文档库 最新最全的文档下载
当前位置:文档库 › 界面缺陷密度对铜纳米线力学性能影响的模拟研究

界面缺陷密度对铜纳米线力学性能影响的模拟研究

界面缺陷密度对铜纳米线力学性能影响的模拟研究
界面缺陷密度对铜纳米线力学性能影响的模拟研究

材料缺陷对材料性能的影响

材料缺陷对材料性能的影响 女神维纳斯因为她的“无臂”之美而广为人知,但是在日常的生产生活中,人们更追求的是无误差的完美。那么究竟缺陷能够在材料中造成什么影响呢,在此我将进行简单的概述。 材料具有多种性能,大致分为两类,一是使用性能,包括力学性能、物理性能和化学性能等;二是工艺性能,例如铸造性、可锻性、可焊性、切削加工性以及热处理性等等。在我们生产中经常用到的材料,其性能常常因为微观上小小的差异而变得迥然不同。我们就理想型的完整晶体进行对于材料缺陷对材料性能的影响的研究与探索。 晶体缺陷:在理想完整晶体中,原子按一定的次序严格地处在空间有规则的、周期性的格点上。但在实际的晶体中,由于晶体形成条件、原子的热运动及其它条件的影响,原子的排列不可能那样完整和规则,往往存在偏离了理想晶体结构的区域。这些与完整周期性点阵结构的偏离就是晶体中的缺陷,它破坏了晶体的对称性。 晶体中存在的缺陷种类很多,根据几何形状和涉及的范围常可分为点缺陷、面缺陷、线缺陷几种主要类型。 点缺陷:是指三维尺寸都很小,不超过几个原子直径的缺陷。主要有空位和间隙原子 在一般情形下,点缺陷主要影响晶体的物理性质,如比容、比热容、电阻率等 比容的定义:为了在晶体内部产生一个空位,需将该处的原子移到晶体表面上的新原子位置,这就导致晶体体积增加。 比热容的定义:由于形成点缺陷需向晶体提供附加的能量(空位生成焓),因而引起附加比热容。 电阻率:金属的电阻来源于离子对传导电子的散射。在完整晶体中,电子基本上是在均匀电场中运动,而在有缺陷的晶体中,在缺陷区点阵的周期性被破坏,电场急剧变化,因而对电子产生强烈散射,导致晶体的电阻率增大。 此外,点缺陷还影响其它物理性质:如扩散系数、内耗、介电常数等。”在碱金属的卤化物晶体中,由于杂质或过多的金属离子等点缺陷对可见光的选择性吸收,会使晶体呈现色彩。这种点缺陷便称为色心。

界面缺陷态密度与衬底电阻率取值对硅异质结光伏电池性能的影响

界面缺陷态密度与衬底电阻率取值 对硅异质结光伏电池性能的影响? 周骏1,2, 邸明东2, 孙铁囤3,孙永堂2,汪昊2 (1. 宁波大学理学院光学与光电子技术研究所, 浙江 宁波315211) (2. 江苏大学机械工程学院光信息科学与技术系, 江苏 镇江 212013) (3. 常州亿晶光电科技有限公司, 江苏 常州 213223) 在不同的异质结前界面缺陷态密度(D it1)和异质结背界面缺陷态密度(D it2)条件下,对P 型单 晶硅(c-Si(p))为衬底的硅异质结太阳能电池(TCO / a–Si: H (n +) / c–Si (p) / a–Si: H (p +) / TCO ) 的衬底电阻率R 与电池性能的关系进行数值研究。结果表明:衬底电阻率R 的取值不仅决定于异 质结前界面缺陷态,也与异质结背界面缺陷态有关,即前界面缺陷态密度D it1决定衬底电阻率的 最优值R op ,且R op 随着D it1的增大而增大; R>R op 时, 背界面缺陷态密度D it2对衬底电阻率的可取值 范围具有较大影响,D it2越大可取衬底电阻率的范围越小。 关键词:SHJ 太阳能电池;c–Si (p)衬底电阻率;c–Si (p)/(a–Si: H )界面缺陷;AFORS_HET PACC: 7340L, 8630J, 6185 1 引 言 对于以c-Si(p)为衬底的硅异质结(SHJ)太阳能电池,异质结界面特性对电 池的性能有显著影响[1-2],如衬底电阻率与异质结界面c–Si 耗尽区厚度的关系, 以及由此引起的硅异质结太阳能电池性能的变化[3]等。然而,对于c-Si(p)衬底 电阻率与硅异质结太阳能电池性能的关系,目前研究的还不够深入,长期以来都 是将R =1.0Ω为衬底的最佳电阻率,而将R =1.0~25.0cm 作Ωcm 视为可用的衬底 电阻率[4-5]。最近,文献[6]研究不同前异质结界面缺陷态密度情况下衬底电阻率 与电池性能的关系,指出衬底电阻率最优值R op 的取值将随着前界面缺陷态密度 D it1的降低而减少,突破了人们一直以来认为R =1.0Ωcm 底的最佳电阻率的 观点。但是,文献[6]设计的电池结构有一些缺点,如采用的铝背面场要在高于 800c 的温度下制备,对SHJ 太阳能电池的能量转换效率的提高产生一定限制。此 外,文献[6]对衬底电阻率与背异质结界面缺陷态密度的关系和对电池性能的影 响没有研究。实际上,氢化非晶硅(a–Si:H )和氢化微晶硅(μc-Si:H )因其低温 为衬0 ?国家自然科学基金(批准号:60977048)资助课题,浙江省“钱江人才”项目(2007R10015)、宁波市重点实验 室基金项目(2007A22006),江苏大学与常州亿晶光电科技有限公司联合研发项目和宁波大学王宽成幸福基 金资助课题。 通讯作者:周骏(1958-),男,教授,安徽马鞍山人,主要从事光电子功能材料与器件制备研究。 E-mail :ejzhou@https://www.wendangku.net/doc/bd173993.html,

