文档库 最新最全的文档下载
当前位置:文档库 › 测井复习资料

测井复习资料

测井复习资料

一、绪论:

1、什么是矿场地球物理测井,测井方法的分类

概念:钻井中进行的各种地球物理勘探方法的统称,是以物理学、数学、地质学为理论基础,采用先进的电子技术、传感器技术、计算机技术和数据处理技术,借助专门设计的探测设备,沿钻井剖面观测岩层物理性质,了解井下的地质情况,从而发现油气煤、金属与非金属、放射性、地热、地下水等资源的一类方法技术。分类:按研究的物理性质分类

①电法测井:自然电位测井、电阻率测井、侧向测井、感应测井等;

②声波测井:声速测井、声幅测井、横波测井、声波全波列测井等;

③放射性测井:自然伽马测井、自然伽马能谱测井、补偿密度测井、岩性密度测井、补偿中子测井、中子寿命测井等;

④其他测井:井温测井、地层测试、地层倾角测井、气测井等。

按技术服务项目分类

①裸眼井地层评价测井系列

②套管井地层评价测井系列

③生产动态测井系列

④工程测井系列

2、矿场地球物理测井用途

基础地质研究、石油勘探开发、煤田、金属矿产、水文、工程、环境、考古

3、影响测井结果的环境因素

4、矿场地球物理测井面临的主要问题

5、储集层及其参数的基本概念

储集层:具有储存石油及天然气的空间(包括岩石粒间孔隙、裂缝、

溶洞等),同时孔隙或裂缝之间连通的岩层才可能储存石油及天然气,称之为储集层或渗透层。

分类:碎屑岩储集层、碳酸盐岩储集层

孔隙度概念:储层孔隙的发育程度,岩石内孔隙总体积占岩石总体积的百分数,说明储集层的储集性能。用符号Φ表示。

分类、碎屑岩和碳酸盐岩孔隙类型不同。

渗透率概念:在压力差作用下,岩石允许流体通过的性质称为岩石的渗透率,反映储集层的渗透性能。用符号K表示。单位

含油气饱和度概念:含油气体积占孔隙体积的百分数,是估算油层储量的重要参数之一。一般用符号So、Sw表示。

有效厚度概念,算法:用测井曲线确定储集层的顶、底界面深度后,两个界面的深度差就是储集层的厚度,对于互层组或砂岩中有厚度小于0.5m的致密夹层的储集层,应从层组厚度或砂岩储集层的厚度中扣除夹层,这样求出的厚度为有效厚度。

第1章自然电位测井

1、井中自然电位产生的机制有哪些。

(1) 扩散电动势:由阴阳离子扩散速度差异引起

(2)扩散吸附电动势用泥岩隔膜将两种不同浓度的NaCl溶液分开,两种溶液在此接触面处产生离子扩散,扩散总是从浓度大的一方向浓度小的一方进行。由于粘土矿物表面具有选择吸附负离子的能力,因此当浓度不同的NaCl溶液扩散时,粘土矿物颗粒表面吸附Cl-,使其扩散受到牵制,只有Na+可以在地层水中自由移动,从而导致电位差的产生。这样就在泥岩隔膜处形成了扩散吸附电位

(3)过滤电动势

2、以砂泥岩剖面为例,当泥浆电阻率大于地层水电阻率时,绘制井中自然电动势及其等效电路图,并说明自然电位测井幅值的计算公式。

SSP

R R K E E E w

mf

da d ==-=lg 总

3、影响自然电位曲线的七种因素。

一、地层水和泥浆滤液中含盐浓度比值的影响

二、岩性的影响

三、温度的影响

四、地层水和泥浆滤液中所含盐的性质影响

五、地层电阻率的影响

六、地层厚度的影响

七、井径扩大和泥浆侵入的影响

4、自然电位曲线有哪方面的应用。

一、划分渗透性岩层

二、地层对比和研究沉积相

三、确定地层水电阻率

四、估算泥质含量

五、判断水淹层位

5、简述利用自然电位曲线计算地层水电阻率的3个步骤。

对于低矿化度的地层水和泥浆滤液,可直接用

SSP R R K E E E w mf

da d ==-=lg 总

当浓度较高时,溶液的浓度与电阻率不是简单的线性反比例关系,此

时可以引入“等效电阻率”的概念。此时,比值X=Rmfe/Rwe 。

岩层厚度足够大、泥浆侵入不深、地层泥质含量较低的含水砂岩层步

骤:1、根据岩层电阻率、围岩电阻率、泥浆电阻率、冲洗带电阻率、

岩层厚度、井径得到校正系数,将自然电位校正为静自然电位SSP ;

2、确定泥浆滤液等效电阻率Rmfe ;

3、3、确定Rw 。

6、什么是泥岩基线。

泥岩基线:均质、巨厚的泥岩对应的自然电位曲线。

第2章、普通电阻率测井

1、岩石电阻率与岩性、孔隙度、含油饱和度的变化关系

一、岩石电阻率与岩性的关系:不同的岩石电阻率不同,火成岩:电

阻率很高,沉积岩:电阻率低,

沉积岩石电阻率的大小主要决定于组成岩石的颗粒大小、组织结构和

岩石孔隙中所含流体的性质。

二、岩石电阻率与地层水的关系

沉积岩的导电能力主要取决于地层水的电阻率

(1)与地层水所含盐类化学成分有关

温度、浓度相同条件下,溶液中所含盐类不同,其电阻率不同。(2)地层水电阻率和矿化度有关

矿化度增高,溶液内离子数目增多,其导电能力增强,电阻率降低。3)电阻率与温度有关

矿化度为常量时,溶液电阻率随着温度的升高而下降。因为温度升高,溶液中离子迁移速率增大,导电能力增强,电阻率下降。

三、岩石电阻率与孔隙度关系

一般孔隙度越大,含流体越多,岩石的导电能力越强,电阻率越小。四、岩石电阻率和含油饱和度关系

当亲水岩石孔隙中含水和油时,油水在孔隙中的分布特点(如图):

水包围在岩石颗粒的表面,孔隙中央部分充填石油,石油电阻率很高,因此含油岩石的电阻率比岩石含水时的电阻率高。

含油岩石电阻率Rt取决于含油饱和度、地层水电阻率和孔隙度,在给定的岩样中,地层水电阻率和孔隙度一定时,含油饱和度越高,岩

石的电阻率越高,实际中地层水电阻率和孔隙度都是变量,会对电阻

率产生影响,为消除此影响,定义电阻增大系数I

I:同样岩石中,只与岩石的含油饱和度有

系数b和饱和度指数n只与岩性有关,它们表示油水在孔隙中的分布状况对岩石电阻率的影响.一般b接近于1,n接近于2

2、普通电阻率测井原理

3、电极系的书写表示方法

按照电极系在井中自上而下的顺序写出电极的名称和电极之间的距离 (以m为单位)。例如,M2.25A0.5B表示双极供电正装 (底部)梯度电极系,电极距L=MO=2.5m,深度记录点在A、B的中点。

4、视电阻率曲线特点及影响因素

一、梯度电极系曲线特点:

假设上下两个水平分界面地层模型中,高阻层的电阻率为R2、厚度h=10AO,上下围岩电阻率分别为R3、R1,围岩厚度充分大,没有井

的影响

1、顶部和底部梯度电极系视电阻率曲线形状相反;

2、顶部梯度曲线上的视电阻率极大值、极小值分别出现在高阻层R2的顶界面和底界面,底部梯度曲线则相反,可用于划分高阻层界面;

