文档库 最新最全的文档下载
当前位置:文档库 › (3)导数的综合应用(二)答案

(3)导数的综合应用(二)答案

(3)导数的综合应用(二)答案
(3)导数的综合应用(二)答案

2018届高三文科数学强化练习(3)

导数的综合应用(二)答案

1.已知函数f (x )=(ax 2-x +a )e x ,g (x )=b ln x -x (b >0).

(1)讨论函数f (x )的单调性;

(2)当a =12

时,若对任意x 1∈(0,2),存在x 2∈[1,2],使f (x 1)+g (x 2)≥0成立,求实数b 的取值范围.

解:(1)由题意得f ′(x )=(x +1)(ax +a -1)e x .

当a =0时,f ′(x )=-(x +1)e x ,当x ∈(-∞,-1)时,f ′(x )>0,f (x )在(-∞,-1)上单调递增;

当x ∈(-1,+∞)时,f ′(x )<0,f (x )在(-1,+∞)上单调递减.

当a ≠0时,令f ′(x )=0,则x =-1或x =-1+1a

, 当a >0时,因为-1+1a >-1,

所以f (x )在(-∞,-1)和????-1+1a ,+∞上单调递增,在?

???-1,-1+1a 上单调递减; 当a <0时,因为-1+1a <-1,

所以f (x )在????-∞,-1+1a 和(-1,+∞)上单调递减,在???

?-1+1a ,-1上单调递增. (2)由(1)知当a =12

时,f (x )在(0,1)上单调递减,在(1,2)上单调递增, 因此f (x )在(0,2)上的最小值为f (1)=0.

由题意知,对任意x 1∈(0,2),存在x 2∈[1,2],

使g (x 2)≥-f (x 1)成立,

因为[-f (x 1)]max =0,

所以b ln x 2-x 2≥0,即b ≥

x 2ln x 2

. 令h (x )=x ln x ,x ∈[1,2], 则h ′(x )=ln x -1(ln x )2

<0, 因此h (x )min =h (2)=2ln 2,所以b ≥2ln 2

, 即实数b 的取值范围是???

?2ln 2,+∞. 2.已知函数f (x )=ln x -ax 2-a +2(a ∈R ,a 为常数)

(1)讨论函数f (x )的单调性;

(2)若存在x 0∈(0,1],使得对任意的a ∈(-2,0],不等式m e a +f (x 0)>0(其中e 为自然对数的底数)都成立,求实数m 的取值范围.

解:(1)函数f (x )的定义域为(0,+∞),

f ′(x )=1x -2ax =1-2ax 2x ,当a ≤0时,f ′(x )≥0,

所以函数f (x )在区间(0,+∞)上单调递增;

当a >0时,由f ′(x )≥0且x >0,

解得0<x ≤ 12a , 所以函数f (x )在区间????0, 12a 上单调递增,在区间???

? 12a ,+∞上单调递减. (2)由(1)知,当a ∈(-2,0]时,函数f (x )在区间(0,1]上单调递增,

所以x ∈(0,1]时,函数f (x )的最大值是f (1)=2-2a ,

对任意的a ∈(-2,0],

都存在x 0∈(0,1],不等式m e a +f (x 0)>0都成立,

等价于对任意的a ∈(-2,0],不等式m e a +2-2a >0都成立,不等式m e a +2-2a >0可

化为m >2a -2e

a , 记g (a )=2a -2e a

(a ∈(-2,0]), 则g ′(a )=2e a -(2a -2)e a e 2a =4-2a e

a >0, 所以g (a )的最大值是g (0)=-2,

所以实数m 的取值范围是(-2,+∞).

3.已知函数f (x )=a +ln x

x 在点(1,f (1))处的切线与x 轴平行.

(1)求实数a 的值及f (x )的极值;

(2)是否存在区间?

???t ,t +23(t >0)使函数f (x )在此区间上存在极值点和零点?若存在,求出实数t 的取值范围,若不存在,请说明理由. 解:(1)f ′(x )=1x ·x -(a +ln x )x 2=1-a -ln x x 2

(x >0). ∵f (x )在点(1,f (1))处的切线与x 轴平行,

∴f ′(1)=1-a -ln 1=0.

解得a =1.∴f (x )=1+ln x x ,f ′(x )=-ln x x 2

, 当0<x <1时,f ′(x )>0,当x >1时,f ′(x )<0,

∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,

故f (x )在x =1处取得极大值1,无极小值.

(2)∵x >1时,f (x )=1+ln x x >0,

当x →0时,f (x )→-∞,

由(1)得f (x )在(0,1)上单调递增,

由零点存在性定理,知f (x )在区间(0,1)上存在唯一零点.

函数f (x )的图象如图所示.

∵函数f (x )在区间?

???t ,t +23(t >0)上存在极值点和零点, ∴??? 0<t <1,t +23

>1,f (t )=1+ln t t <0,即????? 0<t <1,t +23>1,t <1e ,解得13<t <1e

. ∴存在符合条件的区间,实数t 的取值范围为????13,1e .

4.已知函数f (x )=12

x 2-a ln x +b (a ∈R). (1)若曲线y =f (x )在x =1处的切线的方程为3x -y -3=0,求实数a ,b 的值;

(2)若x =1是函数f (x )的极值点,求实数a 的值;

(3)若-2≤a <0,对任意x 1,x 2∈(0,2],不等式|f (x 1)-f (x 2)|≤m ????1x 1-1x 2

恒成立,求m 的最小值.

