文档库 最新最全的文档下载
当前位置:文档库 › IDW和克里金插值法比较

IDW和克里金插值法比较

IDW和克里金插值法比较
IDW和克里金插值法比较

1、地理配准

(1)、启动ArcMap,在主菜单中点击自定义→工具条→地理配准,加载地理配准工具条如图1

图一地理配准工具条

(2)、在主菜单中单击视图→数据框属性,打开数据框属性对话框,单击坐标系标签,打开坐标系选项卡,选择坐标系统“Beijing_1954”如图2

图2 数据框属性表

(3)、在内容列表中右击安徽全图高清版.jpg,单击全图,全图显示图像文件,在地理配准工具条上,单击地理配准→适应显示范围,将在与目标图层相同的区域中显示栅格数据集。如图3

图3 栅格数据集的显示

(4)、单击地理配准工具条上的按钮,在影像中选取相应的点,然后右击,输入X和Y的值,这样就完成了一个点的配准。

(5)、依次在影响上增加5~7个控制点,单击地理配准工具条上的查

看属性表,打开连接表对话框,可以查看各点的残差与RMS总误

差,可删除残差较大的点,以便更精确。如图4

(6)、单击地理配准→变换→一次多项式(仿射)。

(7)、单击地理配准→更新地理配准,完成栅格图像的配准。(8)、单击地理配准→纠正→,打开另存为对话框,生成一个新的栅格影像文件。如图5

图5 影像另存为

2矢量化

启动arccatalog,在选定的目录下,单击鼠标右键选择new/personal geodatabase,新建一个个人数据库,在新的数据库里新建数据集,设定坐标系,空间参照和精度等参数,再在数据集里新建要素类,分别命名为市界,县界两个多边形要素类,一个点要素类。矢量化结果如下图:

3数据分析

一直方图

单击Geostatistical Analyst模块的下拉箭头选择ExploreData并单击

Histogram。

1)设置相关参数,生成直方图。

2)通过直方图发现安徽各县域的人均GDP原始数据并不服从正态分布,需要进行数据转换,在直方图中的Translation下选择log变化方式。

对数据进行取对数变换之后发现数据比正态分布的数据更加集中于平均值附近。

二正态QQPlot分布图

1)单击Geostatistical Analyst模块的下拉箭头选择ExploreData并单击

Normal QQPlot

2)设置参数,生成Normal QQPlot分布图

3)从上图中可以看出安徽县域人均GDP的采样数据不符合正态分布,对其进

行数据变换之后,数据近似符合正态分布。因为采样点数据在图中近似沿直线分布。

通过以上的数据分析采集的数据经过变换后符合正态分布,可以进行插值分析。

4进行GDP插值方法分析

(1)生成数据子集

将用于进行差值分析的点数据分成两部分。一部分用来空间结构建模及生成面,另一部分用来比较和验证预测的质量,分别命名为点training和点test。如下图:

(1)反距离加权插值

1)在arcmap中加载地统计数据点图层。

2)单击Geostatistical Analyst模块的下拉箭头单击Geostatistical Wizard,弹出输入数据与方法选择对话框,如下图

在左图input中选择进行内插的实验数据,右图input中选择进行内插的检验数据,两张图attribute选择人均gdp

3)选择IDW,单击next按钮,弹出反距离内插参数设置对话框,如下图

选择权重power为2其他参数如图

4)单击next按钮,弹出反距离加权内插正交验证对话框,如下图

5)单击next按钮,弹出反距离加权内插验证对话框,如下图:

6)单击finish按钮,完成操作,其生成的内插结果如图所示:

7)发现内插结果图的边界小于矢量化的边界图,进行外推,右击打开Inverse Distance Weighting权重为2 的layer properties对话框,选择extent,在set the extent to后选择需要的边界,然后确定,如下图。

然后进行裁剪,右击layers打开data frame properties对话框,选择data frame标签,在clip to shape下勾选enable,单击specify shape弹出data frame clipping对话框在outline of features里选择市届。如下图

然后确定,裁剪后得到下图。

8)取权重power为4重复以上步骤得到结果图如下:

(2)普通克里格插值

1)创建预测图

1单击Geostatistical Analyst模块的下拉箭头单击Geostatistical Wizard

2在弹出的对话框中在dataset1选择训练数据及其属性人均gdp,在validation中选择检验数据及其属性gdp,选择克里格内插方法。单击

next按钮。

3在弹出的对话框中,展开普通克里格,单击预测图,dataset1的transformation里选择log变化方式,order of trend removal里选择second,单击next。

统计内插方法选择对话框

4在semivariogram|covariance modeling对话框中,选中show search direction选项,移动左图中的搜索方向,单击next按钮。

5在searching neighborhood对话框,单击next按钮。

6在cross validation对话框中,列出对上述参数的训练数据模型精度评价,在对不同参数得到的模型比较中,可参考prediction errors中的几个指标,符合以下标准的模型是最优的:标准平均值最接近于0,均方根预测误差最小,平均标准误差最接近于均方根预测误差,标准均方根预测误差最接近于1.单击next按钮。

