文档库 最新最全的文档下载
当前位置:文档库 › 华中科技大学 微积分 极限习题课及答案

华中科技大学 微积分 极限习题课及答案

华中科技大学 微积分 极限习题课及答案
华中科技大学 微积分 极限习题课及答案

例1 求极限 (1)n

n 2

cos 2

cos

2

cos

lim 2

θ

θ

θ

→,

解 0=θ时,极限为1; 0≠θ时(n 充分大时,02

sin

≠n

θ

,原式θ

θ

θ

θsin 2

sin

2sin lim =

=∞

→n

n

n 。

(2)n

n n n )111(lim 2

+

+

解 先求

1)11(lim )111ln(lim 2

2

=+

=+

+∞

→∞

→n

n

n n

n

n n n ,

所以原式=e 另法 利用1

11111112

-+

<++

<+

n n

n n

(3)???

????→x x x 1lim 0

解 因为

1111+??????<≤??????x x x ,即有x x x 1

111≤??

????<- 当0>x 时,111≤???

????<-x x x ,由夹挤准则得11lim 0=??

?

????+

→x x x , 同理11lim 0=??

?

????-

→x x x ,故原极限为1。

(4)x

x x cos

lim

+

→ 解 先求2

1)1(cos 1lim cos

ln 1

lim

-

=-=+

+

→→x x

x x

x x ,

原极限为 2

/1-e

(5)e

x e x e

x

e

x --→lim

.

解 原式=e

x e

e e

x e

e

e

x x e

x e

e

x

x e

x --=---→→1

lim

lim

ln ln

)ln lim

ln ln lim

(ln lim

e

x e x e e

x x

e x x e e

x e x x e e

x e

x e

e

x e

--+--=--=→→→

e

e 2=

(6)2

3

3cos 2cos cos 1lim

x

x

?x x x -→.

解 分子为)3cos ln 3

12cos ln 2

1cos exp(ln 1x x x ++

-

~)3cos ln 3

12cos ln 2

1cos (ln x x x ++

-,

原式??

?

?

?

?+

+

-=→22

2

03cos ln 312cos ln 2

1cos ln lim

x x x

x x

x

x ??????-+-+--=→222013cos 3112cos 211cos lim x x x x x x x []33212

1=++=.

练习(1))sin

(tan

lim n

x n

x n n n -∞

→ (答案

3

2

1x )

(2)x

x e

e

x

x

e

e

x --→sin lim

sin 0

(答案e )

(3)2

cos 2cos cos 1lim

x

nx

x x n x -→ (答案)1(4

1

+n n )

(4)x x

x x e

sin 1

)(lim 2

-→ (答案1-e )

(5)1

3

1

1()

1()1)(1(lim

-→--

--n n

x x x x x )

(答案

!

1n )

(6))sin 1sin

lim x x x -++∞

→( (提示和差化积,极限为0)

(7)设)1

,1(0?a -∈,1,2

12

11≥+

=-n ?a a n n ,求n n a a a 21lim ∞

→。

(提示:令()πθθ,0,cos 0∈=a ,则n

n a 2

cos

θ

=。)

例2 设R x ∈=α0,1,sin 1≥=-n x x n n ,求n n x ∞

→lim

解 考虑[]1,1sin 1-∈=αx ,分三个情形: (1)若01=x ,极限为0.

(2)若01>x ,则112sin x x x <=,易得1,sin 11><=--n x x x n n n ,故数列单调递减

有下界,极限存在。对1sin -=n n x x 两边求极限得 l l sin =,从而0=l 。

(3)01

例3设b a b y a x <>=>=,0,011,且 )(2

1,1

1n n n n n n y x ?y

y x x +=

=

++

证明 n n x ∞

→l i m n n y ∞

→=lim 。

分析 问题中的递推公式互相关联,且平均值不等式(几何平均与算术平均)可用,考虑单调有界准则。 证 由于0,0>>n

n ?y

x ,且

?x y x y x y n n n n n n ,)(2

111++=≥

+=

?x x x y x ?

x n n n n n n ,1

=≥=

+

,)(2

1)(2

11n n n n n n y y y y x y =+≤

+=+

可知{}n x 为单调增加数列,{}n y 为单调减少数列,且?b y x a n n ,≤≤≤故数列{}n x {}n y 极限都存在,设极限分别为B A ,,对?y x y n n n ),(2

11+=

+两边取极限得2/)(B A B +=,故

B A =。

注 此题变化为:b a b y a x <>=>=,0,011,且 ?y x y y x y x x n n n n

n n n n ,,211=

+=

++

则n n x ∞

→lim n n y ∞

→=lim 。

例4 求下列函数的间断点并判断类型: (1). x

x x x f sin )()(π-=

(2). 11)1()(---=x x

e x f

解 (1)无定义的点k k x ,π=为整数.