解:(1)因为f (x )=12

x 2-a ln x +b , 所以f ′(x )=x -a x

, 因为曲线y =f (x )在x =1处的切线的方程为3x -y -3=0,

所以????? f ′(1)=3,f (1)=0,即????? 1-a =3,12+b =0,解得?????

a =-2,

b =-12. (2)因为x =1是函数f (x )的极值点,

所以f ′(1)=1-a =0,所以a =1.

当a =1时,f (x )=12

x 2-ln x +b ,定义域为(0,+∞), f ′(x )=x -1x =x 2-1x =(x -1)(x +1)x

, 当0<x <1时,f ′(x )<0,f (x )单调递减,

当x >1时,f ′(x )>0,f (x )单调递增,

所以a =1.

(3)因为-2≤a <0,0<x ≤2,所以f ′(x )=x -a x

>0, 故函数f (x )在(0,2]上单调递增,

不妨设0<x 1≤x 2≤2,

则|f (x 1)-f (x 2)|≤m ????1x 1-1x 2可化为f (x 2)+m x 2≤f (x 1)+m x 1

, 设h (x )=f (x )+m x =12

x 2-a ln x +b +m x , 则h (x 1)≥h (x 2).

所以h (x )为(0,2]上的减函数,

即h ′(x )=x -a x -m x 2≤0在(0,2]上恒成立, 等价于x 3-ax -m ≤0在(0,2]上恒成立,

即m ≥x 3-ax 在(0,2]上恒成立,

又-2≤a <0,所以ax ≥-2x ,所以x 3-ax ≤x 3+2x , 而函数y =x 3+2x 在(0,2]上是增函数,

所以x 3+2x ≤12(当且仅当a =-2,x =2时等号成立). 所以m ≥12,

即m 的最小值为12.

导数的综合应用教学设计(正式版)

导数的综合应用 一、教材分析 我们在复习过程中,发现学生对于导数能够运用,但在具体运用过程中,问题比较多的是如何运用导数去解决问题的手段或解决问题的途径不够宽,或解法不是很灵活。因此,我通过本堂课进一步巩固这部分内容,利于学生进一步地掌握导数知识的运用:确定单调性、求极值、求最值、求切线的斜率从而解决恒成立与不等式问题应用。二、学情分析 根据教材结构与内容分析,结合高考考纲要求,立足学生的认知水平,制定如下教学目标和重、难点。 三、教学目标 知识与技能: 通过高考中涉及到导数的常见题型,在学生掌握求曲线斜率,判断函数单调性,及如何求极值,最值的基础上,总结出两种常见题型。 过程与方法: 通过动手计算培养学生观察、分析、比较和归纳能力。 通过问题的探究体会数形结合,分离变量,构造函数的数学思想。 情感、态度与价值观: 通过常见题型的常见解决方法,是学生认识到解决有关导数的综合问题并不复杂,从而激发学生的学习兴趣。 四、教学重点、难点 教学重点:利用导数判断函数单调性,极值,最值。 教学难点:以导数为工具处理恒成立问题,及证明不等式。 教学过程 本节课教学过程主要分为:知识回顾,典例示范,知识小结,考点测评,高考赏析五个板块 【知识回顾】(重在对知识的进一步理解和掌握。有利于构建知识网络,回归教材而高于教材) 1.导数定义,判断函数单调性,求极值,最值的方法。 【注】由学生自己来归纳,目的是加强学生的印象。

2.课前热身: (1)已知直线 ax-by-2=0 与曲线 在点(1,1)处的切线互相垂直,则 = , (2)函数 , 在 上的最大值和最小值分别为 【注】(1)学生阅读并回顾知识要点,巩固基础。 (2)导数的几何意义,考察函数的单调区间、极值、最值等性质。这是导数运用过程中最常用的。 (3)注意极值不一定是最值,要考虑函数区间的开闭及单调性。 【典例示范】 例一:已知函数 (1)求f(x)的最小值。 (2)若对所有x 1都有 ,求实数a 的取值范围。 解析:需先求出定义域 【注】在求最值之前须讨论函数的定义域,利用分离变量的方法解决恒成立问题。这也是本节课的重点。 【注】当某区间只有一个极大(小)值时,该值就是最大(小)值 例二:已知向量 若函数在区间 上是增函数,求t 的取值范围。 解析: 由f(x)在(-1,1)上单调递增,可知 恒成立,即 移项有 令 只须求g(x)在 的最大值 . 3 y x =a b 32 23125y x x x =--+[]0,3()ln f x x x =≥()1f x ax ≥-'''min 10110,11()()()()()e e e x f e e f x f x f x f ><==- 且=lnx+1,令,则x>,则00,可知g(x)在1,+单调递增,所以g(x)(1)=1,得a 1g

3,导数的应用(二)

实用文档 §12.2导数的应用(二) 【复习目标】 1. 会求闭区间上函数的最值,并能用最值解决含参数的不等式问题; 2. 体会导数方法在研究代数问题中的程序化和简单化; 3. 掌握导数方法解决简单的应用问题. 【课前预习】 1. 若函数432y x x c =-+有最小值-38,则 ( ) A .4 B .5 C .8 D .10 2. 函数3|6|y x x =-, 当[x ∈时,y 的最大值为 ( ) A . B . . D 3. 若函数 ax x x f +=3)(在R 上有两个极值点,则实数a 的取值范围 ( ) A .0>a B .0