3、因为高阻层很厚,中间平行段视电阻率Ra曲线值为地层电阻率. 中等厚度高阻层:底部梯度电极系理论曲线在高阻层界面附近特点与厚地层视电阻率曲线基本相同。

中部差异较大,随着地层变薄,地层中部的直线段部分不再存在,曲线变化陡直,幅度变低。

高阻薄层(h

在高阻层处只有极大值明显,另外在高阻层下方距高阻层底界面一个电极距的深度上出现一个假极大b点。

二、电位电极系曲线特点

采用同样方式可以分析电位电极系曲线及其特点:

1、曲线对称于地层中部;

2、视电阻率Ra曲线对地层中部取极值,当地层较厚h>AM时,地层中点得到Ra极大值,并且随着地层厚度增加视电阻率极大值接近于地层的真实电阻率,当h

3、在地层界面处,曲线出现“小平台”其中点正对着地层界面。随着h减小“小平台”发生倾斜,当h

一点被夸大为高值,称为“假极大”。

三、视电阻率曲线的影响因素:

1、电极系的影响

电极距小时井的影响较大,视电阻率幅度不高;随着电极距增大,探测深度增大,地层的贡献占主导地位,井的贡献相对减小,视电阻率曲线幅度升高;电极距增大到一定程度后,再增加电极距,视电阻率曲线幅度反而降低,因为低阻围岩的影响增大。

2、井的影响

井内泥浆电阻率比剖面上高阻岩层的电阻率低得多,对电极系供电电极造成的电场分布起分流作用。

一、井存在时,所测视电阻率曲线比理论曲线变得幅度低、界面附近变化平缓;井径越大,包围在电极系周围的低阻泥浆越多,对测量的贡献越大,视电阻率曲线幅度越低。

二、井内泥浆电阻率变化对测量结果的影响。

泥浆电阻率减小,视电阻率曲线极大值急剧减小,曲线变得平缓。

为真实反映井孔剖面上地层电阻率的变化,要求Rm大于5倍的地层水电阻率。

3、围岩和层厚的影响

电极选定后,电极距就固定了。渗透层厚度不同,视电阻率曲线幅度不同。

厚度减薄,电阻率值变小,因为此时围岩对测量结果的影响增大。

实际应用时应注意高阻薄层视电阻率被低估。

4、侵入影响

高侵:含水层段,由于泥浆滤液电阻率大于地层水电阻率所致。

视电阻率曲线幅度比无侵入时所测结果高。

低侵:油层井段,泥浆滤液电阻率小于孔隙中所含液体电阻率所致。视电阻率曲线幅度比无侵入时所测结果低。

该结论可用于判断油水层

5、高阻邻层的屏蔽影响

当夹层厚度he<

当he稍大于AO时,在记录点下部高阻层测量时,单电极靠上方高阻层的底界面,受该层屏蔽影响电流密度增加,测量结果增高,称为增阻屏蔽影响。

电极距不同,单电极A距高阻、低阻层的距离不同,测量结果不同。

6、地层倾斜或井斜的影响

随着地层倾角增加,曲线的极大值向地层中心移动使曲线趋近于对称;曲线的极大值随地层倾角的增加而减小,曲线变得平缓,极小值模糊不清,当β>60°时梯度曲线基本特点消失

5、视电阻率曲线应用

1、划分岩性剖面

利用电阻率差异寻找高阻层,参考自然电位曲线,把负异常井段划分出来就是渗透层段,

用顶部和底部梯度电极系所测两条曲线的极大值所在深度分别确定高阻层的顶、底界面。

2、求岩层的真电阻率

3、求岩层孔隙度

首先在Ra曲线上找出厚度很大的含水纯地层,取其Ra值,将它作为岩层含水100%时的电阻率R0,再通过水样化验或其它资料求得Rw,然后利用阿尔奇公式求得φ。

4、求油层的So值

由孔隙度测井(Δt、ρ、中子)→F→Rw→Ro→So

5、进行标准测井(地层对比)、

6、学会用标准测井进行地层对比

进行地层对比时,首先分析各口井测井曲线的特点,并找出标准层进行对比。

选择标准层的原则是:

1、有明显的测井曲线特征,易与邻层区别。

2、地层连续性好,在整个构造或区域可以连续追踪。

3、岩性稳定,厚度变化小。

第3章 侧向测井

1、侧向测井分类

按电极系结构特点和电极系数目的不同,侧向测井可以分为:

三侧向(LL3)七侧向(LL7)八侧向(LL8)双侧向(DLL ),等等。

2、三侧向、七侧向、双侧向测井的原理、

探测深度

三侧向:

(1)、原理:将三侧向电极系放入井下,采用恒流法测量,屏流输

出变压器向屏蔽电极供出Is ,同时供给A0电极同极性的主电流I0,

在井下建立电场,满足UA0=UA1=UA2, 测井过程中I0为常数,如果

测量过程中岩层电阻率改变而使平衡条件破坏,那么平衡电路会自动

调整屏蔽电流Is 以保证测井过程中平衡条件UA0=UA1。

三侧向电极系的深度记录点在主电极的中点,直接记录的是主电极中

点与对比电极N 之间的电位差。 三侧向视电阻率表达式为:

0I U K R a ?=

三侧向探测深度:约0.3m

七侧向:

测量原理

测量时A0供以I0恒定,A1、A2通以同极性但强度可以调节的

屏蔽电流Is 。调节Is 、保持两对监督电极的电位相等(M1=M1’

orM2=M2’)。迫使I0径向流入地层,沿井轴方向无分流,主电流分

布范围为O1O2。电极间电位不等时,自动调节Is 。测量任一监督电

极与无限远处N 电极之间电位差,因为N 放置在较远处,可认为UN=0,

所以实质上测量的是M1电极的电位,根据

01

I U K R M a 公式计算出Ra 。

探测深度:0.8m

双侧向:

测量原理

1) M1、M2(M1’、M2’ ) 为监督电极,A1、A1’(A2、A2’) 为屏蔽

电极,发出与I0极性相同的屏蔽电流Is 。屏蔽电极的不同组合可以

完成深、浅侧向测井。

(2)进行深侧向测井时,A1、A2合并为上屏蔽电极,A1’、A2’合并

为下屏蔽电极,得到深侧向视电阻率曲线Rlld ;

(3)进行浅侧向测井时,A1、A1’为屏蔽电极,极性与A0相同,A2、

A2’为回路电极,极性与A0相反, 得到浅侧向视电阻率曲线Rlls ;

探测深度:0.6m

3、侧向测井曲线特征及其应用

三侧向测井曲线形态:

1、单一高阻层的电阻率曲线

(1)上下围岩一致时,曲线对地层中心对称,层愈厚,电阻越高;

(2)上下围岩不一致时, Ra曲线不对称,极大值倾向高阻围岩一方;

(3)h>4d时,极值基本不变,曲线对称;h变薄,地层中心出现峰值;

(4)曲线分层能力强,特别对薄层,分层能力取决于L0长度。

2、单一高阻层电阻率

(1)上、下围岩电阻率相等时,高阻层视电阻率曲线对称于地层中心;

(2)从围岩到地层曲线升高,上升的陡度与主电极长度有关,主电极越短,陡度越大,地层界面与曲线开始急剧上升的点对应;

(3)极大值是地层视电阻率曲线特征数值

h>L时,位于地层中点;

h=L时,地层中点出现极小值;

三侧向测井的应用:

1、划分剖面

LL3受井眼、层厚、邻层影响小,分层能力较强,是划分不同电阻率地层最好方法之一。地层界面划在曲线开始急剧变化的位置。

2、判断油、水层

由于泥浆侵入油层,而油、水层的泥浆侵入性质不同,油层多为减阻侵入,水层多为增阻侵入,LLd、LLs重迭比较法判断油水层。深侧向值>浅侧向值为油层;反之为水层。

3、求地层真电阻率Rt

七侧向测井视电阻率曲线的特点:

1、曲线特征与三侧向基本相同,

2、用深浅七侧向求岩层真实电阻率时,可用七侧向单项校正图版进行井眼、围岩—层厚、侵入校正后得到,由组合图版求出。

七侧向缺点:深、浅七侧向电极系电极距不同,所测的两条视电阻率曲线受围岩影响程度不同,纵向分辨能力不同。

双侧向测井曲线以及影响因素

理想双侧向测井曲线

在上下围岩相同时,视电阻率曲线对称于地层中部,在地层的上下界面附近也出现两个小尖,随着层厚增加这两个小尖也就逐渐消失;对于高阻厚层的中部视电阻率值最高,且曲线较平直、变化不大。

石油工程测井基本名词解释

一、名词概念 1.Well logging 测井:油气田地球物理测井,简称测井welllogging,是应用物理方法研究油气田钻井地质剖面和井的技术状况,寻找油气层并监测油气层开发的一门应用技术。 2.Electrical logs 电法测井:是指以研究岩石及其孔隙流体的导电性、电化学性质及介电性为基础的一大类测井方法,包括以测量岩层电化学特性、导电特性和介电特性为基础的三小类测井方法。 3.Acoustic logs 声波测井:是通过研究声波在井下岩层和介质中的传播特性,来了解岩层的地质特性和井的技术状况的一类测井方法。 4.Nuclear logs 核测井:是根据岩石及其孔隙流体的核物理性质,研究钻井地质剖面,勘探石油、天然气、煤以及铀等有用矿藏的地球物理方法,是地球物理测井的重要组成部分。 5.Production logs 生产测井PL:泛指油气田投产后,在生产井或注入井中进行的一系列井下地球物理观测。它是监测油气田开发动态的主要技术手段,是油气田储集层评价、开发方案编制和调整、井下技术状况检测、作业措施实施和效果评价的重要手段。根据测量对象和应用范围,生产测井大致可分为生产动态、产层评价和工程技术三类。 6.Apparent resisitivity 视电阻率:把电极系放在井中某一位置,能测得该点的一个电阻率值,该值受井眼、围岩、泥浆侵入等环境影响,不等于地层的真实电阻率,称为视电

阻率。当电极系沿井身连续移动时,则可测得视电阻率随井身变化的曲线。这种横坐标为视电阻率R a,纵坐标为深度H的曲线叫视电阻率曲线。 7.Reservoir 储集层:在石油工业中,储集层是指具有一定孔隙性和渗透性的岩层。例如油气水层。 8.increased resistance invasion 高侵:当地层孔隙中原来含有的流体电阻率较低时,电阻率较高的钻井液滤液侵入后,侵入带岩石电阻率升高,这种钻井液滤液侵入称为钻井液高侵,R XO

《测井解释与生产测井》复习题及答案要点

《测井解释与生产测井》期末复习题 一、填充题 1、在常规测井中用于评价孔隙度的三孔隙测井是声波速度测井,密度测井,中子测井。 2、在近平衡钻井过程中产生自然电位的电动势包括扩散电动势,扩散吸附电动势。 3、在淡水泥浆钻井液中(R mf > R w),当储层为油层时出现减阻现象,当储层为水层是出现增阻现象。 4、自然电位包括扩散电动势,扩散吸附电动势和过滤电动势三种电动势。 5、由感应测井测得的视电导率需要经过井眼,传播效应,围岩,侵入四个校正才能得到地层真电导率。 6、感应测井的发射线圈在接收线圈中直接产生的感应电动势通常称为无用信号,在地层介质中由_____________产生的感应电动势称为有用信号,二者的相位差为90°。 7、中子与物质可发生非弹性散射,弹性散射,快中子活化,热中子俘获四种作用。 8、放射性射线主要有射线,射线,射线三种。 9、地层对中子的减速能力主要取决于地层的氢元素含量。 10、自然伽马能谱测井主要测量砂泥岩剖面地层中与泥质含量有关的放射性元素钍,钾。 11、伽马射线与物质主要发生三种作用,它们是光电效应,康谱顿效应,电子对效应; 12、密度测井主要应用伽马射线与核素反应的康普顿效应。 13、流动剖面测井解释的主要任务是确定生产井段产出或吸入流体的位置,性质,流量,评价地层生产性质。 14、垂直油井内混合流体的介质分布主要有泡状流动,段塞状流动,沫状流动,雾(乳)状流动四种流型。 15、在流动井温曲线上,由于井眼内流体压力低于地层压力,高压气体到达井眼后会发生致冷效应,因此高压气层出气口显示正异常。 16、根据测量对象和应用目的不同,生产测井方法组合可以分为流动剖面测井,采油工程测井,储层监视测井三大测井系列。 17、生产井内流动剖面测井,需要测量的五个流体动力学参量分别是流量,密度,持率,温度,压力。 二、简答题 1、试给出以下两个电极系的名称、电极距、记录点位置和近似探测深度:(A)A0.5M2.25N;(B)M2.25A0.5B。 2、试述三侧向测井的电流聚焦原理。 3、试述地层密度测井原理。 4、敞流式涡轮流量计测井为什么要进行井下刻度?怎样刻度? 5、简述感应测井的横向几何因子概念及其物理意义 6、简述声波测井周波跳跃及其在识别气层中的应用。 7、能量不同的伽马射线与物质相互作用,可能发生哪几种效应?各种效应的特点是什么? 8、简述怎样利用时间推移技术测量井温曲线划分注水剖面。 9、试比较压差流体密度测井和伽马流体密度测井的探测特性和应用特点。 10、什么是增阻侵入和减阻侵入?请说明如何运用这两个概念判断油气层。 11、试述热中子测井的热中子补偿原理。 12、简述感应测井的横向几何因子概念及其物理意义。 13、简述声波测井周波跳跃及其在识别气层中的应用。 14、能量不同的伽马射线与物质相互作用,可能发生哪几种效应?各种效应的特点是什么? 15、简述怎样利用时间推移技术测量井温曲线划分注水剖面。 16、试比较压差流体密度测井和伽马流体密度测井的探测特性和应用特点。 17、试给出以下两个电极系的名称、电极距、记录点位置和近似探测深度:(A)A0.75M2.5N;(B)M1.25A0.5B。 18、什么是增阻侵入和减阻侵入?请说明如何运用这两个概念判断油气层。 19、试述侧向测井的电流聚焦原理。 20、试述热中子测井的热中子补偿原理。 21、简述怎样利用时间推移技术测量井温曲线划分注水剖面。