因为ππ-==+

-)0(,)0(f f ,所以0=x 是跳跃间断点;

因为,)

sin(lim

)(lim πππππ

π

-=--=→→x x x f x x 所以π=x 是可去间断点;

1,0≠k 时,πk x =是第二类间断点。

思考:间断点将实轴分成子区间,函数在哪个子区间上有界? (2)无定义的点1=x 及0=x .因为

∞=-=-→→)1(lim /1)(lim 10

x

x

x x e

x f ,

故0=x 是)(x f 的无穷间断点.又由于

??

?

??+∞→-=-=-→-

-x x ,e f x x

x 10)1(lim /1)1(11

??

?

??-∞→-=-=-→+

+x x ,e f x x

x 11)1(lim /1)1(11

故1=x 是)(x f 的跳跃间断点.

例 5 设函数)(x f 在闭区间]1,0[上连续,)1()0(f f =。证明存在0x ]1,0[∈,使得

)31()(00+

=x f x f 。

证 令)3

1()()(+-=x f x f x g ,3

20≤

≤x ,则由条件知)(x g 在]3

2

,0[上连续,设

其最小值与最大值为?M

m ,。则

M g g g m ≤??

?

???++≤

)32()31()0(31 又直接计算得知

1

1211122

[(0)()()][(0)()()()()(1)]033333333

g g g f f f f f f ++=-+-+-= 故由连续函数的介值定理,在区间]32

,0[内)(x g 必能取到值0。亦即存在0x ]1,0[∈,

使得)3

1()(00+

=x f x f 。

同型练习题:设函数)(x f 在闭区间]1,0[上连续,)1()0(f f =。证明存在0x ]1,0[∈,使得1),1()(00>+

=n n

x f x f 。

例6 设函数)(x f 在实轴上连续,且x x f f =))((。证明c ?,使c c f =)(。

(用反证法)

例7 设)(x f 在1=x 连续,且0>?x :)()(2x f x f =,证明:0>x 时,)(x f 是常数。

证 对任0>x ,)()()()(21

41

n

x f x f x f x f ==== .令∞→n ,利用121

→n

x 及连续性条件得,

)1()lim ()(lim )(21

21

f x f x f x f n

n

n n ===∞

→∞

→,即)(x f 恒等于)1(f .

同型练习题:设)(x f 在0=x 连续,且)2()(x f x f =,证明:)(x f 是常数。

例8 设n ?

i a i ,2,1=为常数,若不等式 x nx a x a x a n ≤+++sin 2sin sin 21

对所有R x ∈成立,证明

1221≤+++n na a a 。

例9 设)(x f 在),(+∞-∞内连续,且任给R y x ∈,,有 )()()(y f x f y x f +=+

试证)(x f 为线性函数ax x f =)(,其中)1(f a =。

证 显然0)0(=f ,)()(x f x f -=-,即)(x f 为奇函数。 又)1()111()(kf f k f =+++= ,

)1()1

1

1

(

)1(n nf n n n f f =+++

= ,即)1(1

)1(f n n f =。

从而)1()1()(f n m

n mf n m f =

=,故对有理数x 都有x f x f )1()(=。 任给∈x ),(+∞-∞,存在有理数数列{}x x n →,利用)(x f 的连续性,得

x f x f x f x f x f n n n n n n )1()1(lim )(lim )lim ()(====∞

→∞

→∞

→。

注 此题条件改为)(x f 在0=x 处可导,且任给R y x ∈,,有 )()()(y f x f y x f +=+

则证法改变为 )0()

0()(lim

)

()(lim

)(0

0f y

f y f y

x f y x f x f y y '=-=-+='→→,

记)0(f '为a ,从而b ax x f +=)(,由0)0(=f 得ax x f b ==)(,0。

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 一、选择题(共12分) 1. (3分)若2,0, (),0x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0 (3)(3) lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3分)定积分22 π π-?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 . 2. (3分) 1 241 (sin )x x x dx -+=? . 3. (3分) 20 1 lim sin x x x →= . 4. (3分) 3223y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求2 ln(15) lim .sin 3x x x x →+ 2. (6分)设2 ,1 y x =+求.y ' 3. (6分)求不定积分2ln(1).x x dx +?