7在validation对话框中,单击finish按钮,普通克里格内插结果如下图。

验证对话框

普通克里格内插生成的预测图

2)创建分位数图

重复上述方法,创建普通克里格的分位数图,如下图:

3)创建概率图

重复上述方法创建普通克里格的概率图,如下图:

普通克里格内插生成的概率图

4)创建标准误差预测图

重复上述方法创建普通克里格的标准误差预测图,如下图:

将order of trend removal里改为third,重复以上方法得到,1普通克里格内插生成的预测图

2创建分位数图

3创建概率图

4创建标准误差预测图

五种插值法的对比研究毕业论文

题目:五种插值法的对比研究 xxx大学本科生毕业论文开题报告表 论文(设计)类型:A—理论研究;B—应用研究;C—软件设计等;

五种插值法的对比研究 (3) 一插值法的历史背景 (5) 二五种插值法的基本思想 (5) (一)拉格朗日插值 (5) (二)牛顿插值 (6) (三)埃尔米特插值 (7) (四)分段线性插值 (7) (五)样条插值 (8) 三五种插值法的对比研究 (9) 四插值法在matlab中的应用 (15) 五参考文献 (17)

五种插值法的对比研究 摘要:插值法是数值分析中最基本的方法之一。在实际问题中碰到的函数是各种各样的,有的甚至给不出表达式,只提供了一些离散数据,例如,在查对数表时,要查的数据在表中找不到,就先找出它相邻的数,再从旁边找出它的修正值,按一定关系把相邻的数加以修正,从而找出要找的数,这种修正关系实际上就是一种插值。在实际应用中选用不同类型的插值函数,逼近的效果也不同。本文详细介绍了拉格朗日插值、牛顿插值、分段插值、埃尔米特插值、样条插值法,并从五种插值法的基本思想和具体实例入手,探讨了五种插值法的优缺点和适用范围。.通过对五种插值法的对比研究及实际应用的总结,从而使我们在以后的应用中能够更好、更快的解决问题。 关键词:插值法对比实际应用

Abstract: interpolation numerical analysis of one of the most basic method. Function is a wide variety of practical problems encountered, and some even not give expression provides only a number of discrete data, e.g., in the the checker number table, to check the data is not found in the table , first find out the number next to it, from the side to find the correction value, a certain relationship between the adjacent number to be amended, and to find to find the number, this correction relationship is actually an interpolation . Selection of different types of interpolation functions in practical applications, the approximation of the effect is different. This paper describes the Lagrange interpolation, Newton interpolation, piecewise interpolation, Hermite interpolation, spline interpolation, and start from the basic idea of the five interpolation and specific examples to explore the advantages of the five interpolation shortcomings and the scope of application. The comparative study and practical application of the summary by the the five interpolation method of application so that we can better and faster to solve the problem.

克里金插值法

克里金插值法 克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。 1 克里金插值法原理 克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。 假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即: )()(10* i n i i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。 其中Z(x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量” 针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数 i λ (i=1,2,……, n)满足关系式: 11=∑=n i i λ (2) 以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:

克里金插值法

克里金插值法及其适用范围 20 巴任若测绘学院 克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron随后将该方法理论化、系统化,并命名为Kriging,即克里金插值法。 1 克里金插值法原理 克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。 假设研究区域a上研究变量Z(x),在点xi∈A(i=1,2,……,n)处属性值为Z(xi),则待插点x0∈A处的属性值Z(x0)的克里金插值结果Z*(x0)是已知采样点属性值Z(xi)(i=1,2,……,n)的加权和,即:

)()(10* i n i i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。 其中Z(xi)之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量” 针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式: 11=∑=n i i λ (2) 以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组: ???????=??==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3) 式中,C (xi ,xj )是Z(xi)和Z(xj)的协方差函数。 2 国内外研究进展 从克里金方法被提出到现在已有完善的理论,并在很多领域得到

