文档库 最新最全的文档下载
当前位置:文档库 › 一阶环形倒立摆论文

一阶环形倒立摆论文

(此文档为word格式,下载后您可任意编辑修改!)

摘要

倒立摆稳定控制是一个经典的控制问题。作为典型的快速、多变量、非线性、绝对不稳定系统,一直是控制理论与应用的热点问题,不但是验证现代控制理论方法的典型实验装置,而且其控制方法和思路在一般工业过程亦有广泛的用途,因此倒立摆系统的研究具有重要的理论研究和实际应用价值。许多抽象的控制概念如控制系统的稳定性、可控性、系统收敛速度和系统抗干扰能力等,都可以通过倒立摆系统直观的表现出来。倒立摆系统的高阶次、不稳定、多变量、非线性和强耦合等特性使得许多现代控制理论的研究人员一直将它视为研究对象。他们不断从研究倒立摆控制方法中发掘出新的控制方法,并将其应用于航天科技和机器人学等各种高新科技领域。

本文以利用电位器检测角度的一阶倒立摆系统作为研究对象,研究了其在摆角信号含有大噪声的情况下的平衡稳定控制问题,这对解决实际工程中的相关问题有一定的指导意义。本文首先设计了一阶环形倒立摆的模型。使用电位器作为姿态测量传感器不断测量摆杆的的姿态信息,通过转换这些模拟信息传送给作为控制核心的8位单片机,经过数据处理后,单片机通过驱动电路将控制信号以PWM方式去驱动直流电机的,达到调节摆杆姿态的目的。

在设计的基础上,通过牛顿力学对这个系统进行数学建模,得到系统的状态空间方程。通过这个建模的过程,可以看出这个系统是一个不稳定的非线性系统,也为后面的控制理论分析打下基础。

对该系统姿态的测量将直接影响自平衡控制算法的效果。本文提出了基于卡尔曼滤波的传感器数据融合方法,弥补了电位器在倾角测量时的不足。通过建立一个实验平台来检验这个算法的有效性,实际测试中该算法取得了不错的效果。

本文主要研究自平衡运动的动态控制,利用PID控制,使系统的各项性能指标均满足预期的要求。

关键词:倒立摆;自平衡;数据融合;PID控制

1

ABSTRACT

Inverted pendulum stability control is a classic control problem。As a complex, time-varying, nonlinear, strong coupling, natural unstable and of control. The control method of Inverted Pendulum used in the mil itary, aerospace, general industrial robots and industry process control T herefore, the research on mathematical model of work roll's thermal cro wn be intuitive show by inverted pendulum system. Inverted pendulum system of modern control theory see it as the research object. They unearthed from the inverted pendulum control method of new control method, and applied to all kinds of new and this paper using potentio meter detection Angle of the first-order inverted pendulum system as the research object, studied the angular signal contains large noise under t he condition of equilibrium stability control problem, this to solve releva nt problems in the actual project to guiding significance. This article fi rst first-order model of annular inverted pendulum is designed. Using po tentiometer as attitude measuring sensor measuring constantly swinging r od posture information, By converting the analog information transmitte d to 8-bit single chip microcomputer as control core, After data processi ng, In order to tracking, one piece microcomputer control step motor by way of identification and judgment of sensing signal to operate mechan ical drive system.

SCM through the drive circuit on the basis of the design, by Newt onian mechanics to mathematical modeling of the system, the system sta te space equation is obtained. Through the modeling process, we can se e that this system is an unstable nonlinear system, lays the foundation for the back of the control theory analysis control signal to drive mot or with PWM way.

This paper mainly studies the dynamic balance movement control, using PID control, the system of various performance indicators meet th e expected requirement

KEYWORDS: Inverted pendulum; Self-balancing; Data fusion; PID control

目录

第一章绪论 (1)

1.1 课题研究的目的和意义 (1)

1.2 发展历史与研究现状 (2)

1.3 本文研究的主要内容 (3)

第二章倒立摆系统建模和定性分析 (4)

2.1 倒立摆系统特性分析 (4)

2.2 环形一级倒立摆系统数学模型 (6)

第三章倒立摆的硬件设计 (8)

3.1 整体电路框图 (8)

3.2 单片机最小系统电路 (8)

3.2.1 单片机介绍 (8)

3.2.2 单片机最小系统 (10)

3.3姿态传感器电路 (11)

3.3.1 角位移传感器 (11)

3.3.2 姿态传感器电路 (12)

3.4 电机驱动电路 (13)

3.5 电源电路 (14)

第四章倒立摆的软件设计 (15)

4.1 软件功能与框架 (15)

4.2 单片机的资源配置 (15)

4.3 主函数功能 (18)

4.4主要算法及实现 (18)

4.4.1 角度函数 (18)

4.4.2 倒立控制函数 (19)

第五章上位机修改参数 (21)

5.1 串口猎人使用方法 (21)

5.1.1 基本收码发码 (21)

5.1.2 高级发码 (21)

5.1.3 高级收码 (22)

5.1.4 波形显示 (23)

5.2 下位机程序设计 (23)

5.2.1 下位机的高级发码程序设计 (23)

5.2.2 下位机的高级收码程序设计 (25)

5.3 上位机修改参数 (25)

第六章系统调试 (27)

6.1 初步调试 (28)

6.1.1 上电检查 (28)

6.1.2 单片机程序下载和通信 (28)

6.1.3 测试PWM输出 (28)

6.1.4 姿态传感器采集 (28)

6.2倒立控制调试 (29)

6.2.1 测量传感器零点偏移量 (29)

6.2.2 标定角位移传感器比例值 (29)

6.3 倒立控制参数整定 (30)

6.4 电机死区常数整定 (30)

第七章总结与展望 (31)

7.1 工作总结 (31)

7.2 不足与展望 (31)

7.2.1 不足 (31)

7.2.2 展望 (32)

附录一电路原理图 (33)

附录二程序代码 (35)

参考文献 (38)

致谢 (39)

第一章绪论

1.1课题研究的目的和意义

20世纪50年代,控制理论专家开始了对倒立摆系统的研究。第一台一级倒立摆系统的实验装置是根据火箭发射助推器的原理设计的。此后研究人员参照双足机器人的控制系统设计出了二级倒立摆,随着控制策略研究的深入,依次出现了三级摆、四级摆。依据基座的运动形式,倒立摆系统主要分为三大类:直线倒立摆、环形倒立摆和平面倒立摆,其中平面倒立摆是倒立摆系统中最复杂的一类。2005年7月,北京师范大学复杂系统智能控制实验室在李洪兴教授的带领下采用“变论域自适应模糊控制理论”成功实现了对平面三级倒立摆实物系统的控制,这代表了世界范围内平面倒立摆系统领域的最先水平。

倒立摆系统的控制策略与杂技表演顶杆的控制技巧相似,很多抽象的控制理论都能够通过倒立摆控制系统来表现,比如系统的稳定性、鲁棒性等,因此倒立摆系统因其成本低廉、结构简单等优点,成为验证某一控制理论或控制方法的理想实验平台。倒立摆系统是一种典型的多变量、非线性、强耦合、高阶次的自然不稳定系统,它的控制目标就是实现倒立摆系统各摆杆的平衡,使之没有过大震荡,并在加入随机扰动的情况下系统能够在扰动消失后迅速恢复平衡状态。倒立摆系统的这种特性,使它成为进行控制理论研究的理想实验平台。对倒立摆系统的研究能够有效的反映控制领域中的许多典型问题:如非线性、鲁棒性、随动性、稳定性问题等。

