文档库 最新最全的文档下载
当前位置:文档库 › 2018年高考数学二轮复习考前专题六解析几何第1讲直线与圆讲学案理

2018年高考数学二轮复习考前专题六解析几何第1讲直线与圆讲学案理

2018年高考数学二轮复习考前专题六解析几何第1讲直线与圆讲学案理
2018年高考数学二轮复习考前专题六解析几何第1讲直线与圆讲学案理

第1讲 直线与圆

考查重点是直线间的平行和垂直的条件、与距离有关的问题.直线与圆的位置关系(特别是弦长问题),此类问题难度属于中低档,一般以选择题、填空题的形式出现.

热点一 直线的方程及应用 1.两条直线平行与垂直的判定

若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2?k 1=k 2,l 1⊥l 2?k 1k 2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在. 2.求直线方程

要注意几种直线方程的局限性.点斜式、两点式、斜截式要求直线不能与x 轴垂直,而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线. 3.两个距离公式

(1)两平行直线l 1:Ax +By +C 1=0,

l 2:Ax +By +C 2=0间的距离d =

|C 1-C 2|A 2+B 2

(A 2+B 2

≠0). (2)点(x 0,y 0)到直线l :Ax +By +C =0的距离公式d =

|Ax 0+By 0+C |A 2+B 2

(A 2+B 2

≠0).

例1 (1)(2017届湖南省长郡中学、衡阳八中等十三校重点中学联考)“a =2”是“直线ax +y -2=0与直线2x +()a -1y +4=0平行”的( ) A .充要条件 B .充分不必要条件

C .必要不充分条件

D .既不充分也不必要条件 答案 A

解析 由ax +y -2=0与直线2x +()a -1y +4=0平行,得a ()a -1=2,∴a =-1,a =2.经检验当a =-1时,两直线重合(舍去).∴“a =2”是“直线ax +y -2=0与直线2x +

()a -1y +4=0平行”的充要条件.

(2)(2017届南京、盐城模拟)在平面直角坐标系xOy 中,直线l 1:kx -y +2=0与直线l 2:x +ky -2=0相交于点P ,则当实数k 变化时,点P 到直线x -y -4=0的距离的最大值为________. 答案 3 2

解析 由题意,得直线l 1:kx -y +2=0的斜率为k ,且经过点A ()0,2,直线l 2:x +ky -2=0的斜率为-1

k

,且经过点B ()2,0,且直线l 1⊥l 2,所以点P 落在以AB 为直径的圆C

上,其中圆心坐标为C ()1,1,半径为r =2, 则圆心到直线x -y -4=0的距离为d =

||

1-1-42

=22,

所以点P 到直线x -y -4=0的最大距离为

d +r =22+2=3 2.

思维升华 (1)求解两条直线的平行或垂直问题时要考虑斜率不存在的情况. (2)对解题中可能出现的特殊情况,可用数形结合的方法分析研究.

跟踪演练1 (1)已知直线l 1:ax +()a +2y +1=0,l 2:x +ay +2=0,其中a ∈R ,则“a =-3”是“l 1⊥l 2”的( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分也不必要条件 答案 A

解析 直线l 1⊥l 2的充要条件是a +()a +2a =0, ∴a ()a +3=0,∴a =0或a =-3.故选A.

(2)已知两点A (3,2)和B (-1,4)到直线mx +y +3=0的距离相等,则m 的值为( ) A .0或-12 B.1

2或-6

C .-12或12

D .0或1

2

答案 B

解析 依题意,得|3m +5|m 2+1=|-m +7|m 2

+1, 所以|3m +5|=|m -7|. 所以(3m +5)2

=(m -7)2

, 整理得2m 2

+11m -6=0. 所以m =1

2或m =-6.

热点二 圆的方程及应用 1.圆的标准方程

当圆心为(a ,b ),半径为r 时,其标准方程为(x -a )2

+(y -b )2

=r 2

,特别地,当圆心在原点时,方程为x 2

+y 2

=r 2

.

2.圆的一般方程

x 2

+y 2

+Dx +Ey +F =0,其中D 2

+E 2

-4F >0,表示以? ????-D 2

,-E 2为圆心,D 2+E 2-4F 2为半径

的圆.

例2 (1)(20172海口调研)已知圆M 与直线3x -4y =0及3x -4y +10=0都相切,圆心在直线y =-x -4上,则圆M 的方程为( ) A.()x +32

+()y -12

=1

B.()x -32

+()y +12

=1

C.()x +32

+()y +12

=1

D.()x -32

+()y -12

=1

答案 C

解析 到两直线3x -4y =0及3x -4y +10=0的距离都相等的直线方程为3x -4y +5=0,

联立方程组???

??

3x -4y +5=0,

y =-x -4,

解得???

??

x =-3,

y =-1.

两平行线之间的距离为2,所以半径为1,

从而圆M 的方程为()x +32

+()y +12

=1.故选C.

(2)(20172百校联盟质检)若圆C 过点()0,-1,()0,5,且圆心到直线x -y -2=0的距离为22,则圆C 的标准方程为______________. 答案 x 2

+()y -22

=9或()x -82

+()y -22

=73

解析

由题意可设圆心C ()a ,2,则

||

a -2-22

=22?a =0或a =8,所以半径等于0+3

2

或82

+32

,即圆C 的标准方程为x 2

+()y -22

=9或()x -82

+()y -22

=73. 思维升华 解决与圆有关的问题一般有两种方法

(1)几何法,通过研究圆的性质、直线与圆、圆与圆的位置关系,进而求得圆的基本量和方程.

