文档库 最新最全的文档下载
当前位置:文档库 › 真空测量常用真空计

真空测量常用真空计

真空测量常用真空计
真空测量常用真空计

真空测量常用真空计真空测是是真空技术中的一个重要组成部分用于测量真空度的仪器叫真空计。真空计的种类很多,根据真空计的刻度方法,可分为绝对真空计和相对真空计。

(一)绝对真空计:通过对气体压强进行测量,经过计算后,能反映真空度的真空计,叫绝对真空计,如:U 型管真空计、压缩式真空计等。

(1)U型管真空计:利用U型管两端的液面差,来测量压强的典空计叫U型管真空计。

(2)压缩式真空计:又称麦克劳真空计。利用波意耳定律,将定量待测的气体,用水银或油压缩到极小体积,然后比较它的开管与闭管之间的液柱差,通过计算求得压强的一种绝对真空计。

(二)相对真空计:通过对与压强有关的物理盆进行侧量,但不能通过计算来进行刻度,只能与绝对真空计进行比较才能刻度的真空计,叫相对真空计,如:弹性式真空表、薄膜式真空计、电阻真空计、热偶真空计和电离真空计等。:

(1)弹性式真空表:利用弹性元件随压强变化所产生的变形,测量真空度的真空计。

(2)电阻真空计和热偶真空计:利用气体分子的热传导作用,测量真空度的真空计。

(3)电离真空计:利用气体分子在低压强下的电离现象,测量真空度的真空计。

常用真空计的分类和测量范围见下图:

(三)绝对真空计与相对真空计的比较

(1)绝对真空计的优点,是结构简单福、造价低、测量精度高,其测量值与被测气体种类无关(可凝性蒸气除外)。其缺点是操作不便,不能连续测量,用水银作介质时,水银蒸气对环境有污染。

(2)相对真空计的优点,是能连续测量真空度,并便于自动记录和用于自动控制。其缺点,是测量精度受气体种类和环境温度的影响较大,测量精度不如绝对真空计高。

真空热处理炉常用的真空计有弹性式真空表、热偶真空计、电阻真空计、电离真空计等相对真空计。现将常用的真空计工作原理简介如下:

(一)弹性式真空表:真空表内,有一由铍青钢或不锈钢等弹性材料制成的扁平截面弹簧弯管,管的一端与被测真空系统相连,另一端封死,并通过连杆齿轮与指针相连。当弹簧管内气体压强增高时,弹簧管的截面形状向圆形变化,并使弹簧管向外扩张,带动指针偏转。反之,当管内气体压强降低时,指针朝相反方向旋转。此种真空表,其真空度的测鱿范困为960托~1托。

(二)热偶真空计:热偶真空计由测量真空度的敏感元件、热偶规炸和测量仪器组成。规管见图.测量仪器,由测蚤热电势的毫伏计和规管加热丝稳压电源两部分组成。热偶规管与被测真空系统相通。热偶规管外壳为玻璃管,内部有加热丝1和热偶丝2。热偶丝的冷端和热端温度不同时,由于温差效应,在回路中有热电势产生。如加热丝电压保持恒定,则热偶丝的热电势取决于加热丝的温度,而加热丝的温度与被测气体的压强有关。如压力降低时,气体的导热率减小,被气体传走的热量减小,加热丝的温度随之升高,热偶丝的热电势增加,反之,气体压强增高时,气体的导热率增加,被气体带走的热量增加,加热丝的温度降低,热电偶的热电势减小。用毫伏表测量热电俩回路中的热电势,即可测出被测真空系统真空度的大小。

(三)电阻真空计:电阻真空计又称皮拉尼真空计,由电阻规管和测量仪器两部分组成。电阻规管与被测真空系统相通。规管的外壳为玻璃壳或金属壳,壳内装有电阻丝。电阻丝常用电阻溢度系数较大的钨、铂、镍等金属丝。电阻丝温度升高时,其电阻值增加。反之,温度降低时,电阻值减小。电路系统保持电阻丝两端的电压恒定。如被测真空系统的气体压强降低时,气体的导热率相应减小,被气体传走的热M减小,规管内电阻丝温度升高,其电阻RP相应增加。反之,气体压强增高,Rp相应减小。其测量电路为惠斯登电桥。规管的电阻丝为电桥的一臂,RZR4是固定电阻,R3是可变电阻。电桥平衡的条件是Rp*R4=R2*R3。当Rp变化时,电桥失去平衡,不平衡电流值由微安表读出,即可测出真空度的变化。

(四)电离真空计:电离真空计是测量高真空的主要真空计。在低压强气体中,气体分子被电离所生成的正离子数与气体的压强,即气体分子的密度成正比。利用此原理制成的真空计叫电离真空计。按照产生离子方法的不同,利用由热阴极发射电子,使气体分子电离的原理制成的真空计叫热阴极电离真空计。利用在强电场和强磁场作用下,由冷阴极放电作用使气体分子电离的原理制成的真空计,叫冷阴极电离真空计。

现将热阴极电离真空计的工作原理简介如下,热阴极电离真空计,由热阴极电离规管和测量仪器组成。测量仪器由规管工作电源,发射电流稳压装置和离子流测量放大器等部分组成。热阴板电离规管与被测真空系统相通。热阴极电离规管是一个三极管,管内有阴极、栅极和收集极。收集极电位,相对于阴极为负电位,栅极电位,相对于阴极为正电位。当电离规管通电加热后,阴极发射出电子。此电子在到达栅极过程中,同气体分子碰撞发生电离,产生正离子和电子。当发射电流一定时,正离子的数目与被测气体压强成正比。正离子被收集极收集后,经测量电路放大就可由指示电表读出被测系统真空度。

(五)复合真空计:一般低真空测量和高真空测量不能用一种真空计来完成,因而采用复合真空计。目前,应用最广的是电离与热偶式复合真空计。它的测量范围为10-1~5*10-8托。10-1~10-3托低真空由热偶真空计测量,10-3~5*10-6托高真空由电离真空计测量。复合真空计附有一个热偶规管、一个电离规管,分别插在被测真空系统上。通过复合真空计上的旋纽,分别给两个规管加热,并选择使使用。