五种插值法的对比研究开题报告

五种插值法的对比研究 1. 选题依据 1.1 选题背景 插值法是一种古老的数学方法,插值法历史悠久。据考证,在公元六世纪时, 我国焯(zhuo) 已经把等距二次插值法应用于天文计算。十七世纪时,Newton 和 Gregory(格雷格里) 建立了等距节点上的一般插值公式,十八世纪时,Lagrange(拉格朗日) 给出了更一般的非等距节点插值公式。 而它的基本理论是在微积分产生以后逐渐完善的,它的实际应用也日益增多,特别是在计算机工程中。许多库函数的计算实际上归结于对逼近函数的计算。 1.2 研究的目的和意义 插值法是数值分析中最基本的方法之一。 在实际问题中碰到的函数是各种各样的,有的甚至给不出表达式,只提供了一些离散数据,例如,在查对数表时, 要查的数据在表中找不到,就先找出它相邻的数,再从旁边找出它的修正值, 按一定关系把相邻的数加以修正,从而找出要找的数,这种修正关系实际上就是一种插值。 在实际应用中选用不同类型的插值函数,逼近的效果也不同。在数值计算方法中,我们学习过五种基本的插值方法,即Lagrange 插值、Newton 插值、分段线性插值、分段三次Hermite 插值、样条插值函数。所以通过从这五种插值法的基本思想、特征、性质和具体实例入手,探讨五种插值法的优缺点和适用围,让学习者能够迅速而准确的解决实际问题,掌握插值法的应用。 2. 研究的方法 从具体实例入手并结合Matlab 在科学计算中的优势,通过实验对它们的精度和效率进行比较分析。 3. 论文结构 3.1 论文的总体结构 第一部分 导言 主要介绍选题的背景、目的及意义、研究现状、文献综述等。 第二部分 五种插值法的基本思想、性质及特点 在数值计算方法中,插值法是计算方法的基础,数值微分、数值积分和微分方程数值解都建立在此基础上。 插值问题的提法是:已知f(x)(可能未知或非常复杂函数)在彼此不同的n+1 个实点0x ,1x ,…n x 处的函数值是f(0x ),f(1x ),…,f(n x ),这时我们简单的说f(x)有n+1 个 离散数据对0n i i )}y ,{(x i .要估算f(x)在其它点x 处的函数值,最常见的一种办法就是插 值,即寻找一个相对简单的函数y(x),使其满足下列插值条件:y(i x )=f(i x ),i=0,1,…,n.,并以y(x)作为f(x)的近似值.其中y(x)称为插值函数,f(x)称为被插函数。

克里金插值法

克里金插值法及其适用范围 克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国着名统计学家G . Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。 1 克里金插值法原理 克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。 假设研究区域a 上研究变量Z (x ),在点xi ∈A (i=1,2,……,n )处属性值为Z (xi ),则待插点x0∈A 处的属性值Z (x0)的克里金插值结果Z*(x0)是已知采样点属性值Z (xi )(i=1,2,……,n )的加权和,即: )()(10* i n i i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。 其中Z(xi)之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量” 针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式: 11=∑=n i i λ (2) 以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:

基于GIS的气温插值方法比较研究

基于GIS的气温插值方法比较研究 --以陕西省为例 摘要:随着空间气温信息需求的日益增加,气温的空间插值已被广泛应用而不同的插值方法因不同的地区和研究目的产生不同的效果。采用西安19个国家基本站点1983年的年平均气温数据,应用地信软件ArcGIS中的地统计学模块进行空间降水插值实验,分别采用反距离权重法、样条函数插值法和克里格方法探讨了陕西年均气温的空间分布,分析发现:三种插值方法在不同区域上各有优缺点,在本文研究年均气温分布中,克里格插值法要优于其它方法。 关键词: 空间插值; 年均气温; 地统计学; 陕西 1引言 作为生态、资源环境等相关学科基础数据源,气候信息在区域和全球尺度生态系统变化的模拟、生态系统管理、自然资源区划和管理中发挥着重要作用[1-4]。然而由于气象站点定位观测获取的只是局部有限的空间点数据,要想得到区域尺度的有关参数,只能利用以点代面或者空间内插和外推方法得到气象要素的空间分布数据[5-8]。 目前用于资料空间插值的方法有多种,主要有克里格(Kriging)插值法、反距离加权法(InverseDistanceWeight,IDW)、样条法(Splines)和综合插值法等。研究区域和时间尺度的不同决定插值方法选用的不同,即使是同一种插值方法,用于不同的研究区域,所取得的结果也不同,不同的方法插值结果差别也很大[9-11]。气象要素的空间分布受诸多要素影响,由于气象观测站点稀少而且分布不均,在很多地形复杂的地区,可用的气象数据非常有限,因此如何充分利用有限的气候资源,根据气候要素的空间分异规律,推测无观测点和少观测点区域的气候要素值,一直是相关学科研究的热点。

各种插值法的对比研究样本

各种插值法对比研究

目录 1.引言 (1) 2.插值法的历史背景 (1) 3.五种插值法的基本思想 (2) 3.1拉格朗日插值 (2) 3.2牛顿插值 (3) 3.3埃尔米特插值 (4) 3.4分段线性插值 (5)

3.5三次样条插值 (6) 4.五种插值法的对比研究 (6) 4.1拉格朗日插值与牛顿插值的比较 (6) 4.2多项式插值法与埃尔米特插值的比较 (7) 4.3多项式插值法与分段线性插值的比较 (7) 4.4 分段线性插值与样条插值的比较 (7) 5.插值法在实际生活中的应用 (7) 6.结束语 (8) 致谢 (8) 参考文献 (8)

