文档库 最新最全的文档下载
当前位置:文档库 › 卡爪式水下连接器承载能力分析

卡爪式水下连接器承载能力分析

卡爪式水下连接器承载能力分析
卡爪式水下连接器承载能力分析

2017年1月机床与液压Jan.2017第 45 卷第1期MACHINE TOOL &HYDRAULICS Yol.45 No. 1 D O I:10.3969/j.issn. 1001-3881. 2017. 01. 009

卡爪式水下连接器承载能力分析

王道明\运飞宏2,赵勇2,王宇臣1

(1.海洋石油工程股份有限公司,天津300451;

2.哈尔滨工程大学机电工程学院,黑龙江哈尔滨150001)

摘要:针对卡爪式水下连接器工作环境十分恶劣、外界干扰因素较多、会受到拉、压、弯、扭等外力的作用的问题,建立了连接器的模型,对各种受力状态进行了分析,提出了连接器在各种状态下的最大承载能力的计算方法。连接器对拉 力的承载能力通过确定卡爪的危险截面及伸长量进行分析;连接器对压力的承载能力取决于两法兰之间的预留距离,通过 计算卡爪的最大压缩量进行分析;连接器对弯矩的承载能力以距法兰中线最远的卡爪受力为准,根据倾覆力矩对连接器进 行弯矩分析;连接器对扭矩的承载能力是由连接器内部卡爪与法兰之间的摩擦力决定的,在不同工况下,根据卡爪对法兰 的正压力的变化,可以得到不同的结果。通过对卡爪式连接器的受力状态分析得到的连接器承载能力,对于国内类似水下 机械式连接器的发展有一个很好的借鉴作用。

关键词:水下连接器;卡爪式连接器;承载能力

中图分类号:TE931 文献标志码:A 文章编号:1001-3881 (2017) 01-040-3

Analysis of Bearing Capacity of Subsea Collect Connectors

W A N G Daoming1,Y U N Feihong2,Z H A O Yong2,W A N G Yuchen1

(1. Offshore Oil Engineering C o.,Ltd.,Tianjin300451,China;2. School of Mechanical and

Electrical Engineering,Harbin Engineering University,Harbin Heilongjiang150001, China) Abstract :For the bad working environment of the subsea collect connectors, lots of external interference factors and being subject to tension, compression, bending, twisting or other external forces, the model of connector has been built. Various stress states were analyzed, and method of calculating maximum bearing capacity was proposed under all the states of connectors. The bearing capacity of tension of the connector was analyzed by the determination of dangerous cross section and elongation of the collect. The bearing capacity of compression was depended on the reserved distance of two flanges, and was analyzed by calculating the largest amount of compres-sion of the collect. The bearing capacity of bending moment was pivoted to the force of the collect which was furthest from the center line of flange, and was analyzed according to the theory of overturning moment. The bearing capacity of torque was depended on the friction force between flange and collect, and it was different in different working conditions according to the change of the normal force that from collect to flange. The method of analysis of bearing capacity by analyzing the stress state of connector is a good reference for development of domestic similar subsea mechanical connectors.

Keywords :Subwater connector;Collect connector;Bearing capacity

〇前言

卡爪式水下连接器作为深水管道连接方式中的一 种,已广泛应用于全球各大深水油气田生产系统中,国外对相关技术的研究已有50多年历史,已发展成 集理论研究、设计、实验论证于一体的成熟产品。而 国内的相关研究尚处于起步阶段[h]。

卡爪式水下连接器一般工作在水深超过1 500 m 的深水,所处环境十分恶劣,工作状态往往受到多种 因素的影响,并且由于在该水深下人类已无法下潜进 行辅助作业,当出现问题时无法进行人为干预,因此 连接器在海底自身的可靠性就显得尤为重要。本文作者主要针对应用于1 500 m水深的立式卡爪式水下连 接器进行研究,分析其能够承受的外部载荷能力。1连接器工作原理

连接器在深水环境下不仅需要克服内部高温高压 油气的压力,还需要克服外部低温深水压力,因此采 用了复合密封,即金属透镜垫与传统〇形圈相结合 的方式实现对内、外压的密封。外压取决于海水深 度,1 500 m水深的外部压力达到15 M P a,设计压力 为22. 5 M P a,标准0形密封圈即可满足要求。管道 内部油压为34. 5 M P a,连接器的设计要求是连接后 能够封住管道内部油压1.5倍的压力,即能够实现

收稿日期:2015-04-01

基金项目:国家863高技术研究发展计划资助项目(2013A A09A217)

作者简介:王道明(1984—),男,硕士研究生,工程师,研究方向为海洋工程、机械工程、水下工程。E-mail:S hmilyyl@ https://www.wendangku.net/doc/bf80272.html, 。

快速推入插拔式连接器

说明书 一种快速插拔式射频同轴连接器 技术领域 本实用新型涉及一种射频同轴连接器,特别涉及一种快速插拔式同轴连接器。 技术背景 用于射频同轴馈线系统的连接器通称为射频同轴连接器。该连接器供通信和电子设备及类似电子设备所配用射频传输线中连接射频同轴电缆,或同轴与微带,同轴与波导之间的连接。 射频同轴连接器的连接方式通常为螺纹式,该连接器是通过插头和插座连接螺母的机械啮合和分离实现传输系统的电气连接和分离功能。在各种电子设备中使用的连接器装接上适用的射频电缆构成射频同轴传输线,是射频传输系统的主要组成部分,基本功能是有效地传输射频电磁能量。但该结构的射频同轴连接器,当连接器的使用场合中没有足够的空间来旋转连接螺母时,螺纹式射频同轴连接器就无法使用,且不能实现快速插拔功能,装配过程中需要专业的工具,安装麻烦,浪费时间,又安装后产品不能任意旋转,现有技术中,有些公司直接把螺纹接口取掉,通过插头与插座接触头与接触套的紧密配合来实现连接,但该结构的连接器,由于没有了螺纹连接结构,产品不具有抗震性,安全性差。 发明内容 本实用新型所要解决的问题是提供一种使用方便,抗震性好,安全性高