实用文档 当[2,3]x ∈时,3()(2)4(2)(036)3a g x x x a =---<<,求()f x 的最大值与最小值。 例2 已知由长方体的一个顶点引出的三条棱长之和为1,表面积为16 27,求长方体的体 积的最小值和最大值。 例 3 函数()f x 是定义在[1,0)(0,1]-?上的偶函数,当[1,0)x ∈-时,3()f x x ax =-()a R ∈. (1) 当(0,1]x ∈时,求()f x 的解析式; (2) 若3a >,试判断()f x 在(0,1]的单调性,并证明你的结论; (3) 是否存在a ,使得当(0,1]x ∈时,()f x 有最大值-1.

第三章 导数及其应用

第三章 导数及其应用 第一节导数的概念及运算、定积分 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数:函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0 Δy Δx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx ? 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′x =x 0,即f ′(x 0)=li m Δx →0 Δy Δx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx . 函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”. (2)导数的几何意义:函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)?处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). ?曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线. (3)函数f (x )的导函数:称函数f ′(x )=li m Δx →0 f (x +Δx )-f (x ) Δx 为f (x )的导函数. (4)f ′(x )是一个函数,f ′(x 0)是函数f ′(x )在x 0处的函数值(常数),[f ′(x 0)]′=0. 2.基本初等函数的导数公式

导数的综合应用题型及解法修订稿

导数的综合应用题型及 解法 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

导数的综合应用题型及解法 题型一:利用导数研究函数的极值、最值。 1.已知函数2)()(2=-==x c x x x f y 在处有极大值,则常数c = 6 ; 题型二:利用导数几何意义求切线方程 2.求下列直线的方程: (1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2 x y =过点P(3,5)的切线; 题型三:利用导数研究函数的单调性,极值、最值 3.已知函数 ))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 4.已知三次函数 32()f x x ax bx c =+++在1x =和1x =-时取极值,且(2)4f -=-. (1) 求函数()y f x =的表达式; (2) 求函数()y f x =的单调区间和极值; 5.设函数()()()f x x x a x b =--. (1)若()f x 的图象与直线580x y --=相切,切点横坐标为2,且()f x 在1x =处取极值,求实数,a b 的值; (2)当b=1时,试证明:不论a 取何实数,函数()f x 总有两个不同的极值点. 题型四:利用导数研究函数的图象 6.如右图:是f (x )的导函数, )(/x f 的图象如右图所示,则f (x )的图象只可能是( D ) (A ) (B ) (C ) (D ) 7.函数的图像为14313+-=x x y ( A ) x y o 4 -2 4 -2 - -x y o 4 -2 4 -2 --x y y 4 -2 4 -2 --6 6 6 6 y x -4 -2 o 4 2 2 4

导数的综合应用 公开课教案

§3.4 导数的综合应用 基础知识 自主学习 要点梳理 1.利用导数研究函数单调性的步骤 (1)求导数 )(' x f ; (2)在函数)(x f 的定义域内解不等式)('x f >0或)(' x f <0; (3)根据(2)的结果确定函数)(x f 的单调区间 2.求可导函数极值的步骤 (1)确定函数的定义域;(2)求导数 )('x f ;(3)解方程)(' x f =0,求 出函数定义域内的所有根;(4)列表检验)('x f 在)(' x f =0的根x 0 左右两侧值的符号,如果左正右负,那么)(x f 在x 0 处取极大值,如果左负右正,那么)(x f 在x 0 处取极小值. 3.求函数f (x)在闭区间[a ,b]内的最大值与最小值 (1)确定函数 )(x f 在闭区间[a ,b]内连续、可导; (2)求函数)(x f 在开区间(a ,b)内的极值; (3)求函数)(x f 在[a,b]端点处的函数值f (a),f (b);

(4)比较函数 )(x f 的各极值与f (a),f (b)的大小,其中最大的一个是最 大值,最小的一个是最小值. 4.利用导数解决实际生活中的优化问题 (1)分析实际问题中各变量之间的关系,建立实际问 题的数学模型,写出相应的函数关系式y =)(x f ; (2)求导数 )(' x f ,解方程)(' x f =0; (3)判断使)(' x f =0的点是极大值点还是极小值点; (4)确定函数的最大值或最小值,还原到实际问题中 作答.一般地,对于实际问题,若函数在给定的定 义域内只有一个极值点,那么该点也是最值点. 基础自测 1.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线斜率为2,则点P 的坐标为________. 2.若 )(x f =x 3 +3ax 2 +3(a +2)x +1有极大值和极小值,则a 的取值范围为 __________________________. 3.若函数 )(x f =x +asin x 在R 上递增,则实数a 的取值范围为 4.设a ∈R ,若函数y =e ax +3x ,x ∈R 有大于零的极值点,则( )