石油测井专业词汇

石油测井专业词汇 1 范围 本标准规定了石油测井专业基本术语的含义。 本标准适用于石油测井专业的生产、科研、教学以及对外交往活动等领域。 2 通用术语 2.1 地球物理测井(学) borehole geophysics 作为地球物理一个分支的学科名词。 2.2 测井 well logging 在勘探和开采石油的过程中,利用各种仪器测量井下地层、井中流体的物理参数及井的技术状况,分析所记录的资料,进行地质和工程研究的技术。log一词表示测井的结果,logging则主要指测井的过程、测井方法或测井技术。按照中文的习惯,通称为测井。 2.3 测井曲线 logs;well logs; logging curves 把所测量的一种或多种物理量按一定比例记录为随井深或时间变化的连续记录。包括电缆测井和随钻测井(LWD)。 2.4 测井曲线图头 log head 测井曲线图首部记录的井号、曲线名称、测量条件,比例尺、施工单位名称、日期等栏目的总称。 2.5 重复曲线 repeated curve 在相同的测量条件下,为了检验和证实下井仪器的稳定性对同一层段进行再次测量的曲线。 2.6 深度比例尺 depth scale 在测井曲线图上,沿深度方向两水平线间的距离与它所代表实际井段距离之比。 2.7 横向比例 grid scale 在测井曲线图上,曲线幅度变化单位长度所代表的实测物理参数值。 2.8 线性比列尺 linear scale 在横向比例中,测井曲线幅度按单位长度变化时,它所代表的物理参数按相等值改变。 2.9 对数比例尺 logarithmic scale 在横向比例中,测井曲线幅度按单位长度变化时,它所代表的物理参数按对数值改变。 2.10 勘探测井 exploration well logging 在油气田勘探过程中使用的方法、仪器、处理及解释技术。 2.11 开发测井 development well logging 在油气田开发过程中使用的方法、仪器、处理及解释技术。 2.12 随钻测井 logging while drilling 一种非电缆测井。它是将传感器置于特殊的钻铤内,在钻井过程中测量各种物理参数并发送到地面进行记录的测井方法。 2.13 组合测井 combination logging 将几种下井仪器组合在一起,一次下井可以测量多种物理参数的一种测井工艺。 2.14 测井系列 well logging series 针对不同的地层剖面和不同的测井目的而确定的一套测井方法。 2.15 标准测井 standard logging 以地层对比为主要目的,在自然伽马、自然电位、井径、声波时差和电阻率等项目中选定不少于三项的测井方法,全井段进行测量。 2.16 电法测井 electriacl logging 以测量地层电阻率和介电常数等物理参数为主的测井方法。

测井复习资料分析

测井复习资料 一. 储集层的特点及分类 能够储存石油和天然气的岩石必须具备两个条件:一是具有储存油气的孔隙、孔洞和裂缝(隙)等空间场所;二是孔隙、孔洞和裂缝(隙)之间必须相互连通,在一定压差下能够形成油气流动的通道。我们把具备这两个条件的岩层称为储集层。简单地说,储集层就是具有连通孔隙,即能储存油气,又能使油气在一定压差下流动的岩层。 孔隙性:储集层或者说岩石具有由各种孔隙、孔洞、裂缝(隙)形成的流体储存空间的性质;渗透性:在一定压差下允许流体在岩石中渗流的性质称为渗透性。 孔隙性和渗透性是储集层必须同时具备的两个最基本的性质,这两者合称为储集层的储油物性。 我们常说的油层、气层、水层、油水同层、含油水层都是储集层,因为它们不管产什么,都具备以上两个条件;而泥岩层只具有孔隙性,无渗透性,所以不是储集层 碳酸盐岩储集层以孔隙结构为特点可以分为三类:孔隙型、裂缝型和洞穴型?孔隙型碳酸盐岩储集层 ?它与碎屑岩储集层的储集空间极为相似,包括两类孔隙,一类是粒间孔隙、晶间孔隙和生物腔体孔隙;另一类是白云岩化以及重结晶作用形成的粒间孔隙。 裂缝发育的储集层具有渗透率高和泥浆侵入深的特点 只有当洞穴小且分布比较均匀的时可用中子孔隙度与声波孔隙度之差作为次生的洞穴孔隙度,以中子或密度孔隙度计算含油气饱和度。 孔隙度 1.定义:储集层的孔隙度是指孔隙体积占岩石体积的百分数,它是说明储集层储集能力相对大小的基本参数。测井解释中常用的孔隙度概念有总孔隙度、有效孔隙度和缝洞孔隙度 总孔隙度是指全部孔隙体积占岩石体积的百分数,用Φt表示; 有效孔隙度是指具有储集能力的有效孔隙占岩石体积的百分数,用Φe表示; 缝洞孔隙度是指有效缝洞孔隙占岩石体积的百分数,用Φf表示,它是表征裂缝性储集层储集物性的重要参数,因为缝洞是岩石次生变化形成的,故常称为次生孔隙度或次生孔隙度指数。 测井地层评价理论认为:泥质和其他岩石所含泥质的孔隙是微毛细管孔隙,不是有效孔隙;计算的纯岩石孔隙度为有效孔隙度。泥质砂岩中包含泥质孔隙在内的孔隙度是总孔隙度,泥质岩石中除去泥质孔隙外的孔隙度为有效孔隙度,即Φe =Φt -VshΦsh, Vsh与Φsh分别为泥质含量和泥质孔隙度。 二)渗透率在有压力差的条件下,岩层允许流体流过其孔隙孔道的性质称为渗透性。 绝对渗透率:是岩石孔隙中只有一种流体(油、气或水)时测量的渗透率,常用符号K表示 有效渗透率:当两种上以上的流体同时通过岩石时,对其中某一流体测得的渗透率, 称为岩石对该流体的有效渗透率或相渗透率,岩石对油、气、水的有效渗透率分别用K o、K g、K w 表示。 多种流体同时通过岩石时,各单相的有效渗透率以及它们之和总是低于绝对渗透率的。这是因为多相共同流动时,流体不仅要克服自身的粘滞阻力,还要克服流体与岩石孔壁之间的附着力、毛细管力以及流体与流体之间的附加阻力等等, 因而使渗透能力相对降低 岩石的有效渗透率与绝对渗透率之比值称为相对渗透率,其值在0~1之间 相对渗透率:岩石的有效渗透率与绝对渗透率之比值称为相对渗透率,其值在0~1之间 饱和度是某种流体(油、气或水)所充填的孔隙体积占全部孔隙体积的百分数

测井工程管理办法

勘探项目管理部 测井工程管理办法 第一章总则 第一条为提高测井工作质量,加强测井工程项目管理,特制定本管理办法。 第二条本管理办法包括优选测井系列、测井合同、野外资料采集、测井资料解释、工程质量控制、完井试油讨论、工程结算及成本控制等内容,适用于勘探项目管理部测井项目的全过程管理。 第三条本管理办法的执行部门为辽河油田分公司勘探项目管理部工 程技术科。 第二章探井测井系列优选 第四条测井项目的选择原则是具有先进性、适用性,能解决地质和相关的工程问题;同时,综合考虑其合理性、实用性和经济性。 第五条在进行中完和完井测井之前,勘探项目管理部技术科按照《探井钻井地质设计》要求,针对不同地层、不同岩性、不同地质目的,提出测井系列、项目优选意见,对于5700系列项目要报请勘探处审定,在此基础上由技术科填写《___井测井作业通知单》(附表3-1)。 第六条《___井测井作业通知单》审批后,由项目科下达给井队地质,由地质填齐其他参数后,下达到测井公司具体组织实施。 第七条针对具体的井眼条件,技术科及时跟踪分析,提出调整测井项目意见,报项目部领导审批。 第三章工程实施与管理 第八条要求测井小队上井前要做好测前准备工作,做好仪器的车间刻