本文由东莞大路通(https://www.wendangku.net/doc/b017594635.html,)编缉,转载请注明出处。

低真空的获得与测量

实验报告 PB09210089 谯志 实验题目:低真空的获得和测量; 实验目的:了解最基本得真空系统的结构,尤其是低真空系统的结构,了解低真空的获得设备——机械机械泵以及热传导真空计、U型真空计、高频火花正空测定仪的原理及使用。 实验原理: 1、真空的获得: 1)机械泵:真空获得中最常用的设备,不仅可以直接获得低真空,还常用作为获得高真空的前级泵; 2)扩散泵:靠油的蒸发->扩散->喷射->凝结重复循环来实现抽气,能有效地带走气体分子,气体分子被带往出口处再由机械泵抽走; 2、真空的测量: 1)水银U型管压力计:无需校准,可以在气压不太低时使用; 2)热偶真空计:利用在低气压下气体热导率与压强之间依赖关系,测量范围100-10-1Pa之间;

3)高频电火花真空测定仪:粗略测量玻璃真空系统的仪器,从放电辉光颜色可以粗略估计真空的气压; 3、真空系统: 最简单的系统结构只需机械泵加上测量仪器即可获得粗真空到低真空的工作氛围。

4、机械泵抽速的测定: e v p dt Vdp ??=- (ln ) e dp d p v V V pdt dt =-=- 实验步骤: 1、学习开动机械泵获得低真空; 2、利用U 形管,热偶计测量真空度; 3、观察不同真空度时放电现象,与U 形管热偶计比较,对照; 4、求得本次实验之最高真空度; 5、测量P -t 关系曲线并求粗真空下的机械泵的抽速。 实验现象与实验数据

一.真空管的放电现象以及火花仪的放电颜色与气压的关系如下所 示: 现象分析: 1.放电管的放电现象是由于放电管产生高压使气体电离发光而产生的。管内气体比较多时,由于气压过度,放电管放电产生的带电粒子还不足以使气体电离和激发发光,因而观察不到现象。 2.管内气压达到1×10Pa数量级时,放电辉光颜色为紫色和粉红色,是因为在此气压下氧氮受激发产生的。 3.系统内气压不同放电辉光的颜色也不同。因为气压不同,放电管放电电离激发的气体分子也不同,从而产生不同颜色的光,气压过低时,带电粒子与气体分子碰撞太少,发光微弱。 4.放电现象和火花现象不完全相同,是因为相同气压下两者在管内产生的电压不同,从而电离的气体成分也不同,发光颜色自然有差异。 二、做P-t关系曲线并求粗真空下的机械泵的抽速 (1) U型管压强计所测得的数据列表如下:(压强为进行曲对数运算后的数据)

视觉测量系统技术及应用

视觉测量系统技术及应用 1 引言 基于计算机的视觉检测系统是指通过计算机视觉产品将被摄取目标转换成图像信号,传送给图像处理系统,图像处理系统再根据像素分布和亮度、颜色等信息,转变成数字化信号,计算机图像系统对这些信号进行复杂运算来抽取目标的特征,进而根据判别的结果来控制设备动作。它具有非接触、速度快等优点,是一种先进的检测手段,非常适合现代制造业。可用于视觉检测的试验原理很多,如纹理梯度法、莫尔条纹法、飞行时间法等,然而诸多测试原理中,尤其基于三角法的主动和被动视觉测量原理具有抗干扰能力强、效率高、精度合适等优点,非常适合在线非接触测量。本文主要从视觉测量系统在实际中应用出发,展示视觉检测技术在制造业中的广阔应用[1-4]。 2 视觉测量系统技术的应用 2.1 汽车车身视觉检测系统 在汽车制造过程中,车身上总有很多关键的三维尺寸进行测量,采用传统的三坐标测量机只能离线抽样检测,效率低,更不能满足现代汽车制造在线检测的需要,而视觉检测系统能很好的适应该需要,典型的汽车车身视觉检测系统如图1所示[5]。 图1 车身视觉检测系统 车身检测系统主要依靠的是数个视觉传感器,其中还包括传送机构、定位机构,计算机图像采集、网络控制部分。每个传感器对应一个被测区域,然后通过传输总线传至计算机,通过计算机对每个视觉传感器进行过程控制。 汽车车身检测系统的测量效率很高,精度式中,并且可以在完全自动情况下完成,这个包含几十个测点的系统都能再几分钟内测量完成,因此可以适应汽车制造的在线检测。而且传感器的布置可以根据不同车型来布置,增加了应用要求,

因此减少了车身视觉系统的维护费用。 2.2 拔丝模孔形视觉检测系统 使用计算机视觉检测技术开发出的拔丝模孔形检测系统由光学成像系统、工业用摄像机图像采集卡、计算机及监视器组成,可以解决生产实际中的模具孔形检测问题.工作原理如下:先采用注入硅胶方法获得反映待检拔丝模尺寸及形状的硅胶凸模,然后把硅胶凸模放在光学系统的载物台上.硅胶凸模经光学成像放大,成像于CCD像面上,然后用图像采集卡采集CCD图像信息,最后由计算机视觉检测软件完成对孔形尺寸的自动计算,此时图像采集时需要配置特殊的光照系统.系统实现了自动数据采集、处理,实现采样、进样、结果一条龙,形成检测的自动化. 2.3 无缝钢管直线度和截面在线视觉检测 无缝钢管是一类重要的工业产品,在反应无缝钢管质量中,钢管直线度及截面尺寸是主要的几何参数。现代工业已经可以实现无缝钢管的大批量大规模生产,并且并无成熟的直线度、截面尺寸高效率的检测系统,主要原因为:无缝钢管空间尺寸大,需要很大的测量空间,一般的检测手段很难实现如此大尺度的检测。然而视觉检测却非常适合无缝钢管及截面尺寸的测量,其测量原理图如图2所示。 多个传感器组成了视觉检测系统,传感器的结构光所投射的光平面与被测钢管相交,从而得到钢管的部分圆周,传感器测量圆周在传感器三维空间位置,每一个传感器实现一个截面圆周测测量,然后通过拟合得到截面的圆心和其空间位置,从而实现对无缝钢管截面和直径的测量。 图2 无缝钢管在线检测 2.4 视觉测量在逆向工程中的应用 逆向工程是针对现有的工件,利用3D数字化测量仪准确快速地测量出轮廓坐标值,并建构曲面,经过编辑、修改后,将图形存档形成一般的CAD/CAM系统,再由CAM所产生刀具的NC加工路径送至CNC加工机制所需模具,或者以快速成型将物品模型制作出来。视觉测量一般使用三种激光光源:点结构光、线结构光、面结构光,图3为使用线结构光测量物体表面轮廓的结构示意图[6]。