导数综合应用复习题经典

导数综合应用复习题经典 RUSER redacted on the night of December 17,2020

导数综合应用复习题 一、知识回顾: 1.导数与函数单调性的关系 设函数()f x 在某个区间内可导,则在此区间内: (1)0)(>'x f ?)(x f ↗,)(x f ↗?()0f x '≥; (2)0)(≠'x f 时,0)(>'x f ?)(x f ↗ (单调递减也类似的结论) 2.单调区间的求解过程:已知)(x f y = (1)分析)(x f y =的定义域; (2)求导数)(x f y '='; (3)解不等式0)(>'x f ,解集在定义域内的部分为增区间 (4)解不等式0)(<'x f ,解集在定义域内的部分为减区间 3.函数极值的求解步骤: (1)分析)(x f y =的定义域; (2)求导数)(x f y '='并解方程()0f x '=; (3)判断出函数的单调性; (4)在定义域内导数为零且由增变减的地方取极大值; 在定义域内导数为零且由减变增的地方取极小值。 4.函数在区间内的最值的求解步骤: 利用单调性或者在求得极值的基础上再考虑端点值比较即可。 二、例题解析: 例1、已知函数321()13 f x x ax ax =+++ (1)若在R 上单调,求a 的取值范围。 (2)问是否存在a 值,使得()f x 在[]1,1-上单调递减, 若存在,请求a 的取值范围。 解:先求导得2()2f x x ax a '=++ (1 )()f x 在R 上单调且()f x '是开口向上的二次函数 ∴()0f x '≥恒成立,即0?≤ ∴2 440a a -≤,解得01a ≤≤ (2)要使得()f x 在[]1,1-上单调递减 且()f x '是开口向上的二次函数 ∴()0f x '≤对[]1,1x ∈-恒成立, 即()() 11201120f a a f a a '-=-+≤???'=++≤?? 解得a ∈? ∴不存在a 值,使得()f x 在[]1,1-上单调递减。 例2、已知函数321()313 f x x x x =+-+, 2()2 g x x x a =-++ (1)讨论方程()f x k =(k 为常数)的实根的个数。 (2)若对[]0,2x ∈,恒有()f x a ≥成立,求a 的取值范围。 (3)若对[]0,2x ∈,恒有()()f x g x ≥成立,求a 的取值范围。 (4)若对[]10,2x ∈,[]20,2x ∈,恒有()12()f x g x ≥成立,

高考数学-专题3导数的应用-题型-函数根的个数

高考数学-导数考点 导数公式 0;C '=(C 为常数) ②() 1 ;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '= ⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1 l g log a a o x e x '=. 导数法则 (.)'''v u v u ±=± .)('''uv v u uv += .)(''Cu Cu = =' ?? ? ??v u 2 ''v uv v u -(v ≠0) 复合函数的导数 形如y=f [x (?])的函数称为复合函数。 法则:y '|X = y '|U ·u '|X 或者[()]()*()f x f x ?μ?'''=. 导数的应用:1).函数的单调性 2).极点与极值 3).最值 在区间[a ,b]上连续的函数f )(x 在[a ,b]上必有最大值与最小值。但在开区间(a ,b )内连续函数f (x )不一定有最大值,例如3(),(1,1)f x x x =∈-。函数的极值可以有多有少,但最值只有一个,极值只能在区间内取得,最值则可以在端点取得,有极值的未必有最值,有最值的未必有极值,极值可能成为最值,最值只要不在端点处必定是极值。 补充:曲线切线问题中,点P 处的切线和过点P 的切线是两个概念,后者包括前者,前者只有一条。 曲线的切线与曲线的交点不一定只有一个。和二次函数有区别。 导数为零的点,不一定都是极值点。如三次函数。 求极值时,要求步骤规范、表格齐全。含参数时要讨论参数的范围。 求积分时:x 轴上方的面积等于该区间上的积分值,下方的面积等于该区间上积分值的相反数。 例:求函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值。

《三维设计》3-3导数的应用(二)(含解析)=====

第十三节 导数的应用(二) 典题导入 [例1] 已知函数f (x )=x 2ln x -a (x 2-1),a ∈R. (1)当a =-1时,求曲线f (x )在点(1,f (1))处的切线方程; (2)若当x ≥1时,f (x )≥0成立,求a 的取值范围. 1.设函数f (x )=1 2x 2+e x -x e x . (1)求f (x )的单调区间; (2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.

[例2] 已知f (x )=ax -ln x ,x ∈(0,e],g (x )=ln x x ,其中e 是自然常数,a ∈R. (1)讨论a =1时,函数f (x )的单调性和极值; (2)求证:在(1)的条件下,f (x )>g (x )+1 2. 2.已知f (x )=x ln x . (1)求g (x )=f (x )+k x (k ∈R)的单调区间; (2)证明:当x ≥1时,2x -e ≤f (x )恒成立.

典题导入 [例3] 某物流公司购买了一块长AM =30米,宽AN =20米的矩形地块AMPN ,规划建设占地如图中矩形ABCD 的仓库,其余地方为道路和停车场,要求顶点C 在地块对角线MN 上,顶点B 、D 分别在边AM 、AN 上,假设AB 的长度为x 米. (1)要使仓库的占地面积不少于144平方米,求x 的取值范围; (2)要规划建设的仓库是高度与AB 的长度相同的长方体建筑,问AB 的长度为多少时仓库的库容量最大.(墙地及楼板所占空间忽略不计) 3.某城市在发展过程中,交通状况逐渐受到有关部门的关注,据有关统计数据显示,从上午6点到中午12点,车辆通过该市某一路段的用时y (分钟)与车辆进入该路段的时刻t 之间关系可近似地用如下函数给出: y =????? -18t 3-34t 2 +36t -629 4,6≤t <9,18t +59 4,9≤t ≤10,-3t 2 +66t -345,10< t ≤12, 求从上午6点到中午12点,通过该路段用时最多的时刻.