现阶段检验某种控制方法或控制理论是否有较强的解决非线性和不稳定性问题的能力,一般都通过对倒立摆系统控制的研究来实现,倒立摆的研究不仅有其深刻的理论意义,同时还有重要的工程背景。从日常生活中所见到的空间飞行器和各种伺服云台的稳定,到任何重心在上、支点在下的控制问题,都类似于倒立摆的控制,故对倒立摆系统的稳定控制研究在实际中有很多应用,如火箭发射、海上钻井平台以及卫星发射架的稳定控制、化工过程控制、控制飞机安全着陆等都属于这类问题。由于其运动过程与人类的行走姿态相似,而其平衡控制又与火箭飞行的控制类似,致使倒立摆系统的研究在直升机的飞行控制、火箭发射过程中的姿态控制、双足机器人的直立行走控制等领域中

具有重要的现实意义。随着现代控制理论的发展,倒立摆系统研究的相关科研成果己广泛应用于机器人、军工、航天科技及一般工业过程等诸多领域。

1.2发展历史与研究现状

国际上最早报道倒立摆的研究论文是Bryson A . E.等于1970 年撰写的Thesynthesis of regulator logic using state-variable control和Mori.S等于1976 年撰写的Control of unstable mechanical system-control of pendulum,

该两篇文章中均应用极点配置法对倒立摆系统进行稳定性控制研究,获得满

意的结果。

我国最早有关倒立摆系统的研究文章是西安交通大学的尹征琦教授1985年发表在《信息与控制》的论文“采用模拟调节器的二级倒立摆的控制”。该文采用降阶观测器这样简单的模拟控制器, 实现了对二级倒立摆的控制,系统受到大的干扰或人为改变实际模型参数时, 能非常稳定的工作。这一研究成果激发了我国控制学界的强烈兴趣,倒立摆系统的控制研究逐渐成为我国控

制学界的热门领域。各种研究成果不断涌现,其中以北京师范大学李洪兴教授领导的复杂系统智能控制实验室成果最为骄人。他们首先致力于研究一至四级直线型倒立摆实物系统的起摆和稳定实时控制,于2002年8月在世界上首次成功实现四级倒立摆实物系统起摆和稳定控制;然后又将研究目光瞄准更

加复杂难控的平面倒立摆系统,将变论域自适应模糊控制理论结合最优控制

理论和经典PID控制理论的某些特点扩展为具有高维PID调节功能的变论域自适应控制理论,并将该理论应用于平面运动二级倒立摆实物系统控制研究,于2003年3月25日成功实现了平面运动二级倒立摆实物系统控制。该项成果已达到国际先进水平甚至国际领先水平。此外,以中国科学院易建强等、清华大学王中大等、中国科学技术大学张冬军等、上海交通大学付莹、哈尔滨工业大学柏桂珍等为代表的研究团队均在倒立摆系统的控制研究方面取得了重要的突破性成就。研究对象涵盖直线型一级到四级倒立摆的起摆和稳定控制,倾斜轨道的直线三级倒立摆、平面倒立摆、圆轨(环形)倒立摆等,控制理论从经典的传递函数、频率特性、根轨迹为基础的频域分析方法,发展到PID、自适应、状态反馈、LQR最优控制、滑模变结构控制、智能控制、模糊控制

及人工神经元网络。

1.3本文研究的主要内容

一阶环形倒立摆系统是一种欠驱动机械系统,本文所研究的内容是:能否通过对电机转速和方向的控制,保持摆杆倒立的状态。对于该问题,根据经验和直觉是难以判断出来的。因此,需要对该系统建模,然后利用现代控制理论的方法进行系统的可控性的研究。

本文运用经典力学理论首先建立倒立摆系统的运动力学方程,然后通过分析,推出一阶环形倒立摆的数学模型。根据分析运用PID控制算法,调试系统实现稳定倒立功能。

第二章 倒立摆系统建模和定性分析

2.1 倒立摆系统特性分析

倒立摆系统是典型的机械电子系统。无论那种类型的倒立摆系统都有如下特性:

(l)藕合性。倒立摆摆杆之间都是强藕合的。这既是使得控制器参数调节、控制系统的设计变得复杂的原因,也是采用单电机驱动倒立摆系统的原因。

(2)开环不稳定系统。倒立摆系统有两个平衡状态:竖直向上和竖直向下。开环状态即倒立摆竖直向上的状态,微小的扰动都会使系统进入到竖直向下的状态中,所以是系统不稳定的平衡点,竖直向下的状态是系统稳定的平衡点。

(3放射非线性系统。倒立摆控制系统可以应用微分几何方法进行分析,因为它是一种典型的放射非线性系统。

(4)不确定性。主要是指测量噪声、建立系统数学模型时的参数误差以及机械传动过程中的非线性因素所导致的难以量化的部分。

(5)欠冗余性。倒立摆控制系统采用单电机驱动,因而它与冗余机构,有较大的不同。之所以采用欠冗余的设计是为了节约有效的空间及经济成本而且是在不失系统可靠性的前提下进行,研究者往往是为了通过对倒立摆控制系统的研究来获得性能优越的新型控制器设计方法,并验证其有效性及其控制性能。

针对上述倒立摆系统的特性,在建模时一般忽略掉系统中一些次要的难以建模的因素,例如摆杆连接处质量分布不均匀、伺服电机由于安装而产生的静摩擦力、空气阻力、系统连接处的松弛程度、传动齿轮的间隙等等。建模时将摆杆抽象为匀质刚体,这样可以通过力学原理建立一个较为精确的系统数学模型。为了研究倒立摆系统控制方法而建立一个比较精确的线性系统模型是必不可少的。一般采用两种方法对倒立摆系统建模:牛顿力学分析方法、欧拉一拉格朗日原理(Lagrange 方程)。应用欧拉一拉格朗日原理可得如下方

程:

)12( ),(),(),()(d i -+==??+??-??q q V q q T q q L Q q D q L q L dt i i i ,

其中,L 为拉格朗日算子,Q,以是系统的广义外力,方向与广义坐标方向一致,q 为广义变量,q,为系统的广义坐标,V 是系统的势能,T 是系统的动能,D 是系统的耗散能。

在建立系统数学模型过程中,实际物理系统的方向应与所定义的坐标系原点及方向对应。

通过建模我们发现,对于一级柔性连接倒立摆和一级平面倒立摆系统都有六个状态变量,而环形一级倒立摆有四个状态变量,环形二级倒立摆有六个状态变量。一般的,N 级倒立摆有2(N+l)个状态变量。将建立的数学模型写成仿射非线性系统的形式为:

2)-(2 )

()(x)(f x ???=+=∑x h y u x g i i i 其中u i 为系统控制量,x=(q,q')T 为系统状态变量,一般输出为y=q t 。一般情况下,i=1时,即是单电机驱动控制系统。