(2)代数法,即用待定系数法先设出圆的方程,再由条件求得各系数. 跟踪演练2 (1)圆心为()4,0且与直线3x -y =0相切的圆的方程为( ) A.()x -42

+y 2

=1 B.()x -42

+y 2

=12

C.()x -42

+y 2

=6 D.()x +42

+y 2

=9

答案 B

解析 由题意可知,圆的半径为点到直线的距离, 即r =d =

|

|

334-03+1

=23,

结合圆心坐标可知,圆的方程为()x -42

+y 2

=12 .

(2)(20162浙江)已知a ∈R ,方程a 2x 2+(a +2)y 2

+4x +8y +5a =0表示圆,则圆心坐标是____________,半径是________. 答案 (-2,-4) 5

解析 由已知方程表示圆,则a 2

=a +2, 解得a =2或a =-1.

当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2

+y 2+4x +8y -5=0, 化为标准方程为(x +2)2

+(y +4)2

=25, 表示以(-2,-4)为圆心,5为半径的圆. 热点三 直线与圆、圆与圆的位置关系

1.直线与圆的位置关系:相交、相切和相离,判断的方法主要有点线距离法和判别式法. (1)点线距离法:设圆心到直线的距离为d ,圆的半径为r ,则d r ?直线与圆相离.

(2)判别式法:设圆C :(x -a )2

+(y -b )2

=r 2

,直线l :Ax +By +C =0,方程组

?

????

Ax +By +C =0,(x -a )2+(y -b )2=r 2消去y ,得到关于x 的一元二次方程,其根的判别式为Δ,则直线

与圆相离?Δ<0,直线与圆相切?Δ=0,直线与圆相交?Δ>0. 2.圆与圆的位置关系有五种,即内含、内切、相交、外切、外离.

设圆C 1:(x -a 1)2

+(y -b 1)2

=r 2

1,圆C 2:(x -a 2)2

+(y -b 2)2

=r 2

2,两圆心之间的距离为d ,则圆与圆的五种位置关系的判断方法如下: (1)d >r 1+r 2?两圆外离. (2)d =r 1+r 2?两圆外切. (3)|r 1-r 2|

例3 (1)(20172保定模拟)若直线x +y =0与圆x 2

+()y -a 2

=1相切,则a 的值为( )

A .1

B .±1 C. 2 D .± 2

答案 D

解析 圆x 2

+()y -a 2

=1的圆心坐标为()0,a ,半径为1,

因为直线x +y =0与圆x 2

+()y -a 2

=1相切,

所以圆心()0,a 到直线的距离d =r ,即

||

a 2

=1,解得a =±2,故选D.

(2)(20172银川模拟)已知圆C 1:x 2

+y 2

=4,圆C 2:x 2

+y 2

+6x -8y +16=0,则圆C 1和圆C 2

的位置关系是( ) A .相离 B .外切 C .相交 D .内切 答案 B

解析 化圆C 2的方程为(x +3)2

+(y -4)2

=9,则圆C 1与C 2的圆心距为32

+42

=5=r 1+r 2,所以圆C 1和圆C 2外切,故选B.

思维升华 (1)讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.

(2)圆上的点与圆外点的距离的最值问题,可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为圆心到圆心的距离问题.

跟踪演练3 (1)(20172深圳调研)直线l :kx +y +4=0()k ∈R 是圆C :x 2

+y 2

+4x -4y +6

=0的一条对称轴,过点A ()0,k 作斜率为1的直线m ,则直线m 被圆C 所截得的弦长为 ( ) A.2

2

B. 2

C. 6 D .2 6

答案 C

解析 由l :kx +y +4=0()k ∈R 是圆C :x 2

+y 2

+4x -4y +6=0的一条对称轴知,直线l

必过圆心()-2,2,因此k =3.则过点A ()0,k ,斜率为1的直线m 的方程为y =x +3,圆心到直线的距离d =

||

-2-2+32

22

,所以弦长等于2r 2-d 2=2 2-1

2

=6,故选C. (2)(20172西宁复习检测)如果圆()x -a 2

+()y -a 2

=8上总存在到原点的距离为2的点,则实数a 的取值范围是( )

A.()-3,-1∪()1,3

B.()-3,3

C.[]-1,1

D.[]-3,-1]∪[1,3 答案 D

解析 圆心()a ,a 到原点的距离为||2a ,半径r =22,圆上的点到原点的距离为d .因为圆()x -a 2

+()y -a 2

=8上总存在点到原点的距离为2,则圆()x -a 2

+()y -a 2

=8与圆x

2

+y 2

=2有公共点,r ′=2,∴r -r ′≤||2a ≤r +r ′,即1≤||a ≤3,解得1≤a ≤3或-3≤a ≤-1,所以实数a 的取值范围是[]-3,-1]∪[1,3, 故选D.

真题体验

1.(20162山东改编)已知圆M :x 2

+y 2

-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2

+(y -1)2

=1的位置关系是________. 答案 相交

解析 ∵圆M :x 2

+(y -a )2

=a 2, ∴圆心坐标为M (0,a ),半径r 1为a , 圆心M 到直线x +y =0的距离d =|a |

2

由几何知识得? ??

??|a |22+(2)2=a 2

,解得a =2.

∴M (0,2),r 1=2.

又圆N 的圆心坐标为N (1,1),半径r 2=1, ∴|MN |=(1-0)2

+(1-2)2

= 2. 又r 1+r 2=3,r 1-r 2=1,

∴r 1-r 2<|MN |<r 1+r 2,∴两圆相交.