【精品】(数学三)第3讲导数应用

第三讲导数的应用(解答) 一.内容提要 1、三个微分中值定理:罗尔定理(用来证与某函数的导数有关的方程根的存在性,注意辅助函数的构造、与零点定理的异同);拉格朗日定理(可用来证不等式,从函数的导数的性质来说明函数本身的性质);柯西定理(注意有两个函数,这一点有时在解题时是一个提示)。 2、单调性;应用(证不等式,根的唯一性)。 3、极值、最值:极值的定义,求法(先求驻点及不可导点,再用第一或第二充分条件判别);第二充分条件的扩充;应用(证不等式,根的唯性);最值的求法与应用题. 4、曲线的凹凸性与拐点(注意曲线方程的不同给法)。 5、泰勒公式(怎么展开,某项系数的求法,余项的写法)及应用(证不等式;求 极限等)。 6、函数作图与曲线的渐近线的求法。 水平渐近线:则是水平渐近线。

铅垂渐近线:,则是铅垂渐近线。 斜渐近线:,则是斜渐近线。 考试要求: *理解罗尔(Rolle)定理.拉格朗日(Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用. *会用洛必达法则求极限. *.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用. *.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线. *.会描述简单函数的图形. 二.常考知识点 1、洛必达法则求极限.

2、利用导数确定函数的性质(单调性、极值、凹凸性、拐点等),函数可以是显式、隐式、参数方程形式)。 3、求曲线的渐近线(水平、铅垂、斜渐近线)。 4、利用导数方法,求实际问题中的最大、小值问题。

导数的综合应用

导数的综合应用 ★★★高考在考什么 【考题回放】 1.(06江西卷)对于R 上可导的任意函数f (x ),若满足(x -1) f ' (x ) ≥0,则必有( C ) A . f (0)+f (2)<2f (1) B. f (0)+f (2) ≤2f (1) C. f (0)+f (2) ≥2f (1) D. f (0)+f (2) >2f (1) 解:依题意,当x ≥1时,f ' (x )≥0,函数f (x )在(1,+∞)上是增函数;当x <1时,f ' (x )≤0,f (x )在(-∞, 1)上是减函数,故f (x )当x =1时取得最小值,即有f (0)≥f (1),f (2)≥f (1),故选C 2.(06全国II )过点(-1,0)作抛物线y=x 2+x +1的切线,则其中一条切线为 (A )2x+y +2=0 (B )3x-y +3=0 (C )x+y+1=0 (D )x-y+1=0 解:y '=2x +1,设切点坐标为(x 0,y 0),则切线的斜率为2x 0+1,且y 0=x 02+x 0+1 于是切线方程为y -(x 02+x 0+1)=(2x 0+1)(x-x 0),因为点(-1,0)在切线上,可解得 x 0=0或-4,代入可验正D 正确。选D 3.(06四川卷)曲线y =4x-x 3在点(-1,-3)处的切线方程是D (A )y=7x+4 (B )y=7x+2 (C )y=x-4 (D )y=x-2 解:曲线y =4x-x 3,导数y '=4-3x 2,在点(-1,-3)处的切线的斜率为k=1,所以切线方程是y=x-2,选D. 4.(06天津卷)函数f (x )的定义域为开区间(a,b ),导函数f ' (x )在(a,b )内的图象如图所示,则函数f (x )在开区间(a,b )内有极小值点( ) A .1个 B .2个 C .3个 D . 4个 解析:函数f (x )的定义域为开区间(a,b ),导函数f ' (x )在(a,b )内的图象如图所示,函数f (x )在开区间(a,b )内有极小值的点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个,选A. 5.(浙江卷)f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是 (A)-2 (B)0 (C)2 (D)4 解:f ' (x )=3x 2-6x =3x (x -2),令f ' (x )=0可得x =0或2(2舍去),当-1≤x <0时,f ' (x )>0,当0

第1讲导数的综合应用

第1讲 导数的综合应用 [最新考纲] 1.利用导数研究函数的单调性、极(最)值,并会解决与之有关的方程(不等式)问题; 2.会利用导数解决某些简单的实际问题. 知 识 梳 理 1.生活中的优化问题 通常求利润最大、用料最省、效率最高等问题称为优化问题,一般地,对于实际问题,若函数在给定的定义域内只有一个极值点,那么该点也是最值点. 2.利用导数解决生活中的优化问题的一般步骤 3.导数在研究方程(不等式)中的应用 研究函数的单调性和极(最)值等离不开方程与不等式;反过来方程的根的个数、不等式的证明、不等式恒成立求参数等,又可转化为函数的单调性、极值与最值的问题,利用导数进行研究. 辨 析 感 悟 1.函数最值与不等式(方程)的关系 (1)(教材习题改编)对任意x >0,ax 2+(3a -1)x +a ≥0恒成立的充要条件是a ∈???? ?? 15,+∞.(√) (2)(2011·辽宁卷改编)已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是(-∞,2ln 2-2].(√) 2.关于实际应用问题 (3)实际问题中函数定义域要由实际问题的意义和函数解析式共同确定.(√) (4)若实际问题中函数定义域是开区间,则不存在最优解.(×) (5)(2014·鹰潭模拟改编)已知某生产厂家的年利润y (单位:万元)与年产量x (单