2.2 环形一级倒立摆系统数学模型

忽略各种摩擦力、空气阻力等,将环形倒立摆系统抽象成水平杆和匀质摆杆组成的刚体系统。一级倒立摆的结构如图2-1所示

图2-1 环形一级倒立摆的结构图

θ0为水平杆与x 轴的夹角, θ1为摆杆与垂直方向的夹角

系统的拉格朗日算子:其中T 为系统的总动能、L 为拉格朗日算子、v 为系统的总势能、q 为系统的广义坐标。

拉格朗日方程:

3)-(2 )(d i i i i Q q D q

L q L dt =??+??-?? 其中g 为系统沿广义坐标q i 方向上的外力。在环形一级倒立摆系统中广义坐 标:

(2-4)

一阶倒立摆系统的动能T :

(2-5)

其中,T m1为摆杆的动能、T mo 为水平杆的动能。

倒立摆水平杆的动能:

)(6-2 2

12000θ J T M = 在距系统摆杆转动中心距离l 处取一小段距离dl,这一小段的坐标如下:

(2-7)

这一小段的动能:

8)-(2 ])()()[(221d 22211dt

dz dt dy dt dx m l dl T ++= 倒立摆系统摆杆的动能:

)(9-2 1120

?=l m dT T 以水平杆所在的水平面为零势能面,则系统的势能V 即为摆杆的重力势能:

10)-(2 cos 1111θgl m V V m ==

则,拉格朗日方程:

11)-(2 0)(d )(d 1

100???????=??-??=??-??θθθθL L dt u L L dt 其中,u 为水平杆上所受到的控制力矩。在倒立摆系统实物控制中,采用水平摆杆的角加速度作为输入即:。将上述微分方程写成:

12)-(2 )q (),(),q (τ=++G q q q C q q M

由式(2-11)可知

13)-(2 0,C C C ,M M M M M 2221121122211211??????=??

????=??????=u C C τ 系统的状态变量:,在平衡位置对系统模型进行线性化即:

系统的状态空间模型:

14)-(2 Bu Ax x ???=+=Cx

y 其中,A 为系统的状态矩阵、B 为控制矩阵、y 为系统的输出、C 为系统的输出矩阵由上述微分方程的:

15)-(2 0 0 1 00 0 0 1,100,0 0 a 00 0 0 01 0 0 00 1 0 0A 442??????=?????

???????=????????????=C b B 其中,。

第三章倒立摆的硬件设计

3.1整体电路框图

根据设计方案,倒立摆的控制系统框图如图3-1所示。

图3-1 系统硬件框图

其中,角位移传感器选用WDD35D-1角位移传感器,该角位移传感器是模拟量输出。所以,根据控制系统的要求可以选用STC12C5410AD单片机。

3.2单片机最小系统电路

作为控制系统最重要的部分,单片机最小系统需要采集摆杆的运动状态,并对采集的信息进行处理计算,控制电机实现摆杆的稳定倒立,同时还要完成与上位机之间的通信,所以单片机最小系统会影响车模的控制效果。

3.2.1单片机介绍

STC12C5410系列单片机是单时钟机器周期(1T)的兼容8051内核单片机,是高速低功耗的新一代8051单片机,全新的流水线精简指令集结构,内部集成MAX810专用复位电路。

特点:

1.增强型1T流水线精简指令集结构8051CPU

2.工作电压:5.5V---

3.4V(5V单片机)3.8V—2.0V(3V单片机)

3.工作频率范围:0—35MHz,相当于普通8051的0—420MHz,实际工作频率可达48MHz

4.用户应用程序空间12K10K8K6K4K2K字节

5.片上集成512字节RAM

6.通用IO口(2723个),复位后为:准双向口弱上拉(普通8051传统IO口)可设置成四种模式:准双向口弱上拉,推挽强上拉,仅为输入高阻,开漏,每个IO口驱动能力均可达到20mA,但整个芯片最大不得超过55mA

7.ISP(在系统可编程)IAP(在应用可编程),无需专用编程器可通过串口(P3.0P3.1)直接下载用户程序,数秒即可完成一片

8.EEPROM功能

9.看门狗

10.内部集成MAX810专用复位电路(外部晶体20M以下时,可省外部复位电路)

12.用户在下载用户程序时,可选择是使用内部RC振荡器还是外部晶体时钟常温下内部RC振荡器频率为:5.2MHz---6.8MHz,精度要求不高时,可选择使用内部时钟,但因为有温漂,应认为是4MHz—8MHz

13.共2个16位定时器计数器

14.外部中断2路,下降沿中断或低电平触发中断,PowerDown模式可由外部中断低

15.电平触发中断方式唤醒

16.PWM(4路)PCA(可编程计数器阵列),也可用来再实现4个定时器

17.也可用来再实现4个定时器或4个外部中断(上升沿中断下降沿中断均可支持)

18.ADC,10位精度ADC,共8路

19.通用异步串行口(UART)

20.SPI同步通信口,主模式从模式

STC12C5410AD有28引脚和20引脚两种封装。图3-2是28引脚的引脚分布及引脚功能图。

图3-2 单片机引脚

3.2.2 单片机最小系统

单片机最小系统包括振荡电路、复位电路和指示电路,如图3-3所示。

图3-3 单片机最小系统

3.3姿态传感器电路

3.3.1 角位移传感器

本系统所使用的是精密导电塑料电位器,型号为WDD35D-4。其标称阻值为1KΩ,电阻公差±15%,实测阻值960Ω。介质耐压5OOV,独立线性度0.1%~1%,分辨精度为0.1%。理论电气旋转角345士2o,机械转角360 o。启动力矩镇≤lmNm。旋转负荷寿命50×106圈(400rmin,每隔15min反转)。额定功耗2W(70 o C)、OW(125 o C)。工作温度范围-55~125 o C。工作电压<15V。因为实际系统中摆杆的摆角在士28 o的范围内,因此在加上5V工作电压的情况下,电位器的输出电压范围为2.2llV~3.047V。

该传感器采用特殊形状的转子和线绕线圈,模拟线性可变差动传感器(LVDT)的线性位移,有较高的可靠性和性能,转子轴的旋转运动产生线性输出信号,围绕出厂预置的零位移动±60(总共120)度。此输出信号的相位指示离开零位的位移方向。转子的非接触式电磁耦合使产品具有无限的

分辨率,即绝对测量精度可达到零点几度。

图3-4 角位移传感器

主要技术参数:

1.旋转位移,工作温度范围大,自带信号调节;

2.免接触型传感器,适应不良环境(振动、冲击、潮湿、盐雾等,出色的温度稳定性);

3.线性(100%行程):0.25~0.5;

4.多种范围、直流输出。

3.3.2 姿态传感器电路

摆杆在不同角度时,利用角位移传感器测出不同的模拟电压输出,经过算法处理后可以获得摆杆的倾角,姿态传感器电路如图3-5所示。

图3-5 姿态传感器

电位器检测摆杆摆角的信号要经过许多环节的处理,最终计算出PWM输

出脉宽控制电机转速和方向。其中,每一个环节势必会引入一定的噪声与零点漂移,通过检测每个环节的性能来计算出整个系统的精度是非常麻烦和复杂的。考虑到最终得到的是PWM输出脉宽。所以我们直接测量输出PWM值与摆杆摆角的关系。用于修改PID的参数。