4. (6分)求3 (1),f x dx -? 其中,1,()1cos 1, 1.x x x f x x e x ?≤? =+??+>? 5. (6分)设函数()y f x =由方程0 cos 0y x t e dt tdt +=??所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞ ? ?+ ??? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 22y x x π π??=-≤≤ ???与x 轴所围成图形绕着x 轴 旋转一周所得旋转体的体积. 3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().22b b a a b a f x dx f a f b x a x b f x dx -''=++--? ? 标准答案 一、 1 B; 2 C; 3 D; 4 A. 二、 1 31;y x =+ 2 2 ;3 3 0; 4 0. 三、 1 解 原式205lim 3x x x x →?= 5分 5 3 = 1分 2 解 22ln ln ln(1),12 x y x x ==-++ 2分

大学高等数学上考试题库(附答案)

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x = (C )()f x x = 和 ()() 2 g x x = (D )()|| x f x x = 和 ()g x =1 2.函数()()sin 42 0ln 10x x f x x a x ?+-≠? =+?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( ).

高等数学求极限的常用方法附例题和详解完整版

高等数学求极限的常用 方法附例题和详解 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→? =→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下:

1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了 无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 )(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=,这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候) 12)! 1(!!21+++++++=n x n x x n e n x x x e θ ; cos=221242)! 22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ

大一微积分期末试卷及答案

微积分期末试卷 选择题(6×2) cos sin 1.()2 ,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π→-=--== >、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小 3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 2 00000001() 5"()() ()()0''( )<0 D ''()'()0 6x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线 C既有铅直又有水平渐近线 D既有铅直渐近线 1~6 DDBDBD 一、填空题 1d 12lim 2,,x d x ax b a b →++=x x2 21 1、( )= x+1 、求过点(2,0)的一条直线,使它与曲线y= 相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是: 2+14、y拐点为:x5、若则的值分别为: x+2x-3

1 In 1x + ; 2 322y x x =-; 3 2 log ,(0,1),1x y R x =-; 4(0,0) 5解:原式=11 (1)() 1m lim lim 2 (1)(3) 3 4 77,6 x x x x m x m x x x m b a →→-+++== =-++∴=∴=-= 二、判断题 1、 无穷多个无穷小的和是无穷小( ) 2、 0 sin lim x x x →-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点() 4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、 设 函数f(x)在 [] 0,1上二阶可导且 ' ()0A ' B ' (f x f f C f f <===-令(),则必有 1~5 FFFFT 三、计算题 1用洛必达法则求极限2 1 2 lim x x x e → 解:原式=2 2 2 1 1 1 3 3 2 (2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞- 2 若3 4 ()(10),''(0)f x x f =+求 解:3 3 2 2 3 3 3 3 2 3 2 2 3 3 4 3 2 '()4(10)312(10) ''()24(10)123(10)324(10)108(10)''()0 f x x x x x f x x x x x x x x x x f x =+?=+=?++??+?=?+++∴= 3 2 4 lim (cos )x x x →求极限

大学微积分复习题

0201《微积分(上)》2015年06月期末考试指导 一、考试说明 考试题型包括: 选择题(10道题,每题2分或者3分)。 填空题(5-10道题,每题2分或者3分)。 计算题(一般5-7道题,共40分或者50分)。 证明题(2道题,平均每题10分)。 考试时间:90分钟。 二、课程章节要点 第一章、函数、极限、连续、实数的连续性 (一)函数 1.考试内容 集合的定义,集合的性质以及运算,函数的定义,函数的表示法,分段函数,反函数,复合函数,隐函数,函数的性质(有界性、奇偶性、周期性、单调性),基本初等函数,初等函数。 2.考试要求 (1)理解集合的概念。掌握集合运算的规则。 (2)理解函数的概念。掌握函数的表示法,会求函数的定义域。 (3)了解函数的有界性、奇偶性、周期性、单调性。 (4)了解分段函数、反函数、复合函数、隐函数的概念。 (5)掌握基本初等函数的性质和图像,了解初等函数的概念。 (二)极限 1.考试内容 数列极限的定义与性质,函数极限的定义及性质,函数的左极限与右极限,无穷小与无穷大的概念及其关系,无穷小的性质及无穷小的比较,极限的四则运算,极限存在的两个准则(单调有界准则和夹逼准则),两个重要极限。 2.考试要求 (1)理解数列及函数极限的概念 (2)会求数列极限。会求函数的极限(含左极限、右极限)。了解函数在一点处极限存在的充分必要条件。 (3)了解极限的有关性质(惟一性,有界性)。掌握极限的四则运算法则。 (4)理解无穷小和无穷大的概念。掌握无穷小的性质、无穷小和无穷大的关系。了解高阶、同阶、等价无穷小的概念。 (5)掌握用两个重要极限求极限的方法。 (三)连续 1.考试内容 函数连续的概念,左连续与右连续,函数的间断点,连续函数的四则运算法则,复合函数的连续性,反函数的连续性,初等函数的连续性,闭区间上连续函数的性质(最大值、最小值定理,零点定理)。 2.考试要求 (1)理解函数连续性的概念(含左连续、右连续)。会求函数的间断点。