且可快速插拔的射频同轴连接器。 为了解决上述问题,本实用新型提供的一种快速插拔式射频同轴连接器,其包括插头与插座,所述插座内连接一接触套,所述插头内固定一接触头,所述接触头前端与接触套的后端紧密配合,所述接触套的后端设有一弹性卡环。 所述一种快速插拔式射频同轴连接器,所述弹性卡环为弹簧。 所述一种快速插拔式射频同轴连接器,所述接触套与插座为间隙配合。 采用上述结构的快速插拔式射频同轴连接器,由于在快速插拔式射频同轴连接器的接触套的后端设有一弹性卡环,使用时,可使接触头插入接触套接触力增加,从而提高该连接器的安全性,增加了其抗震性,使用时只要将接触头插入接触套中即可,使用方便,由于插座的接触套前后左右均可活动,这样结构的连接器,对于机框电子设备,使用时机框与机框之间的连接可以推入插进,并可以进行盲插,使用方便,从而保证了机框连接的空间小型化,在使用性、经济性上具有很高的实用价值。 附图说明 图1是本实用新型的结构示意图 具体实施方式 下面结合附图对本实用新型作进一步说明。 为了解决上述问题,本实用新型提供的一种快速插拔式射频同轴连接器,其包括插头41与插座2,所述插座2内连接一接触套1,所述插头41内固定一接触头4,所述接触头4前端与接触套1的后端紧密配合,所述插座2内在接触套1的后端设有一弹性卡环3,本实施例中,所述弹性卡环3

【CN109787027A】一种旋转式水下湿插拔光电复合连接器【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910146624.7 (22)申请日 2019.02.27 (71)申请人 东南大学 地址 210096 江苏省南京市玄武区四牌楼2 号 (72)发明人 陈云飞 杨文聪 张艳  (74)专利代理机构 南京众联专利代理有限公司 32206 代理人 周蔚然 (51)Int.Cl. H01R 13/502(2006.01) H01R 13/52(2006.01) H01R 13/523(2006.01) H01R 13/629(2006.01) H01R 13/631(2006.01) H01R 13/639(2006.01)H01R 24/00(2011.01)H01R 43/26(2006.01)G02B 6/38(2006.01) (54)发明名称一种旋转式水下湿插拔光电复合连接器(57)摘要本发明公开了一种旋转式水下湿插拔光电复合连接器,包括插座以及与之配合的插头;插头主体为插头内腔,内部贯穿有插头光电插芯;插座主体为插座中间套筒,与插座端面和插座橡胶隔板形成插座内腔,内部贯穿有插座光电插芯。插头与插座之间通过插座端面圆管内的凸起与插头内部的中心轴表面的螺旋状凹槽相配合,使插头与插座间的直线运动转化为两端面共同的旋转运动,从而让出插针之间进行插合的通道,实现连接。本发明设置体积可变的橡胶囊作为压力平衡装置,充分考虑了防水密封性能;本发明集成了光信号和电力传输,结构简洁、插合过程简单, 并且能够保证深水环境的可靠连接。权利要求书2页 说明书4页 附图6页CN 109787027 A 2019.05.21 C N 109787027 A

电子连接器的插拔力测试方法

电子连接器的插拔力测试方法 (摘自EIA建议标准NO.1653.在EIA P-5.12工作组组织下提出的。) 注:此TP-13A之前曾作为TP-13发布于EIA推荐标准RS-364-3。 1.0TP—13A插拔力测试 2.0目的﹕ 此测试的目的是介绍一种决定电子连接器或其保护盖所需插拔力的标准方法。 3.0样品准备 测试样品由一插头和一可接触端插座组成。除非特别说明﹐样品应由所有可用硬件包括边缘﹑机罩﹑线夹﹑螺钉﹑导片或插座组成。除非规格中另有说明,样品不需要任何方法进行润滑或清洗。 4.0测试方法 4.1 测试仪器 测试仪器包括﹕ 4.1.1可使样品以正常方式安装的安装夹具。 4.1.2测试中﹐测力表或力距表应置于连接器的合适位置,以便于读数指针位于量 规的中间,这样,操作量规可精确到±2%。 4.1.3按要求,附属测量仪器应与测试样品相配合并随带测力表和力矩表(轴压等)。 4.2测试步骤 4.2.1除非特别说明﹐样品应按正常情况进行安装。 4.2.2插入力 4.2.2.1将两个相配的电子连接器放在机械装配初始位置﹐并且测力表和力 矩表的读数为零。 4.2.2.2按规格中说明的力率将连接器完全充分插入(相配)﹐并记录插入 力峰值。 4.2.2.3拔出力 按规格中说明的力率将连接器完全拔出﹐并记录拔出力峰值。

5.0细节说明 按规格要求进行测试时,下列细节将作说明: (a)被测样品数目﹔ (b)插入力和拔出力﹔ (c)插拔速率﹔ (d)可能的插入深度。 6.0 参考文件 数据窗体包括: (a)测试标题﹔ (b)样品描述包括安装工具﹔ (c)所用的测试仪器﹔ (d)测试步骤﹔ (e)评估与观测﹔ (f)测试日期和操作者姓名。

