文档库 最新最全的文档下载
当前位置:文档库 › 椭偏仪测量薄膜厚度和折射率实验报告

椭偏仪测量薄膜厚度和折射率实验报告

椭偏仪测量薄膜厚度和折射率实验报告
椭偏仪测量薄膜厚度和折射率实验报告

椭偏仪测量薄膜厚度和折射率实验报告 组别:69组 院系:0611 姓名:林盛 学号:PB06210445 实验题目:椭偏仪测量薄膜厚度和折射率

实验目的:了解椭偏仪测量薄膜参数的原理,初步掌握反射型椭偏仪的使用

方法。

实验原理:

椭圆偏振光经薄膜系统反射后,偏振状态的变化量与薄膜的厚度和折

射率有关,因此只要测量出偏振状态的变化量,就能利用计算机程序多次逼近定出膜厚和折射率。参数?描述椭圆偏振光的P 波和S 波间的相位差经薄膜系统关系后发生的变化,ψ描述椭圆偏振光相对振幅的衰减。有超越方程:

tan pr pi sr si E E E E ψ???

?

= ? ?

????

()()pr sr pi si ββββ?=---

为简化方程,将线偏光通过方位角±45?的1

4波片后,就以等幅椭圆

偏振光出射,pi si E E =;改变起偏器方位角?就能使反射光以线偏振光出射,()0pr sr ββπ??=-=或,公式化简为:

tan pr sr E E ψ= ()pi si ββ?=--

这时需测四个量,即分别测入射光中的两分量振幅比和相位差及

反射光中的两分量振幅比和相位差,如设法使入射光为等幅椭偏光,

1/=is ip E E ,则=ψtg rs rp E E /;对于相位角,有:

)()(is ip rs rp ββββ---=? ? =-+?is ip ββrs rp ββ-

因为入射光is ip ββ-连续可调,调整仪器,使反射光成为线偏光,即

rs rp ββ-=0或(π),则)(is ip ββ--=?或)(is ip ββπ--=?,可见?只与

反射光的p 波和s 波的相位差有关,可从起偏器的方位角算出.对于特定的膜, ?是定值,只要改变入射光两分量的相位差)(is ip ββ-,肯定会找到特定值使反射光成线偏光, rs rp ββ-=0或(π)。

实验仪器:椭偏仪平台及配件 、He-Ne 激光器及电源 、起偏器 、检偏器 、

四分之一波片、待测样品、黑色反光镜等。

实验内容:

1. 按调分光计的方法调整好主机。

2. 水平度盘的调整。

3. 光路调整。

4. 检偏器读数头位置的调整和固定。

5. 起偏器读数头位置的调整与固定。

6. 4/1波片零位的调整。

7. 将样品放在载物台中央,旋转载物台使达到预定的入射角700即望远镜转过

400,并使反射光在白屏上形成一亮点。

8. 为了尽量减小系统误差,采用四点测量。

9. 将相关数据输入“椭偏仪数据处理程序”,经过范围确定后,可以利用逐次

逼近法,求出与之对应的d 和n ;由于仪器本身的精度的限制,可将d 的误差控制在1埃左右,n 的误差控制在0.01左右。

实验数据: 实验测得数据如下:

1

4波片放置角度 45? —45?

n 1 2 3 4

A (?) 96.5 86.0 87.9 98.8

P (?) 170.7 84.7 190.8 101.5

(注:试验中,对于角度大于180度,计算时减去180度。)

将表格中数据输入“椭偏仪数据处理程序”,利用逐次逼近法,求出与之对应的厚度d 和折射率n 分别为:

2.12 d=564nm n =

误差分析:

实验测得的折射率比理论值偏大,厚度比理论值偏小,其可能原因有:

1. 待测介质薄膜表面有手印等杂质,影响了其折射率。

2. 在开始的光路调整时,没有使二者严格共轴,造成激光与偏振片、1/4波片

之间不是严格的正入射,导致测量的折射率与理论值存在偏差。

3. 消光点并非完全消光,所以消光位置只能由人眼估测,所以可能引入误差。

4. 由于实验中需多次转动及调节、安装仪器,会破坏仪器的共轴特性。虽经多

次调节,但还是会产生误差。

思考题:

1. 4/1波片的作用是什么?

4/1波片使得入射的线偏振光出射后为等幅的椭圆偏振光,从而出射光

的P 分量和S 分量比值为一,进而使超越方程变得简单。

2. 椭偏光法测量薄膜厚度的基本原理是什么?