大一微积分期末试题附答案

微积分期末试卷 一、选择题(6×2) cos sin 1.()2,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π →-=--==>、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 2 00000001 () 5"()() ()()0''( )<0 D ''()'()06x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线 二、填空题 1 d 1 2lim 2,,x d x ax b a b →++=xx2 211、( )=x+1 、求过点(2,0)的一条直线,使它与曲线y=相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是: 2+1 x5、若则的值分别为: x+2x-3

三、判断题 1、 无穷多个无穷小的和是无穷小( ) 2、 0sin lim x x x →-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点() 4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、 设 函 数 f (x) 在 [] 0,1上二阶可导且 '()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有 四、计算题 1用洛必达法则求极限2 1 2 lim x x x e → 2 若34()(10),''(0)f x x f =+求 3 2 4 lim(cos )x x x →求极限 4 (3y x =-求 5 3tan xdx ? 五、证明题。 1、 证明方程3 10x x +-=有且仅有一正实根。 2、arcsin arccos 1x 12 x x π +=-≤≤证明() 六、应用题 1、 描绘下列函数的图形 21y x x =+

清华大学微积分习题(有答案版)

第十二周习题课 一.关于积分的不等式 1. 离散变量的不等式 (1) Jensen 不等式:设 )(x f 为],[b a 上的下凸函数,则 1),,,2,1),1,0(],,[1 ==∈?∈?∑=n k k k k n k b a x λλΛ,有 2),(1 1≥≤??? ??∑∑==n x f x f k n k k k n k k λλ (2) 广义AG 不等式:记x x f ln )(=为),0(+∞上的上凸函数,由Jesen 不等式可得 1),,,2,1),1,0(,01 ==∈?>∑=n k k k k n k x λλΛ,有 ∑==≤∏n k k k k n k x x k 1 1 λλ 当),2,1(1 n k n k Λ==λ时,就是AG 不等式。 (3) Young 不等式:由(2)可得 设111,1,,0,=+>>q p q p y x ,q y p x y x q p +≤1 1 。 (4) Holder 不等式:设11 1, 1,),,,2,1(0,=+>=≥q p q p n k y x k k Λ,则有 q n k q k p n k p k n k k k y x y x 111 11?? ? ????? ??≤∑∑∑=== 在(3)中,令∑∑======n k q k n k p k p k p k y Y x X Y y y X x x 1 1,,,即可。 (5) Schwarz 不等式: 2 1122 1 121?? ? ????? ??≤∑∑∑===n k k n k k n k k k y x y x 。 (6) Minkowski 不等式:设1),,,2,1(0,>=≥p n k y x k k Λ,则有 ()p n k p k p n k p k p n k p k k y x y x 11111 1?? ? ??+??? ??≤??????+∑∑∑=== 证明: ()()() () () ∑∑∑∑=-=-=-=+++=+?+=+n k p k k k n k p k k k n k p k k k k n k p k k y x y y x x y x y x y x 1 1 1 1 1 1 1

大一上微积分试题(山东大学)