2.(20162上海)已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2的距离是________. 答案

25

5

3.(20162全国Ⅰ)设直线y =x +2a 与圆C :x 2

+y 2

-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________. 答案 4π

解析 圆C :x 2

+y 2

-2ay -2=0,即C :x 2

+(y -a )2

=a 2

+2,圆心为C (0,a ),C 到直线y =x +2a 的距离d =|0-a +2a |2=|a |

2.又由|AB |=23,

得?

????2322+? ??

??|a |22=a 2+2,解得a 2

=2, 所以圆的面积为π(a 2

+2)=4π. 押题预测

1.已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成的两段弧长比为1∶2,则圆C 的方程为( ) A.? ??

??x ±

332+y 2

=43

B.? ??

??x ±

332+y 2

=13 C .x 2

+? ????y ±332=43 D .x 2

+?

????y ±

332=13

押题依据 直线和圆的方程是高考的必考点,经常以选择题、填空题的形式出现,利用几何法求圆的方程也是数形结合思想的应用. 答案 C

解析 由已知得圆心在y 轴上,且被x 轴所分劣弧所对的圆心角为2π

3.设圆心坐标为(0,a ),

半径为r , 则r sin

π3=1,r cos π3=|a |,解得r =23

, 即r 2

=43,|a |=33,即a =±33,

故圆C 的方程为x 2

+? ?

???y ±

332=43

. 2.设m ,n 为正实数,若直线(m +1)x +(n +1)y -4=0与圆x 2

+y 2

-4x -4y +4=0相切,则mn ( )

A .有最小值1+2,无最大值

B .有最小值3+22,无最大值

C .有最大值3+22,无最小值

D .有最小值3-22,最大值3+2 2

押题依据 直线与圆的位置关系是高考命题的热点,本题与基本不等式结合考查,灵活新颖,加之直线与圆的位置关系本身承载着不等关系,因此此类题在高考中出现的可能性很大. 答案 B

解析 由直线(m +1)x +(n +1)y -4=0与圆(x -2)2

+(y -2)2

=4相切,可得

2|m +n |(m +1)2

+(n +1)

2

=2,整理得m +n +1=mn .由m ,n 为正实数可知,m +n ≥2mn ,令t =mn ,

则2t +1≤t 2

,因为t >0,所以t ≥1+2,所以mn ≥3+2 2.故mn 有最小值3+22,无最大值.故选B.

3.若圆x 2

+y 2

=4与圆x 2

+y 2

+ax +2ay -9=0(a >0)相交,公共弦的长为22,则a =________.

押题依据 本题已知公共弦长,求参数的范围,情境新颖,符合高考命题的思路.

2

解析 联立两圆方程?

????

x 2

+y 2

=4,

x 2+y 2

+ax +2ay -9=0,

可得公共弦所在直线方程为ax +2ay -5=0, 故圆心(0,0)到直线ax +2ay -5=0的距离为 |-5|

a 2+4a

2

=5

a

(a >0).

故2

22

-?

??

??5a 2

=22, 解得a 2

=52,

因为a >0,所以a =

102

.

A 组 专题通关

1.(20172河南省郑州市第一中学调研)点()3,4在直线l :ax -y +1=0上,则直线l 的倾斜角为( ) A .30° B .45° C .60° D .120° 答案 C

解析 将点()3,4代入直线方程,求得a =3,所以直线l :3x -y +1=0 ,斜率k =3,所以倾斜角为60°,故选C. 2.(2017届吉林大学附属中学模拟)若3π2<α<2π,则直线x cos α+y

sin α

=1必不经过( )

A .第一象限

B .第二象限

C .第三象限

D .第四象限 答案 B

解析 令x =0,得y =sin α<0,令y =0,得x =cos α>0,直线过(0,sin α),(cos α,0)两点,因而直线不过第二象限.故选B.

3.直线l 与两条直线y =1,x -y -7=0分别交于P ,Q 两点,线段PQ 的中点坐标为(1,-1),那么直线l 的斜率是( )

32C .-23 D .-32

答案 C

解析 设P (a,1) ,Q (b ,b -7) ,

所以?????

a +

b 2=1,1+b -7

2=-1,

解得?

??

??

a =-2,

b =4,所以P (-2,1),Q (4,-3),

所以直线l 的斜率k =1-(-3)-2-4=-23

,故选C.

4.(20172湖北省六校联合体联考)过点P ()1,2的直线与圆x 2

+y 2

=1相切,且与直线ax

+y -1=0垂直,则实数a 的值为( ) A .0 B .-4

3

C .0或43 D.4

3

答案 C

解析 当a =0时,直线ax +y -1=0,即直线y =1,此时过点P ()1,2且与直线y =1垂直的直线为x =1,而x =1与圆相切,满足题意,所以a =0成立;当a ≠0时,过点P ()1,2且与直线ax +y -1=0垂直的直线斜率为1a ,可设该直线方程为y -2=1

a

()x -1,即x -ay

+2a -1=0,再根据直线与圆相切,即圆心到直线距离为1,可得||

2a -1a 2+1

=1,解得a =4

3.

所以a =0或4

3

.故选C.