晶体中的缺陷

§4-2 热缺陷的数目统计 1、肖脱基缺陷数目统计 热缺陷数目与晶体的原子数目相比是一个很小的数,但其绝对数目也是很大的。对于讨论数目巨大的热力学系统,热力学统计方法是一个简单明了的方法。 热力学系统的自由能为: F =U -T S ……………………………………………………………………………………………(4-2-1) 其中U 为晶体的内能,S 代表熵,S=k B lnW ,这里W 是微观状态数。热力学系统中任一因素的变化,都将引起自由能的变化。但是,不论变化如何,当系统达到平衡时,其自由能为最小。 因此,可由平衡时系统的自由能取最小值的方法来可求出热缺陷的数目,即: 0T F n ???= ????……………………………………………………………………………………(4-2-2) 对于肖脱基缺陷的数目统计,我们以由一种原子组成的晶体为例来分析。设晶体有N 个原子,平衡时晶体中存在n 个空位,令w 是将晶格内部一个格点上的原子跳到晶体表面上去所需要的能量,即形成一个空位所需的能量,则晶体中含n 个空位时,内能将增加 U nw ?=…………………………………………………………………………………………(4-2-3) 晶格中N 个原子形成n 个空位的方式数,即此时的微观状态数为W : ()! !! n N N W C N n n == -…………………………………………………………………………(4-2-4) 所以,由热力学理论可知,熵增加: ! ln ()!! B N S k N n n ?=-………………………………………………………………………(4-2-5) 结合(4-2-1)(4-2-3)和(4-2-5)得到,存在n 个空位时,自由能函数将改变: ()! ln !! B N n F U T S nw k T N n +?=?-?=-…………………………………………………(4-2-6) 应用平衡条件(4-2-2),考虑到只有ΔF 与n 有关,以及斯特令公式: ln !ln N N N N ≈- 则可得到, ![ln ]ln 0()!!B B F N N n w k T w k T n n N n n n ???-?? =-=-= ???-?? ……………………………(4-2-7) 由于实际上一般只有少数格点为空位,n<

纳米材料表面效应

纳米材料的表面效应 材料0701 李愿 学号:1002070101 参考文献: 1、卢柯、卢磊金属纳米材料力学性能的研究进展 金属学报 2000年8月第36卷第8期:785—789 摘要 金属纳米按体材料具有独特的力学性能如高强度、超高延展性等。近年来得到广泛深入的研究。在对其新进展进行简要评述的基础上,讨论了它的强度、塑性、弹性模量、应变强化、超塑性、蠕变及变形机理等相关问题。 2、吴锦雷纳米材料的电学、光学和光电性能及应用前景 真空电子学术 2002年第4期:23—27 摘要: 简要介绍了纳米材料的电学性能以及单电子器件的基本原理和应用;纳米材料的光学性能和光电性能,高的光吸收系数和光致荧光现象可使其应用于敏感元件,由于其光电特性具有超快响应速度,可望在超快光电子器件中得到应用。 3、齐卫宏、汪明朴纳米金属微粒表征量的基本关系 材料导报 2002年9月第16卷第9期:76—77 摘要: 在假定纳米微粒近似成球形的前提下,推导出了粒径、微粒原子数、表面原子百分数及比表面积之间的相互关系式,这些关系式对实验将会有一些指导作用。 4、梁海弋、倪向贵、王秀喜表面效应对纳米铜杆拉伸性能影响的原子模拟 金属学报 2001年8月第37卷第8期 833—836 摘要: 采用EAM势对纳米铜杆的拉伸力学性能进行零温分子动力学模拟。研究表面效应对原子能量、截面应力分布的影响模拟结果表明,表面原子弛豫降低了纳米杆初始阶段的拉伸弹性模量。表面效应明显影响截面应力的发展与分布。 5、黄丹、陶伟明、郭乙木分子动力学模拟纳米镍单晶的表面效应 固体力学学报 2005年6月第26卷第2期:241—244 摘要: 对单晶镍纳米丝、纳米薄膜零温准静态拉伸破坏过程进行了分子动力学模拟。模拟表明表面效应对单晶纳米材料的原子运动及整体力学行为有显著影响。自由表面增加纳米材料的塑

纳米材料的力学和电学性能

纳米材料地力学和电学性能及其应用 摘要:主要介绍了纳米材料地力学性能(包括超硬、高强、高韧、超塑性以及高性能陶瓷)和电学性能(包括压敏材料、量子器材、非线性电阻等),以及这些性能地应用. 关键词:纳米材料;力学性能;电学性能;应用领域. 随着人类社会地发展和进步,现代科学技术探索地主要领域有:航空航天、火箭、卫星;热核反应发电站;深海探索;高温燃气轮机;高压贮罐以及生物环境仿生学等.在大多数情况下,其工作条件非常复杂和恶劣.如:超高压、超高温、超真空、强辐射、强腐蚀等,这些恶劣地条件对我们地材料提出了更高地要求.而传统地金属、非金属等材料已经远远不能满足这些极其苛刻地要求了,这就需要我们发展新型地高性能材料.这时,纳米材料以其卓越地性能进入了人们地视野,纳米材料在力学和电学方面地性能满足了多领域地需求.文档收集自网络,仅用于个人学习 普通多晶材料地强度(或硬度).随晶粒尺寸地变化通常服从一关系 Σ=σ+kd-1/2 其中,为σ一强度常数, 为一正常数.即随晶粒细化材料地强度(或硬度)按-1/2关系线性增大.等人利用分子动力学计算模拟,发现在0及,纳米(晶粒尺寸在一范围)屈服强度和流变强度均表现出反常一关系,即< .表明“ 理想” 纳米材料(无污染、全致密、完全驰豫态、细小均匀晶粒) 地性能可能与常规多晶材料完全不同.文档收集自网络,仅用于个人学习 材料超塑变形基本上是晶界在高温下滑移造成地.根据晶界滑移地理论模型, 如晶界扩散蠕变模型, 其形变速率ε可表述为文档收集自网络,仅用于个人学习 ε=BωσξDgb/d3KT 其中σ为拉伸应力,ω为原子体积, 为平均晶粒尺寸, 为常数, Dgb为晶界扩散率, ξ为晶界厚度, 为常数.文档收集自网络,仅用于个人学习 介电特性是材料地重要性能之一, 当材料处于交变电场下, 材料内部会发生极化, 这种极化过程对交变电场有一个滞后响应时间, 即弛豫时间.弛豫时间长, 则会产生较大地介电损耗.纳米材料地微粒尺寸对介电常数和介电损耗有很大影响, 介电常数与交变电场地频率也有密切关系.例如纳米在频率不太高地电场作用下,介电常数是随粒径增大而增大,达到最大值后下降,出现介电常数最大值时地粒径为.一般讲, 纳米材料比块体材料地介电常数要大, 介电常数大地材料可以应用于制造大容量电容器, 或者说在相同电容量下可减小体积, 这对电子设备地小型化来讲很有用. 文档收集自网络,仅用于个人学习 一维纳米材料有望成为纳米装置中地连接线和功能单元,如用做扫描隧道显微镜()地针尖、光导纤维、超大规模集成电路() 中地连线、微型钻头等.文档收集自网络,仅用于个人学习一维纳米材料在光电转换效应方面有很多特有地性能,当金属纳米微粒埋藏于半导体介质中,纳米微粒要向周围介质输运电子,在微粒表面形成电荷积累,于是界面地等效位垒高度降低,当电子受到光地激发,电子容易逸出薄膜表面而发射到真空中去.文档收集自网络,仅用于个人学习 纳米材料在微电子学上地应用:连接超高密度集成线路元件地纳米导线,日本理化研究所科学家青野正和等使用有机导电高分子材料研制出线宽仅为纳米地极微细导线, 大大突破了现在半导体加工技术地极限线宽; 文档收集自网络,仅用于个人学习 制备金属鲍缘体多层膜地新方法,中国科技大学通过紫外光照射地方法将有机混合溶液中地无机盐还原,合成出被有机配位体所包裹地稳定地纳米颗粒; 然后利用电泳法将这些有机配位体包裹地纳米粒子沉淀到涂碳显微栅格上; 文档收集自网络,仅用于个人学习纳米陶瓷基板,低温共烧多层基板(),可采用一等电阻率低地金属作多层布线导体材料, 可使布线更加细微化,提高布线密度和组装密度;文档收集自网络,仅用于个人学习