真空度单位换算表

真空度单位换算表 真空表读数与真空度换算 ◇真空度用“绝对真空度”、“ 绝对压力” ,即比“ 理论真空” 高多少压力标识;" 绝对真空度 " 是指被测对象的实际压力值。在实际情况中,真空泵的绝对压力值介于 0 ~ 101.325KPa 之间。绝对压力值需用绝对压力仪表测量,在 20℃,海拔高度= 0 的地方,用于测量真空度的仪表 (绝对真空表)的初始值为 101325Pa( 即一个标准大气压) 。 ◇真空度用“ 相对真空度” 、“ 相对压力”,即比“ 大气压” 低多少压力来标识;" 相对真空度 " 是指被测对象的压力与测量地点大气压的差值。用普通真空表可测量。在没有真空的状态下,表的初始值为 0 ,当测量真空时,它的值介于 0 到-101325Pa (即-0.1MPa)之间。真空表上“0” 表示正一个大气压即101325Pa , “-0.1” 表示绝对真空(即为0)。真空表上的指示值不表示真空度的绝对值,只表示了真空度的相对值。 ◇真空度的绝对值与相对值可用下式换算:P≈100000 ×(1-Φ/0.1 )P a ;Φ为真空表的读数示值的绝对数。 ◇真空表的读数示值为 0,则P≈100000×(1-0/0.1 )=10000Pa 为 1 个大气压。 ◇真空表的读数示值为 0.1,则P≈1100000× (1-0.1/0.1) = 0 Pa 为绝对真空。 ◇真空表的读数示值为 0.075,则P≈100000×(1-0.075/0.1)= 25000 Pa。 ◇真空表的读数示值为 0.08,则P≈100000×(1-0.08/0.1)= 20000 Pa。 ◇真空表的读数示值为 0.09,则P≈100000×(1-0.09/0.1)= 10000 Pa。 ◇真空表的读数示值为 0.095,则P≈100000×(1-0.095/0.1)= 5000 Pa。 ◇真空表的读数示值为 0.097,则P≈100000×(1-0.097/0.1)= 3000 Pa。 ◇真空表的读数示值为 685mmHg,则P≈100000×(1-685/760)= 10000 Pa。 ◇真空表的读数示值为 700mmHg,则P≈100000×(1-700/760)= 8000 Pa。

实验七:真空的获得与测量

近代物理实验预习报告学生姓名:学号:专业班级: 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 真空的获得与测量 【实验目的】 1.了解真空技术基础。 2.利用机械泵组获得真空,并使用符合真空计测量被抽容器所能达到的真空度。 【实验原理】 空气度是对空气稀薄程度的一种客观度量,单位体积中的气体分子数较少,表明真空度越高。通常真空度用气体压强来表示,压强越低真空度越高。按照国际的单位制(SI),压强单位是牛顿/米2,称为帕斯卡,简称帕(Pa)。表1为不同压强单位的转换标准。 表格 1 不同压强单位的转换比例 单位帕/Pa 托/Torr 毫巴/mbar 标准大气压 1Pa 1 7.5×10-31×10-29.87×10-6 1Torr 133.3 1 1.333 1.316×10-3 1mbar 100 0.75 1 9.87×10-4 1atm 1.013×105760 1.013×103 1 在近代物理实验中通常根据真空度的获得和测量方法的不同,可将真空区域划分为一下五个范围,见表2. 表格 2 真空区域划分 真空区域粗真空低真空高真空超高真空极高真空范围 (Pa) 105~103103~10-110-1~10-610-6~10-12<10-12 抽气系统机械泵 吸附泵 机械泵 吸附泵 扩散泵 分子泵 分子泵 低温泵 离子泵 测量仪器U型管压差计电阻真空计电离规超高真空电离技

热偶真空计潘宁规 真空技术,一般包括真空的获得、测量、检漏以及系统的设计与计算等。它已发展成为一门独立的科学技术,广泛应用于科学研究、工业生产的各个领域中。对真空技术的学习和充分掌握已成为一项重要的基本实验技能,以下我们将对真空的获得与测量进行简要介绍。 为了获得真空,就必须设法将气体外子从容器中抽出。凡是能从容器中抽出气体,使气体压强降低的装置均可称为真空泵,真空泵按其工作机理可分为排气型和吸气型两大类,排气型真空泵是利用内部的各种压缩机构,将被抽容器中的气体压缩到排气口,而将气体排出泵体之外,如机械泵、扩散泵和分子泵等.吸气型真空泵则是在封闭的真空系统中,利用各种表面吸气剂)吸气的办法将被抽空间的气体分子长期吸着在吸气剂表面上,使被抽容器保持真空.如.吸附泵、离子泵和低温泵等。 近代物理实验中对于真空的要求是达到 低真空即可,设备采用的是2XZ-2型旋片式真 空泵,对密封腔体抽除气体而获得真空。旋片 式机械泵是运用机械方法不断地改变泵内吸 气空腔的容积,使被抽容器内气体的体积不 断膨胀从而获得真空的机械泵。其工作压强 最低能够达到10-1Pa,属于低真空泵。它可以 单独使用,也可以作为其他高真空泵或超高 真空泵的前级泵。其主要结构和外形示意如 图1所示。 如图1所示,旋片式机械泵由定子、转子、 旋片、弹簧等组成,是一.种油封式机械真空 图 1 旋片式机械泵机构图和外形示意图泵。定子为一圆柱形空腔,空腔上装着进气 管和出气阀门,转子顶端保持与空腔壁相接触,转子上开有槽,槽内安放了由弹簧连接的两个刮板。当转子旋转时,两刮板的顶端始终沿着空腔的内壁滑动。整个空腔放置在油箱内。工作时,转子带着旋片不断旋转,就有气体不断排出,完成抽气作用。整个泵体必须浸没在机械泵油中才能工作,泵油起着密封润滑和冷却的作用。 测量低压下气体真空度的装置称为真空计。真空计的种类很多,根据气体产生的压强、气体的枯滞性.动量转换率.热导率、电离等原理可制成各种真空计。由于被测量的真空度范围很广,一般采用不同类型的真空计分别进行相应范围内真空度的测量。常用的真空计和应用范国如表3所示。