5.(20172广西陆川县中学知识竞赛)已知圆C 1:x 2+y 2-2x -4y -4=0与圆C 2:x 2+y 2

+4x -10y +25=0相交于A ,B 两点,则线段AB 的垂直平分线的方程为( ) A .x +y -3=0 B .x -y +3=0 C .x +3y -1=0 D .3x -y +1=0

答案 A

解析 由题设可知,线段AB 的垂直平分线过两圆的圆心C 1(1,2),C 2(-2,5),由此可得kC 1C 2

=5-2-2-1

=-1,故由点斜式方程可得y -2=-(x -1),即x +y -3=0,故选A. 6.(2017届唐山模拟)在平面直角坐标系xOy 中,圆O 的方程为x 2

+y 2

=4,直线l 的方程为

y =k ()x +2,若在圆O 上至少存在三点到直线l 的距离为1,则实数k 的取值范围是( )

A.??????0,

33 B.???

???-33

,33 C.??????-12,12 D.??????0,12 答案 B

解析 根据直线与圆的位置关系可知,若圆O: x 2

+y 2

=4上至少存在三点到直线l: y =

k ()x +2的距离为1,则圆心()0,0到直线kx -y +2k =0的距离d 应满足d ≤1,即

||

2k k 2+1

≤1,解得k 2

≤13,即-33≤k ≤33

,故选B.

7.(20172武汉调研)已知圆C :(x -1)2+(y -4)2

=10和点M (5,t ),若圆C 上存在两点A ,

B ,使得MA ⊥MB ,则实数t 的取值范围为( )

A .[-2,6]

B .[-3,5]

C .[2,6]

D .[3,5]

答案 C

解析 过点M 作圆的两条切线,切点分别为A ,B ,连接AC ,BC ,MC ,若圆C 上存在两点A ,

B ,使得MA ⊥MB ,只需∠AM

C ≥45°,sin ∠AMC =

10

(5-1)2+(t -4)

2

≥2

2,解得2≤t ≤6,故选C.

8.(2017届上海市黄浦区模拟)若关于x ,y 的方程组?

??

??

ax +y -1=0,

4x +ay -2=0有无数多组解,则

实数a =________. 答案 2

解析 当a =0时,?????

x =12

y =1,

不合题意;

当a ≠0时,由a 4=1a =-1

-2

,解得a =2.

综上可知,a =2.

9.(2017届安徽省马鞍山市质检)已知A ()0,0,B ()2,-4,C ()4,2,线段AD 是△ABC 外接圆的直径,则点D 的坐标是__________.

(完整word版)高中数学解析几何大题精选

解析几何大量精选 1.在直角坐标系xOy 中,点M 到点()1,0F ,) 2 ,0F 的距离之和是4,点M 的轨迹 是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程; ⑴当0AP AQ ?=u u u r u u u r 时,求k 与b 的关系,并证明直线l 过定点. 【解析】 ⑴ 2 214 x y +=. ⑴将y kx b =+代入曲线C 的方程, 整理得2 2 2 (14)8440k x kbx b +++-=, 因为直线l 与曲线C 交于不同的两点P 和Q , 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 设()11,P x y ,()22,Q x y ,则122 814kb x x k +=-+,21224414b x x k -= + ② 且2222 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 所以()112,AP x y =+u u u r ,()222,AQ x y =+u u u r . 由0AP AQ ?=u u u r u u u r ,得1212(2)(2)0x x y y +++=. 将②、③代入上式,整理得22121650k kb b -+=. 所以(2)(65)0k b k b -?-=,即2b k =或6 5 b k =.经检验,都符合条件① 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点. 即直线l 经过点A ,与题意不符. 当65b k =时,直线l 的方程为6655y kx k k x ? ?=+=+ ?? ?. 显然,此时直线l 经过定点6,05?? - ??? 点,满足题意. 综上,k 与b 的关系是65b k =,且直线l 经过定点6,05?? - ??? 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半轴为半径的 圆与直线0x y -=相切. ⑴ 求椭圆C 的方程; ⑴ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; ⑴ 在⑴的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?u u u u r u u u r 的取值范围. 【解析】 ⑴22 143 x y +=. ⑴ 由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

2020年高考文科数学《直线与圆》题型归纳与训练

冲刺高考 复习必备 2020年高考文科数学《直线与圆》题型归纳与训练 【题型归纳】 题型一 倾斜角与斜率 例1 直线l 310y +-=,则直线l 的倾斜角为( ) A. 0150 B. 0120 C. 060 D. 030 【答案】 A 【解析】由直线l 310y +-=,可得直线的斜率为3 3 - =k ,设直线的倾斜角为[)πα,0∈,则3 3 tan -=α,∴?=150α. 故选:A . 【易错点】基础求解问题注意不要算错 【思维点拨】直线方程的基础问题(倾斜角,斜率与方程,注意倾斜角为α为2 π ,即斜率k 不存在的情况)应对相关知识点充分理解,熟悉熟练 例2 已知三点()0,a A 、()7,3B 、()a C 9,2--在一条直线上,求实数a 的值. 【答案】2=a 或9 2=a 【解析】5 97,35a k a k CB AB += -= ∵A 、B 、C 三点在一条直线上,∴BC AB k k =,即 59735a a += -,解得2=a 或9 2 =a . 题型二 直线方程 例1 经过点()1,1M 且在两坐标轴上截距相等的直线是( ). A. 2x y += B. 1x y += C. 1x =或1y = D. 2x y +=或x y =