3.4 电机驱动电路

本系统的控制电机为直流电机,所以采用由驱动芯片BTC7970B组成的驱动电路。BTC7970B大功率驱动芯片输出电压为6到24V,输出电流最大可达60A,内阻为16毫欧,控制线电压5V,PWM控制频率25k。

图3-6 电机驱动电路

BTS7970B芯片特点:

1.额定的工作温度为-400C~1500C(除非另有规定);

2.功率转化效率高可达86%;

3.采用可靠的插拔式端子结构,使用更方便。

3.5电源电路

电源电路由24V开关电源和常用的LM78系列的集成稳压器件组成。24V 电源就是用通过电路控制开关管进行高速的道通与截止.将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组24V电压。这里主要介绍LM7805稳压电路。LM7805外围电路简单,具有大电流输出(约1A)、过流保护等优点,如图3-7所示。

图3-7 电源电路

电源电路可以分成滤波电路和稳压电路两部分:

(1)滤波电路:将输出电压中的交流成分加以滤除,从而得到更平滑的直流电压。各滤波电容C满足RL-C=(3~5)T2,其中T为输入交流信号周期,RL为整流滤波电路的等效负载电阻。

(2)稳压电路:LM7805稳压电路的功能是在不超过额定输入电压的亲提下得到所需的低于输入电压的稳定电压值,维持输出电压的稳定,使之不随负载的变化而变化。

本系统用到的是24V开关电源和LM7805稳压电路。24V开关电源输入220V电压输出24V电压。LM7805稳压电路输入24V电压输出5V电压。

直线一级倒立摆控制器设计 自动控制理论课程设计说明书

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书 课程名称:自动控制理论 设计题目:直线一级倒立摆控制器设计院系:电气工程系 班级:0806152 设计者:段大坤 学号:1082710118 指导教师:郭犇 设计时间:2011.6.13-2011.6.20 哈尔滨工业大学教务处

哈尔滨工业大学课程设计任务书

1.1数学模型建立 数学模型的建立过程需要用到以下参数: M 小车质量 m 摆杆质量 b 小车摩擦系数 l 摆杆转动轴心到杆质心的长度 I 摆杆惯量 F 加在小车上的力 x 小车位置 φ摆杆与垂直向上方向的夹角 θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下),其中 θπφ=+ 分析小车水平方向所受的合力可得: Mx F bx N =-- (1) 由摆杆水平方向受力分析可得: 2 2(sin )d N m x l dt θ=+ (2) 即 2cos sin N mx ml ml θθθθ=+-(3) 将(3)代入(1)可得系统的第一个运动方程: 2()cos sin M m x bx ml ml F θθθθ+++-= (4) 对摆杆垂直方向的合力进行分析可得: ()2 2cos d P mg m l dt θ-=- (5) 即: 2sin cos P mg ml ml θθθθ-=+(6) 力矩平衡方程如下: sin cos Pl Nl I θθθ--=(7) 将(6)(7)合并可得第二个运动方程:

2()sin cos I ml mgl mlx θθθ++=- (8) 1、微分方程模型 由于θπφ=+,当摆杆与垂直向上方向之间的夹角φ和1(弧度)相比很小时,即1 φ时,可进行如下近似处理:cos 1θ=-,sin θφ=-,2 ( )0d dt θ=。用u 代表被控对象的输入力F ,将模型线性化可得系统的微分方程表达式: 2 ()()I ml mgl mlx M m x bx ml u φφφ?+-=?? ++-=?? (9) 2、传递函数模型 设初始条件为0,,对(9)进行拉普拉斯变换可得: 222 22 ()()()()()()()()() I ml s s mgl s mlX s s M m X s s bX s s ml s s U s ?+Φ-Φ=??++-Φ=??(10) 输出为角度φ,解方程组(10)的第一个方程可得: 22()()[]()I ml g X s s ml s +=-Φ (11) 或2 22(()()s mls X s I ml s mgl Φ= +-)(12) 令小车加速度v x =则有 22()()()s ml V s I ml s mgl Φ=+- 将(11)式代入方程组(10)的第二个方程可得 222 222()()()[]()[]()()()I ml g I ml g M m s s b s s ml s s U s ml s ml s +++-Φ+-Φ-Φ= 以u 为输入量,以摆杆摆角φ为输出的传递函数为: 2 2 432()()()() ml s s q b I ml M m mgl bmgl U s s s s s q q q Φ=+++--

最优化方法课程设计实验报告_倒立摆

倒立摆控制系统控制器设计实验报告

成员:陈乾睿 2220150423 郑文 2220150493 学院:自动化 倒立摆控制系统控制器设计实验 一、实验目的和要求 1、目的 (1)通过本设计实验,加强对经典控制方法(LQR控制器、PID控制器)和智能控制方法(神经网络、模糊控制、遗传算法等)在实际控制系统中的应用研究。(2)提高学生有关控制系统控制器的程序设计、仿真和实际运行能力. (3)熟悉MATLAB语言以及在控制系统设计中的应用。 2、要求 (1)完成倒立摆控制系统的开环系统仿真、控制器的设计与仿真以及实际运行结果 (2)认真理解设计内容,独立完成实验报告,实验报告要求:设计题目,设计的具体内容及实验运行结果,实验结果分析、个人收获和不足,参考资料。程序

清单文件。 二、实验内容 倒立摆控制系统是一个典型的非线性系统,其执行机构具有很多非线性,包括:死区、电机和带轮的传动非线性等。 本设计实验的主要内容是设计一个稳定的控制系统,其核心是设计控制器,并在MATLAB/SIMULINK环境下进行仿真实验,并在倒立摆控制实验平台上实际验证。 算法要求:使用LQR以外的其它控制算法。 三、倒立摆系统介绍 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的应用开发前景。 倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性:非线性,不确定性,耦合性,开环不稳定性,约束限制。 经过相关论文和文献的查询,我们决定采用模糊控制的方法进行倒立摆的控制。

(完整版)单级倒立摆毕业设计

摘要 本系统以atmega16为平台,主要由机械倒立装置及单片机自动控制组成,将装在摆杆的角度传感器GY-61得到的数据进行处理,利用摆杆倒立摆动过程中受力的分析和实验数据总结对摆杆板调节一定的角度,提高了倒立摆装置自动控制的稳定性。通过PWM技术动态控制电机的转速、方向和PID控制调节,实现装置设计的各种要求,达到了设计目的,完成了设计功能。 关键词:角度传器;电动机;倒立摆;反馈;倒立控制;PID控制

Abstract The system taking ATmega16 as the platform, mainly composed of a mechanical device and microcomputer automatic control system, for processing will be installed in the GY-61 pendulum angle sensor data, summarize the pendulum plate adjusting certain angle by analysis and experiment data force pendulum inverted the oscillating process, improves the stability of inverted swing device for automatic control. By adjusting the speed, control the direction and PID dynamic PWM technology to control the motor, to achieve a variety of device design requirements, achieve the design purpose, completed the design function. Keywords:Angle sensor;Motor;Inverted pendulum;inverted control; Feedback;PID control 目录 1 方案论证 (1) 1.1 电机的选择 (2) 2 总体方案 (3) 3 电路设计 (3) 3.1 Atmega16及其AD电路 (3) 3.2内部PWM发生模式 (5)