度、现场刻度及仪器保养等工作,提高测井一次成功率;对MRIL_C及MRIL_P型核磁测井要做好测前设计工作。按《测井通知单》要求取全取准 资料。 第九条遇到测井仪器的遇阻、遇卡等情况要及时向勘探项目管理部汇报,要分清责任,便于今后工作量的确认与结算。 第十条对变更测井项目,要及时提前向勘探项目管理部提出申请,得 到同意后方可付诸实施。 第十一条测井小队长在现场负责原始测井资料质量,对有疑问的曲线必须进行验证,发现井段漏测、曲线异常等情况要及时向勘探项目管理部汇报。 第四章测井资料解释 第十二条按照测井资料处理流程对小数控、3700、成像等测井资料进行解释处理。根据本井资料及区域地质情况准确地计算孔隙度、渗透率、饱和度等储层参数,提供最终的测井曲线图及数字处理结果等成果。 第十三条在测井数据采集完成后,同时,提交一套原始数据给研究院测井评价中心,进行平行解释。 第十四条结合气测、录井等第一手资料,根据地区经验利用测井资料进行流体性质分析,充分利用测井资料为试油、油层压裂改造、工程分析等提供参考。 第五章加强动态管理分析 第十五条技术科负责测井资料的采集质量管理,要建立起与施工方的工作联系,有问题及时沟通汇报;加强测井工作的全过程管理,加强动态跟踪分析,发现问题及时汇报,以及时解决实际存在的问题。 第十六条对测井工作及时进行总结,分析存在的问题,总结经验和教训以更好地指导以后的工作。

阵列感应测井原理及应用

阵列感应测井原理及应用 摘要:本文探讨了阵列感应测井原理,论述了在判断地层水矿化度方面的应用效果,阵列感应在使用中也存在一些缺陷,阵列感应在处理中,人为因素较大,不同的参数处理结果差异较大,这就造成了阵列感应在使用过程中对解释有一定的误导,引起对阵列感应可靠性的怀疑,这在以后的处理方法中有待改进。 关键词:阵列感应测井矿化度应用效果 一、阵列感应测井原理简介 阵列感应测井的最基本原理与普通感应测井原理类似,但它在硬件上采用简单的三线圈系结构,这种线圈系没有硬件聚焦功能,它采用数学方法对呈不对称形状的纵向响应曲线进行软件聚焦处理。它由7组接收线圈对和1个共用的发射线圈组成,实际上相当于具有7种线圈距的三线圈系。在接收线圈系的设计上充分考虑了以下几个问题:(1)、消除直藕信号;(2)、三线圈子阵列纵向特性的频率响应没有盲频;(3)、要有若干子阵列分别反映浅部和深部地层信息;(4)、各接收子阵列之间的间距应按一定规律变化和分布;(5)、离发射线圈较远的接收子阵列应考虑发射功率和接收信号的强度。 高分辨率阵列感应测井仪在硬件设计时充分考虑了上述因素,它的每个接收线圈系都由两个相互对称的线圈组成,即一个主接收线圈和一个辅助接收线圈,它利用了两个线圈电磁场叠加原理,来实现消除直藕信号影响的目的。在线圈系的排列上设计了最小线圈距为6in,最大线圈距为94in,在这两个线圈距之间采用了近似于指数形式的线圈系分布,即全部子阵列间距为6in、10in、15.7in、24.5in、38.5in、60in、94in。这种排列方式不仅有利于采集浅部地层和深部地层信号,而且有利于径向有效信息的均匀采样。发射信号是加到一个单独的发射线圈上的,这种方法能使发射器的有效功率变为最大,由发射线圈发射出的是一个形状为方形的电压波形(即方波),发射波采用方波是由于其具有较高的发射频率,对于给定的电压能使发射线圈的功率变为最大。而且它具有宽的频谱,它包括了方波频率(约等于10KHZ)及所有的奇次谐波的能量,因此每个线圈可以在10、30、50、70、90、110、130、150KHZ共8个频率下同时进行工作。 在阵列感应测井中,接收线圈子阵列接收到测量信号为复信号,即R信号和X信号,R信号也称为实部信号,与发射电流相位相同或相反;X信号又叫虚部信号,与发射电流相位垂直。该阵列感应测井仪器在测井数据采集方面使用了先进的多道全数字化采集技术,能够同时采集7组子阵列在8个工作频率上的R信号和X信号,共112个测量信号。再对这些原始测量信号进行“软件聚焦”,就可得出三种纵向分辨率和六种探测深度的阵列感应合成曲线。 二、在判断地层水矿化度方面的应用效果 根据前期理论和实际经验可知:在渗透性地层中,当井筒内泥浆柱的压力大

XX秋石大远程《测井解释与生产测井》在线作业一二

XX秋石大远程《测井解释与生产测井》在线作业一1.(2. 5分)自然电位曲线的泥岩基线代表。 ?r A、测量自然电位的零线 ?? B、衡量自然电位专门的零线 ?「C、测量自然电位的最大值 ?「D、没有意义 2.(2.5分)明显的自然电位正专门讲明。 ?" A、Cw< Cmf ?厂B、Cw>Cmf ?( C^ Cw=Cmf ?C D、不确定 3.(2. 5分)用SP运算泥质含量的有利条件是。 ?厂A、地层含油气 ?C B、薄层 ?「C、侵入深的地层 ?D、完全含水、厚度较大和侵入较深的水层 4.(2.5分)电极系AO. 5M2. 25N的记录点是。

?(A、A 点 ?C B、M 点 ?金c、AM中点 ?r D、N 点 5.(2.5分)电极系AO. 5M2. 25N的电极距是。 A、0.5 B、2.25 C、2.5 D、2.75 6.(2.5分)梯度电极系的探测半径是。 ?( A、1倍电极距 ?厂B、2倍电极距 ?厂C、3倍电极距 ?D、1.5倍电极距 7.(2.5分)电极系N2. 25M0. 5A的名称是。 ?「A、单电极供电倒装2. 5m顶部梯度电极系 ?「B、单电极供电倒装2. 5m底部梯度电极系 ?'C、单电极供电倒装0.5m电位电极系 ?C D、单电极供电倒装0.5m梯度电极系

8.(2.5分)三侧向测井电极系加屏蔽电极是为了减少的分流阻碍。 A、地层 B、泥浆 C、冲洗带 D、围岩 9.(2.5分)在感应测井仪的接收线圈中,由二次交变电磁场产生的感应电动势与成正比。 ? ???“ A、地层电导率C B、地层电阻率r C、电流频率(D、磁导率 10. \ (2. 5分)关于单一高电导率地层,当上下围岩电导率相同时,在 地层中心处,曲线显现。 “ A、极大值厂B、极小值 「C、零值 C Dx负值 1L(2. 5分)岩石孔隙只有一种流体时候测得的渗透率为 A、绝对渗透率 ?(B、相对渗透率

测井复习资料(增减版)