数学试题 热工二班 温馨提示:各位同学请认真答题,如果您看到有的题目有种 似曾相识的感觉,请不要激动也不要紧张,沉着冷静的面对,诚实作答,相信自己,你可以的。祝你成功! 一、填空题(共5小题,每题4分,共20分) 1、 求极限2 2lim (1)(1)......(1)n n x x x →∞ +++= (1x <) 2、 曲线y=(2x-1)e x 1 的斜渐近线方程是( ) 3、 计算I=dx e x e x x ? -+2 2 41sin π π =( ) 4、 设y=x e x 1si n 1t an ,则'y =( ) 5、 已知()()() 100 2 1000 ln 1212x y x t t t ??=++-+? ?? ? ?dt ,求( ) ()x y 1001 二、选择题(共5小题,每题4分,共20分) 6、设()0 ()ln 1sin 0,1,1lim x x f x x A a a a →? ?+ ? ? ?=>≠-求20 ()lim x f x x →=( ) A.ln a B.Aln a C2Aln a D.A 7、函数 1.01 ().12 x x x f x e e x -≤

( ) A.当()f x 是偶函数时,()F x 必是偶函数 B.当()f x 是奇函数时,()F x 必是偶函数 C.当()f x 是周期函数时,()F x 必是周期函数 D.当()f x 是单调增函数时,()F x 必是单调增函数 9、设函数()f x 连续,则下列函数中必为偶函数的是( ) A.2 0()x f t dt ? B.2 0()x f t dt ? C[]0 ()()x t f t f t - -?dt D.[]0 ()()x t f t f t + -?dt 10、设函数y=()f x 二阶导数,且 () f x 的一阶导数大于0, ()f x 二阶导数也大于0,x 为自变量x在0x 处得增量,y 与dy 分 别为()f x 在点0 x 处的增量与微分,若x >0,则( ) A.0<dy < y B.0<y <dy C.y <dy <0 D.dy < y <0 三、计算,证明题(共60分) 11、求下列极限和积分 (1)222 22 sin cos (1)ln(1tan ) lim x x x x x x e x →--+(5分) (2)3 5 sin sin x xdx π -? (5分) (3)lim (cos 1cos x x x →∞ +-)(5分) 12.设函数()f x 具有一阶连续导数,且 " (0)f (二阶)存在,(0) f

微积分习题课一(多元函数极限、连续、可微及偏导)题目_777705511

习题课(多元函数极限、连续、可微及偏导) 一.累次极限与重极限 例.1 ()y x f ,= ? ?=?≠?+0,00,1sin 1sin y x y x x y y x 例.2 ??? ??=+≠++=0 03),(22222 2y x y x y x xy y x f 例.3 22 222(,)() x y f x y x y x y =+-,证明:()()0,lim lim ,lim lim 0000==→→→→y x f y x f y x x y ,而二重极限()y x f y x ,lim 0 →→不存在。 一般结论: 二.多元函数的极限与连续,连续函数性质 例.4 求下列极限: (1) 1 1 ) 0,1(),() (lim -+++→+y x y x y x y x ; (2) )ln()(lim 22) 0,0(),(y x y x y x ++→; (3) (,)(0,0)sin() lim x y xy x →; (4)22lim x y x y x xy y →∞→∞ +-+; (5)2 2 () lim ()x y x y x y e -+→+∞→+∞ +。 例.5 证明:极限0) ( lim 2 2 2) ,(),(=+∞∞→x y x y x xy .

例.6 若()y x f z ,=在2 R 上连续, 且 ()22 lim ,x y f x y +→+∞ =+∞, 证明 函数f 在2R 上一 定有最小值点。 例.7 )(x f 在n R 上连续,且 (1) 0x ≠时, 0)(>x f (2) ,0>?c )()(x x cf c f = 例.8 若),(y x f 在)0,0(点的某个邻域内有定义,0)0,0(=f ,且 a y x y x y x f y x =++-→2 2 2 2) 0,0(),(),(lim a 为常数。证明: (1)),(y x f 在)0,0(点连续; (2)若1-≠a ,则),(y x f 在)0,0(点连续,但不可微; (3)若1-=a ,则),(y x f 在)0,0(点可微。 例.9 函数?? ???=+≠+++=0,00),sin(),(2 22 2222 2y x y x y x y x xy y x f 在)0,0(点是否连续? (填是或否);在)0,0(点是否可微? (填是或否). 三.多元函数的全微分与偏导数 例.10 有如下做法: 设),()(),(y x y x y x f ?+=其中),(y x ?在)0,0(点连续, 则 [][] dy y x y x y x dx y x y x y x y x df y x ),()(),(),()(),(),(????+++++= 令0,0==y x , ))(0,0()0,0(dy dx df +=?. (1)指出上述方法的错误; (2)写出正确的解法. 例.11 设二元函数),(y x f 于全平面2 ?上可微,),(b a 为平面2 ?上给定的一点,则极限 =--+→x b x a f b x a f x ) ,(),(lim 。 例.12 设函数),(y x f 在)1,1(点可微,1)1,1(=f ,2)1,1(='x f ,3)1,1(='y f ,