各种插值法对比研究 摘要:插值法是一种古老数学办法,也是数值计算中一种算法.插值法不但是微分方程、数值积分、数值微分等计算办法基本,并且在医学、通讯、精密机械加工等领域都涉及到了它.本文一方面简介了插值背景以及惯用五种插值法基本思想,然后通过拉格朗日插值与牛顿插值、多项式插值与埃尔米特插值、多项式插值与分段线性插值、分段线性插值和样条函数插值给出相应算法与MATLAB 程序,依照已学知识对五种插值办法与被插函数逼近限度进行对比研究,找出不同办法间联系与区别,分析出它们优缺陷,最后在此基本上进一步研究插值法实际应用,以提高插值法实用性,从而能让咱们在后来应用中看到一种问题,就懂得哪种办法更适合于它,然后大大地迅速提高效率. 核心词:多项式插值;样条函数插值;MATLAB 程序;应用 1.引言 在诸多解题以及应用生活中,经常需要用数量关系来反映问题,但是有时没有办法通过数学语言精确地表达出来.已知有些变量之间存在一种函数关系,但没法用函数表达式表达出来.例如,)(x f 在某个区间上[]b a ,是存在某种数量关系,但是依照观测和测量或者实验只能得到有限个函数值,咱们可以运用这几点来拟定函数表达式.或者有某些函数表达式是已经懂得,但是它们计算是十分繁琐复杂,不容易发现它本质,并且它用法也比较局限.函数是表达数与数之间联系,为了能较好地用数学语言表达出函数关系,普通通过给定数据构造一种函数)(x P ,这样既能反映函数)(x f 特点,又以便计算,用)(x P 近似)(x f .普通选一种简朴函数)(x P ,并且=)(i x P )(i x f ()n i ,...,2,1,0=成立,这个时候)(x P ,从要表达函数规律来看,就是咱们需要插值函数[1] .所用办法就是插值法,由于所选用)(x P 多样化,得到不同插值法. 2.插值法历史背景

克里金插值法

克里金插值法及其适用范围 29 巴任若测绘学院 克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron随后将该方法理论化、系统化,并命名为Kriging,即克里金插值法。 1 克里金插值法原理 克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。 假设研究区域a上研究变量Z(x),在点xi∈A(i=1,2,……,n)处属性值为Z(xi),则待插点x0∈A处的属性值Z(x0)的克里金插值结果Z*(x0)是已知采样点属性值Z(xi)(i=1,2,……,n)的加权和,即:

)()(10* i n i i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。 其中Z(xi)之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量” 针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式: 11=∑=n i i λ (2) 以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组: ???????=??==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3) 式中,C (xi ,xj )是Z(xi)和Z(xj)的协方差函数。 2 国内外研究进展 从克里金方法被提出到现在已有完善的理论,并在很多领域得到了实际的应用,在某些领域的应用又推动了克里金理论的发展[3]。它的发展可归纳为四个时期,每个时期都是以每一届地质统计学大会的召开为标志。第一时期,初次提出了地质统计学理论,将地质统计学与传统的统计学分开,且提出了区域化变量、简单克里金、普通克

插值方法比较Word版

1. 克里金法(Kriging) 克里金法是通过一组具有z 值的分散点生成估计表面的高级地统计过程。与其他插值方法不同,选择用于生成输出表面的最佳估算方法之前应对由z 值表示的现象的空间行为进行全面研究。 克里金插值与IDW插值的区别在于权重的选择,IDW仅仅将距离的倒数作为权重,而克里金考虑到了空间相关性的问题。它首先将每两个点进行配对,这样就能产生一个自变量为两点之间距离的函数。对于这种方法,原始的输入点可能会发生变化。在数据点多时,结果更加可靠。该方法通常用在土壤科学和地质中。 2. 反距离权重法(Inverse Distance Weighted,IDW) 反距离权重法(反距离权重法)工具所使用的插值方法可通过对各个待处理像元邻域中的样本数据点取平均值来估计像元值。点到要估计的像元的中心越近,则其在平均过程中的影响或权重越大。此方法假定所映射的变量因受到与其采样位置间的距离的影响而减小。例如,为分析零售网点而对购电消费者的表面进行插值处理时,在较远位置购电影响较小,这是因为人们更倾向于在家附近购物。 反距离权重法主要依赖于反距离的幂值。幂参数可基于距输出点的距离来控制已知点对内插值的影响。幂参数是一个正实数,默认值为2。 通过定义更高的幂值,可进一步强调最近点。因此,邻近数据将受到最大影响,表面会变得更加详细(更不平滑)。随着幂数的增大,内插值将逐渐接近最近采样点的值。指定较小的幂值将对距离较远的周围点产生更大影响,从而导致更加平滑的表面。 由于反距离权重公式与任何实际物理过程都不关联,因此无法确定特定幂值是否过大。作为常规准则,认为值为30 的幂是超大幂,因此不建议使用。此外还需牢记一点,如果距离或幂值较大,则可能生成错误结果。 3. 含障碍的样条函数(Spline with Barriers) 含障碍的样条函数工具使用的方法类似于样条函数法工具中使用的技术,其主要差异是此工具兼顾在输入障碍和输入点数据中编码的不连续性。 含障碍的样条函数工具应用了最小曲率方法,其实现方式为通过单向多格网技术,以初始的粗糙格网(在本例中是已按输入数据的平均间距进行初始化的格网)为起点在一系列精细格网间移动,直至目标行和目标列的间距足以使表面曲率接近最小值为止。 4. 地形转栅格(Topo to Raster) 地形转栅格和依据文件实现地形转栅格工具所使用插值技术是旨在用于创建可更准确地表示自然水系表面的表面,而且通过这种技术创建的表面可更好的保留输入等值线数据中的山脊线和河流网络。 5. 样条函数(Spline) 样条函数法工具所使用的插值方法使用可最小化整体表面曲率的数学函数来估计值,以生成恰好经过输入点的平滑表面。