材料缺陷对材料性能的影响讲课讲稿

材料缺陷对材料性能 的影响

材料缺陷对材料性能的影响 女神维纳斯因为她的“无臂”之美而广为人知,但是在日常的生产生活中,人们更追求的是无误差的完美。那么究竟缺陷能够在材料中造成什么影响呢,在此我将进行简单的概述。 材料具有多种性能,大致分为两类,一是使用性能,包括力学性能、物理性能和化学性能等;二是工艺性能,例如铸造性、可锻性、可焊性、切削加工性以及热处理性等等。在我们生产中经常用到的材料,其性能常常因为微观上小小的差异而变得迥然不同。我们就理想型的完整晶体进行对于材料缺陷对材料性能的影响的研究与探索。 晶体缺陷:在理想完整晶体中,原子按一定的次序严格地处在空间有规则的、周期性的格点上。但在实际的晶体中,由于晶体形成条件、原子的热运动及其它条件的影响,原子的排列不可能那样完整和规则,往往存在偏离了理想晶体结构的区域。这些与完整周期性点阵结构的偏离就是晶体中的缺陷,它破坏了晶体的对称性。 晶体中存在的缺陷种类很多,根据几何形状和涉及的范围常可分为点缺陷、面缺陷、线缺陷几种主要类型。 点缺陷:是指三维尺寸都很小,不超过几个原子直径的缺陷。主要有空位和间隙原子 在一般情形下,点缺陷主要影响晶体的物理性质,如比容、比热容、电阻率等 比容的定义:为了在晶体内部产生一个空位,需将该处的原子移到晶体表面上的新原子位置,这就导致晶体体积增加。 比热容的定义:由于形成点缺陷需向晶体提供附加的能量(空位生成焓),因而引起附加比热容。 电阻率:金属的电阻来源于离子对传导电子的散射。在完整晶体中,电子基本上是在均匀电场中运动,而在有缺陷的晶体中,在缺陷区点阵的周期性被破坏,电场急剧变化,因而对电子产生强烈散射,导致晶体的电阻率增大。 此外,点缺陷还影响其它物理性质:如扩散系数、内耗、介电常数等。”在碱金属的卤化物晶体中,由于杂质或过多的金属离子等点缺陷对可见光的选择性吸收,会使晶体呈现色彩。这种点缺陷便称为色心。

材料表面界面考试知识点整理

1.原子间的键合方式及性能特点 原子间的键合方式包括化学键和物理键,其中化学键又分为离子键,共价键和金属键,物理键又包括分子键和氢键. 2.原子的外层电子结构,晶体的能带结构。 3.晶体(单晶、多晶)的基本概念,晶体与非晶体的区别。 单晶:质点按同一取向排列,由一个核心(晶核)生长而成的晶体;多晶:由许多不同位向的小晶体(晶粒)所组成的晶体.

4.空间点阵与晶胞、晶面指数、晶面间距的概念,原子的堆积方式和典型的晶体结构。 空间点阵:呈周期性的规律排列的阵点所形成的具有等同的周围环境的三维阵列; 晶胞:在空间点阵中,能代表空间点阵结构特点的最小平行六面体,反应晶格特性的最小几何单元; 晶面指数: 在晶格中,通过任意三个不在同一直线上的格点作一平面,称为晶面,描写晶面方位的一组数称为晶面指数.一般选取晶面在三个坐标轴上的截距,取倒数作为晶面指数; 晶面间距:两近邻晶面间的垂直距离; 原子的堆积方式:六角堆积和立方堆积; 典型的晶体结构:面心立方结构,体心立方结构,密排六方结构. 5.表面信息获取的主要方式及基本原理 可以通过光子,电子,离子,声,热,电场和磁场等与材料表面作用,来获取表面的各种信息,或者利用原子线度的极细探针与被测材料的表面近距离接近,探测探针与材料之间的信号,来获取表面信息. 电子束技术原理: 离子束技术原理:离子比光子电子都重,它轰击表面时产生的效应非常明显.离子不但具有电荷还有电子结构和原子结构,当离子与表面接近时,除具有静电场和接触电势差作用外,它本身还可以处于不同的激发电离态,离子还可以与表面产生各种化学反应,总之,离子与表面作用后,提供的信息非常丰富. 光电子能谱原理: 扫描探针显微镜技术原理: 6.为什么XPS可获得表面信息,而X射线衍射只能获得体信息? [略] X射线衍射(XRD)是利用晶体形成X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法.将具有一定波长的X射线照射到晶体上时,X射线因在晶体内遇到规则排列的原子或离子而发生散射,