建筑工程测量技术的应用

建筑工程测量技术的应用 现代建筑行业的逐步规范提高了对工程测量、设计、施工企业的要求。作为建筑工程规划设计、施工与经营管理工作的基础,其测量工作的科学开展是保障工程规划设计、施工与管理的重要工作。下面是搜集的相关内容的论文,欢迎大家阅读参考。 经济全球化,使得各行各业都受到不同程度的影响,其中建筑行业更是展开了一系列改革创新的措施。而工程测量作为现代城市规划建设中最基本的质量保障技术,更是发挥着不可低估的作用,需要引起高度重视。本文就在这种情况下,简要分析了此项技术,并结合其在建筑工程领域的应用做了深入探讨,提出了具体对策,以供参考。 建筑工程;测量技术;应用对策 近年来,建筑行业在发展途中开始出现了各种问题,比较突出的问题主要表现在住房方面,此外还有建筑复杂性使得其对测量技术有了更高的要求。这也就使得施工单位不得不增强对测量技术的重视程度,要加强测量技术的研究创新,并将其其实运用到建筑工程当中。通过更高水平的测量技术,使建筑工程质量得以有效保障,已经成为当前该领域研究的重点课题。

为了进一步提升测量整体水平,熟练掌握工程测量技术基础与任务也就显得有其必要性。从某种程度而言,后者可以说是前者得以提升的基础。所以,施工单位需要明确各个环节的测量任务。然后再根据各个施工阶段具体测量任务进行合理应用。勘测设计、施工、运营管理属于测量的三个阶段。每个阶段的测量任务都存在一定差别的。首先就勘测设计阶段的测量任务而言,其需要对各类型比例尺地形图进行测绘,除此之外,还要测量现场的水文地质等。这样才能科学的为工程初步设计提供更全面的基础性资料。在建筑工程施工阶段,需要严格认真的进行测量控制,以此可以让施工质量得到一定的保障。而在运营阶段,测量任务主要是测量建筑工程后期的安全使用性与建筑物变形之类的。各个阶段会采用符合具体实情的测量技术,这样做的目的在于达到测量质量控制目标,因此也就要求基于实际测量任务,在此基础上合理采用测量技术。 (一)根据测量内容特定采用相应技术 目前,基本上在国内的建筑施工期间,测量技术无论是选型还是应用都受到其自身特点的影响,这也就使得施工单位对技术自身特点的重视度不断提升。随着城市建筑水平的提升,高层建筑在各大城市中也已经成为标志性建筑风格,而高层建筑结构的推广与普及,也使得其对测量工作的精准度有了更高的要求,在这样的情况下,测量技术也就伴随着建筑行业的发展进步而不断提升。为了确

常用真空单位换算表

常用真空单位换算表 1标准大气压=760毫米汞柱=76厘米汞柱=1.013×10^5帕斯卡=10.336米水柱 公斤不是单位,一般我们通常说的,事实上是一种非标准单位,名称叫:公斤力/平方厘米[Kgf/cm^2]1标准大气压=0.1MPa[兆帕]=101KPa=[千帕]左右=1bar[巴]=760mmHg(毫米汞柱)=14.696磅/英寸2(psi)≈1工程大气压 ≈1Kgf/cm^2[千克力/平方厘米] 千克:是质量单位,千克力:是作用在单位体积上一千克的力一个标准大气压一般约等于101千帕即0.1兆帕,约等于一工程大气压约等于一千克力每平方厘米工程大气压是比标准大气压小一点的1物理大气压=1标准大气压(atm) 为什么会多一个工程大气压我也不清楚但是工程大气压通常按千克力等,用一种质量作用力对单位面积获得的压强。而标准大气压(atm)则为标准的大气压强,比工程大气压精确,但他们是约等于的。没必要那么精确,除非你是在某些特定领域使用 饱和水蒸汽的压力与温度的关系( 摘自范仲元: "水和水蒸气热力性质图表 " p4~10 )

真空计算常用公式 1、玻义尔定律 体积V,压强P,P·V=常数(一定质量的气体,当温度不变时,气体的压强与气体的体积成反比。 即P1/P2=V2/V1) 2、盖·吕萨克定律 当压强P不变时,一定质量的气体,其体积V与绝对温度T成正比:(V1/V2=T1/T2=常数)当压强不变时,一定质量的气体,温度每升高(或P降低)1℃,则它的体积比原来增加(或缩小)1/273。3、查理定律 当气体的体积V保持不变,一定质量的气体,压强P与其他绝对温度T成正比,即:P1/P2=T1/T2在一定的体积下,一定质量的气体,温度每升高(或降低)1℃,它的压强比原来增加(或减少)1/273。 4、平均自由程: λ=(5×10-3)/P (cm) 5、抽速: S=dv/dt (升/秒)或S=Q/P Q=流量(托·升/秒) P=压强(托)V=体积(升) t=时间(秒) 6、通导:C=Q/(P2-P1) (升/秒) 7、真空抽气时间: 对于从大气压到1托抽气时间计算式:t=8V/S (经验公式) (V为体积,S为抽气速率,通常t在5~10分钟内选择。) 8、维持泵选择: S维=S前/10 9、扩散泵抽速估算: S=3D2 (D=直径cm)

实验十三高真空的获得与测量

实验指导书 1 绝热法金属比热测量实验 【实验目的】 (1) 了解比热的定义和测量原理 (2) 了解基本的绝热技术 (3) 掌握绝热法金属比热测量方法 【实验原理】 比热的测量源于Nernst 对热力学第三定律的表述“接近绝对零度时所有物质的比热都趋近于零”,Einstein 用量子效应说明了低温比热的这种性质,从而开创了利用低温比热的测量来研究物质能态的方法。比热的测量几十年来为物理学各个领域的发展起到了重要的作用,尤其在物质相变的研究中更是扮演了重要的角色,例如晶格振动的Debye 理论、金属自由Fermi 气体理论、非晶态理论、超导BCS 理论、液氦的λ相变、磁有序—无序相变、铁电相变、金属正常—超导相变等。 比热的测量日趋成熟,人们发展了各类样品的不同测量方法。为了让大家了解比热的含义,我们从比热的定义出发介绍一种最基本的绝热测量方法。 物质热容的定义是指在与外部环境绝热条件下设某个温度T 附近物质吸收或放出微小量的热量δQ ,当物质达到热平衡后温度变化了δT ,那么我们说温度T 时该物质的热容为: T Q C T x δδδ0lim →= x 为变化过程中恒定的物理参量,在实际测试过程中,大多是在恒压条件下,这时x 就是压强p 。以下我们忽略掉下标x 。设物质所测样品的质量为m ,物质的比热为单位质量的热容。 T Q m c T δδδ0lim 1→= 实际测量时是样品处于某个温度附近的平均值,即 )(1)(T c T Q m T c ≈??= 一般热量是通过在Δt 时间内给样品提供一定的加热功率P ,加热功率P = 加热器的电流I ?加热器的电压V 。然后切断加热源,等待样品热平衡后测量热平衡温度,温度的变化ΔT 为终了平衡温度减去加热前平衡温度。假设整个过程样品和环境之间没有热量的传递,则比热 T t IV m T t P m T c ??=??=11)( 所以本方法的关键是系统的绝热问题。图1为测量恒温器示意图,样品架为厚度0.5 mm 、宽度25 mm 正方形紫铜,样品架背面用导热胶贴上合金薄膜电阻加热器(电阻值为 7.8 Ω)和Pt100铂金属薄膜温度计,样品室为圆柱形抛光不锈钢材料,顶盖设计为可观察、方便打开和密封的石英玻璃窗口。可看出,样品和环境之间的传热途径主要有:通过电引线和支撑杆的固体传热、真空室的剩余气体传热、样品与周围环境的辐射传热、电引线的焦耳热。系统采用热导率很低的直径φ=8 mm 的胶木棒作支撑杆,用细棉线将样品和样品架