让一束椭圆偏振光以一定的入射角入射到薄膜系统的表面,经反射后,

反射光束的偏振状态(振幅和相位)会发生变化,而这种变化与薄膜

的厚度和折射率有关,因此只要能测量出偏振状态的变化量就能定出

膜后和折射率。具体关系反应在下面两个方程中:

δδψ2cos 212cos 2[212212212212

p p p p p p p p r r r r r r r r tg ++++=δ

δ2cos 22cos 21212212212212s s s s s s s s r r r r r r r r ++++?]1/2

δδ2cos )1()1(2sin )1(1222211221p p p p p p r r r r r r tg +++--=?-δ

δ

2cos )1()1(2sin )1(1222211221s s s s s s r r r r r r tg +++----

所以若能利用消光法从实验测出椭偏系数ψ和?,原则上就可以解出

薄膜的厚度和折射率。

3. 用反射型椭偏仪测量薄膜厚度时,对样品的制备有什么要求?

样品应为均匀透明各向同性的薄膜系统,反射率较高一点,以便于增

强反射光的强度,而且薄厚均匀透明,从而利于实验的进行和精度要

求。如本实验就是采用硅衬底的均匀透明各向同性的薄膜系统。

4. 为了使实验更加便于操作及测量的准确性,你认为该实验中哪些地方

需要改进?

在判断消光时,由于每个人的判断标准不同,所以容易产生误差。而

且长时间的观察时眼睛观察能力下降,不易判断消光现象。这些会引

起较大误差,我认为可以用精度较高的光电接收器来进行判断。

实验总结:

本实验是光学实验。对于光学试验,最为重要得是光路的调节,光路的调节准确与否,直接影响了试验的精度。因此,要准确调节光路。在安装起偏器和检偏器以后,都要看一看是否依旧保持光线同轴。同时,由于光学仪器本身的精密性,严禁用手触摸。还要轻拿轻放。

本实验巧妙的设计,使光通过1/4波片之后,光变成等幅椭圆偏振光,使得,/1ip is E E =,使得//rp rs

ip is

E E tg E E ψ=变为/rp rs tg E E ψ=,计算可以大

大的简化。通过调整仪器,使反射光成为线偏光,即0rp rs ββ-=或(π),则()ip is ββ?=--或()ip is πββ?=--,可使问题简化。

椭偏仪测量薄膜厚度与折射率

椭偏仪测量薄膜厚度和折射率 近代科学技术中对各种薄膜的研究和应用日益广泛。因此,能够更加迅速和精确地测量薄膜的光学参数例如厚度和折射率已变得非常迫切。 在实际工作中可以利用各种传统的方法来测定薄膜的光学参数,如布儒斯特角法测介质膜的折射率,干涉法测膜。另外,还有称重法、X 射线法、电容法、椭偏法等等。其中,椭圆偏振测量(椭偏术)是研究两媒质界面或薄膜中发生的现象及其特性的一种光学方法,其原理是利用偏振光束在界面或薄膜上的反射或透射时出现的偏振变换。因为椭偏法具有测量精度高,灵敏度高,非破坏性等优点,已广泛用于各种薄膜的光学参数测量,如半导体、光学掩膜、圆晶、金属、介电薄膜、玻璃(或镀膜)、激光反射镜、大面积光学膜、有机薄膜等,也可用于介电、非晶半导体、聚合物薄膜、用于薄膜生长过程的实时监测等测量。 实验目的 了解椭圆偏振测量的基本原理,并掌握一些偏振光学实验技术。 实验原理 光是一种电磁波,是横波。电场强度E 、磁场强度H 和光的传播方向构成一个右旋的正交三矢族。光矢量存在着各种方位值。与光的强度、频率、位相等参量一样,偏振态也是光的基本量之一。 在一光学材料上镀各向同性的单层介质膜后,光线的反射和折射在一般情况下会同时存在的。通常,设介质层为n 1、n 2、n 3,φ1为入射角,那么在1、2介质交界面和2、3介质交界面会产生反射光和折射光的多光束干涉。 这里我们用2δ表示相邻两分波的相位差,其中222cos /dn δπφλ=,用r 1p 、 r 1s 表示光线的p 分量、s 分量在界面1、2间的反射系数, 用r 2p 、r 2s 表示光线的p 分量、s 分量在界面2、3间的反射系数。 由多光束干涉的复振幅计算可知: 2122121i p p rp ip i p p r r e E E r r e ?δ --+= + (1) 2122121i s s rs is i s s r r e E E r r e ? δ --+=+ (2) 其中E ip 和E is 分别代表入射光波电矢量的p 分量和s 分量,E rp 和E rs 分别代表反射光波电矢量的p 分量和s 分量。现将上述E ip 、E is 、E rp 、E rs 四个量写成一个量G ,即:

大学物理实验报告系列之空气折射率的测定

【实验名称】 空气折射率的测定 【实验目的】 1、了解空气折射率与压强的关系; 2、进一步熟悉迈克尔逊干涉仪的使用规范; 【实验仪器】 迈克尔逊干涉仪(动镜:100mm ;定镜:加长);压力测定仪;空气室(L=95mm );气囊(1个);橡胶管(导气管2根) 【实验原理】 1、等倾(薄膜)干涉 根据实验7“迈克尔逊干涉仪调节和使用”可知,(如图1所示)两束光到达O 点形成的光程差δ为: δ=2L 2 -2L 1 =2(L 2 -L 1 ) 若在L2臂上加一个为L 的气室,如图2所示,则光程差为: δ=2(L 2 -L )+2n L -2L 1 δ=2(L 2 -L 1 )+2(n-1)L (2) 保持空间距离L 2 、L 1 、L 不变,折射率n 变化时,则δ 随之变化,即条纹级别也随之变 化。(根据光的干涉明暗条纹形成条件,当光程差δ=kλ时为明纹。)以明纹为例有 δ1 =2(L 2 -L 1 )+2(n 1 -1)L =k 1 λ δ2 =2(L 2 -L 1 )+2(n 2 -1)L =k 2 λ 令:Δn =n 2-n 1,m =(k 2-k 1),将上两式相减得折射率变化与条纹数目变化关系式。 2ΔnL=mλ (3) 2、折射率与压强的关系 若气室内压强由大气压p b 变到0时,折射率由n 变化到1,屏上某点(观察屏的中心O 点)条纹变化数为m b ,即 n-1=m b λ/2L (4) 通常在温度处于15℃~30℃范围内,空气折射率可用下式求得: 设从压强p b 变成真空时,条纹变化数为m b ;从压强p 1变成真空时,条纹变化数为m 1;从压强p 2变成真空时,条纹变化数为m 2;则有 根据等比性质,整理得 将(4)、(5)整理得 式中p b 为标况下大气压强,将p 2→p 1时,压强变化记为Δp (=p 1-p 2),条纹变化记为m (=m 1-m 2),则有 3、测量公式

实验薄膜厚度折射率

单波长椭偏法测试分析薄膜 的厚度与折射率 一、实验目的 掌握椭偏法的基本原理,学会使用单波长椭偏仪测硅衬底上透明膜厚度和折射率。 二、实验原理 1、偏振光的分类 偏振是各种矢量波共有的一种性质。对各种矢量波来说,偏振是指用一个常矢量来描述空间某一个固定点所观测到的矢量波(电场、应变、自旋)随时间变化的特性。光波是一种电磁波,电磁场中的电矢量就是光波的振动矢量,其振动方向与传播方向相垂直。电矢量在与光传播方向垂直的平面内按一定的规律呈现非对称的择优振动取向,这种偏于某一方向电场振动较强的现象,被称为光偏振。 正对着光的传播方向观察,电矢量的方向不随时间变化,其大小随着相位有规律地变化的光为线偏振光或者称为平面偏振光,在与光的传播方向相垂直的平面上,其轨迹为一条直线;若电矢量的大小始终不变,方向随时间规则变化,其端点轨迹为圆形,则为圆偏振光;若电矢量的大小和方向都随时间规则变化,其端点轨迹呈椭圆形,则为椭圆偏振光。如果光呈现出各方向振福相等的特征,并不在某一方向的择优振动,将这种光称为自然光;将自然光与线偏振光混合时,呈现沿某一方向电场振幅较大,而与其正交的方向电场振幅较弱但不为零的特性,这种光为部分偏振光。 2、偏振光的产生 用于产生线偏振光的元件叫起偏器。用于检验和分析光的偏振状态的元件叫检偏器。虽然两者的名称不同,但起偏器和检偏器大都具有相同的物理结构和光学特性,在使用中可互换,仅根据其在光学系统中所扮演的角色而被赋予了不同的名称。 3、反射式椭圆偏振光谱测量的基本原理