第二章晶体结构与晶体中的缺陷

第二章晶体结构与晶体中的缺陷 内容提要:通过讨论有代表性的氧化物、化合物和硅酸盐晶体结构, 用以掌握与本专业有关的各种晶体结构类型。介绍了实际晶体中点缺陷分 类;缺陷符号和反应平衡。固熔体分类和各类固熔体、非化学计量化学化 合物的形成条件。简述了刃位错和螺位错。 硅酸盐晶体结构是按晶体中硅氧四面体在空间的排列方式为孤岛状、组群状、链状、层装和架状五类。这五类的[SiO4]四面体中,桥氧的数目也依次由0增加到4, 非桥氧数由4减至0。硅离子是高点价低配位的阳离子。因此在硅酸盐晶体中,[SiO4] 只能以共顶方式相连,而不能以共棱或共面方式相连。表2-1列出硅酸盐晶体结构类型及实例。 表2-1 Array硅酸 盐晶 体的 结构 类型

真实晶体在高于0K的任何温度下,都或多或少地存在着对理想晶体结构的偏离,即存在着结构缺陷。晶体中的结构缺陷有点缺陷、线缺陷、面缺陷和复合缺陷之分,在无机材料中最基本和最重要的是点缺陷。 点缺陷根据产生缺陷的原因分类,可分为下列三类: (1)热缺陷(又称本征缺陷) 热缺陷有弗仑克儿缺陷和肖特基缺陷两种基本形式。 弗仑克儿缺陷是指当晶格热震动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗仑克儿缺陷。 肖特基缺陷是指如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,而在原正常格点上留下空位,这种缺陷称为肖特基缺陷。 (2)杂质缺陷(非本征缺陷) (3)非化学计量化学化合物 为了便于讨论缺陷反应,目前广泛采用克罗格-明克(Kroger-Vink)的点缺陷符号(见表2-2)。 表2-2 Kroger-Vink缺陷符号(以M2+X2-为例)

晶界对性能的影响

晶界对合金性能的影响机理 晶界是固体材料中的一种面缺陷,根据晶界角度的大小可以分为小角晶界(θ<10°)和大角晶界,亚晶界均属小角度晶界,一般小于2°,多晶体中90%以上的晶界属于大角度晶界。根据晶界上原子匹配优劣程度可以分为重位晶界和混乱晶界。在晶界处存在一些特殊的性质:(1)晶界处点阵畸变大,存在晶界能。晶粒的长大和晶界的平直化都能减少晶界面积,从而降低晶界的总能量,这是一个自发过程。晶粒的长大和晶界的平直化均需通过原子的扩散来实现,因此,温度升高和保温时间的增长,均有利于这两过程的进行;(2)晶界处原子排列不规则,在常温下晶界的存在会对位错的运动起阻碍作用,致使塑性变形抗力提高,宏观表现为晶界较晶内具有较高的强度和硬度。晶粒越细,材料的强度越高,这就是细晶强化;高温下则由于晶界存在一定的粘滞性,易使相邻晶粒产生相对滑动;(3)晶界处原子偏离平衡位置,具有较高的动能,并且晶界处存在较多的缺陷如空穴、杂质原子和位错等,故晶界处原子的扩散速度比在晶内快得多;(4)在固态相变过程中,由于晶界能量较高且原子活动能力较大,所以新相易于在晶界处优先形核。原始晶粒越细,晶界越多,则新相形核率也相应越高;(5)由于成分偏析和内吸附现象,特别是晶界富集杂质原子的情况下,往往晶界熔点较低,故在加热过程中,因温度过高将引起晶界熔化和氧化,导致“过热”现象产生;(6)由于晶界能量较高、原子处于不稳定状态,以及晶界富集杂质原子的缘故,与晶内相比晶界的腐蚀速度一般较快。这就是用腐蚀剂显示金相样品组织的依据,也是某些金属材料在使用中发生晶间腐蚀破坏的原因;(7)低温下晶界强度比晶粒内高,高温下晶界强度比晶内低,表现为低温弱化。 基于上述几点晶界的特殊性质,使得多晶材料的塑性变形、强度、断裂、脆性、疲劳和蠕变等性能与单晶材料相比存在很大差异,即晶界不同的特殊性质具体体现在了合金的不同性能。但合金性能与晶界特性间绝不是一一对应的关系,而是几种甚至是所有特性的共同作用而表现出来,不同成分的合金在性能上也表现出各异。 1 晶界与塑性变形 晶界对多晶体的塑性变形的影响起因于下述原因:①晶界对滑移的阻碍作用;②晶界引起多滑移;③晶界滑动;④晶界迁移;⑤晶界偏聚。