热传导真空计的测量范围

书山有路勤为径,学海无涯苦作舟 热传导真空计的测量范围 1、压力测量下限在低压力下(λ ≥r2),气体热传导散失的热量Qg 与压力p 有关;而热丝引线热传导和热辐射散失的热量QL、Qr 与压力无直接关系(可能有一些次级效应)。当压力p 更低时(λ》r2)Qg 变小,并引起热丝温度变化,假如这种变化已无法从噪声中检测出来,则此压力即是测量 的下限。此时热丝的平衡温度T1 主要决定于QL 和Qr。通常的热传导真空计的测量下限为10-1~10-2 Pa。 为了扩展热传导真空计的测量下限,必须提高Qg 并设法降低QL 和 Qr。根据式(4-1),选用细而长的热丝,或选用λL 小的热丝材料,均能降低QL。但选择热丝材料时,还必须考虑机械强度、电阻温度特性、热稳定性和化学稳定性等因素。 根据式(4-2),为了降低Qr,应选用表面全辐射系数ε1 小的材料 作热丝,而管壁内表面的全辐射系数ε2 愈大愈好。同时还要综合考虑其他一些因素,如T1、T2、r1 及L 等对Qg 的影响。 选用适应系数α1 大的材料或通过对材料表面进行处理的方法提高 α1,均可提高Qg。但考虑到热丝的机械强度等因素,提高α1 是有限的。 增大L 既能提高Qg 又可降低QL;增大r2 或提高温差,虽然能增大Qg,但与降低QL 和Qr 有矛盾,须折中考虑。由于Qr 与温度呈四次方的关系,因此增大温度时,Qr 比Qg 增大得更快。为便于综合考虑,可假设 ε1 =ε2,则有 根据式(4-7),选用足够低的T2 和不太高的T1 值,可提高Qg/Qr。将管

