文档库 最新最全的文档下载
当前位置:文档库 › 【精品导学】物理选修3-4讲义(浙江专版):第十三章 光 2(Word版)

【精品导学】物理选修3-4讲义(浙江专版):第十三章 光 2(Word版)

【精品导学】物理选修3-4讲义(浙江专版):第十三章 光 2(Word版)
【精品导学】物理选修3-4讲义(浙江专版):第十三章 光 2(Word版)

2全反射

一、全反射

[导学探究]如图1,让光沿着半圆形玻璃砖的半径射到它的平直的边上.逐渐增大入射角,观察反射光线和折射光线的变化.

图1

(1)在入射角逐渐增大时,折射角的大小如何变化?

(2)在入射角逐渐增大时,反射光线和折射光线的亮度如何变化?

(3)折射界面两侧的介质的折射率有何不同?

答案(1)逐渐增大入射角,会看到折射光线离法线越来越远,折射角逐渐增大.(2)折射光线越来越弱,反射光线越来越强.当入射角增大到某一角度,使折射角达到90°时,折射光线完全消失,只剩下反射光线.(3)入射侧介质的折射率较大,折射侧介质的折射率较小.[知识梳理]对全反射的理解

1.光疏介质和光密介质

两种介质相比较,折射率较大的介质叫光密介质,折射率较小的介质叫光疏介质.任何两种透明介质都可以通过比较光在其中传播速度的大小或折射率的大小来判定谁是光疏介质或光密介质.

2.全反射现象

(1)全反射:光从光密介质射入光疏介质时,同时发生折射和反射.若入射角增大到某一角

度,折射光线完全消失,只剩下反射光线的现象.

(2)临界角:刚好发生全反射,即折射角等于90°时的入射角.用字母C 表示,sin C =1

n .

(3)全反射发生的条件

①光从光密介质射至光疏介质. ②入射角大于或等于临界角. 二、全反射棱镜

[导学探究] 如图2所示,已知玻璃的折射率为1.5,甲图中当光线垂直BC 面入射时,光线到达AC 面的入射角是多少?能否发生全反射?乙图中当光线垂直AC 面入射时,光线到达AB 面的入射角是多少?能否发生全反射?

图2

答案 45° 能发生全反射 45° 能发生全反射 [知识梳理]

三、光导纤维

[导学探究] 如图3所示是光导纤维的结构示意图,其内芯和外套由两种光学性能不同的介质构成.构成内芯和外套的两种介质,哪个折射率大?为什么?

全套下载(共15份145页)人教版高中物理选修3-3教学案全集(含全套练习)

(共15套145页)人教版高中物理选修3-3教学案全集(含全册练习)

第1节 气体的等温变化 1.一定质量的气体,在温度不变的条件下,其压强与体积变化时的关系,叫做气体的等温变化. 2.玻意耳定律:一定质量的某种气体,在温度不变的情况下,压强p 与体积V 成反比,即pV =C . 3.等温线:在p -V 图像中,用来表示温度不变时,压强和体积关系的图像,它们是一些双曲线. 在p -1V 图像中,等温线是倾斜直线.

一、探究气体等温变化的规律 1.状态参量 研究气体性质时,常用气体的温度、体积、压强来描述气体的状态. 2.实验探究

二、玻意耳定律 1.内容 一定质量的某种气体,在温度不变的情况下,压强与体积成反比. 2.公式 pV=C或p1V1=p2V2. 3.条件 气体的质量一定,温度不变. 4.气体等温变化的p -V图像 气体的压强p随体积V的变化关系如图8-1-1所示,图线的形状为双曲线,它描述的是温度不变时的p -V关系,称为等温线. 一定质量的气体,不同温度下的等温线是不同的. 图8-1-1 1.自主思考——判一判

(1)一定质量的气体压强跟体积成反比. (×) (2)一定质量的气体压强跟体积成正比. (×) (3)一定质量的气体在温度不变时,压强跟体积成反比. (√) (4)在探究气体压强、体积、温度三个状态参量之间关系时采用控制变量法. (√) (5)玻意耳定律适用于质量不变、温度变化的气体. (×) (6)在公式pV =C 中,C 是一个与气体无关的参量. (×) 2.合作探究——议一议 (1)用注射器对封闭气体进行等温变化的实验时,在改变封闭气体的体积时为什么要缓慢进行? 提示:该实验的条件是气体的质量一定,温度不变,体积变化时封闭气体自身的温度会发生变化,为保证温度不变,应给封闭气体以足够的时间进行热交换,以保证气体的温度不变. (2)玻意耳定律成立的条件是气体的温度不太低、压强不太大,那么为什么在压强很大、温度很低的情况下玻意耳定律就不成立了呢? 提示:①在气体的温度不太低、压强不太大时,气体分子之间的距离很大,气体分子之间除碰撞外可以认为无作用力,并且气体分子本身的大小也可以忽略不计,这样由玻意耳定律计算得到的结果与实际的实验结果基本吻合,玻意耳定律成立. ②当压强很大、温度很低时,气体分子之间的距离很小,此时气体分子之间的分子力引起的效果就比较明显,同时气体分子本身占据的体积也不能忽略,并且压强越大,温度越低,由玻意耳定律计算得到的结果与实际的实验结果之间差别越大,因此在温度很低、压强很大的情况下玻意耳定律也就不成立了. (3)如图8-1-2所示,p -1 V 图像是一条过原点的直线,更能直观描述压强与体积的关系, 为什么直线在原点附近要画成虚线?