【答案】D 【解析】若直线过原点,则直线为y x =符合题意,若直线不过原点设直线为1x y m m +=, 代入点()1,1解得2m =,直线方程整理得20x y +-=,故选D . 【易错点】截距问题用截距式比较简单,但截距式1=+n y m x 中要求m ,n 均非零。故做题时应考虑此情形 【思维点拨】求解基本直线方程问题通常比较简单,考虑时注意每种形式的适用范围即可。不要漏解。 题型三 直线位置关系的判断 例1 直线()1:3230l kx k y +--=和()()2:2220l k x k y -++-=互相垂直,则实数k 的值是( ) A. 2-或1- B. 2或1- C. 2-或1 D. 2或1 【答案】D 【解析】根据直线垂直的充要条件得到: ()()()3*22*20k k k k -+-+= 化简为2 3201k k k -+=?= 或2 故选择D 【易错点】本题若采用斜率之积为-1求解,则容易错误。首先求斜率变形时分母不为0,分母为零,实际上上是一条竖线(k 不存在);其次垂直时应为:121-=k k (斜率均存在)或21k k ,中一为0,一不存在 若用0:1=++c by ax l ,0:2=++t ny mx l 垂直的充要条件:0=+bn am ,则避免上述问题 【思维点拨】 直线位置关系问题(平行与垂直)应熟练掌握其判断方法。一般而言,除一般式其他形式可能漏解(忽略了k 不存在的情况)。在做题时应该考虑全面,避免少解 题型四 对称与直线恒过定点问题 例1 点()2,4关于直线230x y +-=的对称点的坐标为_________. 【答案】()2,2- 【解析】设对称点坐标为()00,x y ,则对称点与已知点连线的中点为0024,22x y ++?? ??? ,

高考理科数学常考题型训练考点一直线与圆

第11题 考点一 直线与圆 1、P 为圆221x y +=上任一点,则P 与点(3,4)M 的距离的最小值是( ) A .1 B .4 C .5 D .6 2、已知圆22:40C x y mx ++-=上存在两点关于直线30x y -+=对称,则实数m 的值为( ) A.8 B.-4 C.6 D.无法确定 3、若x y 、满足2 2 24200x y x y +--=+,则2 2 x y +的最小值是( ) A 5 B .5 C .30- D .无法确定 4、直线20x y ++=分别与x 轴,y 轴交于,A B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是( ) A .[2,6] B .[4,8] C . D . 5、在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当,m θ变化时,d 的最大值为( ) A.1 B.2 C.3 D.4 6、在圆225x y x +=内,过点53,22?? ??? 有n 条弦的长度成等差数列,最小弦长为数列的首 项1a ,最大弦长为n a ,若公差11,63d ?? ∈???? ,那么n 的取值集合为( ) A.4,5,{6,7} B.{4,5,6} C.3,4,{5,6} D.3,4,5{,6,7} 7、过点(1,)1-的圆2224200x y x y +---=的最大弦长与最小弦长的和为( ) A. 17 B. 18 C. 19 D. 20 8、设直线过点()0,a ,其斜率为1,且与圆222x y +=相切,则a 的值为( ) A .B .2± C .± D .4± 9、已知圆22220x y x y a +-++=截直线40x y +-=所得弦的长度小于6,则实数a 的取值范围为( )

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

(完整版)高中数学直线和圆知识点总结

直线和圆 一.直线 1.斜率与倾斜角:tan k θ=,[0,)θπ∈ (1)[0,)2π θ∈时,0k ≥; (2)2πθ=时,k 不存在;(3)(,)2πθπ∈时,0k < (4)当倾斜角从0?增加到90?时,斜率从0增加到+∞; 当倾斜角从90?增加到180? 时,斜率从-∞增加到0 2.直线方程 (1)点斜式:)(00x x k y y -=- (2)斜截式:y kx b =+ (3)两点式:1 21121x x x x y y y y --=-- (4)截距式:1x y a b += (5)一般式:0C =++By Ax 3.距离公式 (1)点111(,)P x y ,222(,)P x y 之间的距离:12PP = (2)点00(,)P x y 到直线0Ax By C ++= 的距离:d = (3)平行线间的距离:10Ax By C ++=与20Ax By C ++= 的距离:d = 4.位置关系 (1)截距式:y kx b =+形式 重合:1212 k k b b == 相交:12k k ≠ 平行:1212 k k b b =≠ 垂直:121k k ?=- (2)一般式:0Ax By C ++=形式 重合:1221A B A B =且1221A C A C =且1212B C C B = 平行:1221A B A B =且1221A C A C ≠且1212B C C B ≠

垂直:12120A A B B += 相交:1221A B A B ≠ 5.直线系 1112220A x B y C A x B y C λ++++=+()表示过两直线1111:0l A x B y C ++=和2222:0l A x B y C ++=交点的所有直线方程(不含2l ) 二.圆 1.圆的方程 (1)标准形式:222 ()()x a y b R -+-=(0R >) (2)一般式:220x y Dx Ey F ++++=(2240D E F +->) (3)参数方程:00cos sin x x r y y r θθ=+??=+? (θ是参数) 【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决. (4)以11(,)A x y ,22(,)B x y 为直径的圆的方程是:()()()()0A B A B x x x x y y y y --+--= 2.位置关系 (1)点00(,)P x y 和圆222 ()()x a y b R -+-=的位置关系: 当22200()()x a y b R -+-<时,点00(,)P x y 在圆222()()x a y b R -+-=内部 当22200()()x a y b R -+-=时,点00(,)P x y 在圆222()()x a y b R -+-=上 当22200()()x a y b R -+->时,点00(,)P x y 在圆222()()x a y b R -+-=外 (2)直线0Ax By C ++=和圆222()()x a y b R -+-=的位置关系: 判断圆心(,)O a b 到直线0Ax By C ++= 的距离d = R 的大小关系 当d R <时,直线和圆相交(有两个交点); 当d R =时,直线和圆相切(有且仅有一个交点); 当d R <时,直线和圆相离(无交点);