连接器插拔力标准总结

连接器插拔力标准 目地:为了保证连接器适配后的可靠性和稳定性,依据EIA-364-13C(国际电气协会插拔力测试规范)特制定本标准,规定插入力不得大于额定值(确保使用者不至于很难插入适配头),而拔出力不得小于额定值(防止在各种复杂场合松脱或掉落,造成设备连线中断及损坏)。 连接器类型测试项目标准测试条件 USB系列1.连接器拔出力≥1.0Kg,焊线后注塑成品≥0.8Kg 测试头插拔次数≤10次 插拔速度为12.7mm/分钟2.连接器插入力≤3.5Kg Mini-Din系列1.连接器拔出力≥1.3Kg,焊线后注塑成品≥1.0Kg 测试头插拔次数≤10次 插拔速度为25.4mm/分钟2.连接器插入力≤3.5Kg S-ATA系列1.连接器拔出力≥1.0Kg 测试头插拔次数≤10次 插拔速度为25.4mm/分钟2.连接器插入力≤4.5Kg D-SUB系列-09P 1.连接器拔出力≥1.5Kg 测试头插拔次数≤20次 插拔速度为25.4mm/分钟2.连接器插入力≤3.5Kg D-SUB系列-15P 1.连接器拔出力≥2.0Kg 测试头插拔次数≤20次 插拔速度为25.4mm/分钟2.连接器插入力≤5.0Kg D-SUB系列-25P 1.连接器拔出力≥2.5Kg 测试头插拔次数≤20次 插拔速度为25.4mm/分钟2.连接器插入力≤8.5Kg D-SUB系列-37P 1.连接器拔出力≥3.0Kg 测试头插拔次数≤5次 插拔速度为12.7mm/分钟2.连接器插入力≤12.5Kg Housing系列-02P 1.连接器拔出力≥0.5Kg 测试头插拔次数≤5次 插拔速度为12.7mm/分钟2.连接器插入力≤3.0Kg Housing系列-04P 1.连接器拔出力≥0.5Kg 测试头插拔次数≤5次 插拔速度为12.7mm/分钟2.连接器插入力≤3.0Kg Housing系列-06P 1.连接器拔出力≥0.5Kg 测试头插拔次数≤5次 插拔速度为12.7mm/分钟2.连接器插入力≤3.0Kg Housing系列-08P 1.连接器拔出力≥0.7Kg 测试头插拔次数≤5次 插拔速度为12.7mm/分钟2.连接器插入力≤3.5Kg Housing系列-10P 1.连接器拔出力≥0.7Kg 测试头插拔次数≤5次 插拔速度为12.7mm/分钟2.连接器插入力≤3.5Kg Housing系列-12P 1.连接器拔出力≥1.0Kg 测试头插拔次数≤5次 插拔速度为12.7mm/分钟2.连接器插入力≤5.0Kg Housing系列-14P 1.连接器拔出力≥1.0Kg 测试头插拔次数≤5次 插拔速度为12.7mm/分钟2.连接器插入力≤5.0Kg Housing系列-16P 1.连接器拔出力≥1.0Kg 测试头插拔次数≤5次 插拔速度为12.7mm/分钟2.连接器插入力≤5.0Kg 187端子系列1.连接器拔出力≥1.5Kg 测试头插拔次数≤5次 插拔速度为12.7mm/分钟2.连接器插入力≤6.5Kg 250端子系列1.连接器拔出力≥2.0Kg 测试头插拔次数≤6次 插拔速度为12.7mm/分钟2.连接器插入力≤8.0Kg IDC端子系列1.连接器拔出力≥0.06g*Pin数测试头插拔次数≤10次 插拔速度为12.7mm/分钟2.连接器插入力≤6.8Kg

混凝土受弯构件正截面承载力影响因素分析解析

混凝土受弯构件正截面承载力影响因素分析 摘要:本文将以单筋矩形截面梁为例,并以正截面承栽力计算的基本假定为前提分析。比较规范采用的应力~应变曲线,美国E .Hognestad 建议的应力一应变曲线以及德国Rusch 建议的模型,推导出这三种不同本构模型下的正截面承载力计算公式,然后通过分析混凝土极限压应变、混凝土强度、钢筋强度、配筋率、截面尺寸等对构件正截面承载力的影响大小,通过影响结果判断各自的影响程度,有利于在设计中采取有效的经济措施改善结构的承载力。 关键词:受弯构件;平截面;矩形截面;正截面承载力;应力应变曲线;影响因素 1、前言 结构或结构的一部分濒于失效的一种特定状态,亦即在这种状态下,结构或构件恰好达到设计所规定的某种功能要求的极限称为该功能的极限状态。按此状态进行设计的方法称极限状态设计法(分为半概率极限状态设计法和概率极限状态设计法)。现阶段采用概率极限状态设计法,它将工程结构的极限状态分为承载能力极限状态和正常使用极限状态两大类;按照各种结构的特点和使用要求,给出极限状态方程和具体的限值作为结构设计的依据。用结构的失效概率或可靠指标度量结构可靠度,在结构极限状态方程和结构可靠度之间以概率理论建立关系。这种设计方法即为基于概率的极限状态设计法,简称为概率极限状态设计法。其设计式是用荷载或荷载效应、材料性能和几何参数的标准值附以各种分项系数,再加上结构重要性系数来表达。对承载能力极限状态采用荷载效应的基本组合和偶然组合进行设计,对正常使用极限状态按荷载的短期效应组合和长期效应组合进行设计。 本文混凝土受弯构件正截面承载力计算采用的是承载力极限状态设计法,结构或构件的作用效应要小于或等于结构(或构件)的抗力,从而使结构或构件能正常工作满足使用要求。 2、基本假定 钢筋混凝土构件正截面承载力的计算方法比较成熟,它采用平截面假定等几个基本假定。 (1)平截面假定 在一定的量测区段内截面的平均应变分布是线性的,符合平截面假定。由此容易计算出极限状态下至中和轴距离为y 点的混凝土应变为()c cu o c o y y y x x εεε= = 式中:c x 为受压区高度;cu ε为截面破坏时受压区边缘的混凝土应变;o ε为有应变梯度下