位:万件)的函数关系式为y=-1 3x 3+81x-234,则使该生产厂家获取最大年利润 的年产量为9万件.(√) [感悟·提升] 1.两个转化 一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用; 二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理,如(2). 2.两点注意 一是注意实际问题中函数定义域,由实际问题的意义和解析式共同确定,如(3). 二是在实际问题中,如果函数在区间内只有一个极值点,那么可直接根据实际意义判定是最大值还是最小值,如(4);若在开区间内有极值,则一定有最优解. 考点一导数与生活中的优化问题 【例1】(2013·重庆卷)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率). (1)将V表示成r的函数V(r),并求该函数的定义域; (2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大. 解(1)因为蓄水池侧面的总成本为100·2πrh=200πrh元,底面的总成本为160πr2元. 所以蓄水池的总成本为(200πrh+160πr2)元. 又根据题意得200πrh+160πr2=12 000π, 所以h=1 5r(300-4r 2), 从而V(r)=πr2h=π 5(300r-4r 3).

3.3导数的综合应用

§3.3 导数的综合应用 (时间:45分钟 满分:100分) 一、选择题(每小题7分,共35分) 1.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最大值与最小值分别为M ,m ,则M -m 的值为( ) A .16 B .12 C .32 D .6 2.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥4 3,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 3.对于R 上可导的任意函数f (x ),满足(x -1)f ′(x )≥0,则必有( ) A .f (0)+f (2)<2f (1) B .f (0)+f (2)≤2f (1) C .f (0)+f (2)≥2f (1) D .f (0)+f (2)>2f (1) 4.函数f (x )=(x -3)e x 的单调递增区间为( ) A .(-∞,2) B .(0,3) C .(1,4) D .(2,+∞) 5.若函数f (x )=x 3-6bx +3b 在(0,1)内有极小值,则实数b 的取值范围是( ) A .(0,1) B .(-∞,1) C .(0,+∞) D.??? ?0,12 二、填空题(每小题6分,共24分) 6.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围是__________. 7.设m ∈R ,若函数y =e x +2mx (x ∈R)有大于零的极值点,则m 的取值范围是________. 8.设P 为曲线C :y =x 2-x +1上一点,曲线C 在点P 处的切线的斜率的范围是[-1,3],则点P 纵坐标的取值范围是__________. 9.直线y =a 与函数f (x )=x 3-3x 的图象有相异的三个公共点,则a 的取值范围是________.

第4讲 导数的综合应用

第4讲 导数的综合应用 高考定位 在高考压轴题中,函数与方程、不等式的交汇是考查的热点,常以指数函数、对数函数为载体考查函数的零点(方程的根)、比较大小、不等式证明、不等式恒成立与能成立问题. 真 题 感 悟 1.(2020·全国Ⅲ卷)设函数f (x )=x 3+bx +c ,曲线y =f (x )在点? ???? 12,f ? ????12处的切线与y 轴垂直. (1)求b ; (2)若f (x )有一个绝对值不大于1的零点,证明:f (x )所有零点的绝对值都不大于1. (1)解 f ′(x )=3x 2+b . 依题意得f ′? ?? ?? 12=0,即34+b =0,故b =-34. (2)证明 由(1)知f (x )=x 3-34x +c ,f ′(x )=3x 2-34.令f ′(x )=0,解得x =-12或x =1 2. f ′(x )与f (x )的情况为: 因为f (1)=f ? ???? -12=c +14, 所以当c <-1 4时,f (x )只有大于1的零点. 因为f (-1)=f ? ???? 12=c -14, 所以当c >1 4时,f (x )只有小于-1的零点. 由题设可知-14≤c ≤1 4. 当c =-14时,f (x )只有两个零点-1 2和1.

当c =14时,f (x )只有两个零点-1和12. 当-140; 当x ∈? ?? ?? π2,π时,g ′(x )<0, 所以g (x )在? ????0,π2上单调递增,在? ???? π2,π上单调递减. 又g (0)=0,g ? ???? π2>0,g (π)=-2, 故g (x )在(0,π)存在唯一零点. 所以f ′(x )在区间(0,π)存在唯一零点. (2)解 由题设知f (π)≥a π,f (π)=0,可得a ≤0. 由(1)知,f ′(x )在(0,π)只有一个零点,设为x 0,且当x ∈(0,x 0)时,f ′(x )>0;当x ∈(x 0,π)时,f ′(x )<0,所以f (x )在(0,x 0)上单调递增,在(x 0,π)上单调递减. 又f (0)=0,f (π)=0,所以当x ∈[0,π]时,f (x )≥0. 又当a ≤0,x ∈[0,π]时,ax ≤0,故f (x )≥ax . 因此,a 的取值范围是(-∞,0]. 考 点 整 合 1.利用导数研究函数的零点 函数的零点、方程的实根、函数图象与x 轴的交点的横坐标是三个等价的概念,解决这类问题可以通过函数的单调性、极值与最值,画出函数图象的变化趋势,数形结合求解.