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度 越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子 间斥力随分子间距离加大而减小得更快些,如图1中两条虚线 所示。分子间同时存在引力和斥力,两种力的合力又叫做分子 力。在图1图象中实线曲线表示引力和斥力的合力(即分子力) 随距离变化的情况。当两个分子间距在图象横坐标0r 距离时, 分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为 1010-m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十 分微弱,可以忽略不计了 4、温度

人教版物理选修3-5全册导学案(共62页)

人教版物理选修3-5导学案

【课题】§16.1 实验:探究碰撞中的不变量导学案 【学习目标】备课人:赵炳东 (1)明确探究碰撞中的不变量的基本思路; (2)掌握同一条直线上运动的两个物体碰撞前后的速度的测量方法; (3)掌握实验数据处理的方法。 【自主探究】 1.光滑桌面上有1、2两个小球。1球的质量为0.3Kg,以8m/s的速度跟质量为0.1kg的静止的2球碰撞,碰撞后2球的速度变为9m/s,1球的速度变为5m/s,方向与原来相同。根据这些数据,以上两项猜想是否成立: (1)通过计算说明,碰撞后是否是1球把速度传给了2球? (2)通过计算说明,碰撞后是否是1球把动能传给了2球? (3)请根据实验数据猜想在这次碰撞中什么物理量不变,通过计算加以验证。 6.水平光滑桌面上有A、B两个小车,质量分别是0.6k g

和0.2kg.A车的车尾拉着纸带,A车以某一速度与静止的B车发生一维碰撞,碰后两车连在一起共同向前运动.碰撞前后打点计时器打下的纸带如图所示.根据这些数据,请猜想:把两小车加在一起计算,有一个什么物理量在碰撞前后是相等的? 【典型例题】 A、B两滑块在同一光滑的水平直导轨上相向运动发生碰撞(碰撞时间极短)。用闪光照相,闪光4次摄得的闪光照片如下图所示。已知闪光的时间间隔为Δt,而闪光本身持续时间极短,在这4次闪光的瞬间,A、B两滑块均在0-80cm刻度范围内,且第一次闪光时,滑块A恰好通过x=55cm处,滑块B恰好通过x=70cm处,问: (1)碰撞发生在何处? (2)碰撞发生在第一次闪光后多长时间? (3)设两滑块的质量之比为m A:m B=2:3,试分析 碰撞前后两滑块的质量与速度乘积之和是否相等? 【问题思考】 在探究碰撞中的不变量时,你认为在计算时怎样对待速度的方向? 【针对训练】 1.在“探究碰撞中的不变量”的实验中,为了顺利地完成实验,入射球质量为m1,被碰球质量为m2,二者关系应是( ) A.m1>m2B.m1=m2C.m1

高中物理选修3-4全册导学案

选修3-4全册教学学案 选修3-4_11.1简谐振动 【学习目标】 1.认识弹簧振子并能判断出振动的平衡位置。 2.理解简谐运动的位移-时间图像是一条正(余)弦曲线,知道简谐运动图 像的意义。 3.能够根据简谐运动图像弄清楚各时刻质点的位移、速度和加速度的方向 和大小规律。 【自主学习】 1.弹簧振子 (1).组成:由______和________组成的系统叫弹簧振子,它是一个理想化 的模型(为什么?)。 (2).平衡位置:振子__________时的位置。 (3).机械振动:振子在______位置附近的________运动,简称________。 2.简谐运动及其图像 (1).简谐运动:质点的位移与时间的关系遵从___________规律,即它的振 动图像(x-t 图像)是一条________曲线。简谐运动是最简单、最基本的振动, 弹簧振子的运动就是__________。 (2).简谐运动的图像 ①坐标系的建立:在简谐运动的图像中,以横坐标表示______,以纵坐标表 示振子离开平衡位置的_________。 ②物理意义:表示振动物体的_______随_______的变化规律。 重点知识或易混知识 问题1.根据对平衡位置的理解,判断正误并举例说明 ① 在弹簧振子中弹簧处于原长时的状态为平衡状态。 ② 在弹簧振子中物块速度为零时的状态为平衡状态。 ③在弹簧振子中合外力为零时的状态为平衡状态。 问题2.振动图像的理解,结合判断正误 ① 如右图所示正弦曲线为质点的运动轨迹。 ② 如右图,3s 内的位移为x 1大小为cm cm 10910322=+。 ③ 如右图,3s 内的位移为x 2 大小为10cm 。 ④ 如右图,1.5s 时的速度方向为曲线上该点的切线方向。 ⑤ 0.5s 和1.5s 时的位移相同,速度也相同。 ⑥ 0.5s 和3.5s 时的位移相反,速度相反。 X X 1

高中物理选修3-3知识点整理

选修3—3期末复习知识点汇总 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径-V=Sd V 是滴入浅水盘中纯油酸的体积,等于油酸溶液的体积乘以浓度。S 是单分子油膜在水面上形成的面积。 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成 立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N =【固体和液体-分子体积,气体--分子平均占有空间体积】 c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= ===【M-任意质量;v--任意体积】 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同 时还说明分子间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体颗粒的无规则运动,不是分子热运动,但颗粒很小,是在显微镜下才能观察到的。 ①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显; 温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞 击的不均匀性造成的。