第一章地球物理测井 地球物理测井:利用物理学的基本原理,采用先进的仪器设备,探测井壁介质的物理特性(电/声/放射性质)参数,评价储集层的孔隙性、渗透性、含油性质。 地球物理测井内容: 电法类: 1、自然电位测井; 2、电阻率测井—普通电阻率测井:微电阻率测井/微电位/微梯度;侧向测井(三/七/双); 3、感应测井; 声波类: 声波速度测井;声波全波列测井;声波幅度测井; 放射性类: 自然伽马测井;密度测井;中子测井;中子寿命测井。 一般完整裸眼井测井项目应包括: 1、指示泥值(泥质含量):CAL井径/GR自然伽马/SP自然电位; 2、反映孔隙度:AC/DEN/CNL; 3、反映饱和度(含油性):探测深度不同的三条电阻率曲线。 地球物理测井的作用: 1、划分地层,建立钻井地质剖面; 2、准确得到地层深度; 3、评价油气储集层的生产能力,计算孔隙度/饱和度/渗透率; 4、进行地层对比,研究构造产状和地层沉积等问题; 5、研究井的技术状况如井温、井径、固井质量等; 6、油层动态监测。 第二章测井资料综合解释基础 一、储集层的特点及分类 储集层定义:具有连通孔隙,既能储存油气,又能使油气在一定压差下流动的岩层。 特点:(孔隙性和渗透性合称储集层的储油物性) 1、孔隙性:储集层具有由各种孔隙、孔洞、裂缝形成的流体储存空间的性质; 2、渗透性:在一定压差下允许流体在岩石中渗流的性质。 分类(按成因和岩性分): 碎屑岩储集层:砂岩颗粒越大,分选越好,磨圆程度越好,颗粒之间充填胶结物越少,则其孔隙空间越大,连通性越好,即储油物性越好; 碳酸盐岩储集层:孔隙型:性质与砂岩储集层相似;裂缝型:(构造作用)渗透率高;洞穴型:(溶蚀作用);特殊岩性储集层:火山岩、变质岩。 基本参数: 1、孔隙度:总孔隙度Φt,有效孔隙度Φe,缝洞孔隙度Φf; 2、渗透率(常用单位10-3μm2):绝对渗透率(测井估算),有效渗透率(试油测得),相对渗透率; 3、饱和度:含水饱和度、含油饱和度,原状地层的含烃饱和度Sh=1-Sw,Sh=So+Sg→Sh+So+Sg=1;冲洗带残余烃饱和度Shr(不可动油)=1-Sxo(冲洗带可流动的水);可动油饱和度Smo=Sxo-Sw=Sh-Shr; 4、岩层厚度。 一般在原状地层中,Sw+So=1,Shr+Smo=So;而在冲洗带中,Sxo+Shr=1,Smo=Sxo-Sw。 阿尔奇公式:(岩石的地层因数F=Ro/Rw=a/Φm;电阻增大系数I=Rt/Ro=b/ Sw n =b/(1-So)n) F*I=Rt/Rw=ab/(Φm Sw n)(原状地层);Rxo/Rmf=ab/(Φm Sxo n)(冲洗带)。 Ro为孔隙中完全含水时的地层电阻率;Rt为原状地层电阻率;Rw为地层水电阻率;Rmf为泥浆电阻率;Rxo 为冲洗带电阻率。一般b=1,n=2。

石油测井技术服务方案

石油测井技术服务方案

七、技术服务方案 1.投标人应根据招标文件和对现场的勘察情况,采用文字并结合图表形式,参考以下要点编制本工程的技术服务方案: (1)测井、射孔工程技术服务方案及技术措施; (2)质量管理体系与措施; (3)技术服务总进度计划及保证措施(包括以横道图或标明关键线路的网络进度计划、保障进度计划需要的主要技术服务机械设备、劳动力需求计划及保证措施、材料设备进场计划及其他保证措施等); (4)技术服务安全管理体系与措施; (5)技术服务文明措施计划; (6)技术服务场地治安保卫管理计划; (7)技术服务环保管理体系与措施; (8)冬季和雨季技术服务方案; (9)施工现场总平面布置(投标人应递交一份施工现场总平面图,绘出现场布置图表并附文字说明,说明相关设施的情况和布置); (10)施工组织机构(若技术服务方案采用

第一部分测井、射孔工程技术服务方案及技术措施; 一、培训 对参与中国华油集团公司银川分公司的全体人员进行培训,包括认识该区块的重要性和特殊性、学习取全取准测井资料的保证措施、讨论各岗位的技术难点和应对措施并进行相应的技术演练等等。通过培训增强参与人员的责任感、主动性和积极性。培训内容包括:施工方案、质量保障措施,HSE管理措施等。 二、全员生产准备 全员生产准备内容包括设备检修、人员配备、仪器刻度、备件准备、区域资料收集等,其各项质量均应满足规定的要求。公司测井工程部具体组织实施。具体工作如下: 1、测井工程部根据生产计划及测井施工要求,将生产准备任务下达至相关施工中心和支持

保障单位,并对其准备过程实施有效控制。 2、数控测井中心职责: (1)组织施工作业小队进行设备、工装的保养和维护; (2)对所属施工作业小队的人员、仪器设备进行调配; (3)按公司相关文件规定及时督促小队进行电缆深度记号标定及电缆张力检定、泥浆电阻率测量杯校验; (4)按各类下井仪器刻度规程的规定督促小队进行仪器刻度; (5)组织施工作业小队通过资质认证; (6)对施工作业小队生产准备情况实施检查并作记录。 3、仪修车间按照《测井下井仪器一、二、三级例行保养》制度和仪器维修标准系列对仪器进行维修保养并实施检验,填写保养记录并签名。 (1)外观检查应无机械损伤、机械结构紧密、

生产测井原理与解释

一、填空题 1、垂直两相管流中五种典型的流型为泡状流、弹状流、段塞流、环状流和雾状 流。 2、如果井筒中原油溶解气越多,则其密度越小、体积系数越大。 3、如果原油溶解气越少,则其密度越则其密度越大、体积系数越小。 4.以泥岩为基线,渗透性地层的SP曲线的偏转(异常)方向主要取决于泥浆滤液和地层水的相对矿化度。当Rw>Rmf时,SP曲线出现正异常,Rw

中国石油大学(北京)《测井解释与生产测井》复习题答案.

中国石油大学(北京)远程教学学院 测井解释与生产测井期末复习题 一、选择题(50) 1. 离子的扩散达到动平衡后 D P8 A.正离子停止扩散 B. 负离子停止扩散 C.正负离子均停止扩散 D. 正负离子仍继续扩散 2. 静自然电位的符号是A P11 A.SSP B. Usp C. SP D.E d 3. 扩散吸附电位的符号是A P9 A.E da B. Ef C. SSP D.E d 4、自然电位测井中,当Cw>Cmf时(淡水泥浆钻井),砂岩段出现自然电位A P10 A、负异常; B、正异常; C、无异常; D、其它。 5.自然伽马测井的读数标准单位是。C P100,106 A、% B、ppm C、API D、CPS 6. 当地层自然电位异常值减小时,可能是地层的B P12 A.泥质含量增加 B. 泥质含量减少 C. 含有放射性物质 D.密度增大 7. 当泥浆滤液矿化度与地层水矿化度大致相等时,自然电位偏转幅度B P12 A.很大 B. 很小 C. 急剧增大 D.不确定 8. 下面几种岩石电阻率最低的是 C P15 A.方解石B.火成岩 C.沉积岩D.石英 9. 与地层电阻率无关的是 D P14,15,16 A.温度 B. 地层水中矿化物种类 C. 矿化度 D. 地层厚度 10. 地层的电阻率随地层中流体电阻率增大而B P17 A.减小 B. 增大 C. 趋近无穷大 D. 不变 11. N0.5M1.5A是什么电极系C P39 A.电位 B. 底部梯度 C.顶部梯度 D. 理想梯度 12. 电极距增大,探测深度将B P23 A.减小 B. 增大 C. 不变 D. 没有关系 13. 微梯度电极系的电极距B微电位电极系。P29 A.大于 B. 小于 C. 等于 D. 不小于 14. 微梯度电极系的探测深度A微电位电极系。P29 A.小于 B. 大于

石油测井方案及应急预案

测井方案及应急预案 编写单位:******公司 施工单位:*****队 审批人: 钻井队(签字):______________________ 日期: ____________ 测井队(签字):______________________ 日期: ____________ 监督(签字):________________________ 日期: ____________ *****公司 年月曰