各种插值方法比较

空间插值可以有很多种分类方法,插值种类也难以举尽。在网上看到这篇文章,觉得虽然作者没能进行分类,但算法本身介绍地还是不错的。 在科学计算领域中,空间插值是一类常用的重要算法,很多相关软件都内置该算法,其中GodenSoftware 公司的Surfer软件具有很强的代表性,内置有比较全面的空间插值算法,主要包括: Inverse Distance to a Power(反距离加权插值法) Kriging(克里金插值法) Minimum Curvature(最小曲率) Modified Shepard's Method(改进谢别德法) Natural Neighbor(自然邻点插值法) Nearest Neighbor(最近邻点插值法) Polynomial Regression(多元回归法) Radial Basis Function(径向基函数法) Triangulation with Linear Interpolation(线性插值三角网法) Moving Average(移动平均法) Local Polynomial(局部多项式法) 下面简单说明不同算法的特点。 1、距离倒数乘方法 距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。当一个观测点与一个格网结点重合时,该观测点被给予一个实际为1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。换言之,该结点被赋给与观测点一致的值。这就是一个准确插值。距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。用距离倒数格网化时可以指定一个圆滑参数。大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。 2、克里金法 克里金法是一种在许多领域都很有用的地质统计格网化方法。克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。 3、最小曲率法 最小曲率法广泛用于地球科学。用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。 4、多元回归法 多元回归被用来确定你的数据的大规模的趋势和图案。你可以用几个选项来确定你需要的趋

几种插值法比较与应用

多种插值法比较与应用 (一)Lagrange 插值 1. Lagrange 插值基函数 n+1个n 次多项式 ∏ ≠=--=n k j j j k j k x x x x x l 0)( n k ,,1,0ΛΛ= 称为Lagrange 插值基函数 2. Lagrange 插值多项式 设给定n+1个互异点))(,(k k x f x ,n k ,,1,0ΛΛ=,j i x x ≠,j i ≠,满足插值条件 )()(k k n x f x L =,n k ,,1,0ΛΛ= 的n 次多项式 ∏∏ ∏=≠==--==n k n k j j j k j k k n k k n x x x x x f x l x f x L 0 00 ))(()()()( 为Lagrange 插值多项式,称 ∏=+-+=-=n j j x n n x x n f x L x f x E 0 )1()()!1()()()()(ξ 为插值余项,其中),()(b a x x ∈=ξξ (二)Newton 插值 1.差商的定义 )(x f 关于i x 的零阶差商 )(][i i x f x f = )(x f 关于i x ,j x 的一阶差商

i j i j j i x x x f x f x x f --= ][][],[ 依次类推,)(x f 关于i x ,1+i x ,……,k i x +的k 阶差商 i k i k i i k i i k i i i x x x x f x x f x x x f --= +-+++++] ,,[],,[],,,[111ΛΛΛΛΛ 2. Newton 插值多项式 设给定的n+1个互异点))(,(k k x f x ,n k ,,1,0ΛΛ=,j i x x ≠,j i ≠, 称满足条件 )()(k k n x f x N =,n k ,,1,0ΛΛ= 的n 次多项式 )()](,,,[)](,[][)(10100100---++-+=n n n x x x x x x x f x x x x f x f x N ΛΛΛΛΛ 为Newton 插值多项式,称 ],[,)(],,,[)()()(010b a x x x x x x f x N x f x E n j j n n ∈-=-=∏=ΛΛ 为插值余项。 (三)Hermite 插值 设],[)(1b a C x f ∈,已知互异点0x ,1x ,…,],[b a x n ∈及所对应的函数值为0f ,1f ,…,n f ,导数值为'0f ,'1f ,…,'n f ,则满足条件 n i f x H f x H i i n i i n ,,1,0,)(,)(''1212Λ===++ 的12+n 次Hermite 插值多项式为 )()()(0 '12x f x f x H j n j j j n j i n βα∏∏=++= 其中 )())((,)]()(21[)(2 2'x l x x x l x l x x x j j j j j j j j ---=βα