倒立摆

北京信息科技大学控制系统计算机辅助设计实践报告 学生姓名:薛燕彬 学号:170223 班级:研1702班 院(系):自动化学 专业:控制工程

倒立摆实验 一、倒立摆简介 倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。 二、倒立摆分类 倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自由连接(即无电动机或其他驱动设备)。现在由中国的大连理工大学李洪兴教授领导的“模糊系统与模糊信息研究中心”暨复杂系统智能控制实验室采用变论域自适应模糊控制成功地实现了四级倒立摆。因此,中国是世界上第一个成功完成四级倒立摆实验的国家。 三、倒立摆控制目标 倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使 之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系 统能克服随机扰动而保持稳定的位置。

四、实验题目要求 有倒立摆控制系统通过给小车底座施加控制量,保持摆杆直立或使摆杆的摆脚跟踪指定的轨迹。倒立摆系统如图所示: 图1倒立摆模型 动态模型为 图2动态模型图 在此系统中,g=9.8m2/s是重力加速度,M是小车的质量,m是摆杆的质量,l是摆长的一半,u为施加的外力,即控制量。M=1kg,m=0.1kg,l=0.5m。X1为输出摆角θ,X2为输出摆角速度θ。 摆角与输入的关系如下

一级倒立摆的课程设计

第 1 页 目录 摘要............................................................................................... 3 1.一阶倒立摆的概述.. (4) 1.1倒立摆的起源与国内外发展现状................................. 4 1.2倒立摆系统的组成......................................................... 5 1.3倒立摆的分类:............................................................. 5 1.4倒立摆的控制方法:..................................................... 5 1.5本文研究内容及安排..................................................... 6 1.6系统内部各相关参数为:............................................. 6 2.一阶倒立摆数学模型的建立. (7) 2.1概述................................................................................. 7 2.2数学模型的建立............................................................. 8 2.3一阶倒立摆的状态空间模型:....................................11 2.4实际参数代入:........................................................... 12 3.定量、定性分析系统的性能.. (13) 3.1,对系统的稳定性进行分析........................................ 13 3.2 对系统的稳定性进行分析:...................................... 15 4.状态反馈控制器的设计. (16) 4.1反馈控制结构............................................................... 16 4.2单输入极点配置........................................................... 17 4.3利用MATLAB 编写程序 ............................................ 20 5.系统的仿真研究,校验与分析. (22) 5.1使用Matlab 中的SIMULINK 仿真............................ 22 6.设计状态观测器,讨论带有状态观测器的状态反馈系统的

倒立摆实验报告

倒立摆实验报告 机自82 组员:李宗泽 李航 刘凯 付荣

倒立摆与自动控制原理实验 一.实验目的: 1.运用经典控制理论控制直线一级倒立摆,包括实际系统模型的建立、根轨迹分析和控制器设计、频率响应分析、PID 控制分析等内容. 2.运用现代控制理论中的线性最优控制LQR 方法实验控制倒立摆 3.学习运用模糊控制理论控制倒立摆系统 4.学习MATLAB工具软件在控制工程中的应用 5.掌握对实际系统进行建模的方法,熟悉利用MATLAB 对系统模型进行仿真,利用学习的控制理论对系统进行控制器的设计,并对系统进行实际控制实验,对实验结果进行观察和分析,非常直观的感受控制器的控制作用。 二. 实验设备 计算机及等相关软件 固高倒立摆系统的软件 固高一级直线倒立摆系统,包括运动卡和倒立摆实物 倒立摆相关安装工具 三.倒立摆系统介绍 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种

技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。 倒立摆已经由原来的直线一级倒立摆扩展出很多种类,典型的有直线倒立摆环形倒立摆,平面倒立摆和复合倒立摆等,本次实验采用的是直线一级倒立摆。 倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性: 1) 非线性2) 不确定性3) 耦合性4) 开环不稳定性5) 约束限制 倒立摆控制器的设计是倒立摆系统的核心内容,因为倒立摆是一个绝对不稳定的系统,为使其保持稳定并且可以承受一定的干扰,需要给系统设计控制器,本小组采用的控制方法有:PID 控制、双PID 控制、LQR控制、模糊PID控制、纯模糊控制 四.直线一级倒立摆的物理模型: 系统建模可以分为两种:机理建模和实验建模。实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励

倒立摆

第1章:绪论 1.1 倒立摆的发展历史及现状 控制理论教学领域,开展各种理论教学、控制实验、验证新理论的正确性的理想实验平台就是倒立摆控制系统。对倒立摆系统的研究能有效的反映控制中的许多典型问题,同时兼具多变性、强非线性和自然不稳定性等优点,通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题。倒立摆系统作为一个实验装置,形象直观、结构简单、构件组成参数和形状易于改变、成本低廉,且控制效果可以通过其稳定性直观地体现,也可以通过摆杆角度、小车位移和稳定时间直接度量其实验效果,直观显著。因而从诞生之日就受到国内外学者的广泛研究。 倒立摆系统的最初研究始于二十世纪50年代末,麻省理工学院的控制论专家根据火箭发射助推器的原理设计出一级倒立摆实验设备。1966年Schaefer和Cannon应用Bang Bang控制理论将一个曲轴稳定于倒置位置,在60年代后期作为一个典型的不稳定严重非线性证例提出了倒立摆的概念,并用其检验控制方法对不稳定、非线性和快速性系统的控制能力受到世界各国许多科学家的重视。而后人们又参照双足机器人控制问题研制出二级倒立摆控制设备,从而提高了检验控制理论或方法的能力,也拓宽了控制理论或方法的检验范围。对倒立摆研究较多的是美国、日本等发达国家,如Kawamoto-Sh.等讨论了有关倒立摆的非线性控制的问题以及倒立摆的模糊控制的稳定性问题为其后的倒立摆模糊控制研究开辟了道路,美国国家航空和宇航局Torres-Pornales,Wilfredo等人研究了从倒立摆的建模、系统分析到非线性控制器设计的一系列问题,比较深入的研究了倒立摆的非线性控制问题并进行了实物仿真;科罗拉多州大学的Hauser. J正在从事基于哈密尔顿函数的倒立摆控制问题的研究;日本东京大学的Sugihara. Tomorniehi等研究了倒立摆的实时控制问题及其在机器人控制中的应用问题。此外,还有如德国宇航中心的Schreiber等研究了倒立摆的零空间运动控制问题,分析了倒立摆的零空间运动特性与其稳定性之间的联系。 国内研究倒立摆系统的控制问题起步虽晚,但成果也还是挺多较早的,如尹征琦等于1985年采用模拟调节器,实现了对倒立摆系统的稳定控制;梁任秋等于1987年讨论了设计小车一二阶倒立摆系统数学控制器的一般方法;任章、徐建民于1995年利用振荡器控制原理,提出了在倒立摆的支撑点的垂直方向上加入一零均值的高频震荡信号以改善倒立摆系统的稳定性。同年,程福雁先生等研究了使用参变量模糊控制对倒立摆进行实时控制的问题。北京理工大学的蒋国飞、吴沧浦等实现了状态未离散化的倒立摆的无模型学习控制。仿真表明该方法不仅能成功解决确定和随机倒立摆模型的平衡控制具有很好的学习效果。 90年代以来,由于数学基础理论、控制理论和计算机技术的发展,不断地有新的控制理论和控制思想问世,使得倒立摆控制系统的研究和应用更加广泛和深入,把这些理论应用在实际的实物控制和分析中己经成为当前控制理论研究和应用的核心问题。人们为了检验新的控制方法是否具有良好的处理多变量、非线性和绝对不稳定型的能力,不断提升倒立摆系统的复杂性和难度,如增加摆杆的级数,加大摆杆的长度,改变摆的形状和放置的形式等。2002年8月,北京师范大学教授李洪兴领导的复杂系统智能控制实验室,首次成功实现了直线运动四级倒立摆实物系统控制,2003年10月,他们采用高维变论域自适应控制理论,在世界