③布朗运动间接地反映了液体分子的无规则运动,扩散现象的产生原因是物体分子 做无规则热运动。两者都有力地说明分子在永不停息地做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈。 布朗运动不是分子热运动,扩散现象是分子热运动。 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间 斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。 分子间同时存在引力和斥力,两种力的合力又叫做分子力,随距 离的增加,分子力先减小,后增加,再减小。。在图1图象中实 线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横 坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010-m , 相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志,不同分子温度相同,平均速率不一定相同。热力学温度与摄氏温度的关系: 273.15T t K =+。热力学温度是国际单位制中的基本单位。 5、分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分 子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小)固体分子和液体内部分子通常处于平衡位置, 势能最小。分子势能随距离增加,先减小,再增加。 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加

新人教版高中物理选修3-2全册导学案

新人教版高中物理选修全册导学案

目录 第四章第1节划时代的发现导 第四章第2节探究电磁感应的产生条件 第四章第3节楞次定律 第四章第4节《法拉第电磁感应定律》 第四章第5节《电磁感应规律的应用》 第四章第5节《电磁感应规律的应用》 第四章第6节《互感与自感》 第四章第6节《互感与自感》 第四章第7节《涡流电磁阻尼和电磁驱动》 第四章第《涡流电磁阻尼和电磁驱动》 第五章第1节交变电流 第五章第2节描述交变电流物理量 第五章第3节《电感和电容对交变电流的影响》第五章第4节变压器 第五章第5节《电能的输送》 第六章第1节传感器及其工作原理 第六章第2节传感器的应用(一) 第六章第3节传感器的应用(二) 第六章第4节传感器的应用实验

选修3-2第四章电磁感应 第1节《划时代的发现》 课前预习学案 一、预习目标 预习奥斯特梦圆“电生磁”;法拉第心系“磁生电”,初步了解物理学中奥斯特和法拉第的贡献。 二、预习内容 奥斯特梦圆“电生磁”标题和法拉第心系“磁生电”标题。 问题1:奥斯特在什么思想的启发下,发现了电流的磁效应的? 问题2:奥斯特发现了电流的磁效应,能说明他是一个“幸运儿”吗?是偶然还是必然? 问题3:1803年奥斯特总结了一句话内容是什么? 问题4:法拉第在了奥斯特的电流磁效应的基础上,思考对称性原理,从而得出了什么样的结论? 问题5:其他很多科学家例如安培,科拉顿等物理学家也做过磁生电的试验,可他们都没有成功,他们问题出现在那里? 问题6:法拉第经过无数次试验,经历10年的时间,终于领悟到了什么? 问题7:什么是电磁感应?什么是感应电流? 问题8:通过学习你从奥斯特、法拉第等科学家身上学到了什么? 问题9:通过查阅资料,了解法拉第的生平,详细写出法拉第一生中的伟大成就和伟大发现。 三、提出疑惑

(完整word)高中物理选修3-3资料

高中物理选修3-3复习 专题定位本专题用三讲时分别解决选修3-3、3-4、3-5中高频考查问题,高考对本部分内容考查的重点和热点有: 选修3-3:①分子大小的估算;②对分子动理论内容的理解;③物态变化中的能量问题; ④气体实验定律的理解和简单计算;⑤固、液、气三态的微观解释和理解;⑥热力学定律的理解和简单计算;⑦用油膜法估测分子大小等内容. 选修3-4:①波的图象;②波长、波速和频率及其相互关系;③光的折射及全反射;④光的干涉、衍射及双缝干涉实验;⑤简谐运动的规律及振动图象;⑥电磁波的有关性质. 选修3-5:①动量守恒定律及其应用;②原子的能级跃迁;③原子核的衰变规律;④核反应方程的书写;⑤质量亏损和核能的计算;⑥原子物理部分的物理学史和α、β、γ三种射线的特点及应用等. 应考策略选修3-3内容琐碎、考查点多,复习中应以四块知识(分子动理论、从微观角度分析固体、液体、气体的性质、气体实验定律、热力学定律)为主干,梳理出知识点,进行理解性记忆. 选修3-4内容复习时,应加强对基本概念和规律的理解,抓住波的传播和图象、光的折射定律这两条主线,强化训练、提高对典型问题的分析能力. 选修3-5涉及的知识点多,而且多是科技前沿的知识,题目新颖,但难度不大,因此应加强对基本概念和规律的理解,抓住动量守恒定律和核反应两条主线,强化典型题目的训练,提高分析综合题目的能力. 第1讲热学 高考题型1热学基本知识 解题方略 1.分子动理论 (1)分子大小 ①阿伏加德罗常数:N A=6.02×1023 mol-1. ②分子体积:V0=V mol N A(占有空间的体积).

③分子质量:m0=M mol N A. ④油膜法估测分子的直径:d=V S. (2)分子热运动的实验基础:扩散现象和布朗运动. ①扩散现象特点:温度越高,扩散越快. ②布朗运动特点:液体内固体小颗粒永不停息、无规则的运动,颗粒越小、温度越高,运动越剧烈. (3)分子间的相互作用力和分子势能 ①分子力:分子间引力与斥力的合力.分子间距离增大, 引力和斥力均减小;分子间距离减小,引力和斥力均增大,但斥力总比引力变化得快. ②分子势能:分子力做正功,分子势能减小;分子力做负功,分子势能增大;当分子间距为r0(分子间的距离为r0时,分子间作用的合力为0)时,分子势能最小. 2.固体和液体 (1)晶体和非晶体的分子结构不同,表现出的物理性质不同.晶体具有确定的熔点.单晶体表现出各向异性,多晶体和非晶体表现出各向同性.晶体和非晶体在适当的条件下可以相互转化. (2)液晶是一种特殊的物质状态,所处的状态介于固态和液态之间.液晶具有流动性,在光学、电学物理性质上表现出各向异性. (3)液体的表面张力使液体表面具有收缩到最小的趋势,表面张力的方向跟液面相切.