大学高等数学上习题(附答案)

《高数》习题1(上) 一.选择题 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? - + ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 10.设()f x 为连续函数,则()10 2f x dx '?等于( ). (A )()()20f f - (B )()()11102f f -????(C )()()1 202f f -??? ?(D )()()10f f - 二.填空题 1.设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = . 2.已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '=. 3. ()21ln dx x x = +?. 三.计算 1.求极限 ①21lim x x x x →∞+?? ??? ②() 20sin 1 lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分x xe dx -?

最新大学微积分复习题

0201《微积分(上)》2015年06月期末考试指导 一、考试说明 考试题型包括: 选择题(10道题,每题2分或者3分)。 填空题(5-10道题,每题2分或者3分)。 计算题(一般5-7道题,共40分或者50分)。 证明题(2道题,平均每题10分)。 考试时间:90分钟。 二、课程章节要点 第一章、函数、极限、连续、实数的连续性 (一)函数 1.考试内容 集合的定义,集合的性质以及运算,函数的定义,函数的表示法,分段函数,反函数,复合函数,隐函数,函数的性质(有界性、奇偶性、周期性、单调性),基本初等函数,初等函数。 2.考试要求 (1)理解集合的概念。掌握集合运算的规则。 (2)理解函数的概念。掌握函数的表示法,会求函数的定义域。 (3)了解函数的有界性、奇偶性、周期性、单调性。 (4)了解分段函数、反函数、复合函数、隐函数的概念。 (5)掌握基本初等函数的性质和图像,了解初等函数的概念。 (二)极限 1.考试内容 数列极限的定义与性质,函数极限的定义及性质,函数的左极限与右极限,无穷小与无穷大的概念及其关系,无穷小的性质及无穷小的比较,极限的四则运算,极限存在的两个准则(单调有界准则和夹逼准则),两个重要极限。 2.考试要求 (1)理解数列及函数极限的概念 (2)会求数列极限。会求函数的极限(含左极限、右极限)。了解函数在一点处极限存在的充分必要条件。 (3)了解极限的有关性质(惟一性,有界性)。掌握极限的四则运算法则。 (4)理解无穷小和无穷大的概念。掌握无穷小的性质、无穷小和无穷大的关系。了解高阶、同阶、等价无穷小的概念。 (5)掌握用两个重要极限求极限的方法。 (三)连续 1.考试内容 函数连续的概念,左连续与右连续,函数的间断点,连续函数的四则运算法则,复合函数的连续性,反函数的连续性,初等函数的连续性,闭区间上连续函数的性质(最大值、最小值定理,零点定理)。 2.考试要求 (1)理解函数连续性的概念(含左连续、右连续)。会求函数的间断点。

华中科技大学-微积分-极限习题课及标准答案

例1 求极限 (1)n n 2cos 2cos 2cos lim 2θθθ ∞→, 解 0=θ时,极限为1; 0≠θ时(n 充分大时,02sin ≠n θ),原式θθθθsin 2sin 2sin lim ==∞→n n n 。 (2)n n n n )111(lim 2++∞ → 解 先求 1)11(lim )111ln(lim 22=+=++∞→∞→n n n n n n n n , 所以原式=e 另法 利用111111112-+<++<+ n n n n (3)?? ?????→x x x 1lim 0 解 因为1111+??????<≤??????x x x ,即有x x x 1111≤??????<- 当0>x 时,111≤???????<-x x x ,由夹挤准则得11lim 0=?? ?????+→x x x , 同理11lim 0=?? ? ????-→x x x ,故原极限为1。 (4)x x x cos lim 0+→ 解 先求2 1)1(cos 1lim cos ln 1lim 00-=-=++→→x x x x x x , 原极限为 2/1-e 。 (5)e x e x e x e x --→lim . 解 原式=e x e e e x e e e x x e x e e x x e x --=---→→1lim lim ln ln )ln lim ln ln lim (ln lim e x e x e e x x e x x e e x e x x e e x e x e e x e --+--=--=→→→ e e 2=