材料微观缺陷对材料性能的影响

材料微观缺陷对材料性能的影响 随着社会的发展、时代的进步,人们的生活水平不断提高,生活品质也进一步提升,这对于材料的要求也不断地提高。这促使人们不断的深入研究材料的微观晶体结构,通过各种手段改善材料的各个方面的性能。晶体的生长、性能以及加工等无一不与缺陷紧密相关。因为正是这千分之一、万分之一的缺陷,对晶体的性能产生了不容小视的作用。这种影响无论在微观或宏观上都具有相当的重要性。 研究人员希望材料的晶体是理想的完整晶体,但是所有的自然和人工晶体不是理想晶体完整的,他们的许多特性并非由规则的原子排列决定,而是由不规则排列的晶体缺陷而决定。金属物理学家在研究金属的加工变形时就发现了晶体缺陷与金属的变形行为及力学性质有密切的关系。后来,材料科学家发现这类缺陷不仅控制着材料的力学性状,而且对材料的若干物理性质(如导电性、导热性等)有直接的影响,材料科学领域里逐渐发展了晶体缺陷理论,近10多年来人们开始认识到晶体的塑性变形完全取决于晶体缺陷。这些都是重要的生产、研究内容。那么材料的微观结构缺陷究竟对于材料的性能有哪些影响呢?本文将围绕此问题进行阐述。 一、什么是晶体缺陷? 大多数固体是晶体,晶体正是以其特殊的构型被人们最早认识。人们理解的“固体物理”主要是指晶体。在空间点阵中,用几何上规则的点来描述晶体中的原子排列,并连成格子,这些点被称为格点,格子被称为点阵,这就是空间点阵的基本思想,它是对晶体原子排列的抽象。空间点阵在晶体学理论的发展中起到了重要作用。可以说,它是晶体学理论的基础。现代的晶体理论基于晶体具有宏观平移对称性,并因此发展了空间点阵学说。严格地说对称性是一种数学上的操作,它与“空间群”的概念相联系,所谓平移对称性就是指对一空间点阵,任选一个最小基本单元,在空间三维方向进行平移,这个单元能够无一遗漏的完全复制所有空间格点。 在我们讨论晶体结构时,认为晶体的结构是三维空间内周期有序的,其内部质点按照一定的点阵结构排列。这是一种理想的完美晶体,它在现实中并不存在,只作为理论研究模型。相反,偏离理想状态的不完整晶体,即有某些缺陷的晶体,具有重要的理论研究意义和实际应用价值。在理想的晶体结构中,所有的原子、离子或分子都处于规则的点阵结构的位置上,也就是平衡位置上。1926 年Frenkel 首先指出,在任一温度下,实际晶体的原子排列都不会是完整的点阵,即晶体中一些区域的原子的正规排列遭到破坏而失去正常的相邻关系。我们把实际晶体中偏离理想完整点阵的部位或结构称为晶体缺陷。 二、晶体中有哪些常见的缺陷类型? 缺陷是一种局部原子排列的破坏。按照破坏区域的几何形状,缺陷可以分为四类点缺陷、缺陷、面缺陷和体缺陷。 点缺陷:又称零维缺陷,缺陷尺寸处于原子大小的数量级上,在三维方向上尺寸都很小(远小于晶体或晶粒的线度),典型代表有空位、间隙原子等。点缺陷与材料的电学性质、光学性质、材料的高温动力学过程等有关。 线缺陷:又称一维缺陷,指在一维方向上偏离理想晶体中的周期性、规则性排列所产生

微纳米力学及纳米压痕表征技术

微纳米力学及纳米压痕表征技术 摘要:微纳米力学为微纳米尺度力学,即特征尺度为微纳米之间的微细结构所涉及的力学问题[1] 。纳米压痕方法是通过计算机控制载荷连续变化,并在线监测压深量[2],适用于微米或纳米级的薄膜力学性能测试,本实验采用Oliver–Pharr方法研究了Al2O3薄膜,附着在ZnS 基底,得到了Al2O3薄膜的力学性能。 关键词:微纳米力学纳米压痕杨氏模量硬度 0引言 近年来,随着工业的现代化、规模化、产业化,以及高新技术和国防技术的发展,对各种材料表面性能的要求越来越高。20世纪80年代,现代表面技术被国际科技界誉为最具发展前途的十大技术之一。薄膜、涂层和表面处理材料的极薄表层的物理、化学、力学性能和材料内部的性能常有很大差异,这些差异在摩擦磨损、物理、化学、机械行为中起着主导作用,如计算机磁盘、光盘等,要求表层不但有优良的电、磁、光性能,而且要求有良好的润滑性、摩擦小、耐磨损、抗化学腐蚀、组织稳定和优良的力学性能。因此,世界各国都非常重视材料的纳米级表层的物理、化学、机械性能及其检测方法的研究。[3]同时随着材料设计的微量化、微电子行业集成电路结构的复杂化,传统材料力学性能测试方法已难以满足微米级及更小尺度样品的测试精度,不能够准确评估薄膜材料的强度指标和寿命 ;另外在材料微结构研究领域中, 材料研究尺度逐渐缩小,材料的变形机制表现出与传统块状材料相反的规律 ,以上趋势要求测试仪器具有高的位置分辨率、位移分辨率和载荷分辨率 ,纳米压痕方法能够满足上述测试需求。[4] 现在,薄膜的厚度己经做到了微米级,甚至于纳米级,对于这样的薄膜,用传统的材料力学性能测试方法己经无法解决。纳米压痕试验方法是一种在传统的布氏和维氏硬度试验基础上发展起来的新的力学性能试验方法。它通过连续控制和记录样品上压头加载和卸载时的载荷和位移数据,并对这些数据进行分析而得出材料的许多力学性能指标,压痕深度可以非常浅,压痕深度在纳米范围,也可以得到材料的力学性能,这样该方法就成为薄膜、涂层和表面处理材料力学性能测试的首选工具,如薄膜、涂层和表面处理材料表面力学性能测试等。 1纳米力学简介 1.1纳米材料 纳米材料是指三维空间尺度至少有一维处于纳米量级(1-100nm)的材料,它是由尺寸介于原子、分子与宏观体系之间的纳米粒子所组成的材料,是把组成相或晶粒结构控制在 100nm 以下尺寸的材料。 1.2纳米材料分类 纳米材料分类:按维数,纳米材料的基本单元可以分为: 1 零维:在空间三维尺度上均在纳米尺度,如纳米尺度颗粒,原子团簇; 2 一维:在空间有两维处于纳米尺度,如纳米丝,纳米棒,纳米管等; 3 二维:在三维空间中有一维在纳米尺度,如超薄膜,多层膜,超晶格等。 1.3纳米材料特性及其基本单元 纳米材料的基本单元:团簇、纳米微粒、纳米管、纳米带、纳米薄膜、纳米结构。