克里金算法

Kriging插值法 (2012-04-19 13:48:09) 转载▼ 标签: 杂谈 克里金法是通过一组具有z 值的分散点生成估计表面的高级地统计过程。与插值工具集中的其他插值方法不同,选择用于生成输出表面的最佳估算方法之前,有效使用克里金法工具涉及z 值表示的现象的空间行为的交互研究。 什么是克里金法? IDW(反距离加权法)和样条函数法插值工具被称为确定性插值方法,因为这些方法直接基于周围的测量值或确定生成表面的平滑度的指定数学公式。第二类插值方法由地统计方法(如克里金法)组成,该方法基于包含自相关(即,测量点之间的统计关系)的统计模型。因此,地统计方法不仅具有产生预测表面的功能,而且能够对预测的确定性或准确性提供某种度量。 克里金法假定采样点之间的距离或方向可以反映可用于说明表面变化的空间相关性。克里金法工具可将数学函数与指定数量的点或指定半径内的所有点进行拟合以确定每个位置的输出值。克里金法是一个多步过程;它包括数据的探索性统计分析、变异函数建模和创建表面,还包括研究方差表面。当您了解数据中存在空间相关距离或方向偏差后,便会认为克里金法是最适合的方法。该方法通常用在土壤科学和地质中。 克里金法公式 由于克里金法可对周围的测量值进行加权以得出未测量位置的预测,因此它与反距离权重法类似。这两种插值器的常用公式均由数据的加权总和组成:

?其中: Z(s i) = 第i个位置处的测量值 λi = 第i个位置处的测量值的未知权重 s0 = 预测位置 N = 测量值数 在反距离权重法中,权重λi仅取决于预测位置的距离。但是,使用克里金方法时,权重不仅取决于测量点之间的距离、预测位置,还取决于基于测量点的整体空间排列。要在权重中使用空间排列,必须量化空间自相关。因此,在普通克里金法中,权重λi取决于测量点、预测位置的距离和预测位置周围的测量值之间空间关系的拟合模型。以下部分将讨论如何使用常用克里金法公式创建预测表面地图和预测准确性地图。 使用克里金法创建预测表面地图 要使用克里金法插值方法进行预测,有两个任务是必需的: ?找到依存规则。 ?进行预测。 要实现这两个任务,克里金法需要经历一个两步过程: 1.创建变异函数和协方差函数以估算取决于自相关模型(拟合模型)的统计相关性(称 为空间自相关)值。 2.预测未知值(进行预测)。 由于这两个任务是不同的,因此可以确定克里金法使用了两次数据:第一次是估算数据的空间自相关,第二次是进行预测。 变异分析

几种插值法的应用和比较

插值法的应用与比较 信科1302 万贤浩 13271038 1格朗日插值法 在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·路易斯·拉格朗日命名的一种多项式插值方法.许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解.如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值.这样的多项式称为拉格朗日(插值)多项式.数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数.拉格朗日插值法最早被英国数学家爱德华·华林于1779年发现,不久后由莱昂哈德·欧拉再次发现.1795年,拉格朗日在其著作《师范学校数学基础教程》中发表了这个插值方法,从此他的名字就和这个方法联系在一起. 1.1拉格朗日插值多项式 图1 已知平面上四个点:(?9, 5), (?4, 2), (?1, ?2), (7, 9),拉格朗日多项式:)(x L (黑色)穿过所有点.而每个基本多项式:)(00x l y ,)(11x l y , )(22x l y 以及)(x l y ??各穿过对应的一点,并在其它的三个点的x 值上取零. 对于给定的若1+n 个点),(00y x ,),(11y x ,………),(n n y x ,对应于它们的次数不超过n 的拉格朗日多项式L 只有一个.如果计入次数更高的多项式,则有无穷个,因为所有与L 相差 ))((10x x x x --λ……)(n x x -的多项式都满足条件. 对某个多项式函数,已知有给定的1+k 个取值点: ),(00y x ,……,),(k k y x ,