(完整版)一级倒立摆系统分析

一级倒立摆的系统分析 一、倒立摆系统的模型建立 如图1-1所示为一级倒立摆的物理模型 图1-1 一级倒立摆物理模型 对于上图的物理模型我们做以下假设: M:小车质量 m:摆杆质量 b:小车摩擦系数 l:摆杆转动轴心到杆质心的长度 I:摆杆惯量 F:加在小车上的力 x:小车位置 ?:摆杆与垂直向上方向的夹角 θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图1-2是系统中小车和摆杆的受力分析图。其中,N和P为小车与摆

杆相互作用力的水平和垂直方向的分量。注意:实际倒立摆系统中的检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。 图1-2 小车及摆杆受力分析 分析小车水平方向受力,可以得到以下方程: M x?=F-bx?-N (1-1) 由摆杆水平方向的受力进行分析可以得到以下方程: N =m d 2dt (x +l sin θ) (1-2) 即: N =mx?+mlθcos θ?mlθ2sin θ (1-3) 将这个等式代入式(1-1)中,可以得到系统的第一个运动方程: (M +m )x?+bx?+mlθcos θ?mlθ2sin θ=F (1-4) 为推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得出以下方程: P ?mg =m d 2dt 2 (l cos θ) (1-5) P ?mg =? mlθsin θ?mlθ2cos θ (1-6) 利用力矩平衡方程可以有:

?Pl sinθ?Nl cosθ=Iθ (1-7) 注意:此方程中的力矩方向,由于θ=π+?,cos?=?cosθ,sin?=?sinθ,所以等式前面含有负号。 合并两个方程,约去P和N可以得到第二个运动方程: (I+ml2)θ+mgl sinθ=?mlx?cosθ (1-8) 设θ=π+?,假设?与1(单位是弧度)相比很小,即?<<1,则 可以进行近似处理:cosθ=?1,sinθ=??,(dθ dt ) 2 =0。用u来 代表被控对象的输入力F,线性化后的两个运动方程如下: {(I+ml2)??mgl?=mlx? (M+m)x?+bx??ml?=u (1-9) 假设初始条件为0,则对式(1-9)进行拉普拉斯变换,可以得到: {(I+ml2)Φ(s)s2?mglΦ(s)=mlX(s)s2 (M+m)X(s)s2+bX(s)s?mlΦ(s)s2=U(s) (1-10) 由于输出为角度?,求解方程组的第一个方程,可以得到: X(s)=[(I+ml2) ml ?g s ]Φ(s) (1-11) 或改写为:Φ(s) X(s)=mls2 (I+ml2)s2?mgl (1-12) 如果令v=x?,则有:Φ(s) V(s)=ml (I+ml2)s2?mgl (1-13) 如果将上式代入方程组的第二个方程,可以得到: (M+m)[(I+ml2) ml ?g s ]Φ(s)s2+b[(I+ml2) ml +g s ]Φ(s)s?mlΦ(s)s2= U(s) (1-14) 整理后可得传递函数: Φ(s) U(s)= ml q s2 s4+b(I+ml 2) q s3?(M+m)mgl q s2?bmgl q s (1-15)

单级倒立摆系统的分析与设计

单级倒立摆系统的分析与设计 小组成员:武锦张东瀛杨姣 李邦志胡友辉 一.倒立摆系统简介 倒立摆系统是一个典型的高阶次、多变量、不稳定和强耦合的非线性系统。由于它的行为与火箭飞行以及两足机器人行走有很大的相似性,因而对其研究具有重大的理论和实践意义。由于倒立摆系统本身所具有的上述特点,使它成为人们深入学习、研究和证实各种控制理论有效性的实验系统。 单级倒立摆系统(Simple Inverted Pendulum System)是一种广泛应用的物理模型,其结构和飞机着陆、火箭飞行及机器人的关节运动等有很多相似之处,因而对倒立摆系统平衡的控制方法在航空及机器人等领域有着广泛的用途,倒立摆控制理论产生的方法和技术将在半导体及精密仪器加工、机器入技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。 倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案。最初研究开始于二十世纪50年代,单级倒立摆可以看作是一个火箭模型,相比之下二阶倒立摆就复杂得多。1972年,Sturgen等采用线性模拟电路实现了对二级倒立摆的控制。目前,一级倒立摆控制的仿真或实物系统已广泛用于教学。 二.系统建模 1.单级倒立摆系统的物理模型 图1:单级倒立摆系统的物理模型

单级倒立摆系统是如下的物理模型:在惯性参考系下的光滑水平平面上,放置一个可以在平行于纸面方向左右自由移动的小车(cart ),一根刚性的摆杆(pendulum leg )通过其末端的一个不计摩擦的固定连接点(flex Joint )与小车相连构成一个倒立摆。倒立摆和小车共同构成了单级倒立摆系统。倒立摆可以在平行于纸面180°的范围内自由摆动。倒立摆控制系统的目的是使倒立摆在外力的摄动下摆杆仍然保持竖直向上状态。在小车静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆受到微小的摄动时就会发生不可逆转的破坏而使倒立摆无法复位,这时必须使小车在平行于纸面的方向通过位移产生相应的加速度。依照惯性参考系下的牛顿力学原理,作用力与物体位移对时间的二阶导数存在线性关系,单级倒立摆系统是一个非线性系统。 各个参数的物理意义为: M — 小车的质量 m — 倒立摆的质量 F — 作用到小车上的水平驱动力 L — 倒立摆的长度 x — 小车的位置 θ— 某一时刻摆角 整个倒立摆系统就受到重力、驱动力和摩擦阻力的三个外力的共同作用。这里,驱动力F 是由连接小车的传动装置提供,控制倒立摆的稳定实际上就是依靠控制驱动力F 使小车在水平面上做与倒立摆运动相关的特定运动。为了简化模型以利于仿真,假设小车与导轨以及摆杆与小车铰链之间的摩擦均为0。 2.单级倒立摆系统的数学模型 令小车的水平位移为x ,运动速度为v ,加速度a 。 小车的动能为212kc E Mx =,选择特定的参考平面使得小车的势能为0。 摆杆的长度为L ,某时刻摆角为θ,在摆杆上与固定连接点距离为q (0

控制系统课程设计---直线一级倒立摆控制器设计

控制系统课程设计---直线一级倒立摆控制器设计

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:控制系统设计课程设计 设计题目:直线一级倒立摆控制器设计 院系: 班级: 设计者: 学号: 指导教师:罗晶周乃馨 设计时间:2013.9.2——2013.9.13