工程测量技术的应用与发展

浅谈工程测量技术的应用与发展 The Application and Development of Engineering Measurement Techniques ■ 张 赛 ■Zhang Sai [摘 要] 工程测量技术作为服务于工程建设的测绘技术,伴随城市化进程的加快,信息化技术也在不断的促进着工程测量技术与手段的更新和发展,使得工程测量技术朝着信息化、自动化的进程迈进,同时工程测量技术在建筑行业里的应用,对其技术水平的提高也有极大的推动作用。 [关键字] 工程测量技术 应用 发展 [Abstract] The Engineering measurement as a technology ser- vices the engineering building, accompanied by the accelera- tion of the process of urbanization; the information technology is also constantly promoting the updating and development of engineering measurement technology. At the same time, it also has a great role in promoting the improvement of its technical level in the construction industry. [Keywords] engineering measurement techniques, application, development 一、 我国工程测量技术的重要作用 1. 提供准确的资料 要做好工程施工前设计阶段的设计工作就需要依靠材料设置、施工范围、各种图纸资料等方面的信息。而这些信息的获取全赖于工程测量的结果,通过工程测量来获取上述的信息资料,能够方便工程的实施。 2. 确保定位的精度 对建筑工程来说,建筑物的精度是非常重要问题,要确保建筑物整体的施工效果就一定要保证精度,如此才能够确保建筑物达到设计要求。测量过程能够确定建筑物的定位精度,在活动定位准确的情况下,施工的质量才能得到保证。 3. 竣工验收的程序 工程完成之后同样要进行竣工前的验收测量工作,竣工的测量报告一定要以实际工程测量数据作为依据,如此才可以确保拟定内容与工程标准相符,从而帮助规划管理部门实行监督管理。 二、 工程测量技术的应用和发展前景 1. 先进地面测量仪器 20世纪80年代以来很多先进的地面测量仪器就相继出现了,为工程测量提供了先进的技术手段和工具,例如:激光扫平仪、激光准直仪、数字水准仪、电子水准仪、全站仪、电子经纬仪、精密测距仪、光电测距仪等,它们为工程测量的数字化、自动化、现代化发展提供了有利条件,使传统的工程施工测量、道路检测、地形测量、控制网布网等作业方式得到了极大的改变。测距导线网、边角网、网布网已经取代了三角网;光电测距三角高程测量已经取代了三、四等水准的测量;具备连续显示和自动跟踪功能的测距仪已经在施工放样测量中得到了运用;无法达到测量点的测距工作难题已经被无需棱角的测距仪解决了;传统基线丈量已经被精密 测距仪的使用所取代;电子速测仪则解决了细部测 量的难题。 2. GPS定位技术 GPS技术是在九四年时建成的,它是拥有海陆 空全方位导航和定位能力的卫星导航和定位系统。 伴随GPS技术的不断改进以及软硬件的逐渐完善, 一次性确定坐标的GPS技术已经取代了以测水准、 测距、测角为主的地面定位技术。 目前我国的GPS技术已经在各个领域得到了应 用,工程控制网、城市控制网、国家大地网的建立 和改造已经普遍的应用了GPS技术,同时在海岛海 域测量、地震形变监控、山体滑坡、大坝监测、建 筑变形、隧道贯通、地下铁路、通信线路、高速公 路、石油勘测中也使用了GPS技术。伴随GPS差分 定位技术与RTK实时差分定位系统的不断发展以及 美国AS技术的解除,使得单点定位的精度也在不断 地提高。GPS技术也在碎部点的放样和测绘、地质 勘查剖面测量、石油物探点定位、运载工具实时监 控、导航等领域有着非常广的应用前景。 3. 数字化成图技术 工程测量重要的内容之一就是大比例尺的工程 图和地形图的测绘,一般常规成图方式需通过野外 工作完成,并且内部数据的处理与绘图工作也很繁 琐,成图的周期很长,产品也很单一,不能适应城 市建设发展的需求。进入21世纪90年代以来,数 字化成图技术凭其易于发布、保存管理和应用方便、 更新方便、劳动强度小、精度高等诸多的优点而得 到了迅速的发展,现在的数字化成图技术分为电子 平板和内外业一体化两种模式。 其中内外业一体化是外业数据数据的一种采集 方式,它的主要设备是电子手簿、全站仪等,它的 特点是便于人员分配、内外业的分工明确、精度高, 因而它的成图效率很高。通过画草图或编码的形式 来对地图实体和连接关系的地理属性进行描述,分 为无码和有码作业。无码作业的操作方便可靠,并 且因为它是采用草图形式,使得数据的采集工作非 常直观,所以能够使测站观测人员压力减轻。如果 观测人员能够熟练使用数字化成图系统的编码,并 且经验丰富,也可以采取有码方式。全站仪和电子 平板相结合,在野外进行数据采集时就无需编码, 测量的数据会直接显示在电子平板,现场对显示进 行编辑修改,最后由绘图仪将成果输出,它基本上 是把所有的工作都放于外业来完成的一种数字化的 成图方式。它的特点是常规测图板被电子平板取代, 能够实现图形编辑、数据处理、数据采集的同步现 场完成工作,因而这种模式的精读高,可靠性好。 4. 摄影测量技术 目前,摄影测量技术广泛的应用于城市与工程 测绘领域中,伴随对高精度、高质量摄影测量仪的 生产和研究,现有摄影测量技术能够提供实时、完 全的三维空间信息,并且不需要接触被测的物体, 使野外工作量得到了减少,工作效率得到了大大的 提升,同时取得了很多的应用成果,拥有非常广泛 的发展前景。伴随GPS技术在摄影测量里面的使用, 摄影测量也在逐步朝着数字化和自动化的方向发 展,而采用全数字的摄影测量系统,能够使摄影测 量的产品从影像图转变为4D产品,从而为各类基础 地理信息和专业信息系统的建立提供数据凭证。 5. GIS技术 GIS是一种集管理科学、环境科学、测绘遥感 科学、信息科学、空间科学、计算机科学为一体的 新兴学科。在短短四十多年的时间内,它已经成了 多学科集成同时在各领域得到应用的基础平台,是 地学空间信息分析的基本工具和手段,它的技术优 势除了集三维可视化显示、管理分析、存储、采集、 成果输出为一体的数据流程之外,还包括它的辅助 决策、预测预报、空间分析功能。现在,GIS已经 发展成了一门成熟的技术科学,并且在土地管理、 城市规划、环境监测、气象海洋、农林水利、地质 矿产、测绘等方面发挥着越来越大的作用。使用全 数字摄影测量、扫描矢量化、内外一体化测图、数 据库、GIS等技术,能够准确、及时的为专业信息 系统提供基础空间信息,便于建立各种的专业信息 系统,实现管理的信息化、标准化和科学化。 6. RS技术 由于RS技术能够进行大面积同步观测,并且具 有经济性、可比性、数据综合性、时效性等优势, 所以得到了普遍的应用,高分辨率的遥感卫星和多 光谱的航空摄影将成为获取基础地理信息的一种重 要技术手段。运用遥感影像去获取各种小比例尺的 地形图,能够为城市基本地形图以及各种比例地形 图的快速更新提供方法与手段。在某些大中城市里 面已经开始采用航空遥感对城市进行综合调查,从 而编制土地利用、交通、植被、污染、水文、地质 等专题地图,收集自然与社会环境的资料,为国土 资源的开发利用和城市的规划建设提供信息资料。 7. 3S集成技术 20世纪90年代才发展起来的3S集成技术,是 测绘技术和观念的大革命,3S技术为社会生产、政 府管理和可续研究提供了新的思维工具、描述语言、 观察手段。3S技术取长补短的结合是一个自然发展 的趋势,三者间形成了“一主二辅”的框架形式, 也就是RS和GPS为GIS提供空间定位信息和区域信 息,而GIS进行空间分析,便于从RS和GPS提供的 众多数据里面找到有用的信息,然后对其进行综合 集成,让它成为决策的依据。目前,3S集成技术已 在城市规划和管理、车辆监控、车辆导航、救灾、 减灾、防灾、环境保护、环境动态监测、全球变化、 土地研究、精细农业、海洋渔业等领域得到了成功 的应用。 (下转第250页) 248

什么是绝对压力、表压力和真空度

绝对压力是相对于真空来说的,表压是实际压力减去大气压后显示的压力,真空是一特定空间内部部分物质被排出,使其压力小于一个标准大气压,如果有真空压力表,则压力表显示为-1---0bar,-1bar为绝对真空。 简单的说,绝对压力=表压+一个标准大气压(约1bar),工业应用来说,测量的压力大部分为表压,很少会用到绝对压力。 绝对真空下的压力称为绝对零压,以绝对零压为基准来表示的压力叫绝对压力。测量流体压力用的压力表的读数叫表压,它是流体绝对压力与该处大气压力的差值。 如果被测流体的绝对压力低于大气压,则压力表所测得的压力为负压,其值称为真空度。 绝对压力包围在地球表面一层很厚的大气层对地球表面或表面物体所造成的 压力称为大气压,符号为B;直接作用于容器或物体表面的压力,称为绝对压力,绝对压力值以绝对真空作为起点,符号为PABS(ABS为下标)。用压力表、真空表、U形管等仪器测出来的压力叫表 绝对压力 包围在地球表面一层很厚的大气层对地球表面或表面物体所造成的压力称为“大气压”,符号为B;直接作用于容器或物体表面的压力,称为“绝对压力”,绝对压力值以绝对真空作为起点,符号为PABS(ABS为下标)。 用压力表、真空表、U形管等仪器测出来的压力叫“表压力”(又叫相对压力),“表压力”以大气压力为起点,符号为Pg。 三者之间的关系是:PABS(绝对压力) = B(大气压0.1Mpa) + Pg(表压力)(ABS为下标) 压力的法定单位是帕(Pa),大一些单位是兆帕(MPa)=106Pa 1标准大气压 = 0.1013MPa 在旧的单位制中,压力用kgf/cm2(公斤/平方厘米)作单位,1 kgf/cm2=0.098MPa 表压(相对压力)单位:MPa(G) 绝对压力单位:MPa(A) 绝对压力量测使用的压力仪表叫做绝压表,在大气中,不加任何压力时,仪表指示仪表所在地的大气压(此为变量,根据仪表所在地的海拔决定指示的数值,当压力值为绝对真空时仪表的读数为零.绝对压力不存在负值. 派尔耐生产的P-Z 数字绝压表能够量测1010mbar~1mbar的绝压 派尔耐生产的 P-HV-55高真空计能够量测1*103mbar~1.0×10-3mbar的绝压

