用循环伏安确定反应是否为可逆反应 1.氧化峰电流与还原峰电流绝对值相等,即二者绝对值比值始终为一,与扫描速率,换向电势,扩散系数无关。 2.氧化峰与还原峰电位差约为59mV 利用循环伏安确定反应是否为可逆反应 1.氧化峰电流与还原峰电流之比的绝对值等于1 2.氧化峰与还原峰电位差约为(59/n)mV (25摄氏度时) 一般这两个条件即可 判断扩散反应或者是吸附反应: 改变扫描速率,看峰电流是与扫描速率还是它的二次方根成正比,若是与扫描速率成线性,就是表面控制过程,与二次方根成线性,就是扩散控制 利用循环伏安确定反应是否可逆 1:氧化峰和还原峰的电流比是否相等,若相等则可逆。 有时对同一体系,扫描速率不同也会在一定程度上影响其可逆性的一般而言,扫速越大其电化学反应电流也就越大。 2:氧化峰和还原峰电位差等于59/nmV,若大于,则是准可逆体系。 这种确定onset potential的方法的依据是什么呢?我看有的文献上直接是作一条切线,但这样误差也很大,很主观随意。 以前我们老师上电极过程动力学的时候说准确的onset potential其实是很难被确定的。只能估计大致的范围。求法可以

说有好几种,据我所知就有两种,一种是楼上说的切线法,一种是我说的10%或20%法哪种方法不重要,重要的只在自己的样品之间比。另外,我不知道你的样品是什么,就我所熟知的电催化剂而言,其实评价它的好坏,起始电位固然重要,但更看重它的峰形以及质量单位电流密度。 、切线法是有这个问题,所以用峰高的10%来定,人为因素要小一些啦。其实说来说去又变成了起始电位测不准啦! 循环伏安法中对电流正负的认为规定 很多书上都把还原反应电流规定为正,一般不说正电流或负电流,而说阳极电流或阴极电流。阳极反应的电流是阳极电流,对应的峰为氧化峰,阴极反应的电流是阴极电流,对应的峰为还原峰。 电流的正负是人为规定的,习惯上还原峰电流规定为正,氧化峰电流为负,但是也有相反的情况,不能按照电流的正负来区分氧化峰或还原峰,从电位上可以判断,通常氧化峰位于还原峰较正的位置上,也就说,峰电位较正的峰是氧化峰,峰电位较负的峰是还原峰,这是极化造成的结果。 看扫描方向,由正向负方向扫出的峰就是还原峰,由负往正方向扫就是氧化峰,也就是对应的负扫和正扫,我们用的是上海辰华的工作站,也是颠倒的,一般我们把数据导出再用ORIGIN75处理数据,把图形倒过来。习惯上,将流入电极表面的电流,定义为负,流出电极表面的电流定义为正,前者为阴极,还原,后者为氧化。 仪器的cv图,可以根据扫描电位的方向,向负电位方向扫,肯

循环伏安法原理

循环伏安法原理 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢循环伏安法定义+原理+参数设置 一、循环伏安法(Cyclic V oltammetry) 一种常用的电化学研究方法。该法控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,电势范围是使电极上能交替发生不同的还原和氧化反应,并记录电流-电势曲线。根据曲线形状可以判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。常用来测量电极反应参数,判断其控制步骤和反应机理,并观察整个电势扫描范围内可发生哪些反应,及其性质如何。对于一个新的电化学体系,首选的研究方法往往就是循环伏安法,可称之为―电化学的谱图‖。本法除了使用汞电极外,还可以用铂、金、玻璃碳、碳纤维微电极以及化学修饰电极等。 1.基本原理

如以等腰三角形的脉冲电压加在工作电极上,得到的电流电压曲线包括两个分支,如果前半部分电位向阴极方向扫描,电活性物质在电极上还原,产生还原波,那么后半部分电位向阳极方向扫描时,还原产物又会重新在电极上氧化,产生氧化波。因此一次三角波扫描,完成一个还原和氧化过程的循环,故该法称为循环伏安法,其电流—电压曲线称为循环伏安图。如果电活性物质可逆性差,则氧化波与还原波的高度就不同,对称性也较差。循环伏安法中电压扫描速度可从每秒种数毫伏到1伏。工作电极可用悬汞电极,或铂、玻碳、石墨等固体电极。 2.循环伏安法的应用 循环伏安法是一种很有用的电化学研究方法,可用于电极反应的性质、机理和电极过程动力学参数的研究。但该法很少用于定量分析。 电极可逆性的判断循环伏安法中电压的扫描过程包括阴极与阳极两个方

循环伏安法判断电极过程

实验二十二循环伏安法判断铁氰化钾的电极反应过程 一、实验目的 1.学会使用电化学工作站进行循环伏安法的测定。 2.掌握循环伏安法的基本原理及其电极动力学过程的规律。 3.了解扫描速率和浓度对循环伏安图的影响。 二、实验原理 1.循环伏安法 循环伏安法是在电极上施加一个线性扫描电压,当到达某设定的终止电位后,再反向回扫至某设定的起始电压。进行正向扫描时若溶液中存在氧化态O,电极上将发生还原反应: O + ne- R 反向回扫时,电极上的还原态R将发生氧化反应: R O + ne- 图6 循环伏安法的典型激发信号 三角波电位,转换电位为 V 和- V() 2.测量原理 循环伏安图见图7。 峰电流可表示为: i p=×105×n3/2v1/2D1/2A c 其中:i p为峰电流(A,安培);n为电子转移数;D为扩散系数(cm2·s-1);v为电压扫描速度(V·s-1);A为电极面积(cm2);c为被测物质浓度(mol·L-1)。

图7 循环伏安图 从循环伏安图可获得氧化峰电流i pa 与还原峰电流i pc ,氧化峰电位E pa 与还原峰电位E p c 。 对于可逆体系,氧化峰电流i pa 与还原峰电流i pc 绝对值的比值 i pa / i pc =1 氧化峰电位E pa 与还原峰电位E pc 电位差: △E =E pa - E pc = RT nF ≈ 0.056n (V ) (T = 298 K ) 条件电位E o ′ : E o ′= 2pa pc E E + 铁氰化钾离子[Fe(CN)6]3-–亚铁氰化钾离子[Fe(CN)6]4-氧化还原电对的标准电极电位 为: [Fe(CN)6]3- + e - = [Fe(CN)6]4- E o = V (vs .SCE ) 电极电位与电极表面活度的Nernst 方程式为: E = E o ′+RT nF ln o R c c ?? ??? 在一定扫描速率下,从起始电位(- V )正向扫描到转折电位(+ V )期间,溶液中 [Fe(CN)6]4-被氧化生成 [Fe(CN)6]3- ,产生氧化电流;当负向扫描从转折电位(+ V )变到原起始电位(- V )期间,在指示电极表面生成的 [Fe(CN)6]3- 被还原成 [Fe(CN)6]4-,产生还原电流。为了使液相传质过程只受扩散控制,应在加入电解质和溶液处于静止下进行电解。在 mol·L -1 KNO 3溶液中 [Fe(CN)6]3- 的扩散系数为×10-5 cm 2·s -1;电子转移速率大,为可逆体系( mol·L -1 KNO 3溶液中,25 ℃时,标准反应速率常数为×10-2 cm·s -1)。

相关文档