哈尔滨工业大学课程设计任务书 姓名:院(系):英才学院 专业:班号: 任务起至日期:2013 年9 月 2 日至2013 年9 月13 日 课程设计题目:直线一级倒立摆控制器设计 已知技术参数和设计要求: 本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。 系统内部各相关参数为: M小车质量0.5 Kg ;m摆杆质量0.2 Kg ;b小车摩擦系数0.1 N/m/sec ;l摆杆转动轴心到杆质心的长度0.3 m ;I摆杆惯量0.006 kg*m*m ;T采样时间0.005 秒。 设计要求: 1.推导出系统的传递函数和状态空间方程。用Matlab 进行阶跃输入仿真,验证系统的稳定性。 2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为: (1)稳定时间小于5秒;

(2)稳态时摆杆与垂直方向的夹角变化小于0.1 弧度。 3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为:(1)摆杆角度θ和小车位移x的稳定时间小于3秒 (2)x的上升时间小于1秒 (3)θ的超调量小于20度(0.35弧度) (4)稳态误差小于2%。 工作量: 1. 建立直线一级倒立摆的线性化数学模型; 2. 倒立摆系统的PID控制器设计、MATLAB仿真及 实物调试; 3. 倒立摆系统的极点配置控制器设计、MATLAB仿 真及实物调试。

自动控制原理课程设计(倒立摆)

南京航空航天大学 课程名称:自动化控制原理课程设计 专业:探测制导与控制技术 时间:2016.6.20-2016.6.25

一、实验目的 1、 学会用SIMULINK 软件分析复杂的控制系统。 2、 会用状态反馈进行控制系统设计。 3、 了解状态观测器的实现。 二、实验设备 1、 计算机和打印机。 2、 实际倒立摆系统。 三、实验原理 假设原系统的状态空间模型为 BU AX X += ,若系统是完全能控的,则引入状态反馈调节器KX R U -= 这时,闭环系统的状态空间模型为???=+-= CX Y BR X BK A X )( 设计任务是要计算反馈K ,使A-BK 的特征值和期望的极点P 相同。通过将倒立摆线性数学模型输入到MATLAB 中,使用K=place(A,B,P)函数算出反馈矩阵反馈增,K 和期望极点向量P 应与状态变量X 具有相同的维数。。 本系统可令输入R=0,即只讨论初始值对系统的作用。 倒立摆系统模型如下: 1、倒立摆线性模型: ? ? ??????? ??? ----=3444.16254.42122.822122.822760.07062.38751.168751.6510000100A ????????????-=5125.62184.500B ??????=00100001C ? ?? ???=00D 2、倒立摆非线性模型: ) (cos 00144.00061.02120 01θθθ--+= ? ?B A 2121121222)sin(2.1)cos(2.1sin 2.61? ? ? ?? ? ?-----=θθθθθθθθθθ 其中: ? ?---++=11212110]0168.0)cos()sin(00144.0[sin 2979.00236.0θθθθθθθu A 2221212210])sin()[cos(0012.0sin )cos(0734.0? ? ---+--=θθθθθθθθθB

倒立摆简介

倒立摆是验证控制方法和理论的实验平台,倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案、 倒立摆最初研究开始于20世纪50年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备,而后人们又参照双足机器人控制问题研制二级倒立摆控制设备,从而提高了检验控制理论或方法的能力,也拓宽了控制理论或方法的检验范围。三级倒立摆是由一、二级倒立摆演绎而来,它的实物系统控制实现已经是公认的难题。北京航空航天大学张明廉教授领导的课题组应用“拟人智能控制理论”,于1994年8月成功地实现单电机控制的三级倒立摆。这一成功,证实了“拟人智能控制理论”的正确性,并表明了在没有精确数学模型和不需要推理机的前提下,对一类复杂被控对象是可以控制的。三级倒立摆控制的成功,对空间运动体的控制有直接参考价值。 北师大模糊系统与模糊信息研究中心暨复杂系统智能控制实验室采用李洪兴教授提出的“变论域自适应模糊控制”理论,成功地实现了四级倒立摆控制仿真实验,并于 2002年8月11日实现了全球首例四级倒立摆实物系统控制。而由此项理论产生的方法和技术将在半导体及精密仪器加工、机器人技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。 各级倒立摆简介如下: 1、单级摆:结构相对简单,控制相对容易,控制算法比较简单。适合本科生实验教学。 2、二级摆:结构相对复杂,控制难度相对大,控制算法也相对复杂。可适合于研究生实验教学需要,也可以作为专业教师研究新型的控制算法之用。 3、三级摆:结构复杂,控制难度大,控制算法复杂。主要适于理论研究、实验仿真之用。 4、四级摆:比三级倒立摆更复杂。主要适用于半导体及精密仪器加工、机器人技术、导弹拦截控制系统、航空器对接控制技术等方面。 此前,实现的一级至四级倒立摆均为直线运动倒立摆。直线运动倒立摆实现的是在一个平面上的摆动,轨道较长、传动环节较多、占地空间较大,实践中常常由于传动机构的故障或误差,而不是控制方法本身的问题导致平衡控制失败。随着科学技术的发展,被控对象日趋复杂,对控制性能的要求也日趋提高,直线倒立摆已不能满足复杂系统的需要,由此产生了圆形轨道倒立摆。 圆形轨道倒立摆实现了上、下、左、右、前、后任何方向的摆动,与传统的直线轨道倒立摆相比,圆形轨道倒立摆具有控制精度高、功能多、结构紧凑、性价比高等优点,所以圆形轨道倒立摆比传统的直线轨道倒立摆更具有竞争力和应用价值。 圆形轨道倒立摆实物系统控制的实现要比直线运动倒立摆实物系统控制的实现困难得多;这不仅是因为这样的系统其变量、非线性程度及不稳定性成倍地增加,而且有关机械和电子器件的实现或选用会遇到瓶颈性的困难。因此,圆形轨道倒立摆实物系统是控制领域研究的重要课题之一。 倒立摆系统机理的研究不仅具有重要的理论价值,而且具有重要的现实意义,是控制理论中经久不衰的研究课题。长期以来,倒立摆系统的控制问题一直受到国内外学者的普遍关注和不懈探索。

倒立摆的设计报告

摘要:倒立摆是进行控制理论研究的典型实验平台。由于倒立摆系统的控制策略和杂技运动员顶杆平衡表演的技巧有异曲同工之处,极富趣味性,而且许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等等,都可以通过倒立摆系统实验直观的表现出来,因此在欧美发达国家的高等院校,它已成为必备的控制理论教学实验设备。学习自动控制理论的学生通过倒立摆系统实验来验证所学的控制理论和算法,非常的直观、简便,在轻松的实验中对所学课程加深了理解。 本论文在自动控制原理校正的基本思想上,通过采用根轨迹校正法,频域法,分别对倒立摆系统进行校正,使之满足性能要求。 关键词:倒立摆,自动控制,根轨迹,频域法 1、引言 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50 年代,麻省理工学院的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。 法控制器的设计是倒立摆系统的核心内容,因为倒立摆是一个绝对不稳定