物理选修3-1学案

第1章静电场 第1节静电现象及其微观解释 1.自然界中只存在两种电荷:______电荷和________电荷.电荷间的作用规律是:同种电荷相互______,异种电荷相互________. 2.用毛皮摩擦橡胶棒时,橡胶棒带____________电荷,毛皮带__________电荷.用丝绸摩擦玻璃棒,玻璃棒带______电荷,丝绸带______电荷. 3.原子核的正电荷数量与电子的负电荷数量一样多,所以整个原子对外界表现为________.金属中距离原子核最远的电子往往会脱离原子核的束缚而在金属中自由活动,这种电子叫做________________.失去这种电子的原子便成为带____电的离子.离子都在自己的平衡位置上振动而不移动,只有自由电子穿梭其中.所以金属导电时只有________在移动. 4.把带电体移近不带电的导体,可以使导体靠近带电体的一端带________,远离的一端带________这种现象叫静电感应.利用静电感应使物体带电叫________起电.常见的起电方式还有________和________等. 5.电荷既不能创生,也不能消灭,只能从一个物体______到另一物体,或者从物体的一部分____________到另一部分. 6.物体所带电荷的多少叫________________.在国际单位制中,它的单位是________,用________表示. 7.最小的电荷量叫________,用e表示,e=________.所有带电体的电荷量都等于e的____________.电子的电荷量与电子的质量之比叫做电子的________.

一、电荷 [问题情境] 在干燥的冬天,当你伸手接触金属门把的一刹那,突然听到“啪”的一声,手麻了一下,弄得你虚惊一场,是谁在恶作剧?原来是电荷在作怪. 1.这些电荷是哪里来的?物质的微观结构是怎样的?摩擦起电的原因是什么? 2.什么是自由电子,金属成为导体的原因是什么? 3.除了摩擦起电,还有其它方法可以使物体带电吗? [要点提炼] 1.摩擦起电的原因:在两个物体相互摩擦时,一些束缚不紧的电子会从一个物体转移到另一个物体,于是原来呈电中性的物体由于得到电子而带____电,失去电子的物体则带____电.2.感应起电的原因:当一个带电体靠近导体时,由于电荷间的相互吸引和排斥,导体中的自由电子便会趋向或远离带电体,使导体靠近带电体的一端带____电荷,远离的一端带____电荷.3.常见的起电方式有摩擦起电、感应起电和接触起电.三种起电方式的实质都是________ 的转移.[问题延伸] 感应起电现象中实验物体必须是导体吗? 二、电荷守恒定律 [问题情境]

高中物理选修3-3知识总结

高中物理3-3知识点总结 一、分子动理论 1、物体是由大量分子组成的 微观量:分子体积V0、分子直径d 、分子质量m 0 宏观量:物质体积V 、摩尔体积V A、物体质量m、摩尔质量M、物质密度ρ。 联系桥梁:阿伏加德罗常数(N A =6.02×1023 mol -1 ) A V M V m ==ρ (1)分子质量:A A 0N V N M N m m A ρ=== (2)分子体积:A A 0N M N V N V V A ρ=== (对气体,V 0应为气体分子占据的空间大小) (3)分子大小:(数量级10-1 0m) 球体模型.30)2 (34d N M N V V A A A πρ=== 直径3 06πV d =(固、液体一般用此模型) 油膜法估测分子大小:S V d = S —单分子油膜的面积,V —滴到水中的纯油酸的体积 错误!立方体模型.3 0=V d (气体一般用此模型;对气体,d应理解为相邻分子间的平均距离) 注意:固体、液体分子可估算分子质量、大小(认为分子一个挨一个紧密排列); 气体分子间距很大,大小可忽略,不可估算大小,只能估算气体分子所占空间、分子质量。 (4)分子的数量:A A N M V N M m nN N A ρ== = 或者 A A N M V N V V nN N A A ρ=== 2、分子永不停息地做无规则运动 (1)扩散现象:不同物质彼此进入对方的现象。温度越高,扩散越快。直接说明了组成物体的分子总是不停地做无规则运动,温度越高分子运动越剧烈。 (2)布朗运动:悬浮在液体中的固体微粒的无规则运动。