高三数学考前知识点赏析-直线与圆

高三数学考前知识点赏析 直线和圆(续) 9、简单的线性规划: (1)二元一次不等式表示的平面区域: ①已知点A (—2,4),B (4,2),且直线:2l y kx =-与线段AB 恒相交,则k 的取值范围是__________(答:(][)31∞∞-,-,+) ②已知对k R ∈,直线10y kx --=与椭圆2215x y m +=恒有公共点,则实数m 的取值范围是 ( ) A (0,1) B (0,5) C [1,)+∞ D [1,5) (2)线性规划问题中的有关概念: (1)实数x 、y 满足不等式组250 350251x y x y x y +-≥??--≤??-+≥? ,则22(1)(1)x y +++的最小值:13 要首先比较 ||||PA PH 与大小或者评估垂足H 落在A 点的上方还是下方。 (2)点(-2,t )在直线2x -3y+6=0的上方,则t 的取值范围是_________(答:23t > ); (3)不等式2|1||1|≤-+-y x 表示的平面区域的面积是_________(答:8); (4)已知抛物线22(0)x py p =->上一点p 到直线 3x+4y-12=0 最小距离是1, 求抛物线方程。 2112.9x y =- 本题处理2 123125t d t p =--的绝对值符号时,利用了线性规划中区域概念,避开了分情 况说明的麻烦。 10、圆的方程: (1)过(1,2)总能作出两条直线和已知圆2222150x y kx y k ++++-=相切,求k 的取值范围 (2)过点(1,2)的直线l 将圆(x -2)2+y 2=4分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k = (3)已知圆04422 2=+-++y x y x 关于直线y=2x+b 成轴对称,则b= (4)设A 为圆1)1(22=+-y x 上动点,PA 是圆的切线,且|PA|=1,则P 点的轨迹方程为 _________ 83(3)(2,k ∈-); C;[0,2];4;22(1)2x y -+=);B; A;81125; 11、点与圆的位置关系: ①从圆22 2210x x y y -+-+=外一点()3,2P 向这个圆作两条切线,则两切线夹角的余弦值为 A .12 B .35 C .0 12、直线与圆的位置关系: (1)直线0ax by b a ++-=与圆2230x y x +--=的位置关系是( ) A .相交 B 相离 C 相切 D 与a 、b 的取值有关 (2)若直线220(,0)ax by a b +-=>始终平分圆22 4280x y x y +---=的周长,则12a b +的最小值 10、圆的方程: (1)过(1,2)总能作出两条直线和已知圆2222150x y kx y k ++++-=相切,求k 的取值范围

高考数学专题直线和圆练习题

专题七:直线与圆 例1:不等式063<-+ay x )0(>a 表示的平面区域是在直线063=-+ay x ( ) 的点的集合。 (A )左上方 (B )右上方 (C )左下方 (D )右下方 [思路分析] 作出直线063=-+ay x ,又因为06003<-?+?a ,所以原点在区域内侧表示直线的左下方,故选取C 。 [简要评述] 用特殊值法解选择题是常用的方法。 例2:若直线k x y +=与曲线21y x -=恰有一个公共点,则k 的取值范围是 ( ) (A )2±=k (B )[)(]2,,2-∞-+∞ (C )() 2,2- (D )2-=k 或(-1,1] [思路分析] 数形结合的思想,k x y += 表示一组斜率为1的平行直线,21y x -= 表示y 轴的右半圆。如图可知,选(D ) [简要评述] 数形结合思想的灵活运用,此题 可以进一步拓展,21y x --=,21x y -±=等。 例3:如果实数x 、y 满足()322=+-y x ,那么x y 的最大值是 。 [思路分析] 解法一:设直线l :kx y =,则x y 表示直线l 的斜率,直线l 与圆 ()322=+-y x 距离为半径即可。 解法二:设圆的参数方程:?????=+=θ θsin 3cos 32y x 则 θ θcos 32sin 3+=x y 据三角知识求解。 解法三:设x y =t ,则???==+-tx y y x 3)2(22 只要解方程组,利用0=?可得解。

解法四:如图,联结圆心C 与切点M ,则由OM ⊥CM ,又Rt △OMC 中,OC=2,CM=3 所以,OM=1,得3==OM MC x y [简要评述] 小题小做,选方法四最为简单,数形结合的数学思想的灵活运用。 例4:已知两点)2,(m A ,)1,3(B ,求直线AB 的斜率与倾斜角。 [思路分析] 注意斜率存在的条件。当3=m 时,k 不存在。α= 2π,当3≠m 时, 31312tan -=--==m m k α;当3>m 时,3 1arctan -=m α,当30,b>0) ∴)0,(a A 、),0(b B 。 ∵⊥ ∴b a b a 2100)4()4()2()2(-=?=-?-+-?- ∵a>0 0