(1) 偏振光学系统 在椭偏仪中,偏振光束是通过一系列能产生特定偏振状态的光学元件来进行传播的。在这方面,椭偏仪是属于这样一类光学系统,其中光的偏振表示了经过此系统内的光学元件处理过的光波的基本性质。我们把这类光学系统称为偏振系统,以区别于其他类型的光学系统,即在其它许多系统中,受影响的是光波的某种性质但不是它的偏振状态。例如,在成象光学系统中,置放在光路中的光学元件对光波播前的振幅(强度)进行变换。不同类型的光学系统内的装置有很大的不同,成象光学系统主要由透镜和空间滤光片构成。 而偏振光学系统则由起偏器、延迟器和旋光器组成。虽然按照光学系统所能处理的光波的基本性质来划分光学系统的方法是十分吸引人的,但是,对于同时能使光波的一种以上性质发生显著变化的光学系统来说,一般的描述办法就有些困难了。 (2)椭偏仪装置的测量理论和分析 椭偏学一般可定义为对偏振矢量波的偏振态进行测量和分析的方法和系统。虽然光波偏振态的测量本身就具有重要意义,但利用椭偏测量的原理和方法,通常可获得偏振态发生变化的“某光学系统”的有关信息。我们在椭偏学研究中所采取的一般方法是,作为探针的偏振光波能够有控制地与待测光学系统发生相互作用。这种相互作用将改变光波的偏振态(也十分可能引起其他性质变化)。测量偏振的初态和终态,或反复测量适当数目的不同初态,例如利用系统的琼斯或米勒矩阵,便可确定所研究的系统对偏振光的变换规律。 光学系统的琼斯或米勒矩阵传递了该光学系统的有关信息,为了取得更基本的信息,就必须利用光的电磁学理论来研究该系统内光与物质的相互作用。换句话说,要求研究偏振态变化的内部过程,以弄清由琼斯或米勒矩阵所描述的光学系统的性质变化究竟来源于哪些内部机理。 通用椭偏仪的工作布局图如图1所示。来自合适的光源L的准直性能优良的单色光或准单色光,经可调起偏器P产生已知的偏振态可控的光束。这束光与待测光学系统(S)相互作用,从而使光束偏振态发生变化。利用其后连有探测器D的可调检偏器A,来检测系统输出端的偏振态的变化。 图4普通椭偏仪的工作布局。L、P、S、A和D分别代表光源、可调起偏器、待测光学系统、可调检偏器和光电探测器。 现在假定光波与光学系统间的相互作用是线性的,并且无频率变化,光学系统可通过下面的一种或几种过程而是作为探针的光波偏振

迈克尔逊干涉仪测量空气折射率

空气折射率的测量 学习要点和重点: 1、迈克尔逊干涉仪原理, 2、利用迈克尔逊干涉原理测量气体折射率的方法。 学习难点: 1、 光路的调整, 2、 干涉条纹变化数目的读取。 迈克尔逊干涉仪中的两束相干光各有一段光路在空间上是分开的,在其中一支光路上放进被研究对象不会影响另一支光路。本实验利用迈克尔逊原理测量空气折射率。 一、 实验目的与要求 1、 学习一种测量气体折射率的方法; 2、 进一步了解光的干涉现象及其形成条件; 3、 学习调整光路的方法。 二、 实验仪器 He-Ne 激光器、反射镜2个、分束镜、扩束镜、气室、打气球、气压表、毛玻璃等。 三、 实验原理 迈克尔逊干涉仪光路示意图如图1所示。其中,G 为平板玻璃,称为分束镜,它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。 M 1、M 2为互相垂直的平面反射镜,M 1、M 2镜面与分束镜G 均成450角;M 1可以移动,M 2固定。2M '表示M 2对G 金属膜的虚像。 从光源S 发出的一束光,在分束镜G 的半反射面上被分成反射光束1和透射光束2。光束1从G 反射出后投向M 1镜,反射回来再穿过G ;光束2投向M 2镜,经M 2镜反射回来再通过G 膜面上反射。于是,反射光束1与透射光束2在空间相遇,发生干涉。 由图1可知,迈克尔逊干涉仪中,当光束垂直入射至M 1、M 2镜时,两束光的光程差δ为 M 2M 图1 迈克尔逊干涉仪光路示意图