第七章 受拉构件承载力计算

第七章受拉构件承载力计算 一、填空题: 1、受拉构件可分为和两类。 2、小偏心受拉构件的受力特点类似于,破坏时拉力全部由 承受;大偏心受拉的受力特点类似于或构件。破坏时截面混凝土有存在。 3、偏心受拉构件的存在,对构件抗剪承载力不利。 4、受拉构件除进行计算外,尚应根据不同情况,进行、、 的计算。 5、偏心受拉构件的配筋方式有、两种。 二、判断题: 1、对于小偏心受拉构件,无论对称配还非对称配筋,纵筋的总用钢量和轴拉构件总用钢量相等。() 2、偏心受拉构件与双筋矩形截同梁的破坏形式一样。() 三、选择题: 1、偏心受拉构件破坏时,()。 A远边钢筋屈服 B近边钢筋屈服 C远边、近边都屈服 D无法判定 2、在受拉构件中,由于纵向拉力的存在,构件的抗剪能力将()。 A提高 B降低 C不变 D难以测定 3、下列关于钢筋混凝土受拉构件的叙述中,()是错误的。 A钢筋混凝土轴心受拉构件破坏时,混凝土已被拉裂,全部外力由钢筋来承担 B当轴向拉力N作用于合力及合力点以内时,发生小偏心受拉破坏 C破坏时,钢筋混凝土偏心受拉构件截面存在受压区 D小偏心受拉构件破坏时,只有当纵向拉力N作用于钢筋截面面积的“塑性中 心”时,两侧纵向钢筋才会同时达到屈服强度。 四、简答题: 1、简述钢筋混凝土大小偏心受拉构件的破坏特征。 2、轴向拉力对钢筋混凝土偏心受拉构件斜截面抗剪承载力有什么影响?计算公式中如何体现?对N值有无限制条件? 参考答案 一、填空题: 1、小偏心受拉大偏心受拉

2、轴拉钢筋受弯路大偏压受压区 3、轴向拉力N 4、正截面承载能力抗剪抗裂度裂缝宽度 5、对称配筋非对称配筋 二、判断题: 1、√ 2、× 三、选择题: 1、B 2、B 3、C 四、简答题: 1、(1)当纵向力N作用在钢筋合力点及合力点之间()时,为小偏心受拉。 在小偏心拉力作用下,构件破坏时,截面全部裂通,混凝土退出工作,拉力完全由钢筋承担,钢筋及的拉应力达到屈服。 (2)当纵向力N作用在钢筋与范围以外时,为大偏心受拉。 与大偏心受压构件的破坏基本相似,构件在纵向力拉力作用下,受拉截面部分开裂,受拉区的应力全部由承担,并首先达到屈服,然后压区的混凝土被压碎,受压钢筋也达到屈服。 2、偏心受拉构件同时承受较大的剪力作用时,需验算截面受剪承载力。纵向拉力N的存在,使截面的受剪承载力降低。纵向拉力引起的受剪承载力的降低,与纵向拉力几乎是成正比的。 对N值无限定条件。

砌体构件承载力计算【最新版】

砌体构件承载力计算 第五章砌体构件承载力计算 学习本章的意义和内容:无筋砌体受压构件的破坏形态和影响受压承载力的主要因素,无筋砌体受压构件的承载力计算方法,梁下砌体局部受压承载力和梁下设置刚性垫块时的局部受压承载力验算方法以及有关的构造要求,无筋砌体受弯、受剪以及受拉构件的破坏特征及承载力的计算方法。 通过本章学习可以掌握土木工程中砌体结构构件计算的基本理论,为砌体结构设计奠定基础。 本章习题内容主要涉及:无筋砌体受压构件承载力的主要因素及承载力计算公式的应用;局部受压构件破坏的类型及公式的应用;砌体受拉、受弯、受剪构件的计算及应用范围。 一、概念题 (一)填空题: 1.无筋砌体受压构件按高厚比的不同以及荷载作用偏心矩的

有无,可分为____________、____________、____________、____________、____________。 2.在截面尺寸和材料强度等级一定的条件下,在施工质量得到保证的前提下,影响无筋砌体受压承载力的主要因素是____________和____________。 3.在设计无筋砌体偏心受压构件时,《砌体规范》对偏心距的限制条件是___________。为了减少轴向力的偏心距,可采用____________或____________等构造措施。 4.通过对砌体局部受压的试验表明,局部受压可能发生三种破坏,即____________、____________、____________。其中,____________是局部受压的基本破坏形态;____________是由于发生突然,在设计中应避免发生,____________仅在砌体材料强度过低时发生。 5.砌体在局部受压时,由于未直接受压砌体对直接受压砌体的约束作用以及力的扩散作用,使砌体的局部受压强度_______________________。局部受压强度用____________表示。 6.对局部抗压强度提高系数进行限制的目的是__________________________________。 7.局部受压承载力不满