高考数学真题分类汇编专题直线与圆理科及答案

专题八 直线 与圆 1.【2015高考重庆,理8】已知直线l :x +ay -1=0(a ∈R )是圆C :2 2 4210x y x y +--+=的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |= ( ) A 、2 B 、 C 、6 D 、 【答案】C 【解析】圆C 标准方程为2 2 (2)(1)4x y -+-=,圆心为(2,1)C ,半径为2r =,因此 2110a +?-=,1a =-,即(4,1)A --,6AB ===. 选C . 【考点定位】直线与圆的位置关系. 【名师点晴】首先圆是一个对称图形,它关于圆心成中心对称,关于每一条直径所在直线都是它的对称轴,当然其对称轴一定过圆心,其次直线与圆有相交、相切、相离三种位置关系,判断方法可用几何与代数两种方法研究,圆的切线长我们用勾股定理求解,设圆外一点P 到 圆的距离为d ,圆的半径为r ,则由点P 所作切线的长l = . 2.【2015高考新课标2,理7】过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( ) A .26 B .8 C .46 D .10 【答案】C 【解析】由已知得321143AB k -= =--,27 341 CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ?为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为 22(1)(2)25x y -++=,令0x =,得2y =±-,所以MN =C . 【考点定位】圆的方程. 【名师点睛】本题考查三角形的外接圆方程,要注意边之间斜率的关系,得出ABC ?是直角三角形,可以简洁快速地求出外接圆方程,进而求弦MN 的长,属于中档题. 3.【2015高考广东,理5】平行于直线012=++y x 且与圆52 2 =+y x 相切的直线的方程是( ) A .052=+-y x 或052=--y x B. 052=++y x 或052=-+y x

人教版高考数学专题复习:解析几何专题

高考数学专题复习:解析几何专题 【命题趋向】 1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以选择、填空题的形式出现,每年必考 2.考查直线与二次曲线的普通方程,属低档题,对称问题常以选择题、填空题出现 3.考查圆锥曲线的基础知识和基本方法的题多以选择题和填空题的形式出现,与求轨迹有关、与向量结合、与求最值结合的往往是一个灵活性、综合性较强的大题,属中、高档题, 4.解析几何的才查,分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考题解析与考点分析】 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D. 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b ?=-+?++-=?+=-?=+?,进而可求出AB 的中点1 1(,)22M b --+,又由11(,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出AB ==. 故选C 例3.如图,把椭圆2212516x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567 ,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++= ____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用.

2012年高考真题理科数学解析汇编:直线与圆

2012年高考真题理科数学解析汇编:直线与圆 一、选择题 1 .(2012年高考(天津理))设 m ,n R ∈,若直线(1)+(1)2=m x n y ++-与圆 22(1)+(y 1)=1x --相切,则+m n 的取值范围是 ( ) A .[1 B .(,1)-∞∞ C .[2- D .(,2)-∞-∞ 2 .(2012年高考(浙江理))设a ∈R,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0 平行”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 3 .(2012年高考(重庆理))对任意的实数k,直线y=kx+1与圆222 =+y x 的位置关系一定是 ( ) A .相离 B .相切 C .相交但直线不过圆心 D .相交且直 线过圆心 4 .(2012年高考(陕西理))已知圆2 2:40C x y x +-=,l 过点(3,0)P 的直线,则 ( ) A .l 与C 相交 B .l 与 C 相切C .l 与C 相离 D .以上三个选项均有可能 5 .(2012年高考(大纲理))正方形ABCD 的边长为1,点 E 在边AB 上,点 F 在边BC 上,3 7 AE BF ==,动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为 ( ) A .16 B .14 C .12 D .10 二、填空题 6 .(2012年高考(天津理))如图,已知AB 和AC 是圆的两条弦.过点B 作圆的切线与AC 的 延长线相交于点D ,过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点 F ,=3AF ,=1FB ,3 = 2 EF ,则线段CD 的长为______________. 7 .(2012年高考(浙江理))定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2 +a 到直线l :y =x 的距离等于C 2:x 2 +(y +4) 2 =2到直线l :y =x 的距离,则实数a =______________. 8 .(2012年高考(上海理))若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 __________(结果用反三角函数值表示). 9 .(2012年高考(山东理))如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在 D

最新高中数学解析几何大题精选

解析几何大量精选 1 2 1.在直角坐标系xOy 中,点M 到点()1,0F ,)2,0F 的距离之和是4,点M 3 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于4 不同的两点P 和Q . 5 ⑴求轨迹C 的方程; 6 ⑵当0AP AQ ?=时,求k 与b 的关系,并证明直线l 过定点. 7 【解析】 ⑴ 2214 x y +=. 8 ⑵将y kx b =+代入曲线C 的方程, 9 整理得222(14)8440k x kbx b +++-=, 10 因为直线l 与曲线C 交于不同的两点P 和Q , 11 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 12 设()11,P x y ,()22,Q x y ,则122814kb x x k +=-+,21224414b x x k -=+ ② 13 且22 2 2 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 14 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 15 所以()112,AP x y =+,()222,AQ x y =+. 16 由0AP AQ ?=,得1212(2)(2)0x x y y +++=. 17

将②、③代入上式,整理得22121650k kb b -+=. 18 所以(2)(65)0k b k b -?-=,即2b k =或65 b k =.经检验,都符合条件① 19 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-20 点. 21 即直线l 经过点A ,与题意不符. 22 当6 5b k =时,直线l 的方程为665 5y kx k k x ??=+=+ ?? ? . 23 显然,此时直线l 经过定点6 ,05 ??- ?? ? 点,满足题意. 24 综上,k 与b 的关系是65 b k =,且直线l 经过定点6 ,05?? - ??? 25 26 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半 27 轴为半径的圆与直线0x y -+相切. 28 ⑴ 求椭圆C 的方程; 29 ⑵ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 30 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; 31 ⑶ 在⑵的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?的取32 值范围. 33 【解析】 ⑴22 143 x y +=. 34