发生原因是固体微粒受到包围微粒的液体分子无规则运动地撞击的不平衡性造成的.因而间接 ..说明了液体分子在永不停息地做无规则运动. 错误!布朗运动是固体微粒的运动而不是固体微粒中分子的无规则运动. ②布朗运动反映液体分子的无规则运动但不是液体分子的运动. ③课本中所示的布朗运动路线,不是固体微粒运动的轨迹. ④微粒越小,布朗运动越明显;温度越高,布朗运动越明显. 3、分子间存在相互作用的引力和斥力 ①分子间引力和斥力一定同时存在,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但斥力变化快,实际表现出的分子力是分子引力和分子斥力的合力 ②分子力的表现及变化,对于曲线注意两个距离,即平衡距离r0(约10-10m)与10r0。 (ⅰ)当分子间距离为r0时,引力等于斥力,分子力为零。 (ⅱ)当分子间距r>r0时,引力大于斥力,分子力表现为引力。当分子间距离由r0增大时,分子力先增大后减小 (ⅲ)当分子间距r<r0时,斥力大于引力,分子力表现为斥力。当分子间距离由r0减小时,分子力不断增大 二、温度和内能 1、统计规律:单个分子的运动都是不规则的、带有偶然性的;大量分子的集体行为受到统计规律的支配。多数分子速率都在某个值附近,满足“中间多,两头少”的分布规律。 2、分子平均动能:物体内所有分子动能的平均值。 ①温度是分子平均动能大小的标志。 ②温度相同时任何物体的分子平均动能相等,但平均速率一般不等(分子质量不同). 3、分子势能 (1)一般规定无穷远处分子势能为零, (2)分子力做正功分子势能减少,分子力做负功分子势能增加。 (3)分子势能与分子间距离r0关系(类比弹性势能) ①当r>r0时,r增大,分子力为引力,分子力做负功分子势能增大。 x 0 E P r0

高中物理选修3-4导学案---12.5

第十二章机械波 选修3-4 12.5多普勒效应 【教学目标】 1.知道波源的频率与观察者接收到的频率的区别. 2.知道什么是多普勒效应,知道它是波源与观察者之间有相对运动时产生的现象。 3.了解多普勒效应的一些应用. 重点:1.知道波源的频率与观察者接收到的频率的区别. 2.多普勒效应的定义及产生条件; 难点:波源的频率与观察者接收到的频率的区别. 【自主预习】 1.波源与观察者互相________或者互相________时,接收到的频率都会________,这种现象叫做多普勒效应。 2.当波源与观察者相对静止时,1 s内通过观察者的波峰(或密部)的数目是一定的,观察到的频率________波源振动的频率;当波源与观察者相向运动时,1 s内通过观察者的波峰(或密部)的数目________,观察到的频率________;反之,当波源与观察者互相________时,观察到的频率________。 3.多普勒效应在科学技术中有广泛的应用。交通警察可以用来测量汽车的________,医生可用来测量血流的速度,这种方法俗称为“________” 注意:①在多普勒效应中,波源的频率是不改变的,只是由于波源和观察者之间有相对运动,观察者感到频率发生了变化。

②多普勒效应是波动过程共有的特征,电磁波和光波也会发生多普勒效应。 4.应用 ①超声波测速:发射装置向行进中的车辆发射频率已知的超声波,同时测量反射波的频率。据反射波频率的变化的多少可以知道车辆的速度。 ②红移现象:在20世纪初,科学家们发现许多星系的谱线有“红移现象”,所谓“红移现象”,就是整个光谱结构向光谱红色的一端偏移,这种现象可以用多普勒效应加以解释:由于星系远离我们运动,接收到的星光的频率变小,谱线就向频率变小(即波长变大)的红端移动。 ③医用“彩超”:向人体发射频率已知的超声波,超声波被血管中的血液反射后被仪器接收。测出反射波的频率变化,就能知道血流的速度,据此诊断疾病。 ④可据火车汽笛的音调的变化可以判断火车是进站还是出站;据炮弹飞行的尖叫声可以判断炮弹飞行的方向等。 【典型例题】 一、多普勒效应的产生 【例题1】下面说法巾正确的是 ( ) A.发生多普勒效应时,波源的频率变化了 B.发生多普勒效应时,观察者接收到的频率发生变化 C.多普勒是在波源与观察者之间有相对运动时产生的 D.多普勒效应是由奥地利物理学家多普勒首先发现的

高中物理选修3-3知识点与题型复习

热学知识点复习→制作人:湄江高级中学:吕天鸿 一、固、液、气共有性质 1、组成物质的分子永不停息、无规则运动。温度T越高,运动越激烈,分子平均动能。 注意:对于理想气体,温度T还决定其内能的变化。 扩散现象:相互渗透的反应 2、分子运动的表现 布朗运动:看不见的固体小颗粒被分子不平衡碰撞,颗粒越大,运动越 3、分子间同时存在引力与斥力,且都随着分子间距r的增加而。 (1)分子力的合力F表现:是为F引还是F斥?看间距与分界点r0关系,看下图 当r=r0时,F引=F斥,分子力为0; 当r>r0时,F引>F斥,分子力表现为 当r

非晶体:无确定的熔点。 → 物理性质:各向同性。原子排列:无规则 2,、同一种物质可能以晶体与非晶体两种不同形态出现。如碳形成的金刚石与石墨 3、有些晶体与非晶体可以相互转化。 4、常考晶体有:金刚石与石墨、石英、云母、食盐。常考非晶体有:玻璃、蜂蜡、松香。 三、热力学定律→研究高考对象为→主要还是理想气体 1、热力学第一定律:ΔU =W+Q 表达式中正、负号法则:如下图 2、气体实验定律与热力学第一定律的结合量是气体的体积和温度,当温度变化时,气体的内能变化,当体积变化时,气体将伴随着做功,解题时要掌握气体变化过程的特点: (1)等温过程:内能不变,即ΔU=0。温度T ↑,则内能增加,ΔU >0 (2)等容过程:W=0。若体积V ↑,则气体对外界做功,W 取“—”负号计算。反之亦然 (3)绝热过程:Q=0。 3、再次强调:温度T 决定分子平均动能的变化。也决定理想气体的内能变化 四、气体实验定律→ 理想气体→P 、V 、T=t 0c+273 三个物理量关系 1、三条特殊线 (等温线:P 1V 1=p 2V 2 ) 2、液体柱模型 (1)明确点:P 液=egh 一般不用。当液体为汞时,大气压以 为单位时,高为h cm 时,P 液=h .计算气