连接器插拔力标准

----刘友辉(Tony Liu),2009 连接器类型 测试项目标准 测试条件 1.连接器拔出力≥1.0Kg,焊线后注塑成品≥0.8Kg 测试头插拔次数≤10次 2.连接器插入力≤ 3.5Kg 插拔速度为12.7mm/分钟1.连接器拔出力≥1.3Kg,焊线后注塑成品≥1.0Kg 测试头插拔次数≤10次2.连接器插入力≤3.5Kg 插拔速度为25.4mm/分钟1.连接器拔出力≥1.0Kg,测试头插拔次数≤10次2.连接器插入力≤4.5Kg 插拔速度为25.4mm/分钟1.连接器拔出力≥1.5Kg 测试头插拔次数≤20次2.连接器插入力≤3.5Kg 插拔速度为25.4mm/分钟1.连接器拔出力≥2.0Kg 测试头插拔次数≤20次2.连接器插入力≤5.0Kg 插拔速度为25.4mm/分钟1.连接器拔出力≥2.5Kg 测试头插拔次数≤20次2.连接器插入力≤8.5Kg 插拔速度为25.4mm/分钟1.连接器拔出力≥3.0Kg 测试头插拔次数≤20次2.连接器插入力≤12.5Kg 插拔速度为25.4mm/分钟1.连接器拔出力≥0.5Kg 测试头插拔次数≤5次2.连接器插入力≤3.0Kg 插拔速度为12.7mm/分钟1.连接器拔出力≥0.5Kg 测试头插拔次数≤5次2.连接器插入力≤3.0Kg 插拔速度为12.7mm/分钟1.连接器拔出力≥0.5Kg 测试头插拔次数≤5次2.连接器插入力≤3.0Kg 插拔速度为12.7mm/分钟1.连接器拔出力≥0.7Kg 测试头插拔次数≤5次2.连接器插入力≤3.5Kg 插拔速度为12.7mm/分钟1.连接器拔出力≥0.7Kg 测试头插拔次数≤5次2.连接器插入力≤3.5Kg 插拔速度为12.7mm/分钟1.连接器拔出力≥1.0Kg 测试头插拔次数≤5次2.连接器插入力≤5.0Kg 插拔速度为12.7mm/分钟1.连接器拔出力≥1.0Kg 测试头插拔次数≤5次2.连接器插入力≤5.0Kg 插拔速度为12.7mm/分钟1.连接器拔出力≥1.0Kg 测试头插拔次数≤5次2.连接器插入力≤5.0Kg 插拔速度为12.7mm/分钟1.连接器拔出力≥1.5Kg 测试头插拔次数≤5次2.连接器插入力≤6.5Kg 插拔速度为12.7mm/分钟1.连接器拔出力≥2.0Kg 测试头插拔次数≤5次2.连接器插入力≤8.0Kg 插拔速度为12.7mm/分钟1.连接器拔出力≥0.06g*Pin数测试头插拔次数≤10次2.连接器插入力≤6.8Kg 插拔速度为12.7mm/分钟 Housing 系列-10P Housing 系列-12P Housing 系列-14P D-SUB 系列-09P D-SUB 系列-15P Housing 系列-06P D-SUB 系列-25P D-SUB 系列-37P Housing 系列-02P Housing 系列-04P IDC 端子系列 连接器插拔力标准 目的:为了保证连接器适配后的可靠性和稳定性,依据EIA-364-13C(国际电气协会插拔力测试规范)特制定本标准,规定插入力不得大于额定值(确保使用者不至于很难插入适配头),而拔出力不得小于额定值(防止在各种复杂场合松脱或掉落,造成设备连线中断及损坏)。 USB 系列Mini-Din 系列Housing 系列-08P Housing 系列-16P S-ATA 系列250端子系列187端子系列

构件的截面承载能力—强度

第 3 章构件的截面承载能力——强度 3.1轴心受力构件的强度及截面选择 3.1.1轴心受力构件的应用和截面形式 一、轴心受力构件的应用 1.主要承重钢结构,如平面、空间和架和网架等。 2.工业建筑的平台和其他结构的支柱 3.各种支撑系统 二、轴心受力构件的截面形式 1. 轴心受力构件的截面分类 第一种:热轧型钢截面:圆钢、圆管、方管、角钢、工字钢、 T 型钢和槽钢等,如图3-1(a)。 第二种:冷弯薄壁型钢截面:带卷边或不带卷边的角形、槽形截面和方管等,如图3-1(b)。 第三种:用型钢和钢板连接而成的组合截面:实腹式如图3-1(c),格构式如图3-1(d)。

2.对轴心受力构件截面形式的共同要求是 (1)能提供强度所需要的截面积 ; (2)制作比较简便 ; (3)便于和相邻的构件连接 ; (4)截面开展而壁厚较薄,以满足刚度要求:对于轴心受压构件,截面开展更具有重要意义,因为这类构件的截面积往往取决于稳定承载力,整体刚度大则构件的稳定性好,用料比较经济。对构件截面的两个主轴都应如此要求。 根据以上情况,轴心压杆除经常采用双角钢和宽翼缘工字钢截面外,有时需采用实腹式或格构式组合截面。格构式截面容易使压杆实现两主轴方向的等稳定性,同时刚度大,抗扭性能好,用料较省。轮廓尺寸宽大的四肢或三肢格构式组合截面适用于轴心压力不甚大,但比较长的构件以便满足刚度、稳定要求。在轻型钢结构中采用冷弯薄壁型钢截面比较有利。 3.1.2轴心受拉构件的强度 由钢材的应力应变关系可知,轴心受拉构件的承载极限是截面的平均应力达到钢材的抗拉强度。但拉杆达到此强度极限时会发生突然的断裂,缺少必要的安全储备。另外,当构件毛截面的平均应力超过钢材的屈服强度时,由于构件塑性变形的发展,会使结构的变形过大以致不符合继续承载的要求。因此,拉杆毛截面上的平均应力应以不超过屈服强度为准则。 对于有孔洞的受拉构件,孔洞附近有如图3-2(a)所示的应力集中现象。孔壁边缘最大应力可能达到弹性阶段的3~4倍。当孔壁边缘的最大应力达到屈服强度以后.应力不再增加而塑性变形持续发展。此后,由于应力重分布,净截面的应力可以均匀地达到屈服强度,如图3-2(b)。如果拉力仍继续增加.不仅构件的变形会发展过大,而且孔壁附近因塑性应变过分发展而有首先被拉断的可能性。