一、现场数据 1泥浆参数: 泥浆密度:g/ml ;粘度:s; PH 值:;CL-: mg/l ; 2 .钻井数据: 套管: 3. 测井项目 二、人员分工 1.测井队长: 2.工程师: 3.带班操作手: 4.绞车操作: 5.动力检查: 6.井口巡视: 7.仪器连接检查: 三、作业准备 1:首先在基地选用性能良好的仪器配接检查,到达井场后对仪器再次进行配接检查,保证仪器在入井前的正常状态。 2:基地准备好打捞工具。 3:注意劳保用品穿戴。 4:天气寒冷注意防止人员冻伤,防滑防冻。

5:测井前,把电缆卡子,剪切电缆工具放至钻台。 6:井下防落物;提高警惕防止高空落物,注意人身安全。 7 :测井时,井口专人值班。 &测井时,派有经验的带班操作手操作绞车,注意遇阻遇卡。 9:作业时,与井队密切配合。 10:PCL传输作业注意CHT变化,防止损伤仪器,造成仪器落井、遇卡、遇阻事故。 四、对井队的要求 1:井口坐岗 2:井口照明充足 3:组装井口时井队充分配合 4:测井时严禁电气焊 5:钻台供气供水充足 6:井口工注意电缆,防止钻具碰伤电缆 五、测井施工方案及风险分析 在测井中应当防止仪器遇阻、遇卡及电缆吸附卡。测井施工的总体原则是必须在确保100%安全的条件下进行测井施工。 电缆测井方案的详细步骤见下: 1)在测井前应详细检查下井用的电缆和马笼头的通断绝缘状况、仪器O圈全部更换,确保测井作业顺利完成。 2)在下井过程中,密切注意仪器悬重及CHT张力,观察仪器在泥浆中

测井技术

测井设备 一、ECLIPS全称:Enhanced Computerized Logging and Interpretive Processing System ECLIPS-5700数控测井系统是当今最先进的测井设备之一,它采用的是WTS通讯系统,WTS是“Wireline Telemetry Systems”(电缆遥测系统)的英文字母缩写,其最快传送速率为230KB(千比特),能很好地完成5700测井时大数据量的传输任务,是当今世界速度最快的测井通讯系统之一。5700WTS通讯就是指地面与井下仪器之间的通讯,其中井下仪器负责井下仪器的通讯部分:接收命令、采集数据,数据的初步处理和向地面发送数据;地面系统负责地面通讯部分,向井下仪发送命令,接收井下仪器的数据信号。地面通讯主要由5756接线控制面板和5750电缆信号处理板组成。命令用M2下传,而数据的传输有3种:M2数据、M5数据和M7数据。5700WTS遥测系统调制编码方式采用曼切斯特码,文章对于该编码方式作了全面地研究,指出了采用该编码方式的优点和规则。 ECLIPS-5700测井系统又称加强型计算机测井解释处理系统,可完成各种常规和成像测井的数据采集和处理编辑工作。它采用菜单驱动,具备“help”功能,便于操作。ECLIPS 可提供广泛的诊断,如电源和遥传系统的诊断程序以及用户可选择的诊断程序。通过图形显示和数据处理的实时显示,可不断地监视测井质量。 二、测斜仪 所谓井眼轨迹,实指井眼轴线。一口实钻井的井眼轴线乃是一条空间曲线。为了进行轨迹控制,就要了解这条空间曲线的形状,就要进行轨迹测量,这就是“测斜”。所使用的仪器就称为“测斜仪”。 每隔一定长度的井段测一个点,这些井段称为“测段”,这些点称为测点。测斜仪在每个点上测得的参数有三个,即井深、井斜角和井斜方位角。这三个参数就是轨迹的基本参数。按照测斜仪的发展顺序,分别介绍其原理如下: 1. 照相测斜仪原理: 利用小孔成像的光学原理,在工作时灯泡发光,将罗盘内测角装置的影像通过透镜成像在胶片上,使胶片感光,提出仪器后通过洗像液使胶片显影并读取数据。 2. 电子测斜仪原理: 单多点电子测斜仪采用三轴磁力仪和三轴或两轴重力加速度计测量井眼方位角和井斜角,每一个测点可以分别记录三个重力矢量、三个磁通门参数、探管温度、电池电压和井眼其它参数,并储存在探管的存储器内,提出仪器后再经过计算机或控制器把存储器里的数据进行回放、打印。随钻电子测斜仪的工作原理与单多点电子测斜仪基本一样,只不过不需要提出仪器便可通过其它传输通道将井底测量点的数据随时传输至地面的处理终

石油工程测井基本名词解释

一、名词概念 1. Well logging 测井:油气田地球物理测井,简称测井well logging ,是应用物理方法研究油气田钻井地质剖面和井的技术状况,寻找油气层并监测油气层开发的一门应用技术。 2. Electrical logs 电法测井:是指以研究岩石及其孔隙流体的导电性、电化学性质及介电性为基础的一大类测井方法,包括以测量岩层电化学特性、导电特性和介电特性为基础的三小类测井方法。 3. Acoustic logs 声波测井:是通过研究声波在井下岩层和介质中的传播特性,来了解岩层的地质特性和井的技术状况的一类测井方法。 4. Nuclear logs 核测井:是根据岩石及其孔隙流体的核物理性质,研究钻井地质剖面,勘探石油、天然气、煤以及铀等有用矿藏的地球物理方法,是地球物理测井的重要组成部分。 5. Production logs 生产测井PL:泛指油气田投产后,在生产井或注入井中进行的一系列井下地球物理观测。它是监测油气田开发动态的主要技术手段,是油气田储集层评价、开发方案编制和调整、井下技术状况检测、作业措施实施和效果评价的重要手段。根据测量对象和应用范围,生产测井大致可分为生产动态、产层评价和工程技术三类。 6. Apparent resisitivity 视电阻率:把电极系放在井中某一位置,能测得该点的一个电阻率值,该值受井眼、围岩、泥浆侵入等环境影响,不等于地层的真实电阻率,称为视电阻率。当电极系沿井身连续移动时,则可测得视电阻率随井身变化的曲线。这R,纵坐标为深度H的曲线叫视电阻率曲线。 种横坐标为视电阻率 a 7. Reservoir 储集层:在石油工业中,储集层是指具有一定孔隙性和渗透性的岩层。例如油气水层。 8. increased resistance invasion 高侵:当地层孔隙中原来含有的流体电阻率较低时,电阻率较高的钻井液滤液侵入后,侵入带岩石电阻率升高,这种钻井液滤液侵入称为钻井液高侵,R XO