点缺陷对材料加工的影响

点缺陷对材料加工的影响 摘要:随着航天航空、能源、汽车、电子和国防等领域尖端科学技术的持续发展,材料的服役环境也正变得越来越复杂,在它们的使用过程中很可能会出现大量的微裂纹、微孔洞等微缺陷。这些缺陷不论是出现在材料的生产制备阶段还是在材料的服役过程中,都对材料的动态响应以及层裂损伤过程有着重要的影响。点缺陷不仅在材料中普遍存在,而且又是最简单的一种缺陷形式,在实验中相对较易控制。 1.晶体缺陷筒介 1.1缺陷的含义 通常把晶体点阵结构中周期性势场的畸变称为晶体的结构缺陷。在理想晶体结构中,所有的质点严格按照空间点阵排列,处于平衡位置上。然而,在任一温度下,实际晶体的原子排列都不会是完整的点阵,即晶体中一些区域的原子的正规排列遭到破坏而失去正常的相邻关系,这样便会产生晶体结构缺陷。 1.2缺陷的分类 按缺陷的几何形状和涉及的范围,可以把晶体缺陷分为点缺陷、线缺陷、面缺陷和体缺陷,其中点缺陷为最基本形式,其他的晶体缺陷都可以看成是由点缺陷构成的。点缺陷又称零维缺陷,指缺陷尺寸处于原子大小的数量级上,即三维方向上缺陷的尺寸都很小。点缺陷包括空位、间隙质点、杂质质点三类。正常结点位没有被原子或离子所占据,形成空结点,称为空位;原子或离子进入到晶体中正常结点之间的间隙位置,称为间隙质点;外来原子或离子进入晶格成为晶体中的杂质,这些杂质原子或离子可以取代原来晶格中的原子或离子而进入正常结点的位置,称为取代原子或离子,也可以进入本来就没有原子的间隙位置生成间隙式杂质质点。 1.3点缺陷产生的方式 一般有两种方式:平衡点缺陷和过饱和点缺陷。前者点缺陷浓度与温度密切相关,点缺陷属于热力学平衡的缺陷,后者通常有外来作用参与,如猝火和辖照等。 根据产生缺陷的原因,晶体缺陷也可分为三类:热缺陷、杂质缺陷和非化学计量结构缺陷。热缺陷:当晶体的温度高于绝对零度时,由于晶格内原子的热运动会使一部分能量较大的原子离开平衡位置而造成缺陷,这类缺陷称为热缺陷。 热缺陷有两种基本形式:杂质缺陷和非化学计量缺陷; 杂质缺陷是指由于外来原子进入晶体而产生的缺陷,分为间隙杂质原子和置换杂质原子,杂质缺陷的浓度与温度无关;非化学计量结构缺陷是指化学组成会明显的随着周围环境气氛的性质和压力大小的变化而发生组成偏离化学计量的现象,由此产生的晶体缺陷称为非化学计量缺陷,它是产生型半导体和型半导体的重要基础。 研宄表明,在绝对零度以上,任何物质晶体中均存在点缺陷。当点缺陷的浓度(原子分数)较小时,点缺陷彼此分立存在;当点缺陷浓度增加时,点缺陷将发生相互作用形成复杂的缺陷团簇。晶体中这类呈热力学平衡态且不被任何热处理或退火过程所消除的缺陷叫做本征点缺陷。 杂质点缺陷是由外来杂质进入晶体之中而产生的缺陷。任何物质晶体都不可能达到纯净,总会掺杂其他成分,因此杂质缺陷也是材料中不可避免的一种重要缺陷形式。 2.点缺陷对材料加工的影响 谷万里等对304不锈钢精密铸件进行研究,发现其内部出现的不规则截面点缺陷数量较少, 截面形状不规则, 尺寸在 0.01~0.1 mm 之间, 主要成分为碳、氧、铬、铁和镍, 其中碳元素含量较高。该类缺陷的形成主要由于在脱蜡过程中蜡料有剩余, 燃烧后生成碳化物, 其防止措施是在脱蜡过程中注意死角部位的完全脱蜡。对于圆形截面点缺陷, 数量较多, 截面呈

缺陷对材料性能的影响

缺陷对材料性能的影响 技术探讨 2009-09-11 22:27:34 阅读35 评论0 字号:大中小订阅 在一般情形下,点缺陷主要影响晶体的物理性质,如比容、比热容、电阻率等 比容的定义:为了在晶体内部产生一个空位,需将该处的原子移到晶体表面上的新原子位置,这就导致晶体体积增加。 比热容的定义:由于形成点缺陷需向晶体提供附加的能量(空位生成焓),因而引起附加比热容。 电阻率:金属的电阻来源于离子对传导电子的散射。在完整晶体中,电子基本上是在均匀电场中运动,而在有缺陷的晶体中,在缺陷区点阵的周期性被破坏,电场急剧变化,因而对电子产生强烈散射,导致晶体的电阻率增大。 此外,点缺陷还影响其它物理性质:如扩散系数、内耗、介电常数等。”在碱金属的卤化物晶体中,由于杂质或过多的金属离子等点缺陷对可见光的选择性吸收,会使晶体呈现色彩。这种点缺陷便称为色心。 在一般情形下,点缺陷对金属力学性能的影响较小,它只是通过和位错交互作用,阻碍位错运动而使晶体强化。但在高能粒子辐照的情形下,由于形成大量的点缺陷和挤塞子,会引起晶体显著硬化和脆化。这种现象称为辐照硬化。 缺陷对物理性能的影响很大,可以极大的影响材料的导热,电阻,光学,和机械性能,极大地影响材料的各种性能指标,比如强度,塑性等。 化学性能影响主要集中在材料表面性能上,比如杂质原子的缺陷会在大气环境下形成原电池模型,极大地加速材料的腐蚀,另外表面能量也会受到缺陷的极大影响,表面化学活性,化学能等等。 总之影响非常大,但是如果合理的利用缺陷,可以提高材料某一方面的性能,比如人工在半导体材料中进行掺杂,形成空穴,可以极大地提高半导体材料的性能。 首先,金属材料的强度与位错在材料受到外力的情况下如何运动有很大的关系。如果位错运动受到的阻碍较小,则材料强度就会较高。实际材料在发生塑性变形时,位错的运动是比较复杂的,位错之间相互反应、位错受到阻碍不断塞积、材料中的溶质原子、第二相等都会阻碍位错运动,从而使材料出现加工硬化。因此,要想增加材料的强度就要通过诸如:细化晶粒(晶粒越细小晶界就越多,晶界对

第二章晶体结构与晶体中的缺陷

内容提要:通过讨论有代表性的氧化物、化合物和硅酸盐晶体结构, 用以掌握与本专业有关的各种晶体结构类型。介绍了实际晶体中点缺陷分 类;缺陷符号和反应平衡。固熔体分类和各类固熔体、非化学计量化学化 合物的形成条件。简述了刃位错和螺位错。 硅酸盐晶体结构是按晶体中硅氧四面体在空间的排列方式为孤岛状、组群状、链状、层装和架状五类。这五类的[SiO4]四面体中,桥氧的数目也依次由0增加到4, 非桥氧数由4减至0。硅离子是高点价低配位的阳离子。因此在硅酸盐晶体中,[SiO4] 只能以共顶方式相连,而不能以共棱或共面方式相连。表2-1列出硅酸盐晶体结构类型及实例。 表2-1 Array硅酸 盐晶 体的 结构 类型