超级资源:高中物理选修3-1复习全套导学案(附练习与答案)

第1课时 电荷守恒定律 库仑定律 导学目标 1.能利用电荷守恒定律进行相关判断.2.会解决库仑力参与的平衡及动力学问题. 一、电荷守恒定律 [基础导引] 如图1所示,用绝缘细线悬挂一轻质小球b ,并且b 球表面镀有一层 金属膜,在靠近b 球旁有一金属球a ,开始时a 、b 均不带电,若给a 球带电,则会发生什么现象? [知识梳理] 1.物质的电结构:构成物质的原子本身包括:__________的质子和 __________的中子构成__________,核外有带________的电子,整个原子对外

图2 ____________表现为__________. 2.元电荷:最小的电荷量,其值为e =________________.其他带电体的电荷量皆为元电荷的__________. 3.电荷守恒定律 (1)内容:电荷既不会创生,也不会消灭,它只能从一个物体________到另一个物体,或者从物体的一部分________到另一部分;在转移过程中,电荷的总量____________. (2)起电方式:____________、____________、感应起电. (3)带电实质:物体带电的实质是____________. 思考:当两个完全相同的带电金属球相互接触时,它们的电荷如何分配? 二、库仑定律 [基础导引] 如图2所示,两个质量均为m 的完全相同的金属球壳a 和b ,其 壳层的厚度和质量分布均匀,将它们固定于绝缘支座上,两球心 间的距离l 为球半径的3倍.若使它们带上等量异种电荷,电荷 量的绝对值均为Q ,试比较它们之间的库仑力与kQ 2 l 2的大小关系, 如果带同种电荷呢? [知识梳理] 1.点电荷:是一种理想化的物理模型,当带电体本身的______和________对研究的问题影响很小时,可以将带电体视为点电荷. 2.库仑定律 (1)内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成____________,与它们的距离的二次方成________,作用力的方向在它们的________上. (2)公式:F =________________,其中比例系数k 叫做静电力常量,k =9.0×109 N·m 2/C 2. (3)适用条件:①__________;②____________. 3.库仑定律的理解:库仑定律的适用条件是真空中的静止点电荷.点电荷是一种理想化的物理模型,当带电体间的距离远远大于带电体的自身大小时,可以视其为点电荷而适用库仑定律,否则不能适用. 思考:在理解库仑定律时,有人根据公式F =k q 1q 2 r 2,设想当r →0时得出F →∞的结论, 请分析这个结论是否正确 . 考点一 电荷守恒定律及静电现象 考点解读 1.使物体带电的三种方法及实质 摩擦起电、感应起电和接触带电是使物体带电的三种方法,它们的实质都是电荷的转

(完整word版)高中物理选修3-3知识点填空,推荐文档

高二物理选修3—3知识点检测 1、物质是由大量组成的 (1)分子大小数量级 (2)1mol任何物质含有的微粒数相同N A= (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) 球模型分子大小: 立方体模型分子大小: ②利用阿伏伽德罗常数联系宏观量与微观量 已知物体的体积V、摩尔体积V mol ,物体的质量M、摩尔质量M mol 、物体的密度ρ、阿伏伽 德罗常数N A a. 分子数量: b. 分子质量: c.分子体积:特别提醒: 固体和液体分子都可看成是紧密堆集在一起的。分子的体积V 0=V mol /N A ,仅适用 于,对气体不适用,对气体其表示。 2、分子永不停息的做无规则的热运动(布朗运动扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在,同时还说明分子间有,越高扩散越快 (2)布朗运动:它是悬浮在液体中的的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点:;; 。 ②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的性造成的。 ③布朗运动间接地反映了,布朗运动、扩散现象都有力地 说明物体内大量的分子都在。 (3)热运动:的无规则运动与有关,简称热运动,越高,运动越剧烈

3、分子间的相互作用力 (1)分子间 存在引力和斥力,两种力的合力又叫做分子力。 (2)画出分子间作用力与分子间距离关系图: (3)分子之间的引力和斥力都随分子间距离增大而 ,随分子间距离的减小而 。但总是斥力变化得 。 (4)r 0位置叫做 ,r 0的数量级为 m 。 (5)假定甲分子固定在坐标原点,乙分子从远处由静止释放,在乙分子向甲分子靠近的过程中:a.乙分子的运动状态 b.乙分子动能和分子势能如何变化 4、温度 宏观上的温度表示 ,微观上的温度是物体大量分子热运动 的标志。热力学温度与摄氏温度的关系: 5、内能 在右边方框中画出分子势能与分子间距离的关系图 ①分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与 有关,分子势能的大小变化可通过宏观量 来反映。 当0r r >时,分子力为 ,当r 增大时,分子力做 ,分子势能 当0r r <时,分子力为 ,当r 减少时,分子力做 ,分子是能 当r =r 0时,分子势能最 ,但不为零,为负值,因为选两分子相距无穷远时分子势能为零 ②物体的内能 物体中所有分子热运动的 和 的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此 物体都是有内能的。(理想气体的内能只取决于 ) ③改变内能的方式: 与 (两种方式是 的) 特别提醒: (1)物体的体积越大,分子势能不一定就越大,如0 ℃的水结成0 ℃的冰后体积变大,但分子势能却减小了. (2)理想气体分子间相互作用力为 ,故分子势能忽略不计,一定质量的理想气