克里金插值

克里金(Kriging)插值 克里金(Kriging)插值法又称空间自协方差最佳插值法,它是以南非矿业工程师D.G.Krige的名字命名的一种最 优内插法。克里金法广泛地应用于地下水模拟、土壤制图等领域,是一种很有用的地质统计格网化方法它 首先考虑的是空间属性在空间位置上的变异分布.确定对一个待插点值有影响的距离范围,然后用此范围 内的采样点来估计待插点的属性值。该方法在数学上可对所研究的对象提供一种最佳线性无偏估计(某点 处的确定值)的方法。它是考虑了信息样品的形状、大小及与待估计块段相互间的空间位置等几何特征以 及品位的空间结构之后,为达到线性、无偏和最小估计方差的估计,而对每一个样品赋与一定的系数,最后 进行加权平均来估计块段品位的方法。但它仍是一种光滑的内插方法在数据点多时,其内插的结果可信 度较高。 克里金法类型分常规克里金插值(常规克里金模型/克里金点模型)和块克里金插值。常规克里金插值 其内插值与原始样本的容量有关,当样本数量较少的情况下,采用简单的常规克里金模型内插的结果图会 出现明显的凹凸现象;块克里金插值是通过修改克里金方程以估计子块B内的平均值来克服克里金点模 型的缺点,对估算给定面积实验小区的平均值或对给定格网大小的规则格网进行插值比较适用。块克里金 插值估算的方差结果常小于常规克里金插值,所以,生成的平滑插值表面不会发生常规克里金模型的凹凸 现象。按照空间场是否存在漂移(drift)可将克里金插值分为普通克里金和泛克里金,其中普通克里金 (Ordinary Kriging简称OK法)常称作局部最优线性无偏估计.所谓线性是指估计值是样本值的线性组 合,即加权线性平均,无偏是指理论上估计值的平均值等于实际样本值的平均值,即估计的平均误差为0, 最优是指估计的误差方差最小。

各种插值法的对比研究

各种插值法的对比研究

目录 1.引言 (1) 2.插值法的历史背景 (1) 3.五种插值法的基本思想 (2) 3.1拉格朗日插值 (2) 3.2牛顿插值 (3) 3.3埃尔米特插值 (3) 3.4分段线性插值 (4) 3.5三次样条插值 (5) 4.五种插值法的对比研究 (5) 4.1拉格朗日插值与牛顿插值的比较 (5) 4.2多项式插值法与埃尔米特插值的比较 (6) 4.3多项式插值法与分段线性插值的比较 (6) 4.4 分段线性插值与样条插值的比较 (6) 5.插值法在实际生活中的应用 (6) 6.结束语 (6) 致谢 (7) 参考文献 (7)

各种插值法的对比研究 摘要:插值法是一种古老的数学方法,也是数值计算中的一个算法.插值法不仅是微分方程、数值积分、数值微分等计算方法的基础,而且在医学、通讯、精密机械加工等领域都涉及到了它.本文首先介绍了插值的背景以及常用的五种插值法的基本思想,然后通过拉格朗日插值与牛顿插值、多项式插值与埃尔米特插值、多项式插值与分段线性插值、分段线性插值和样条函数插值给出相应的算法与MATLAB 程序,根据已学的知识对五种插值方法与被插函数的逼近程度进行对比研究,找出不同方法间的联系与区别,分析出它们的优缺点,最后在此基础上进一步研究插值法的实际应用,以提高插值法的实用性,从而能让我们在以后的应用中看到一个问题,就知道哪种方法更适合于它,然后大大地快速的提高效率. 关键词:多项式插值;样条函数插值;MATLAB 程序;应用 1.引言 在很多解题以及应用生活中,常常需要用数量关系来反映问题,但是有时没有办法通过数学语言准确地表达出来.已知有些变量之间存在一种函数关系,但没法用函数的表达式表示出来.比如,)(x f 在某个区间上[]b a ,是存在某种数量关系的,但是根据观察和测量或者实验只能得到有限个函数值,我们可以利用这几点来确定函数表达式.或者有一些函数表达式是已经知道的,但是它们的计算是十分繁琐复杂的,不容易发现它的本质,而且它的使用方法也比较局限.函数是表达数与数之间的联系,为了能很好地用数学语言表达出函数的关系,一般通过给定的数据构造一个函数)(x P ,这样既能反映函数)(x f 的特点,又方便计算,用)(x P 近似)(x f .通常选一个简单的函数)(x P ,而且=)(i x P )(i x f ()n i ,...,2,1,0=成立,这个时候的)(x P ,从要表达的函数规律来看,就是我们需要的插值函数[1] .所用方法就是插值法,由于所选用的)(x P 的多样化,得到不同的插值法. 2.插值法的历史背景 插值法的历史源远流长,在很早的时候就涉及到了它.它是数值计算中一个古老的分支,它来源于生产实践. 因为牛顿力学的物理理论知识在一千年前没有出现,所以我们的祖先没有办法用很准确的数学解析式来表达日月五星的运行规律.后来,古代的人们有着聪慧的头脑,想出了插值方法,然后发现了日月五星的运行规律.例如唐朝数学家张遂提出了插值法的概念以及不等距