(6)2303cos 2cos cos 1lim x x ?x x x -→. 解 分子为)3cos ln 3 12cos ln 21cos exp(ln 1x x x ++- ~)3cos ln 3 12cos ln 21cos (ln x x x ++-, 原式?? ????++-=→22203cos ln 312cos ln 21cos ln lim x x x x x x x ?? ????-+-+--=→222013cos 3112cos 211cos lim x x x x x x x []33212 1=++=. 练习(1))sin (tan lim n x n x n n n -∞→ (答案321x ) (2)x x e e x x e e x --→sin lim sin 0 (答案e ) (3)20cos 2cos cos 1lim x nx x x n x -→ (答案)1(4 1+n n ) (4)x x x x e sin 10)(lim 2-→ (答案1 -e ) (5)1311()1()1)(1(lim -→----n n x x x x x ) (答案!1n ) (6))sin 1sin lim x x x -++∞ →( (提示和差化积,极限为0) (7)设)1,1(0?a -∈,1,2 1211≥+=-n ??a a n n ,求n n a a a 21lim ∞→。 (提示:令()πθθ,0,cos 0∈=a ,则n n a 2cos θ =。) 例2 设R x ∈=α0,1,sin 1≥=-n x x n n ,求n n x ∞ →lim 解 考虑[]1,1sin 1-∈=αx ,分三个情形: (1)若01=x ,极限为0. (2)若01>x ,则112sin x x x <=,易得1,sin 11><=--n x x x n n n ,故数列单调递减

近十份大学微积分下期末试题汇总(含答案)

浙江大学2007-2008学年春季学期 《微积分Ⅱ》课程期末考试试卷 一 、填空题(每小题5分,共25分,把答案填在题中横线上) 1.点M (1,-1, 2)到平面2210x y z -+-=的距离d = . 2.已知2a = ,3b = ,3a b ?= ,则a b += . 3.设(,)f u v 可微,(,)y x z f x y =,则dz = . 4.设()f x 在[0,1]上连续,且()f x >0, a 与b 为常数.()}{,01,01D x y x y = ≤≤≤≤,则 ()() ()() D af x bf y d f x f y σ++?? = . 5.设(,)f x y 为连续函数,交换二次积分次序 2220 (,)x x dx f x y dy -=? ? . 二 、选择题(每小题5分,共20分,在每小题给出的四个选项中只有一个是符合题 目要求的,把所选字母填入题后的括号内) 6.直线l 1: 155 121x y z --+==-与直线l 2:623 x y y z -=??+=?的夹角为 (A ) 2π . (B )3π . (C )4π . (D )6 π . [ ] 7.设(,)f x y 为连续函数,极坐标系中的二次积分 cos 2 0d (cos ,sin )d f r r r r π θθθθ? ? 可以写成直角坐标中的二次积分为 (A )100(,)dy f x y dx ?? (B )1 00(,)dy f x y dx ?? (C ) 10 (,)dx f x y dy ? ? (D )10 (,)dx f x y dy ?? [ ] 8.设1, 02 ()122, 12 x x f x x x ? ≤≤??=??-≤?? ()S x 为()f x 的以2为周期的余弦级数,则5()2S -= (A ) 12. (B )12-. (C )34. (D )3 4 -. [ ] <

安徽大学高等数学期末试卷和答案

安徽大学2011—2012 学年第一学期 《高等数学A(三)》考试试卷(A 卷) (闭卷时间120 分钟) 考场登记表序号 题号一二三四五总分 得分 阅卷人 一、选择题(每小题2 分,共10 分)得分 1.设A为n阶可逆矩阵,则下列各式正确的是()。 (A)(2A)?1 =2A?1 ;(B)(2A?1)T=(2A T)?1 ;(C) ((A?1)?1)T=((A T)?1)?1 ;(D)((A T)T)?1 =((A?1)?1)T。 2.若向量组1, 2 , , r ααα可由另一向量组 ()。 βββ线性表示,则下列说法正确的 是 1, 2 , , sβββ线性表示,则下列说法 正确的是 (A)r≤s;(B)r≥s; (C)秩( 1, 2 , , r1, 2 , , s1, 2 , , r ααα)≤秩(βββ);(D)秩(ααα)≥ 秩( ββ β)。 1, 2 , , sββ β)。 3.设A, B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则下列说法正确的是()。 (A)λE?A=λE?B; (B)A与B有相同的特征值和特征向量; (C)A与B都相似于一个对角矩阵; (D)对任意常数k,kE?A与kE?B相似。 4.设1, 2 , 3 ααα为R3 的一组基,则下列向量组中,()可作为R3 的另一组基。 (A)1, 1 2 ,3 1 2 1, 2 ,2 1 2 α+αα+αα+α。 αα?αα?α;(B)ααα+α; (C) 1 2 , 2 3, 1 3 α+αα+αα?α;(D) 1 2 , 2 3, 1 3 5.设P(A) =0.8 ,P(B) =0.7 ,P(A| B) =0.8 ,则下列结论正确的是()。