《创新设计》2014届高考第三篇 第3讲 导数的应用(二)

第3讲导数的应用(二) A级基础演练(时间:30分钟满分:55分) 一、选择题(每小题5分,共20分) 1.(2013·北京东城模拟)函数f(x)的定义域为开区间 (a,b),导函数f′(x)在(a,b)内的图象如图所示, 则函数f(x)在开区间(a,b)内有极小值点(). A.1个B.2个C.3个D.4个 答案 A 2.(2013·苏州一中月考)已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是().A.(-1,2) B.(-∞,-3)∪(6,+∞) C.(-3,6) D.(-∞,-1)∪(2,+∞) 解析f′(x)=3x2+2ax+(a+6),因为函数有极大值和极小值,所以f′(x)=0有两个不相等的实数根,所以Δ=4a2-4×3(a+6)>0,解得a<-3或a> 6. 答案 B 3.(2013·抚顺质检)函数y=ln2x x的极小值为 (). A.4 e2B.0 C.2 e D.1 解析函数的定义域为(0,+∞), y′=2ln x-ln2x x2= -ln x(ln x-2) x2. 函数y′与y随x变化情况如下:

则当x =1时函数y =ln x x 取到极小值0. 答案 B 4.(2013·南京模拟)设f (x )是一个三次函数,f ′(x )为其导函数,如图所示的是y =x ·f ′(x )的图象的一部分,则f (x )的极大值与极小值分别是 ( ). A .f (1)与f (-1) B .f (-1)与f (1) C .f (-2)与f (2) D .f (2)与f (-2) 解析 由图象知f ′(2)=f ′(-2)=0.∵x >2时,y =x ·f ′(x )>0,∴f ′(x )>0,∴y =f (x )在(2,+∞)上单调递增;同理f (x )在(-∞,-2)上单调递增,在(-2,2)上单调递减, ∴y =f (x )的极大值为f (-2),极小值为f (2),故选C. 答案 C 二、填空题(每小题5分,共10分) 5.已知函数y =f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )极大值与极小值之差为________. 解析 ∵y ′=3x 2+6ax +3b , ??? 3×22 +6a ×2+3b =0,3×12 +6a +3b =-3???? a =-1, b =0. ∴y ′=3x 2-6x ,令3x 2-6x =0,则x =0或x =2. ∴f (x )极大值-f (x )极小值=f (0)-f (2)=4. 答案 4 6.已知函数f (x )=? ?? -x 2+6x +e 2 -5e -2,x ≤e , x -2ln x ,x >e (其中e 为自然对数的底数, 且e ≈2.718).若f (6-a 2)>f (a ),则实数a 的取值范围是________. 解析 ∵f ′(x )=? ??? ? -2x +6,x ≤e ,1-2 x ,x >e ,当x ≤e 时,f ′(x )=6-2x =2(3-x )>0,

导数综合应用答案

11.导数的综合应用(含答案)(高二) 1.(15理科)已知函数()1ln 1x f x x +=-. (Ⅰ)求曲线()y f x =在点()()00f ,处的切线方程; (Ⅱ)求证:当()01x ∈, 时,()323x f x x ?? >+ ?? ?; (Ⅲ)设实数k 使得()33x f x k x ?? >+ ??? 对()01x ∈, 恒成立,求k 的最大值. 【答案】(Ⅰ)20x y -=, (Ⅱ)证明见解析,(Ⅲ)k 的最大值为2. 试题解析:(Ⅰ) 2 12 ()ln ,(1,1),(),(0)2,(0)011x f x x f x f f x x +''=∈-===--,曲线()y f x =在点()()00f ,处的切线方程为20x y - =; (Ⅱ)当()01x ∈, 时,()323x f x x ?? >+ ??? ,即不等式3 ()2()03x f x x -+>,对(0,1)x ?∈成立,设 33 1()ln 2()ln(1)ln(1)2()133x x x F x x x x x x +=-+=+---+-,则 4 2 2()1x F x x '=-,当()01x ∈,时,()0F x '>,故()F x 在(0,1)上为增函数,则()(0)0F x F >=,因此对(0,1)x ?∈,

3 ()2()3 x f x x >+ 成立; (Ⅲ)使()33x f x k x ?? >+ ??? 成立,()01x ∈, ,等价于3 1()ln ()013x x F x k x x +=-+>-,()01x ∈, ; 42 22 22()(1)11kx k F x k x x x +-'=-+=--, 当[0,2]k ∈时,()0F x '≥,函数在(0,1)上位增函数,()(0)0F x F >=,符合题意; 当2k >时,令4 02 ()0,(0,1)k F x x k -' == ∈, ()(0)F x F <,显然不成立, 综上所述可知:k 的最大值为2. 考点:1.导数的几何意义;2.利用导数研究函数的单调性,证明不等式;3.含参问题讨论. 2.(15年理科)设函数2 ()f x x ax b =-+. (1)讨论函数(sin )22 f x ππ 在(-,)的单调性并判断有无极值,有极值时求出极值; (2)记2 0000(),(sin )(sin )f x x a x b f x f x =-+-求函数在22 ππ (-,)上的最大值D ; (3)在(2)中,取2 000,D 14 a a b z b ===- ≤求满足时的最大值。 【答案】(Ⅰ)极小值为2 4 a b -;(Ⅱ)00||||D a a b b =-+-;(Ⅲ)1.