高中物理选修3-3知识点总结(1)学习资料

第1课时分子动理论 一、要点分析 1.命题趋势 本部分主要知识有分子热运动及内能,在09年高考说明中,本课时一共有五个考点,分别是:1.物质是由大量分子组成的阿伏加德罗常数;2.用油膜法估测分子的大小(实验、探究);3.分子热运动布朗运动;4.分子间作用力;5.温度和内能.这五个考点的要求都是I级要求,即对所列的知识点要了解其内容及含义,并能在有关问题中识别和直接应用。由于近几年《考试说明》对这部分内容的要求基本没有变化,江苏省近几年的考题中涉及到了几乎所有的考点,试题多为低档题,中档题基本没有。分子数量、质量或直径(体积)等微观的估算问题要求有较强的思维和运算能力。分子的动能和势能、物体的内能是高考的热点。2.题型归纳 随着物理高考试卷结构的变化,所以估计今后的高考试题中,考查形式与近几年大致相同:多以选择题、简答题出现。 3.方法总结 (1)对应的思想:微观结构量与宏观描述量相对应,如分子大小、分子间距离与物体的体积相对应;分子的平均动能与温度相对应等;微观结构理论与宏观规律相联系,如分子热运动与布朗运动、分子动理论与热学现象。 (2)阿伏加德罗常数在进行宏观和微观量之间的计算时起到桥梁作用;功和热量在能量转化中起到量度作用。 (3)通过对比理解各种变化过程的规律与特点,如布朗运动与分子热运动、分子引力与分子斥力及分子力随分子间距离的变化关系、影响分子动能与分子势能变化的因素、做功和热传递等。 4.易错点分析 (1)对布朗运动的实质认识不清 布朗运动的产生是由于悬浮在液体中的布朗颗粒(即固体小颗粒)不断地受到液体分子的撞击,是小颗粒的无规则运动。布朗运动实验是在光学显微镜下观察到的,因此,只能看到固体小颗粒而看不到分子,它是液体分子无规则运动的间接反映。布朗运动的剧烈程度与颗粒大小、液体的温度有关。布朗运动永远不会停止。 (2)对影响物体内能大小的因素理解不透彻 内能是指物体里所有的分子做无规则热运动的动能和分子势能的总和。分子动能取决于分子个数和温度;分子势能微观上由分子间相对位置决定,宏观上取决于物体的体积。同时注意内能与机械能的区别和联系。 二、典型例题 例1、铜的摩尔质量是6.35×10-2kg,密度是8.9×103kg/m3 。求(1)铜原子的质量和体积; (2)铜1m3所含的原子数目;(3)估算铜原子的直径。 例2、下面两种关于布朗运动的说法都是错误的,试分析它们各错在哪里。

3-3-3高中物理选修3-3导学案

【课题名称】分子间的作用力课型新授课课时 3 【学习目标】1、知道分子间存在空隙;且同时存在着引力和斥力,实际表现出来的分子力是引力和斥力的合力。 2、了解分子力为零时,分子间距离r0的数量级。 3、知道分子间相互作用力的特点 【学习重点】分子间存在空隙;且同时存在着引力和斥力,实际表现出来的分子力是引力和斥力的合力。 【学习难点】分子间相互作用力的特点 【学法指导】自主阅读、合作交流 【导学过程】(学习方式、学习内容、学习程序、问题)【导学笔记】 预习导学(10分钟) 课前自主学习 一、请学生自主学习教材第七章第3节P8至P9。“快速阅读,完成下列 问题,将问题答案用铅笔划在书上” 1.分子之间有空隙 扩散现象和布朗运动表明,同时也反映了。 问题1:哪些事实也可以说明分子间是有空隙的? 2.分子间的作用力 深入的研究表明,两个相近的分子之间同时存在着引力和斥力,实际表现出来的分子力即为两者的合力。为了便于理解,分子间作用力的合力可以用弹簧连接着的两个小球间的作用力来模拟:拉伸时表现为引力,压缩时表现为斥力。它们随分子间距离变化的情况可用图7.3–1表示。自己懂了什么,还有 哪些问题没弄透。 学生代表发言 问题二、结合分子力作用曲线,总结出 分子间相互作用力的特点 3、简述分子动理论的主要内容 展示导思(25分钟) 课中合作探究 例1、关于分子间的相互作用力的以下说法中,正确的是( ) A.当分子间的距离r=r0时,分子力为零,说明此时分子间不存在作用 力 B.当r>r0时,随着分子间距离的增大分子间引力和斥力都增大,但引 力比斥力增加得快,故分子力表现为引力 C. r<r0时,随着分子间距离的增大分子间引力和斥力都增大,但斥力 比引力增加得快,故分子力表现为斥力 D.当分子间的距离r>10-9m时,分子间的作用力可以忽略不计 例2、两个分子从靠近的不能再近的位置开始,使二者之间的距离逐渐增 大,直到大于分子直径的10倍以上,这一过程中关于分子间的相互作用 力的下述说法中正确的是() A.分子间的引力和斥力都在减小 B.分子间的斥力在减小,引力在增大 C.分子间的作用力在逐渐减小 D.分子间的作用力,先减小后增大,再减小到零 例3、对下列现象的解释正确的是( ) A.两块铁经过高温加压将连成一整块,这说明铁分子间有吸引力 B.一定质量的气体能充满整个容器,这说明在一般情况下,气体分子间 的作用力很微弱 C.电焊能把二块金属连接成一整块是分子间的引力起作用 D.破碎的玻璃不能把它们拼接在一起是因为其分子间斥力作用的结果 小组交流与讨论 7.3–1