中国石油集团测井有限公司

中国石油集团测井有限公司(CNPC Logging)成立于2002年12月,直属中国石油天然气集团公司,注册地在西安市高新技术开发区,是集测井技术研发、测井装备制造、测井技术服务于一体的专业化技术公司。 公司现有作业队伍292支,具备年测井13000口、录井600口、射孔90000米的生产作业能力。国内服务市场已覆盖到长庆、华北、吐哈、青海、玉门、塔里木、冀东、福山、浙江、吉林等油田,以及大部分煤层气作业市场;海外服务市场已延伸到乌兹别克、加拿大、孟加拉、伊朗、蒙古、缅甸等国家。装备销售市场已覆盖全国测井公司,并远销俄罗斯等国家。 公司成立10年来,坚持产品领先战略,充分发挥研发制造服务一体化优势,以找油找气和提速提效相统一为目的,自主研发了具有完全自主知识产权的EILog快速与成像测井系列,获得专利授权190项、注册商标6项,为油气勘探开发和相关工程技术业务提供了品种齐全、优质高效、解决问题的仪器产品、软件产品和服务产品,促进了油气田增储上产。主要产品包括: 1. 综合化的地面系统,支持EILog各种测井仪器工具和远程传输,支持多语言、多单位制转换。 2. 集成化快速测井系统,一次下井可获取三电阻率、三孔隙度、GR、SP、井径、井斜等18条曲线,系列齐全,能满足不同类型储层和复杂井况的需求。 3. “三电两声一核磁”成像测井系统,包括阵列感应、阵列侧向、微电阻率扫描、阵列声波、超声波和核磁共振,适用于复杂油气层的精准识别和精细评价。 4. MWD加“四电一声两放射”随钻测井系统,包括定向遥测、井斜方位工具面、感应电阻率、电磁波电阻率、侧向电阻率、泥浆电阻率、声波测井、可控源中子孔隙度和方位自然伽马,适用于水平井地质导向和地层岩性、含油性和孔隙度等参数评价。 5. 数字岩心,包括钻井式井壁取心、岩心数字化、井场求取岩心参数等功能,可及时用于测井解释评价过程,提高油气层识别准确率。 6. 模块式地层动态测试器,能及时、准确、直接地获得储层流体、压力资料,是解决疑难油气层识别的有效手段,可减少试油工程投入。 7. 固井质量监测系统,包括声幅/变密度、扇区水泥胶结、方位声波成像、伽马密度、光纤陀螺测斜仪等,能提供套管外一、二界面水泥固井质量和局部串槽的精细评价,周向分辨率45°。 8.生产测井及测试技术,拥有先进齐全的产出剖面、注入剖面、套损监测仪器系列,拥有中子寿命、中子伽马能谱、过套管地层电阻率、PNN等剩余油测井系列,拥有压力测试、稳定试井、不稳定试井、取样分析、井下调剖等测试产品,可及时对产层特性做出评价。 9. 射孔技术系列,包括水平井定向射孔、小井眼射孔、复合射孔、井口带压射孔、全通径射孔、多级起爆、超深井射孔桥塞、井下P-T测试等,系列齐全,技术先进,可满足不同用户需求。 10. 随钻录井技术,包括综合录井、现场地化录井、定量荧光录井、轻烃分析、PK 录井等,能随钻识别岩性、准确卡层、定量发现和评价油气层。 11. 元素俘获测井技术,可获得精确的地层岩性组分,准确地识别地层岩性,结合密度和声波等常规

测井项目中英文对照

常用测井曲线代号 A1R1 T1R1声波幅度 A1R2 T1R2声波幅度 A2R1 T2R1声波幅度 A2R2 T2R2声波幅度AAC 声波附加值 AAVG 第一扇区平均值AC 声波时差 AF10 阵列感应电阻率AF20 阵列感应电阻率AF30 阵列感应电阻率AF60 阵列感应电阻率AF90 阵列感应电阻率AFRT 阵列感应电阻率AFRX 阵列感应电阻率AIMP 声阻抗 AIPD 密度孔隙度 AIPN 中子孔隙度AMAV 声幅 AMAX 最大声幅 AMIN 最小声幅 AMP1 第一扇区的声幅值AMP2 第二扇区的声幅值

AMP3 第三扇区的声幅值AMP4 第四扇区的声幅值AMP5 第五扇区的声幅值AMP6 第六扇区的声幅值AMVG 平均声幅 AO10 阵列感应电阻率AO20 阵列感应电阻率AO30 阵列感应电阻率AO60 阵列感应电阻率AO90 阵列感应电阻率AOFF 截止值 AORT 阵列感应电阻率AORX 阵列感应电阻率APLC 补偿中子 AR10 方位电阻率 AR11 方位电阻率 AR12 方位电阻率 ARO1 方位电阻率 ARO2 方位电阻率 ARO3 方位电阻率 ARO4 方位电阻率 ARO5 方位电阻率

ARO6 方位电阻率ARO7 方位电阻率ARO8 方位电阻率ARO9 方位电阻率 AT10 阵列感应电阻率AT20 阵列感应电阻率AT30 阵列感应电阻率AT60 阵列感应电阻率AT90 阵列感应电阻率ATAV 平均衰减率ATC1 声波衰减率ATC2 声波衰减率ATC3 声波衰减率ATC4 声波衰减率ATC5 声波衰减率ATC6 声波衰减率ATMN 最小衰减率ATRT 阵列感应电阻率ATRX 阵列感应电阻率AZ 1号极板方位 AZ1 1号极板方位AZI 1号极板方位

生产测井施工工艺流程

生产测井施工工艺流程 一、接受任务及作业准备 1、接受任务,核实任务内容。 2、确定测井所需的相关资料、测井设计、测井仪器、辅助工具和相关的安全防护用品。 3、穿戴劳动防护用品。 4、办理放射性源领用手续。 5、借取相关资料,检查Q&HSE资料、技术和安全规范等资料。 6、检查电缆头、马丁代克、张力计、张力线、电缆、注脂系统、井口防喷装置等。 7、检查滑环、发电机、变速箱等设备。 8、领取下井仪器,与地面系统配接检查后装车固定。 9、固定马丁代克,对电缆采取防护措施。 10、检查安全警示标志、逃生呼吸器、医药急救箱、放射性监测仪、气体检测仪、废弃物回收箱等HSE设施是否齐全、完好。 11、检查井口工具、材料和放射性源配置专用工具。 12、出车前的车辆安全例行检查。 13、领取放射性源,负责全程监控。 二、队伍出发 1、依照季节和环境特点进行行车安全风险识别。 2、出车前安全例会。 3、队伍按指定路线出发。 4、指定押车人员及押源人员,明确押车人员应坐在副驾驶位置。 5、连续行车2小时(或每百公里)后停车休息,进行车辆和放射性源的检查。 6、遇到危险路段时,确认安全后方可通行。 三、井场安装 1、现场勘察,确保施工现场满足HSE的要求。 2、积极与相关方沟通,了解本井相关信息。 3、班前会

1)结合测井设计,通报本次测井内容、测井顺序、井况、井下参数、作业风险、注意事项等。 2)明确发生危险时的紧急集合点、逃生路线和方式。 3)明确各岗位的职责及巡回检查路线。 4)填写会议记录。 4、设立“测井隔离带”,标识安全警示,安置危险物品。 5、指挥吊车、绞车的摆放,吊车、绞车不能正对井口正面,车辆处于上风处,绞车与井口、地滑轮三点在一条直线上,并确认前轮摆正。 6、绞车打好掩木,吊车支腿前铺以垫木,支腿将机身顶起,并保持水平。将吊臂下放距地面2米高处。 7、安装地滑轮,连接通讯线及磁记号线。 8、将张力计安装到吊钩上,张力计下接天滑轮,并连接张力线。 9、将防喷头吊索安装到吊臂上。安装好注脂管线,溢流管线和液压泵管线。 10、将张力线、通讯线及磁记号线与仪器车连接 11、将泄压短节、防喷器和防掉器依次连接,牢固安装在采油(气)树上。 12、连接、检查地面仪器。 13、确定下井仪器编号,调用相应的刻度文件。 14、计算井下仪配重:G=P·πг2×106/g×120% 15、准备下井仪器和加重棒。 16、连接防喷管和密封头,将电缆头从防喷管中穿过。 17、放射性源的分装及检查。 18、检查紧固下井仪器的顶丝、销子,检查仪器丝扣和密封圈的完好性,仪器探头的油面。 19、按照顺序连接仪器。 四、测前刻度与校验 1、仪器供电检查。 2、调用主刻度文件 3、测前刻度、校验。 五、井口安装

相关文档
相关文档 最新文档