)(22211L n L n -=δ (1) 式中,1n 和2n 分别是路程1L 、2L 上介质的折射率。 设单色光在真空中的波长为λ,当 ,3 ,2 ,1 ,0 ,==K K λδ (2) 时干涉相长,相应地在接收屏中心的总光强为极大。由式(1)知,两束相干光的光程差不但与几何路程有关,还与路程上介质的折射率有关。 当1L 支路上介质折射率改变1n ?时,因光程的相应改变而引起的干涉条纹的变化数为N 。由(1)式和(2)式可知 1 12L N n λ = ? (3) 例如:取nm 0.633=λ和mm L 1001=,若条纹变化10=N ,则可以测得0003.0=?n 。可见,测出接收屏上某一处干涉条纹的变化数N ,就能测出光路中折射率的微小变化。 正常状态(Pa P C t 501001325.1,15?==)下,空气对在真空中波长为nm 0.633的光的折射率 00027652.1=n ,它与真空折射率之差为410765.2)1(-?=-n 。用一般方法不易测出这个折射率差, 而用干涉法能很方便地测量,且准确度高。 四、 实验内容及步骤 (一)实验装置 实验装置如图2所示。用He-Ne 激光作光源(He-Ne 激光的真空波长为nm 0.633=λ),并附加小孔光栏H 及扩束镜T 。扩束镜T 可以使激光束扩束。小孔光栏H 是为调节光束使之垂直入射在M 1、M 2镜上时用的。另外,为了测量空气折射率,在一支光路中加入一个玻璃气室,其长度为L 。气压表用来测量气室内气压。在O 处用毛玻璃作接收屏,在它上面可看到干涉条纹。 (二)测量方法 图2 测量空气折射率实验装置示意图 气压表

椭偏仪

PB09000631 实验题目:椭偏仪 实验目的:利用传统的消光法测量椭偏参数,使学生掌握椭偏光法的基本原理、仪器的使用,并且实际测量玻璃衬底上薄膜的厚度和折射率。 实验原理:见预实验报告。 实验步骤: 1、调节仪器共轴。 调节激光与椭偏仪两个光道共轴,具体步骤为取四个中间有小孔的塑料塞,塞在椭偏仪的两个平行光管筒的四个孔上,用激光射向平行光管筒,使激光穿过四个塑料塞的小孔,尽量使四个塑料塞上没有红光,即激光全部从小孔中通过,则说明仪器共轴调好。调好后将表盘调零。 2、安装检偏器 在远离激光器一边的平行光管筒一边插上望远镜筒,在平台上放置一玻璃挡板,将平行光筒调过66°,调节玻璃挡板的角度使得激光射入望远镜筒,在平行光管筒上安上检偏器,内环调到0°,外环调到90°,刻度处竖直向上;然后用眼睛观察望远镜筒,微调检偏器,直至望远镜筒中的红点亮度最小,固定检偏器。 3、安装起偏器与1/4波片 将玻璃挡板取下,并将平行光管筒调回0°处,将起偏器内环调到0°,外环也调到0°,刻度竖直向上挂到离激光器较近的平行光管筒上,然后眼睛注视望远镜筒,微调起偏器,直至红点光强最小时停止调整,固定起偏器。然后将1/4波片安到起偏器上,注意用一只手固定起偏器内环,防止内环转动,同时用另一

PB09000631 只手转动波片,眼睛通过望远镜观察红点光强,直至光强最弱,这时停止调整,此时的仪器已调整完毕。 4、寻找消光点 将样品放到座台上,将平行光管筒调至40°处,调节样品角度使得激光射到平行光管筒中且可以在望远镜中看到红点。先将起偏仪内环调到+45°,这时将起偏仪与检偏仪均调至0~90°间任何一值,在0~90°之间调节起偏仪,同时眼睛注视红点,发现红点光强有变化时,调节检偏仪,范围同样是0~90°,可发现光强变小,反复调节二者,直至找到光强最小处,记下此时起偏器与检偏器的读数;再将二者调到90~180°之间重复上述操作,得到另一组数据。然后将起偏仪内环调至-45°,重复上述操作,再得到两组数据。 5、用软件计算薄膜的折射率与厚度 将刚刚测得的四组数据输入软件中,运行软件找到样品的折射率与厚度。实验现象及数据: 在调节共轴时四个塑料塞基本上没有红光; 安装起偏器、检偏器、1/4波片时消光比较成功,尤其是在安装1/4波片时,基本上将光消掉,红光已经由红点变成淡淡的一片红色。 使用的薄膜编号为6360,实验数据如下: 1/4波片角度起偏器角度检偏器角度+45°63°75.9° 143.5°100°