2019届高考数学专题二函数与导数第3讲导数的综合应用教案理

第3讲导数的综合应用 1.(2018·全国Ⅱ卷,理21)已知函数f(x)=e x-ax 2. (1)若a=1,证明:当x≥0时,f(x)≥1; (2)若f(x)在(0,+∞)只有一个零点,求a. (1)证明:当a=1时,f(x)≥1等价于(x2+1)e-x-1≤0. 设函数g(x)=(x2+1)e-x-1, 则g'(x)=-(x2-2x+1)·e-x=-(x-1)2e-x. 当x≠1时,g'(x)<0, 所以g(x)在(0,+∞)上单调递减. 而g(0)=0,故当x≥0时,g(x)≤0, 即f(x)≥1. (2)解:设函数h(x)=1-ax2e-x. f(x)在(0,+∞)上只有一个零点等价于h(x)在(0,+∞)上只有一个零点. (ⅰ)当a≤0时,h(x)>0,h(x)没有零点; (ⅱ)当a>0时,h'(x)=ax(x-2)e-x. 当x∈(0,2)时,h'(x)<0; 当x∈(2,+∞)时,h'(x)>0. 所以h(x)在(0,2)上单调递减,在(2,+∞)上单调递增. 故h(2)=1-是h(x)在(0,+∞)上的最小值. ①若h(2)>0,即a<,h(x)在(0,+∞)上没有零点. ②若h(2)=0,即a=,h(x)在(0,+∞)上只有一个零点. ③若h(2)<0,即a>, 因为h(0)=1, 所以h(x)在(0,2)上有一个零点; 由(1)知,当x>0时,e x>x2,

所以h(4a)=1-=1->1- =1->0, 故h(x)在(2,4a)上有一个零点. 因此h(x)在(0,+∞)上有两个零点. 综上,当f(x)在(0,+∞)上只有一个零点时,a=. 2.(2017·全国Ⅲ卷,理21)已知函数f(x)=x-1-aln x. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,1+1+…1+0,由f'(x)=1-=知, 当x∈(0,a)时,f'(x)<0; 当x∈(a,+∞)时,f'(x)>0, 所以f(x)在(0,a)上单调递减,在(a,+∞)上单调递增, 故x=a是f(x)在(0,+∞)的最小值点. 由于f(1)=0,所以当且仅当a=1时,f(x)≥0. 故a=1. (2)由(1)知当x∈(1,+∞)时,x-1-ln x>0. 令x=1+,得ln1+<. 从而ln1++ln1++…+ln1+<++…+=1-<1. 故1+1+…1+2,

导数的综合应用题型及解法(可编辑修改word版)

导数的综合应用题型及解法 题型一:利用导数研究函数的极值、最值。 x 2 处有极大值,则常数c= 6 ; 1.已知函数y f (x ) x(x c)2 个 题型二:利用导数几何意义求切线方程 2.求下列直线的方程: (1)曲线y x 3 x 2 1在P(-1,1)处的切线;(2)曲线y x2 过点P(3,5)的切线; 题型三:利用导数研究函数的单调性,极值、最值 f (x) =x3+ax 2+bx +c, 过曲线y = f (x)上的点P(1, f (1)) 的切线方程为 3.已知函数 y=3x+1 f (x)在x =-2 处有极值,求f (x) 的表达式; (Ⅰ)若函数 y =f (x) 在[-3,1]上的最大值; (Ⅱ)在(Ⅰ)的条件下,求函数 y =f (x) 在区间[-2,1]上单调递增,求实数 b 的取值范围(Ⅲ)若函数 4.已知三次函数f (x) =x3+ax2+bx +c 在x =1 和x =-1 时取极值,且f (-2) =-4 . (1)求函数y =f (x) 的表达式; (2)求函数y =f (x) 的单调区间和极值; 5.设函数f (x) =x(x -a)(x -b) . f(x)的图象与直线5x -y - 8 = 0 相切,切点横坐标为2,且f(x)在x = 1 处取极值,(1)若 a, b 的值; 求实数 f (x) 总有两个不同的极值 (2)当b=1 时,试证明:不论 a 取何实数,函数 点.题型四:利用导数研究函数的图象 f / ( x) 的图象如右图所示,则 f(x)的图象只可能是( 6.如右图:是 f(x)的导函数, D )

3 (A ) (B ) (C ) (D ) y 1 x 3 4x 1个个个个 7. 函数 3 ( A ) 6 4 2 -4 -2 y o 2 4 -2 -4 6 4 2 x -4 -2 y o 2 4 -2 -4 x -4 6 y 6 y 4 4 2 2 y 2 4 x o x -2 -2 -2 2 4 -4 -4 8.方程 2x 3 6x 2 7 0个 (0,2)个个个个个个 ( B ) A 、0 B 、1 C 、2 D 、3 题型五:利用单调性、极值、最值情况,求参数取值范围 f (x ) = - 1 x 3 + 2ax 2 - 3a 2 x + b ,0 < a < 1. 9. 设函数 3 (1)求函数 f (x ) 的单调区间、极值. (2)若当 x ∈[a + 1, a + 2] 时,恒有| f ' (x ) |≤ a ,试确定 a 的取值范围. 2 10. 已知函数 f (x )=x3+ax2+bx +c 在 x =- 3 与 x =1 时都取得极值(1)求 a 、b 的值与函数 f (x )的单调区间 (2)若对 x ∈〔-1,2〕,不等式 f (x ) 0,函数f (x ) = x 3 - ax 在[1,+∞) 上是单调函数. (1)求实数 a 的取值范围; (2)设 x 0 ≥1, f (x ) ≥1,且 f ( f (x 0 )) = x 0 ,求证: f (x 0 ) = x 0 .

相关文档
相关文档 最新文档