真实晶体在高于0K的任何温度下,都或多或少地存在着对理想晶体结构的偏离,即存在着结构缺陷。晶体中的结构缺陷有点缺陷、线缺陷、面缺陷和复合缺陷之分,在无机材料中最基本和最重要的是点缺陷。 点缺陷根据产生缺陷的原因分类,可分为下列三类: (1)热缺陷(又称本征缺陷) 热缺陷有弗仑克儿缺陷和肖特基缺陷两种基本形式。 弗仑克儿缺陷是指当晶格热震动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗仑克儿缺陷。 肖特基缺陷是指如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,而在原正常格点上留下空位,这种缺陷称为肖特基缺陷。 (2)杂质缺陷(非本征缺陷) (3)非化学计量化学化合物 为了便于讨论缺陷反应,目前广泛采用克罗格-明克(Kroger-Vink)的点缺陷符号(见表2-2)。 表2-2 Kroger-Vink缺陷符号(以M2+X2-为例)

粘度对泵的性能有显著影响及泵的各自优缺点

粘度对泵的性能有显著影响及泵的各自优缺点

————————————————————————————————作者:————————————————————————————————日期:

粘度对泵的性能有显著影响,粘度取值范围应按照制造厂商的建议。离心泵性能取决于叶轮设计,粘度对泵的设计性能的影响,在变容泵中较离心泵影响更大,因此不允许粘度有大的变化。粘度增大对泵的影响见表1。 表1 粘度SUS1002505007501000 流量降低率%38141923 扬程降低率%25111418 功率增加率%1020305065 各种泵的优点见表2。 表2 离心泵1.在较高速度下运转能增加流量,因此规格较小且成本较低 2.输送液体不受压力波动的影响 3.在最小流量下运行而不会超过系统压力 4.在最大流量下运行而电机不会过载 5.各种类型可与各种系统要求相匹配 6.由于没有振动,可用简单的基础 7.适用于输送各种稀浆 8.能直接驱动 往复泵1.运行效率高 2.在恒速下传递变化的压力 3.产生瞬间压力峰值可消除输送管线的阻塞 4.启动时不用灌水,免去了夹杂空气的麻烦 转子泵1.连续输送,压力波动较小 2.输送液体粘度变化范围较宽 3.启动时不用灌水 离心泵、往复泵和转子泵常见故障及排除方法分别见表3、表4和表5。 表3 离心泵常见故障及排除方法 故障原因排除方法 泵不运行电机不转 连接键被切断 传动带打滑 联轴器失效 检查保险丝和断路器 更换 检查并调整 检查是否打滑或损坏,必要时更换 检查,必要时更换

轴或齿轮切断 泵不能启动 进口阀关闭 进口阻塞或受阻 吸入侧漏气 液体排空或系统 有虹吸 叶轮磨损 打开阀门 检查并清理干净 更换密封件;检查管路泄漏处 安装挡水阀或底阀以防止排空 检查和更换;提高泵速;安装底阀 无排量 没有加水启动,见 上条 吸上高度过高 出口压头过高 速度太低 泵运转受阻 旋转方向错误 气阻 打开排气开关排出空气,并用液体完全充满泵和 吸入管 检查泵入口阻塞情况,检查吸入压头 检查有关的阀是否打开;检查管路是否堵塞;检 查总压头 检查泵转速 检查叶轮是否阻塞 纠正旋转方向 抽吸吸入管以清洁气闸;检查吸入管浸没深度是 否适当 无排量溢流阀调节不当 漏气 检查调节;清除阀体污物 检查密封件;检查管线漏气之处 流量不足 漏气检查吸入管路和泵漏气之处;检查泵填料 气阻 检查NPSH(泵的净吸压头)和液体温度,使吸入管 路中液体没有自蒸发 净压头低或损耗同上,并检查吸入管和底阀 过滤器阻塞检查并清洁 进气口阻力过大 检查吸入管路是否过小或接头太多而增加了液体 阻力 溢流阀调整不正 确或阻塞 检查和调整 系统背压过大降低系统阻力 叶轮磨损检修和更换 耐磨环磨损检修和更换 旋转方向错误检查旋转方向 吸入管有堵塞物检查底阀是否满足要求;消除堵塞物 泵的型号不对检查泵型号规格 吸入不足检查吸入管浸没深度和位置是否适当 表4 往复泵常见故障及排除方法