五种插值法的对比研究开题报告

五种插值法的对比研究 1.选题依据 1.1 选题背景 插值法是一种古老的数学方法,插值法历史悠久。据考证,在公元六世纪时,我国刘焯(zhuo) 已经把等距二次插值法应用于天文计算。十七世纪时,Newton和Gregory(格雷格里) 建立了等距节点上的一般插值公式,十八世纪时,Lagrange(拉格朗日) 给出了更一般的非等距节点插值公式。而它的基本理论是在微积分产生以后逐渐完善的,它的实际应用也日益增多,特别是在计算机工程中。许多库函数的计算实际上归结于对逼近函数的计算。 1.2 研究的目的和意义 插值法是数值分析中最基本的方法之一。在实际问题中碰到的函数是各种各样的,有的甚至给不出表达式,只提供了一些离散数据,例如,在查对数表时,要查的数据在表中找不到,就先找出它相邻的数,再从旁边找出它的修正值,按一定关系把相邻的数加以修正,从而找出要找的数,这种修正关系实际上就是一种插值。在实际应用中选用不同类型的插值函数,逼近的效果也不同。在数值计算方法中,我们学习过五种基本的插值方法,即Lagrange插值、Newton插值、分段线性插值、分段三次Hermite插值、样条插值函数。所以通过从这五种插值法的基本思想、特征、性质和具体实例入手,探讨五种插值法的优缺点和适用范围,让学习者能够迅速而准确的解决实际问题,掌握插值法的应用。 2. 研究的方法

从具体实例入手并结合Matlab 在科学计算中的优势,通过实验对它们的精度和效率进行比较分析。 3. 论文结构 3.1 论文的总体结构 第一部分 导言 主要介绍选题的背景、目的及意义、研究现状、文献综述等。 第二部分 五种插值法的基本思想、性质及特点 在数值计算方法中,插值法是计算方法的基础,数值微分、数值积分和微分方程数值解都建立在此基础上。 插值问题的提法是:已知f(x)(可能未知或非常复杂函数)在彼此不同的n+1 个实点0x ,1x ,…n x 处的函数值是f(0x ),f(1x ),…,f(n x ),这时我们简单的说f(x)有n+1 个离散数据 对0n i i )}y ,{(x i .要估算f(x)在其它点x 处的函数值,最常见的一种办法就是插值,即寻找 一个相对简单的函数y(x),使其满足下列插值条件:y(i x )=f(i x ),i=0,1,…,n.,并以y(x)作为f(x)的近似值.其中y(x)称为插值函数,f(x)称为被插函数。 多项式插值是最常见的一种函数插值.在一般插值问题中,由插值条件可以唯一确定一个次数不超过n 的插值多项式满足上述条件.从几何上看可以理解为:已知平面上n+1 个不同点,要寻找一条次数不超过n 的多项式曲线通过这些点.插值多项式一般有两种常见的表达形式,一个是拉格朗日(Lagrange )插值多项式,另一个是牛顿(Newton )插值多项式. 且Lagrange 插值公式恒等于Newton 插值公式. 分段线性插值与样条插值可以避免高次插值可能出现的大幅度波动现象,在实际应用

克里金插值法的详细介绍。kriging。

kriging 插值作为地统计学中的一种插值方法由南非采矿工程师D.G.Krige于1951年首次提出,是一种求最优、线形、无偏的空间内插方法。在充分考虑观测资料之间的相互关系后,对每一个观测资料赋 予一定的权重系数,加权平均得到估计值。 这里介绍普通Kriging插值方法的基本步骤:1.该方法中衡量各点之间空间相关程度的测度是半方 差,其计算公式为: h为各点之间距离,n 是由h 分开的成对样本点的数量,z 是点的属性值。 2.在不同距离的半方差值都计算出来后,绘制半方差图,横轴代表距离,纵轴代表半方差。半方差图中有三个参数nugget(表示距离为零时的半方差),sill(表示基本达到恒定的半方差值),range(表示一个值域范围,在该范围内半方差随距离增加,超过该范围,半方差值趋于恒定)。利用做出的半方差图找出与之拟合的最好的理论变异函数模型(这是关键所在),可用于拟合的模型包括高斯模型、线性模型、球状 模型、指数模型、圆形模型。 ----球状模型,球面模型空间相关随距离的增长逐渐衰减,当距离大于球面半径后,空间相关消失。 3.用拟合的模型计算出三个参数。例如球状模型中nugget为c0,range为a,sill为c。 4.利用拟合的模型估算未知点的属性值,方程为: ,z0为估计值,zx是已知点的值,wx为权重,s是用来估算未知点的 已知点的数目。 假如用三个点来估算,则有

这样权重就可以求出,然后估算未知点。 (上述内容根据《地理信息系统导论》(Kang-tsung Chang著;陈健飞等译,科学出版社,2003)第十三章内容进行总结,除球状模型公式外其余公式皆来自此书) 下面是本人自己编写的利用海洋中断面上观测站点的实测温度值来估算未观测处的温度的Fortran程序,利用距离未知点最近的五个观测点来估算未知点的温度,选用模型为球状模型。 do ii=1,nx if(tgrid(ii,1)==0.)then do i=1,dsite(ii) !首先寻找距离最近的五个已知点位置 do j=1,nh if(d(mm(ii),j).ne.0.or.j==1)then hmie(j)=d(mm(ii),j)-dgrid(i) else hmie(j)=9999 end if hmid(j)=abs(hmie(j)) end do do j=1,nh do k=j,nh if(hmid(j)

相关文档
相关文档 最新文档