高中物理选修3-3导学案--3-3-17

高二物理期中复习练习 一。单项选择题: 1.如图是观察布朗运动时每隔30,记录1次的微粒位置连线图,开始时微粒在位置1,以后的位置依次是2、3、4、……,由此图得到的下列结论中正确的是() A.此图反映了观察时间内微粒的运动轨迹 B.此图只是间接地反映了液体分子运动是无规则运 动 C.若在第75 s再观察一次,微粒应处于位置3和位 置4连线的中点 D.微粒在从位置7到位置8的这30 s,内运动得最快 2、一定量的气体在某一过程中,外界对气体做了8×104J的功,气体的内能减少了1.2×105J,则下列各式中正确的是() A.W=8×104J,ΔU=1.2×105J ,Q=4×104J B.W=8×104J,ΔU =-1.2×105J ,Q=-2×105J C.W=-8×104J,ΔU=1.2×105J ,Q=2×104J D.W=-8×104J,ΔU =-1.2×105J ,Q=-4×104J 3.对于分子动理论和物体内能理解,下列说法正确的是( ) A.温度高的物体内能不一定大,但分子平均动能一定大 B.理想气体在等温变化时,内能不改变,因而与外界不发生热交换 C.布朗运动是液体分子的运动,它说明分子永不停息地做无规则运动 D.扩散现象说明分子间存在斥力 4.如图所示,纵坐标表示两个分间引力、斥力的大小,横坐标表示两个分子的距离,图中两条曲线分别表示两分子间引力、斥力的大小随分子间距离的变化关系,e为两曲线的交点,则下列说法正确的是() A.ab为斥力曲线,cd为引力曲线,e点横坐标的数量级为10—10m B.ab为引力曲线,cd为斥力曲线,e点横坐标的数量级为10—10m C.若两个分子间距离大于e点的横坐标,则分子间作用力表现为斥力 D.若两个分子间距离越来越大,则分子势能亦越来越大 5.下列说法中正确的是:() A.气体的温度升高时,分子的热运动变得剧烈,分子的平均动能增大,撞击器壁时对器壁的作用力增大,从而气体的压强一定增大 B.气体体积变小时,单位体积的分子数增多,单位时间内打到器壁单位面积上的分子数增多,从而气体的压强一定增大 C.压缩一定量的气体,气体的内能一定增加 D.有一分子a从无穷远处趋近固定不动的分子b,当a到达受b的分子力为零处时,a具有的动能一定最大 6、下列说法中正确的是:( )

高中物理选修3-3知识总结

高中物理3-3知识点总结 一、分子动理论 1、物体是由大量分子组成的 微观量:分子体积V 0、分子直径d 、分子质量m 0 宏观量:物质体积V 、摩尔体积V A 、物体质量m 、摩尔质量M 、物质密度ρ。 联系桥梁:阿伏加德罗常数(N A =6.02×1023mol -1) A V M V m ==ρ (1)分子质量:A A 0N V N M N m m A ρ=== (2)分子体积:A A 0N M N V N V V A ρ=== (对气体,V 0应为气体分子占据的空间大小) (3)分子大小:(数量级10-10m) ○1球体模型.30)2 (34d N M N V V A A A πρ=== 直径306πV d =(固、液体一般用此模型) 油膜法估测分子大小:S V d = S —单分子油膜的面积,V —滴到水中的纯油酸的体积 ○2立方体模型.30=V d (气体一般用此模型;对气体,d 应理解为相邻分子间的平均距离)

注意:固体、液体分子可估算分子质量、大小(认为分子一个挨一个紧密排列); 气体分子间距很大,大小可忽略,不可估算大小,只能估算气体分子所占空间、分子质量。 (4)分子的数量:A A N M V N M m nN N A ρ=== 或者 A A N M V N V V nN N A A ρ=== 2、分子永不停息地做无规则运动 (1)扩散现象:不同物质彼此进入对方的现象。温度越高,扩散越快。直 接说明了组成物体的分子总是不停地做无规则运动,温度越高分子运动越剧烈。 (2)布朗运动:悬浮在液体中的固体微粒的无规则运动。 发生原因是固体微粒受到包围微粒的液体分子无规则运动地撞击的不平衡性造成的.因而间接.. 说明了液体分子在永不停息地做无规则运动. ○1布朗运动是固体微粒的运动而不是固体微粒中分子的无规则运动. ②布朗运动反映液体分子的无规则运动但不是液 体分子的运动. ③课本中所示的布朗运动路线,不是固体微粒运 动的轨迹. ④微粒越小,布朗运动越明显;温度越高,布朗运动越明显.

相关文档
相关文档 最新文档