高中数学直线和圆知识点总结

直线和圆 一.直线 1.斜率与倾斜角:tan k θ=,[0,)θπ∈ (1)[0, )2 π θ∈时,0k ≥; (2)2 πθ=时,k 不存在;(3)( ,)2 π θπ∈时,0k < (4)当倾斜角从0? 增加到90? 时,斜率从0增加到+∞; 当倾斜角从90? 增加到180? 时,斜率从-∞增加到0 2.直线方程 (1)点斜式:)(00x x k y y -=- (2)斜截式:y kx b =+ (3)两点式: 1 21121x x x x y y y y --=-- (4)截距式: 1x y a b += (5)一般式:0C =++By Ax 3.距离公式 (1)点111(,)P x y ,222(,)P x y 之间的距离:12PP = (2)点 00(,)P x y 到直线0Ax By C ++=的距离:d = (3)平行线间的距离: 10Ax By C ++=与20Ax By C ++=的距离:d = 4.位置关系 (1)截距式:y kx b =+形式 重合:1212 k k b b == 相交:12k k ≠ 平行:1212 k k b b =≠ 垂直:121k k ?=- (2)一般式:0Ax By C ++=形式 重合:1221A B A B =且1221A C A C =且1212B C C B = 平行:1221A B A B =且1221A C A C ≠且1212B C C B ≠

垂直:12120A A B B += 相交:1221A B A B ≠ 5.直线系 1112220A x B y C A x B y C λ++++=+()表示过两直线1111:0l A x B y C ++=和2222:0l A x B y C ++=交点的所 有直线方程(不含2l ) 二.圆 1.圆的方程 (1)标准形式:2 2 2 ()()x a y b R -+-=(0R >) (2)一般式:2 2 0x y Dx Ey F ++++=(22 40D E F +->) (3)参数方程:00cos sin x x r y y r θ θ =+?? =+?(θ是参数) 【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决. (4)以11(,)A x y ,22(,)B x y 为直径的圆的方程是:()()()()0A B A B x x x x y y y y --+--= 2.位置关系 (1)点00(,)P x y 和圆222 ()()x a y b R -+-=的位置关系: 当22200()()x a y b R -+-<时,点00(,)P x y 在圆222 ()()x a y b R -+-=部 当22200()()x a y b R -+-=时,点00(,)P x y 在圆222 ()()x a y b R -+-=上 当22200()()x a y b R -+->时,点00(,)P x y 在圆222 ()()x a y b R -+-=外 (2)直线0Ax By C ++=和圆2 2 2 ()()x a y b R -+-=的位置关系: 判断圆心(,)O a b 到直线0Ax By C ++= 的距离d =R 的大小关系 当d R <时,直线和圆相交(有两个交点); 当d R =时,直线和圆相切(有且仅有一个交点); 当d R <时,直线和圆相离(无交点); 判断直线与圆的位置关系常见的方法 (1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. (2)代数法:联立直线与圆的方程消元后利用Δ判断. (3)点与圆的位置关系法:若直线恒过定点且定点在圆可判断直线与圆相交.

高中数学直线与圆精选题目(附答案)

高中数学直线与圆精选题目(附答案) 一、两直线的位置关系 1.求直线斜率的基本方法 (1)定义法:已知直线的倾斜角为α,且α≠90°,则斜率k =tan α. (2)公式法:已知直线过两点P 1(x 1,y 1),P 2(x 2,y 2),且x 1≠x 2,则斜率k =y 2-y 1 x 2-x 1. 2.判断两直线平行的方法 (1)若不重合的直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1=k 2?l 1∥l 2. (2)若不重合的直线l 1与l 2的斜率都不存在,其倾斜角都为90°,则l 1∥l 2. 3.判断两直线垂直的方法 (1)若直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1·k 2=-1?l 1⊥l 2. (2)已知直线l 1与l 2,若其中一条直线的斜率不存在,另一条直线的斜率为0,则l 1⊥l 2. 1.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值. (1)l 1⊥l 2且l 1过点(-3,-1); (2)l 1∥l 2,且坐标原点到这两条直线的距离相等. [解] (1)∵l 1⊥l 2, ∴a (a -1)-b =0,① 又l 1过点(-3,-1), ∴-3a +b +4=0.② 解①②组成的方程组得??? a =2, b =2. (2)∵l 2的斜率存在,l 1∥l 2, ∴直线l 1的斜率存在. ∴k 1=k 2,即a b =1-a .③ 又∵坐标原点到这两条直线的距离相等,l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,

即4 b =-(-b ).④ 由③④联立,解得??? a =2, b =-2或????? a =23 ,b =2. 经检验此时的l 1与l 2不重合,故所求值为 ??? a =2, b =-2或????? a =23 , b =2. 注: 已知两直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0 (1)对于l 1∥l 2的问题,先由A 1B 2-A 2B 1=0解出其中的字母值,然后代回原方程检验这时的l 1和l 2是否重合,若重合,舍去. (2)对于l 1⊥l 2的问题,由A 1A 2+B 1B 2=0解出字母的值即可. 2.直线ax +2y -1=0与直线2x -3y -1=0垂直,则a 的值为( ) A .-3 B .-4 3 C .2 D .3 解析:选D 由2a -6=0得a =3.故选D. 3.已知直线x +2ay -1=0与直线(a -1)x +ay +1=0平行,则a 的值为( ) A.32 B.32或0 C .0 D .-2 解析:选A 当a =0时,两直线的方程化为x =1和x =1,显然重合,不符合题意;当a ≠0时,a -11=a 2a ,解得a =3 2.故选A. 二、直线方程 1.直线方程的五种形式

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

相关文档
相关文档 最新文档