真空获得与测量

真空获得与测量 一、实验目的 1.掌握高真空的获得和测量的基本原理及方法; 2.了解真空玻璃系统的结构;熟悉真空泵、真空计的原理 二、实验仪器 DH2010型多功能真空实验仪 三、实验原理 一、真空的获得 真空的获得是由真空泵来完成的。一般真空实验室经常使用 的是机械泵和扩散泵,用于超高真空的是钛升华泵和低温泵。 真空泵的基本原理:当泵工作后,形成压差,p1 > p2,实现了抽气。 真空泵按其工作机理可分为排气型和吸气型两大类.排气型 真空泵是利用内部的各种压缩机构,将被抽容器中的气体压缩到 排气口,而将气体排出泵体之外,如机械泵、扩散泵和分子泵等.吸 气型真空泵则是在封闭的真空系统中,利用各种表面(吸气剂) 吸气的办法将被抽空间的气体分子长期吸着在吸气剂表面上,使被抽容器保持真空,如吸附泵、离子泵和低温泵等. 真空泵的主要性能可有下列指标衡量: (1)极限真空度:无负载(无被抽容器)时泵入口处可达到的最低压强(最高真空度)(2)抽气速率:在一定的温度与压力下,单位时间内泵从被抽容器抽出气体的体积,单位(升/秒) (3)启动压强:泵能够开始正常工作的最高压强. 1、机械泵 机械泵是运用机械方法不断地改变泵内吸气空腔的容积,使被抽容器内气体的体积不断膨胀从而获得真空的泵。机械泵的种类很多,目前常用的是旋片式机械泵。 旋片式机械泵的结构如右图,它由一个定子、一个偏心转子、旋片、弹簧组成。定子为一圆柱形空腔,空腔上装着进气管和出气阀门,转子顶端保持与空腔壁相接触,转子上开有槽,槽内安放了由弹簧连接的两个刮板.当转子旋转时,两刮板的顶端始终沿着空腔的内壁滑动.为了保证机械泵的良好密封和润滑,排气阀浸在密封油里以防止大气流入泵中。油通过泵体上的缝隙、油孔及排气阀进入泵腔,使泵 腔内所有的运动表面被油覆盖,形成了吸气腔与 排气腔之间的密封。同时,油还充满了泵腔内的 一切有害空间,以消除它们对极限真空的影响。 工作时,转子沿着箭头所示方向旋转时,进气口 方面容积逐渐扩大而吸入气体,同时逐渐缩小排 气口方面容积将已吸入气体压缩从排气口排出。 当机械泵对体积为V的容器抽气时,因泵旋 转一周所抽出气体体积为泵的工作体积△V,使被 抽体积V增大了△V,设抽气前V中压强为P, 转子旋转一周后V中压强为P1,则有: P V = P1(V+△V)

ZDZ T电阻真空计说明书

产品名称: 电阻真空计 产品型号: ZDZ-52T 使用说明书

Operation Panel 目录

1.简介--------------------------------------------------1 1.1 仪器简介----------------------------------------1 1.2 包装内容----------------------------------------1 2. 主要技术参数-----------------------------------------1 3. 仪器安装---------------------------------------------2 3.1仪器安装尺寸-------------------------------------------2 3.2仪器后面板图示及接线说明-----------------------------2 4. 仪器操作指南------------------------------------------------2 5. 故障诊断---------------------------------------------3 6. 注意事项 -------------------------------------- --4 1.1仪器简介 ZDZ-52T型电阻真空计,可测量1路规管信号,控制2路继电器触点输出及0~5V模拟量输出。在测量范围内,可自由设定点控或区域控制。适合用于粗、低真空的测控。 ZDZ-52T型电阻真空计采用高档微处理器作主机,压缩外围部件,以提高可靠性。本机电源采用高档模块电源,硬件采用模块化结构设计及EMI抑制、WATCHDOG电路,软件采用冗余、陷阱、数字滤波等抗干扰技术,进一步提高了仪器的抗干扰能力及整机性能,使仪器具有很高的可靠性,可在恶劣的工业环境下使用。 1.2 包装内容 ◆ZDZ-52电阻真空计一台 ◆ZDZ-52使用手册一本 ◆ZJ-52T电阻规管一支 ◆5芯电缆线(5M) 一根 ◆电源线(1.5M) 一根 2.主要技术参数 1测量路数 1路 2 测量范围 1.0×105—1.0×10-1 (Pa) 4 配接规管 ZJ-52T/KF16

真空度单位换算表

字体大小:大- 中- 小dgbowei17发表于11-02-15 11:15 阅读(227) 评论(0)分类:产品展示 真空表读数与真空度换算 ◇真空度用“绝对真空度”、“ 绝对压力” ,即比“ 理论真空” 高多少压力标识;" 绝对真空度" 是指被测对象的实际压力值。在实际情况中,真空泵的绝对压力值介于0 ~101.325KPa 之间。绝对压力值需用绝对压力仪表测量,在20℃,海拔高度= 0 的地方,用于测量真空度的仪表(绝对真空表)的初始值为101325Pa( 即一个标准大气压) 。 ◇真空度用“ 相对真空度” 、“ 相对压力”,即比“ 大气压” 低多少压力来标识;" 相对真空度" 是指被测对象的压力与测量地点大气压的差值。用普通真空表可测量。在没有真空的状态下,表的初始值为0 ,当测量真空时,它的值介于0 到-101325Pa (即-0.1MPa)之间。真空表上“0” 表示正一个大气压即101325Pa , “-0.1” 表示绝对真空(即为0)。真空表上的指示值不表示真空度的绝对值,只表示了真空度的相对值。 ◇真空度的绝对值与相对值可用下式换算:P≈100000 ×(1-Φ/0.1 )P a ;Φ为真空表的读数示值的绝对数。 ◇真空表的读数示值为0,则P≈100000× (1-0/0.1 )=10000Pa 为 1 个大气压。 ◇真空表的读数示值为0.1,则P≈1100000× (1-0.1/0.1)= 0 Pa 为绝对真空。 ◇真空表的读数示值为0.075,则P≈100000×(1-0.075/0.1)= 25000 Pa。 ◇真空表的读数示值为0.08,则P≈100000×(1-0.08/0.1)= 20000 Pa。 ◇真空表的读数示值为0.09,则P≈100000×(1-0.09/0.1)= 10000 Pa。 ◇真空表的读数示值为0.095,则P≈100000×(1-0.095/0.1)= 5000 Pa。 ◇真空表的读数示值为0.097,则P≈100000×(1-0.097/0.1)= 3000 Pa。