连接器的测试标准[详]

连接器实验 一.连接器的实验项目: 插拔力、夹持力、蒸汽老化、盐水喷雾、热风回流程(IR)、振动测试、高温老化、恒温恒湿、冷热冲击、快速插拔测试、接触阻抗、绝缘阻抗、耐压测试、硬度测试、喷漆厚度测试、电镀膜厚测试、表面粗糙度测试、吃锡性/耐焊性实验。 二.各项实验之条件及实验目的: 1.插拔力---测试公母对插之插入及拔出所需力量。(自动插拔测试机) 参数:插入行程及速度、测试单程或去回程、插拔次数。 检验:检验产品在公母对插时的力量是否太紧太松,当影响对插力理的尺寸不良需做此项实验确认。 2.夹持力---测试端子植入塑料所需拔出之力量。(自动插拔测试机) 参数:同上 检验:当端子卡钩尺寸或塑料卡槽尺寸不良时,需做此项实验来确认。 自动插拔测试机如下:

3.蒸汽老化---检验五金件电镀后的保质期。(镀全金/半金锡/全锡端子)试验条件为 温度98±2℃,时间8H。(蒸汽老化试验机) 参数:温度及时间可以调整。另可检验NY6T塑料的吸湿性 检验:当五金件表面刮伤、镀层太低或电镀表面不良时需做此项实验确认质量。蒸汽老化试验机如下: 4.盐水喷雾---检验五金件电镀后的保质期。(铁壳/叉片/铆钉类)试验条件为试验槽 温度35℃,时间4H,盐水比例5:95。(盐水喷雾试验机) 参数:试验时间可调整。 检验:当五金件表面刮伤、镀层太低或电镀表面不良时需做此项实验确认质量。盐水喷雾试验机如下:

5.热风回流焊(IR)---仿真产品在客户处过SMT使用状况。现厂内主要检验塑料起泡 状况及少量产品SMT试验,实验条件为温度235±5℃,最高温度 时间为3~5S。(热风回流焊试验机) 参数:实验温度/时间可以依需求调整。 检验:当塑料存放时间过长(NY6T 3个月)、镀锡铁壳或沾锡膏实验需通过此实验确认塑料是否会起泡、铁壳是否会流锡或吃锡状况。 热风回流焊试验机如下: 6.振动测试---检验产品公母对插后的瞬间导通性,实验时将产品全部串联接到信号 测试机上测试。另也可以仿真产品在运输途中的状况。实验条件为频 率10HZ-55HZ-10HZ/分钟一个循环,振幅1.52mm,时间为X、Y、Z各2H。 参数:频率、振幅及时间均可依需求做调整。 检验:当产品对插口尺寸不良、产品包装不良或盖子与本体搭配不良需做此实验确认。此实验项目重点是检验产品公母接触的瞬间接触状况。 振动试验机如下:

连接器要求规范和测试要求

【技術&知識】連接器規範和測試要求 文:Knight Chen / CACT 工程部 連接器依照其產品功能和使用環境,將規範要求分為四大部分。 1. 電氣規範要求 2. 機械規範要求 3. 環境規範要求 4. 環保要求

一、電氣規範要求 電氣特性是連接器實現連接功能的主要特性。確定連接器的電氣特性,以保證連接器滿足連接功能。連接器的電氣特性有: 1. 接觸阻抗(Contact Resistance) 目的:維持連接器在使用期限內的接觸阻抗,以減少信號和能量在傳輸過程中的損失或衰減。 測試方法:EIA-364-23 (EIA-364-06) or MIL-STD-1344A,3004.1。 測試要點:a. 測試電流/電壓100mA@20mV,被測試連接器(連接系統)無負載。 b. 測試電流為低電流是為了避免接觸阻抗受到端子(導體)熱電效應影響。 c. 測試電壓為低電壓是為了避免端子(導體)之間接觸界面絕緣薄膜被擊穿和熔化。

規範要求:一般要求50m?(initial);100m?(final,即在壽命測試或環境測試後)。 定義接觸阻抗此參數是為了減少信號和能量在傳輸過程中的損失或衰減,電流就像水流一樣。阻力越小,能量的損失和衰減就越少。 就連接器的接觸處而言,影響其阻抗大小的因素有正向力(對於彈性接觸結構而言),接觸環境,如端子(導體)的表面粗糙度,表面處理方式(如電鍍的金屬特性和緻密性),端子與端子(或其他導體)的結合方式(是焊接or鉚合or彈性接觸等)。 從電學理論角度來說,接觸阻抗為C點綠色圈接觸處的阻抗;在客人使用角度來說,連接器提供A點到B點的導通(連接),所以客人要的阻抗應包含從A點到B點的所有導體本身的阻抗和接觸處的阻抗(包括焊接、鉚合等接觸方式)如圖一示。