倒立摆系统的建模及Matlab仿真资料

第1 页共11 页 倒立摆系统的建模及Matlab仿真 1.系统的物理模型 考虑如图(1)所示的倒立摆系统。图中,倒立摆安装在一个小车上。这里仅考虑倒立摆在图面内运动的二维问题。 图(1)倒立摆系统 假定倒立摆系统的参数如下。 摆杆的质量:m=0.1g l=1m小车的质量:摆杆的长度:2重力加速度:g=9.8m/M=1kg s摆杆的质量在摆杆的中心。 设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量?≤10%,调节时间ts ≤4s ,通过小车的水平运动使倒立摆保持在垂直位置。 2.系统的数学模型 2.1建立倒置摆的运动方程并将其线性化。 为简化问题,在数学模型中首先假设:1)摆杆为刚体;2)忽略摆杆与支点之间的摩擦;3)忽略小车与接触面间的摩擦。 ?),在u设小车瞬时位置为z,摆心瞬时位置为(作用下,小车及摆均产生加速远 动,sin?lz根据牛顿第二定律,在水平直线远动方向的惯性力应与u平衡,于是有 22dzd?)?sinu?M?m(zl22dtdt???2????z(M?mml?)cos?mlusin? 即:??①

绕摆轴转动的惯性力矩与重力矩平衡,因而有. 第2 页共11 页 2??d??? sin??lcosm(z?lsinmgl)??2dt?????22???????即: nis?l?ocgcosincoszs?ls??② 以上两个方程都是非线性方程,为求得解析解,需作线性化处理。由于控制的目的是保持倒立摆直?2?????且可忽略则,立,在试驾合适的外力条件下,假定θ很小,接近于零时合理的,1sincos??,项。于是有 ???M?zm?u?ml??)(③ ????g?z?l??④联立求解可得1mg?u?z????MM 1)?m(M????u??MlMl 列写系统的状态空间表达式。2.2??T xx,x,x,,选取系统变量则 xx,x,xx?,42134123xx??211mgux???x?32MM x?x?431)(M?mu?x?x? 34MlMl 即00100????z??1mg??????000?z?????d MM??Bu?Ax?xux????????00001???dt????1gm?(M)????000??????? MlMl??????Cx?0?y?xx1001代入数据计算得到:0100????000?1??????T0D,?0??1BA?,?001,C100??1000??00011?? 11 页3 页共第 3.设计控制器3.1判断系统的能控性和稳定性 1100????0011????23BBAABAB?Q?故被控对象完全可控, rank()=4,Q kk??11?0?10??011?10???22???11?。出现大于零的特征值,故被,,0 解得特征值为 0由特征方程0??11I?A?)(控对象不稳定3.2确定希望的极点, 另一对为远极点,认为系统性能主要由主导,选其中一对为主导极点和希望的极点n=4ss21极点决定,远极点只有微小影响。根据二阶系统的关系式,先确定主导极点???42??1????10.?e??t1.67?有,闭环可得;取误差带,于是取,则6.?059?0.02.?0? pns??n2????1?js??=-10.8j,远极点选择使它和原点的距离大于主导极点与原点 距离主导极点为?n,21s??15倍,取的54,33.3采用状态反馈方法使系统稳定并配置极点 ??kkkk?k;状态反馈系统的状态方程,馈状态反的控制规律为为kxu??3102?,其

倒立摆实验报告

目录 一、倒立摆系统介绍 (2) 1.1倒立摆系统简介 (2) 1.2 倒立摆组成及其原理 (2) 1.3 倒立摆特性 (3) 二、一级倒立摆 (3) 2.1一级倒立摆建模 (3) 2.2 一级倒立摆控制方法 (11) 2.2.1 单输入—单输出控制方法 (11) 超前滞后控制方法 2.2.2 单输入—多输出控制方法 (22) 双PID控制方法 2.2.3 多输入—多输出控制方法 (30) 极点配置法 二次线性最优控制法 三、二级倒立摆 (36) 3.1二级倒立摆建模 (36) 3.2 二级倒立摆控制方法 (46) 3.2.1 二次线性最优控制法 (46) 3.2.2 基于融合技术的模糊控制法 (48) 四、总结 (60) 五、参考文献 (63)

一、倒立摆系统介绍 1.1倒立摆系统简介 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。平面倒立摆可以比较真实模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。 1.2倒立摆组成及其原理 倒立摆的组成包括计算机、运动控制卡、伺服系统、倒立摆本体和光电码盘、反馈测量元件等几大部分,组成一个闭环系统。对于直线型倒立摆,可以根据伺服电机自带的码盘反馈通过换算获得小车的位移,小车的速度信号可以通过差分法得到;各个摆杆的角度由光电码盘测得并直接反馈到控制卡,速度信号可以通过差分方法得到。计算机从运动控制卡中实时读取数据,确定控制策略(电机的输出力矩),并发送给运动控制卡。运动控制卡经过DSP 内部的控制算法实现该控制决策,产生相应的控制量,使电机转动,带动小车运动,保持摆杆平衡。

哈工大一阶倒立摆

哈尔滨工业大学 控制科学与工程系 控制系统设计课程设计报告

姓名:院(系): 专业:自动化班号: 任务起至日期: 2014 年9 月9 日至 2014 年9 月20 日 课程设计题目:直线一级倒立摆控制器设计 已知技术参数和设计要求: 本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。 系统内部各相关参数为: M小车质量0.5kg; m摆杆质量0.2kg; b小车摩擦系数0.1N/m/sec; l摆杆转动轴心到杆质心的长度0.3m; I摆杆惯量0.006kg*m*m; T采样时间0.005秒。 设计要求: 1.推导出系统的传递函数和状态空间方程。用Matlab进行阶跃输入仿真,验证系统的稳定性。 2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为: (1)稳定时间小于5秒; (2)稳态时摆杆与垂直方向的夹角变化小于0.1弧度。 3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为: (1)摆杆角度错误!未找到引用源。和小车位移x的稳定时间小于3秒 (2)x的上升时间小于1秒 (3)错误!未找到引用源。的超调量小于20度(0.35弧度) (4)稳态误差小于2%。 工作量: 1.建立直线一级倒立摆的线性化数学模型; 2.倒立摆系统的PID控制器设计、Matlab仿真及实物调试; 3.倒立摆系统的极点配置控制器设计、Matlab仿真及实物调试。

哈尔滨工业大学 (1) 控制系统设计课程设计报告 (1) 一.实验设备简介 (3) 二.直线一阶倒立摆数学模型的推导 (6) 2.1概述 (6) 2.2数学模型的建立 (7) 2.3一阶倒立摆的状态空间模型: (9) 2.4实际参数代入: (10) 三.定量、定性分析系统的性能 (11) 3.1 对系统的稳定性进行分析 (11) 3.2 对系统的稳定性进行分析: (12) 四. 实际系统的传递函数与状态方程 (13) 五. 系统阶跃响应分析 (14) 六.一阶倒立摆PID控制器设计 (15) 6.1 PID控制分析 (15) 6.2 PID控制参数设定及MATLAB仿真 (17) 6.3 PID控制实验 (18) 七.状态空间极点配置控制器设计 (19) 7.1 状态空间分析 (20) 7.2 极点配置及MA TLAB仿真 (21) 7.3 利用爱克曼公式计算 (21) 八.课程设计心得与体会 (22) 一.实验设备简介 倒立摆控制系统:Inverted Pendulum System (IPS) 倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。 倒立摆是进行控制理论研究的典型实验平台。倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。

相关文档