真空实验实验报告李瑞洁

大学物理仿真实验报告项目名称:真空实验 院系名称:土木建筑学院 专业班级:建环1202 姓名:李瑞洁 学号:201214030229

一、实验目的 在真空实用技术中,真空的获得和测量是两个最重要的方面,在一个真空系统中,真空获得的设备和测量仪器是必不可少的。目前常用的真空获得设备主要有旋片式机械真空泵、油扩散泵、涡轮分子泵、低温泵等。真空测量仪器主要有U型真空计、热传导真空计、电离真空计等。随着电子技术和计算机技术的发展,各种真空获得设备向高抽速、高极限真空、无污染方向发展。各种真空测量设备与微型计算机相结合,具有数字显示、数 据打印、自动监控和自动切换量程等功能。 低真空的应用主要涉及真空疏松、真空过滤、真空成型、真空装卸、真空干燥及震动浓缩等,在纺织、粮 食加工、矿山、铸造、医药等部门有着广泛的应用。 本实验的目的是,学会用机械泵获得低真空以及观测不同真空度时辉光放电现象;用U型计和热偶计测量 真空以及用定容法测量机械泵的有效抽速。 二、实验原理 1. 真空技术的基本概念 (1)真空:低于一个大气压的气体状态。 1643年,意大利物理学家托里拆利(E.Torricelli)首创著名的大气压实验,获得真空。 自然真空:气压随海拔高度增加而减小,存在于宇宙空间。 人为真空:用真空泵抽掉容器中的气体。 (2)真空量度单位: 1标准大气压=760mmHg=760(Torr) 1标准大气压=1.013x105 Pa 1Torr=133.3Pa (3)真空区域的划分

目前尚无统一规定,常见的划分为: 粗真空105—103 Pa 低真空103—10-1 Pa 高真空10-1—10-6 Pa 超高真空10-6—10-10 Pa 极高真空<10-10 Pa 2. 真空获得—真空泵 1654年,德国物理学家葛利克发明了抽气泵,做了著名的马德堡半球试验。 原理:当泵工作后,形成压差,p1 >p2,实现了抽气。 真空泵的分类 气体传输泵是一种能将气体不断地吸入并排出泵外以达到抽气目的的真空泵,例如旋片机械泵、油扩散泵、涡轮分子泵。 气体捕集泵是一种使气体分子短期或永久吸附、凝结在泵内表面的真空泵,例如分子筛吸附泵、鈦升华泵、溅射离子泵、低温泵和吸气剂泵。 真空泵的主要参数 (1) S(抽气速率):定义为在泵的进气口任意给定压强下,单位时间内流入泵内的气体体积 或表示为: 其中,Q为单位时间内流入泵的气体量。泵的抽气速率S并不是常数,随P而变。 (2) 极限压强Pu (极限真空)

现代各种测量技术的应用

现代测量技术的应用 当今时代是一个发展极为迅速的时代,随着科技的不断发展,测量技术的应用也更为广泛。现代测量技术是一门集光学、电子、传感器、图像、制造及计算机技术为一体的综合性交叉学科,涉及广泛的学科领域,它在我们的日常生活生产中有着不可小觑的力量。 一、激光测量 激光测量是一种非接触式测量,它不影响被测物体的运动,精度高、测量范围大、检测时间短,具有很高的空间分辨率。激光技术日益受到重视,这与激光的特性有着密不可分的关系: (1)亮度高:由于激光的发射能力强和能量的高度集中,所以亮度很高,激光束经过会聚,可在焦点出产生几千到几万度的高温。 (2)方向性好:激光发射后发散角非常小,在几公里外的扩展范围不过几厘米。 (3)激光的波长基本一致,谱线宽度很窄,颜色很纯,单色性很好。 (4)相干性好:激光是受激辐射光,具有极强的相干性。 利用激光的上述特性,激光传感器可用于测量速度、长度、距离、震动等物理量。 激光测距的原理和无线雷达相同:激光对准目 标发射出去后,测量它的往返时间,再乘以光速即 得到往返距离,在激光测距仪基础上发展起来的激 光雷达不仅能测距,而且还可以测目标方位、运运 速度和加速度等,已成功地用于人造卫星的测距和 跟踪,例如采用红宝石激光器的激光雷达,测距范 围为500~2000公里,误差仅几米。 激光测震则是基于多普勒原理测量物体的振 动速度。多普勒原理是指:若波源或接收波的观察 者相对于传播波的媒质而运动,那么观察者所测到 的频率不仅取决于波源发出的振动频率而且还取决于波源或观察者的运动速度的大小和方向。这种测振仪在测量时由光学部分将物体的振动转换为相应的多普勒频移,并由光检测器将此频移转换为电信号,再由电路部分作适当处理后送往多普勒信号处理器将多普勒频移信号变换为与振动速度相对应的电信号,最后记录于磁带。它的优点是使用方便,不需要固定参考系,不影响物体本身的振动,测量频率范围宽、精度高、动态范围大。缺点是测量过程受其他杂散光的影响较大。 激光测速也是基多普勒原理的一种激光测速方法,用得较多的是激光多普勒流速计,它可以测量风洞气流速度、火箭燃料流速、飞行器喷射气流流速、大气风速和化学反应中粒子的大小及汇聚速度等。 二、摄影测量 提到摄影大家并不陌生,摄影测量则是是通过影像研究被摄物体构像信息的获取、处理、提取和成果表达的一门信息科学。摄影测量的主要特点是对影像或相片进行量测和解译,无需接触被研究物体本身,因而很少受到各种条件限制。相片及其他各种类别影像均是客观物体或目标的真实反应,信息丰富、图像逼真,人们可以从中获取被研究物体的大量几何信息和物理信息。 在生活当中,摄影测量常常被用来测制各种比例尺的地图、建立地形数据库、并为各种地理信息系统和土地信息系统提供基础数据。

相关文档