连接器的测试标准

连接器实验 一.连接器的实验项目: 插拔力、夹持力、蒸汽老化、盐水喷雾、热风回流程(IR)、振动测试、高温老化、恒温恒湿、冷热冲击、快速插拔测试、接触阻抗、绝缘阻抗、耐压测试、硬度测试、喷漆厚度测试、电镀膜厚测试、表面粗糙度测试、吃锡性/耐焊性实验。 二.各项实验之条件及实验目的: 1.插拔力---测试公母对插之插入及拔出所需力量。(自动插拔测试机) HIIHI H11 I ■ [■=■] ■ ■ H? 参数:插入行程及速度、测试单程或去回程、插拔次数。 检验:检验产品在公母对插时的力量是否太紧太松,当影响对插力理的尺寸不良需做此项实验确认。 2.夹扌持力..---测试端子植入塑料所需拔出之力量。 参数:同上 检验:当端子卡钩尺寸或塑料卡槽尺寸不良时自动插拔测试机如下:(自动插拔测试机) ,需做此项实验来确认。 —It

3.蒸汽老化---检验五金件电镀后的保质期。(镀全金/半金锡/全锡端子)试验条件为

温度98± 2C ,时间8Ho (蒸汽老化试验机) 参数:温度及时间可以调整。另可检验NY6T塑料的吸湿性 检验:当五金件表面刮伤、镀层太低或电镀表面不良时需做此项实验确认质量。蒸汽老化试验机如下: Steim A erne Tesler 4.盐水喷雾?.---检验五金件电镀后的保质期。(铁壳/叉片/铆钉类)试验 条件为试验槽温度35C ,时间4H,盐水比例5:95。(盐水喷雾试验机)参数:试验时间可调整。 检验:当五金件表面刮伤、镀层太低或电镀表面不良时需做此项实验确认质量。盐水喷雾试验机如下: -匚I B

5. 热风回流焊(IR )---仿真产品在客户处过SMT 使用状况。现厂内主要检验塑料起泡 状况及少量产品SMT 式验,实验条件为温度235士 5C ,最高温度 时间为3~5S (热风回流焊试验机) 参数:实验温度/时间可以依需求调整。 检验:当塑料存放时间过长(NY6T 3个月)、镀锡铁壳或沾锡膏实验需通过此实验 确 认塑料是否会起泡、铁壳是否会流锡或吃锡状况。 热风回流焊试验机如下: 6. 振动测试---检验产品公母对插后的瞬间导通性,实验时将产品全部串联接到信号 测试机上测试。另也可以仿真产品在运输途中的状况。实验条件为频 率10HZ-55HZ-10HZ 分钟一个循环,振幅1.52mm,时间为X 、Y 、Z 各2H 。 参数:频率、振幅及时间均可依需求做调整。 检验:当产品对插口尺寸不良、产品包装不良或盖子与本体搭配不良需做此实验 此实验项目重点是检验产品公母接触的瞬间接触状况。 确认。 振动试验机如下: 0 - n =_ EA ifot A tr Rvlla tr?r 卩e 1 ri r L ■ T ?-- ■ 1 ■ ■■pH* _ -■甲 J- e 1 ■ ■ ■ ■ .萼

连接器插拔力

75牛顿,否则打爆!本期 讲述材料的选择如何减少连接器的插拔力,而同时保持适当的正交力。 电子连接器市场设计聚焦技术服务 连接器插拔力 现行北美人机工程学规定要求在汽车线束端子连接器中的插入力少于75牛顿。有消息称,下一次的规则将把它减少到50牛顿。汽车连接器制造商们不禁自问:“我们能够做到多低?” 图1是在典型的互连系统中接触器的示意图。连接器的凸出一半的叶片或插脚将与其凹进一半的弹簧片相接触。当插脚插入时,它将滑过并使弹簧倾斜,从而产生良好电器接触所需要的正交力。一旦弹簧片被全部偏移并只接触插脚的扁平接触面,接触力将与插入方向垂直。那么插拔力的大小正好等于正交力乘以滑动摩擦系数和接触点数量。不过,在达到这个稳定状态以前,插拔力表现出非常复杂的情形。 对于这类连接系统,最大插拔力往往比稳定状态的值要大,并通常比正交力大。 (为讨论方便,我们假设连接器的凸出部分和凹陷部分正好完全水平,以便插入方向也能处于水平)。当凸出插脚插入时,它将会首先在凹陷端的弹簧片某处产生接触。此点的位置将由插脚的厚度和插脚与弹簧片的角度来决定,可把它表示为a 。 随着插脚向前运动,它使弹簧接触面倾斜,从而产生正交力。既然此力的作用与接触点两面的方向垂直,它将具有水平和垂直的成分。在插入过程中,正交力的水平成分将与插脚的入口相反。相反地,在拔出过程中,接触力的水平成分将有助于拔出。 一旦摩擦力与正交力垂直,它也会具有水平和垂直成分。摩擦力的水平成分也将对插入产生反作用。因此,插拔力具有两中成分:一种来自摩擦力,另一种来自表面反应力。下面的图1表明了插拔力的计算等式。关于此等式的偏差,请参考本文尾的两份参考资料。 图1中的等式并非是它首先看到的那样简单。(摩擦系数也会发生变化。)接触角度在开始接触时最大,在处于稳定状态时降到0度。它还通常在插脚插入时增大。 第五册 - 第二期 出版物 (800)375-4205 技术服务 技 术 资 讯