微电子习题答案(第2单元)剖析

第二单元习题解答 1.SiO 2膜网络结构特点是什么?氧和杂质在SiO 2 网络结构中的作用和用途是什 么?对SiO 2 膜性能有哪些影响? 二氧化硅的基本结构单元为Si-O四面体网络状结构,四面体中心为硅原子,四个顶角上为氧原子。对SiO2网络在结构上具备“长程无序、短程有序”的一类固态无定形体或玻璃体。半导体工艺中形成和利用的都是这种无定形的玻璃态SiO2。 氧在SiO2网络中起桥联氧原子或非桥联氧原子作用,桥联氧原子的数目越多,网络结合越紧密,反之则越疏松。在连接两个Si-O四面体之间的氧原子 掺入SiO2中的杂质,按它们在SiO2网络中所处的位置来说,基本上可以有两类:替代(位)式杂质或间隙式杂质。取代Si-O四面体中Si原子位置的杂质为替代(位)式杂质。这类杂质主要是ⅢA,ⅤA元素,如B、P等,这类杂质的特点是离子半径与Si原子的半径相接近或更小,在网络结构中能替代或占据Si原子位置,亦称为网络形成杂质。 由于它们的价电子数往往和硅不同,所以当其取代硅原子位置后,会使网络的结构和性质发生变化。如杂质磷进入二氧化硅构成的薄膜称为磷硅玻璃,记为PSG;杂质硼进入二氧化硅构成的薄膜称为硼硅玻璃,记为BSG。当它们替代硅原子的位置后,其配位数将发生改变。 具有较大离子半径的杂质进入SiO2网络只能占据网络中间隙孔(洞)位置,成为网络变形(改变)杂质,如Na、K、Ca、Ba、Pb等碱金属、碱土金属原子多是这类杂质。当网络改变杂质的氧化物进入SiO2后,将被电离并把氧离子交给网络,使网络产生更多的非桥联氧离子来代替原来的桥联氧离子,引起非桥联氧离子浓度增大而形成更多的孔洞,降低网络结构强度,降低熔点,以及引起其它性能变化。 2.在SiO 2 系统中存在哪几种电荷?他们对器件性能有些什么影响?工艺上如何降低他们的密度? 在二氧化硅层中存在着与制备工艺有关的正电荷。在SiO2内和SiO2-Si界面上有四种类型的电荷:可动离子电荷:Q m;氧化层固定电荷:Q f;界面陷阱电荷:Q it;氧化层陷阱电荷:Q Ot。这些正电荷将引起硅/二氧化硅界面p-硅的反型层,以及MOS器件阈值电压不稳定等现象,应尽量避免。 (1)可动离子电荷(Mobile ionic charge)Q m主要是Na+、K+、H+等荷正电的碱金属离子,这些离子在二氧化硅中都是网络修正杂质,为快扩散杂质,电荷密度在1010~1012/cm2。其中主要是Na+,因为在人体与环境中大量存在Na+,热氧化时容易发生Na+沾污。 Na+离子沾污往往是在SiO2层中造成正电荷的一个主要来源。这种正电荷将影响到SiO2层下的硅的表面势,从而,SiO2层中Na+的运动及其数量的变化都将影响到器件的性能。进入氧化层中的Na+数量依赖于氧化过程中的清洁度。现在工艺水平已经能较好地控制Na+的沾污,保障MOS晶体管阈值电压V T的稳定。 存在于SiO2中的Na+,即使在低于200℃的温度下在氧化层中也具有很高的扩散系数。

基于ANSYS的纳米复合材料力学行为模拟与分析

基于ANSYS的纳米复合材料力学行为模拟与分析 李鹤飞 任伟光 王超 (中国矿业大学(北京)力学与建筑工程学院,100083) 摘要:纳米碳管具有良好的力学性能,存在着非常广阔的应用前景。本文主要是基于ANSYS实现对纳米碳管含氧树脂基复合材料的力学行为进行数值模拟分析。由于纳米碳管和环氧树脂基体的材料的差异,从结果分析可以看出随着纳米碳管体积含量的增强,整个复合材料的整体弹性模量在不断的提高。同时通过对同一模型不同方向的单轴拉伸数值模拟结果的不同,来验证各项异性的存在。 关键词:纳米碳管;弹性模量;ANSYS;网格划分;应力云图 一、 模型的建立和网格划分 从图1的电镜图片中可以看到真实的纳米碳管是相对均匀但是杂乱无规律的分部在环氧树脂基体中,要实现纳米碳管环氧树脂基增强复合材料的建模,要对其进行相对的简化。 图1 电镜中观察到的纳米碳管 图2全部划分完网格的模型 二、 模型材料参数的确定 20节点的brick 20node 186是最为理想的单元类型,因为它可以建立有中间节点的六面体单元和四面体单元,同时也可以建立和乳酪形状类似的一些几何形状不完全规整的单元[1-2]。 三、 数值模拟结果分析 由于所建模型纳米碳管的含量较低,同时空间排布并不均匀,所以对同一模型不同方向加载相同的位移载荷,上表面节点的合拉力也会有所不纳米碳管虽然是一根在空间中光滑弯曲的同,表现出一定的各向异性【3】【6】。 经过计算之后可以在通用后处理器中得到两组位移云图。图3和图4依次为同一模型沿Y轴加载和Z轴加载,图3中Y轴为与纳米碳管截面平行的方向,为Y轴的整体位

移云图。而在图4中,Z轴方向为与纳米碳管的径向方向,位移云图为Z轴的位移云图。 图3 沿Y轴加载的模型的整体Y轴位移云图 图4 沿Z轴加载的模型的整体Z轴位移云图 表1 同样体积含量模型不同方向加载的约束反力 组别 Y轴拉伸模型 Z轴拉伸模型纳米碳管体积含量(%) 1.135 1.135 约束反力( N) 88.346 88.902 名义弹性模量(GPa) 4.206 4.233 径向产生模型的这种各项异性的原因我分析为纳米碳管在基体中类似于一根弯曲的钢筋在混凝土中类似的作用,由于纳米碳管的弹性模量比环氧树脂基体要大,在沿Z轴方向(纳米碳管长度延伸的主要方向)起到抑制拉伸的作用,而在Y轴方向环氧树脂基体承受主要的载荷,所以需要的拉力会小一些。 四、 结论 对同一载荷在不同方向加载同样位移载荷的数值模拟可以得到不同的约束反力,证明了由于纳米碳管在空间排布的不确定性导致了复合材料存在一定的各项异性的结论。同时比较约束反力的大小,可以看到在对纳米碳管径向排布方向加载需要更大约束反力,说明了纳米碳管环氧树脂基增强复合材料在纳米碳管排布的径向方向的刚度更高。 参 考 文 献 1 徐明君碳纳米管力学性能的研究进展及应用[J] 北京工商大学学报 2005.7 2 成会明纳米碳管制备、结构、物性及应用[M] 化学工业大学出版社 2002.8 3 谢尊马庆敏刘英李有成单壁碳纳米管的结构与稳定性[J] 河北师范大学学报 2005.9 4 Xiang-gui Ni, Yu Wang, Zhong Zhang, Xiu-xi Wang Atomic Simulation of Structure and Deformation`s Influence on the Mechanical Properties of Single-walled Carbon Nanotubesp[J] Chinese journal of chemical 2006.8 5 张田忠郭兴明径向压缩单壁碳纳米管的力学行为[J] 力学学报 2005.7 6 赵键勇碳纳米管的结构、制备及修饰[J] 科教前沿 2010.9 7 孙思凯吴永强碳纳米管的结构和可行性制备研究[J] 化学工程与装备 2011.6 8 高永刚施兴华赵亚溥碳纳米管的力学行为[J] 机械强度 2001.4

相关文档
相关文档 最新文档