大一微积分练习题及答案

《微积分(1)》练习题 一.单项选择题 1.设()0x f '存在,则下列等式成立的有( ) A . ()()()0000 lim x f x x f x x f x '=?-?-→? B .()()()0000lim x f x x f x x f x '-=?-?-→? C .()()()0000 2lim x f h x f h x f h '=-+→ D .()()()00002 1 2lim x f h x f h x f h '=-+→ 2.下列极限不存在的有( ) A .201 sin lim x x x → B .12lim 2+-+∞→x x x x C . x x e 1 lim → D .() x x x x +-∞ →63 2 21 3lim 3.设)(x f 的一个原函数是x e 2-,则=)(x f ( ) A .x e 22-- B .x e 2- C .x e 24- D . x xe 22-- 4.函数?? ? ??>+=<≤=1,11,110,2)(x x x x x x f 在[)+∞,0上的间断点1=x 为( )间断点。 A .跳跃间断点; B .无穷间断点; C .可去间断点; D .振荡间断点 5. 设函数()x f 在[]b a ,上有定义,在()b a ,内可导,则下列结论成立的有( ) A . 当()()0

电子科技大学微积分试题及答案

电子科技大学期末微积分 一、选择题(每题2分) 1、设x ?()定义域为(1,2),则lg x ?()的定义域为() A 、(0,lg2) B 、(0,lg2] C 、(10,100) D 、(1,2) 2、x=-1是函数x ?()=() 22 1x x x x --的() A 、跳跃间断点 B 、可去间断点 C 、无穷间断点 D 、不是间断点 3、试求02lim x x →等于() A 、-1 4 B 、0 C 、1 D 、∞ 4、若 1y x x y +=,求y '等于() A 、 22x y y x -- B 、22y x y x -- C 、22y x x y -- D 、22x y x y +- 5、曲线2 21x y x =-的渐近线条数为() A 、0 B 、1 C 、2 D 、3 6、下列函数中,那个不是映射() A 、2y x = (,)x R y R +-∈∈ B 、221y x =-+ C 、2y x = D 、ln y x = (0)x > 二、填空题(每题2分) 1、 __________ 2、、2(1))lim ()1 x n x f x f x nx →∞-=+设 (,则 的间断点为__________ 3、21lim 51x x bx a x →++=-已知常数 a 、b,,则此函数的最大值为__________ 4、263y x k y x k =-==已知直线 是 的切线,则 __________

5、ln 2111x y y x +-=求曲线 ,在点(, )的法线方程是__________ 三、判断题(每题2分) 1、2 2 1x y x =+函数是有界函数 ( ) 2、有界函数是收敛数列的充分不必要条件 ( ) 3、lim β βαα =∞若,就说是比低阶的无穷小 ( ) 4、可导函数的极值点未必是它的驻点 ( ) 5、曲线上凹弧与凸弧的分界点称为拐点 ( ) 四、计算题(每题6分) 1、1sin x y x =求函数 的导数 2、21 ()arctan ln(12 f x x x x dy =-+已知),求 3、2326x xy y y x y -+="已知,确定是的函数,求 4、20tan sin lim sin x x x x x →-求 5、 计算 6、2 1 lim(cos )x x x + →计算 五、应用题 1、设某企业在生产一种商品x 件时的总收益为2)100R x x x =-(,总成本函数为2()20050C x x x =++,问政府对每件商品征收货物税为多少时,在企业获得利润 最大的情况下,总税额最大(8分) 2、描绘函数21 y x x =+ 的图形(12分) 六、证明题(每题6分) 1、用极限的定义证明:设01 lim (),lim ()x x f x A f A x +→+∞→==则

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii )A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 ) (lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通项 之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )() () (=,这

相关文档
相关文档 最新文档