连接器的三大基本性能

连接器的三大基本性能 连接器的基本性能可分为三大类:即机械性能、电气性能和环境性能。 1.机械性能就连接功能而言,插拔力是重要地机械性能。插拔力分为插入力和拔出力(拔出力亦称分离力),两者的要求是不同的。在有关标准中有最大插入力和最小分离力规定,这表明,从使用角度来看,插入力要小(从而有低插入力LIF和无插入力ZIF的结构),而分离力若太小,则会影响接触的可靠性。 另一个重要的机械性能是连接器的机械寿命。机械寿命实际上是一种耐久性(durability)指标,在国标GB5095中把它叫作机械操作。它是以一次插入和一次拔出为一个循环,以在规定的插拔循环后连接器能否正常完成其连接功能(如接触电阻值)作为评判依据。 连接器的插拔力和机械寿命与接触件结构(正压力大小)接触部位镀层质量(滑动摩擦系数)以及接触件排列尺寸精度(对准度)有关。 2.电气性能连接器的主要电气性能包括接触电阻、绝缘电阻和抗电强度。 ①接触电阻高质量的电连接器应当具有低而稳定的接触电阻。连接器的接触电阻从几毫欧到数十毫欧不等。 ②绝缘电阻衡量电连接器接触件之间和接触件与外壳之间绝缘性能的指标,其数量级为数百兆欧至数千兆欧不等。 ③抗电强度或称耐电压、介质耐压,是表征连接器接触件之间或接触件与外壳之间耐受额定试验电压的能力。 ④其它电气性能。 电磁干扰泄漏衰减是评价连接器的电磁干扰屏蔽效果,电磁干扰泄漏衰减是评价连接器的电磁干扰屏蔽效果,一般在100MHz~10GHz频率范围内测试。 对射频同轴连接器而言,还有特性阻抗、插入损耗、反射系数、电压驻波比(VSWR)等电气指标。由于数字技术的发展,为了连接和传输高速数字脉冲信号,出现了一类新型的连接器即高速信号连接器,相应地,在电气性能方面,除特性阻抗外,还出现了一些新的电气指标,如串扰(crosstalk),传输延迟(delay)、时滞(skew)等。 3.环境性能常见的环境性能包括耐温、耐湿、耐盐雾、振动和冲击等。 ①耐温目前连接器的最高工作温度为200℃(少数高温特种连接器除外),最低温度为-65℃。由于连接器工作时,电流在接触点处产生热量,导致温升,因此一般认为工作温度应等于环境温度与接点温升之和。在某些规范中,明确规定了连接器在额定工作电流下容许的最高温升。 ②耐湿潮气的侵入会影响连接h绝缘性能,并锈蚀金属零件。恒定湿热试验条件为相对湿度90%~95%(依据产品规范,可达98%)、温度+40±20℃,试验时间按产品规定,最少为96 小时。交变湿热试验则更严苛。 ③耐盐雾连接器在含有潮气和盐分的环境中工作时,其金属结构件、接触件表面处理层有可能产生电化腐蚀,影响连接器的物理和电气性能。为了评价电连接器耐受这种环境的能力,规定了盐雾试验。它是将连接器悬挂在温度受控的试验箱内,用规定浓度的氯化钠溶液用压缩空气喷出,形成盐雾大气,其暴露时间由产品规范规定,至少为48小时。 ④振动和冲击耐振动和冲击是电连接器的重要性能,在特殊的应用环境中如航空和航天、铁路和公路运输中尤为重要,它是检验电连接器机械结构的坚固性和电接触可靠性的重要指标。在有关的

接线端子插接插件和各类连接器的基础知识

接线端子和各类连接器的基础知识 接线端子用于将分开的电路连接到一起。通常这些连接器用于常需要切换和断开的场合,如连接电源,连接外围电路,或者需要更换的扩展部分。 在本教程中,我们将介绍下面主题 ?关于接线端子的常见术语 ?将接线端子进行区别分类 ?介绍上述分类之间的区别 ?介绍如何使用极性防反的接线端子 ?介绍如何使用极性防反的接线端子

在我们开始讨论一些常用的连接器之前,让我们来探讨用于描述接线端子的术语。 公母端子Gender–接线端子的公母性说明了它是用来插入还是被插入的。(哈哈,如果你还是单纯的孩子,更详细的解释估计你得去问问你父母)遗憾的是,有些被称为公头的端子,实际上是按照母头的端子来使用的。在接下来的示例中,我们将将说明这些缘由。 Male and female 2.0mm PH series JST connectors 左边公右边母的 2.0mm PH系列的JSP接线端子 极性-大多数接线端子有约定的极性方向。这种特性使得接线端子可以防止接反。

North America wall plug 有极性的美规墙上插头。通过为插头叶片两种不同的宽度,插头只能单向进入插座 触点-触点是接线端子真正起作用的功能部分。它们是彼此接触的金属部件,形成电气导通的连接。这里也往往是导致连接不良的地方:触点可能变脏或氧化、或者金属弹片的弹性随时间蠕化变小而将导致触点松脱或连接不可靠。 ADH8066 mating connector 该连接器上的触点清晰可见。 间距–许多连接器由重复排列的一组触点组成。连接器的间距是从一个触点的中心到下一个触点的中心的距离。这一点很重要,因为有许多接线端子外观和触点看起来非常相似,但间距可能不同,所以往往一个型号系列的端子仅仅因为这个参数不同而不同,因此在不知道此参数情况下,很容易在购买了不能配对连接端子。

相关文档