椭偏仪测量薄膜厚度和折射率实验报告

椭偏仪测量薄膜厚度与折射率实验报告 组别:69组院系:0611 姓名:林盛学号:PB062104 45 实验题目:椭偏仪测量薄膜厚度与折射率 实验目得:了解椭偏仪测量薄膜参数得原理,初步掌握反射型椭偏仪得使用方法。 实验原理: 椭圆偏振光经薄膜系统反射后,偏振状态得变化量与薄膜得厚度与折射率有关,因此只要测量出偏振状态得变化量,就能利用计算机程序多次 逼近定出膜厚与折射率。参数描述椭圆偏振光得P波与S波间得相位差经薄膜系统关系后发生得变化,描述椭圆偏振光相对振幅得衰减。有超越方程: ? 为简化方程,将线偏光通过方位角得波片后,就以等幅椭圆偏振光出射,;改变起偏器方位角就能使反射光以线偏振光出射,,公式化简为: 这时需测四个量,即分别测入射光中得两分量振幅比与相位差及反射光中得两分量振幅比与相位差,如设法使入射光为等幅椭偏光,, 则;对于相位角,有: 因为入射光连续可调,调整仪器,使反射光成为线偏光,即=0或(),则或,可见只与反射光得p波与s波得相位差有关,可从起偏器得方位角算 出、对于特定得膜,就是定值,只要改变入射光两分量得相位差,肯定会 找到特定值使反射光成线偏光, =0或(). 实验仪器:椭偏仪平台及配件、He-Ne激光器及电源、起偏器、检偏器、四分之一波片、待测样品、黑色反光镜等。

实验内容: 1.按调分光计得方法调整好主机. 2.水平度盘得调整。 3.光路调整。 4.检偏器读数头位置得调整与固定. 5.起偏器读数头位置得调整与固定。 6.波片零位得调整。 7.将样品放在载物台中央,旋转载物台使达到预定得入射角70即望远镜转过 40,并使反射光在白屏上形成一亮点。 8.为了尽量减小系统误差,采用四点测量. 9.将相关数据输入“椭偏仪数据处理程序”,经过范围确定后,可以利用逐次逼 近法,求出与之对应得d与n ;由于仪器本身得精度得限制,可将d得误差 控制在1埃左右,n得误差控制在0、01左右. 实验数据: 将表格中数据输入“椭偏仪数据处理程序",利用逐次逼近法,求出与之对 应得厚度d与折射率n分别为: 误差分析: 实验测得得折射率比理论值偏大,厚度比理论值偏小,其可能原因有: 1.待测介质薄膜表面有手印等杂质,影响了其折射率。 2.在开始得光路调整时,没有使二者严格共轴,造成激光与偏振片、1/4波片之 间不就是严格得正入射,导致测量得折射率与理论值存在偏差。 3.消光点并非完全消光,所以消光位置只能由人眼估测,所以可能引入误差。 4.由于实验中需多次转动及调节、安装仪器,会破坏仪器得共轴特性.虽经多次 调节,但还就是会产生误差.

空气折射率的测定

空气折射率的测定 〖摘要〗本实验利用分立光学原件在光学平台上搭制迈克尔孙干涉仪和夫琅禾费双缝干涉装置来测定空气的折射率。 〖关键词〗空气折射率;迈克尔孙干涉;夫琅禾费双缝干涉 1引言 介质的折射率是表征介质光学特性的物理量之一,气体折射率与温度和压强有关,。气折射率对各种波长的光都非常接近于1,然而在很多科学研究领域中,仅把空气折射率近似为1远远满足不了科研的要求,所以研究空气折射率的精确测量方法是很必要的。本实验将用迈克耳孙干涉仪(分振幅法)和夫琅禾费双缝干涉(分波前法)2种方法对空气折射率进行测量(参考值为1.000296)。【1】 2 实验原理 ⑴迈克尔逊干涉仪的原理见图1。其中G为平板玻璃,称为分束镜。它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。M1、M2M1、M2镜面与分束镜G均成45°角,M1可以 移动,M2固定。 2 M表示M2对G金属膜的虚像。 从光源S发出的一束光,在分束镜G的半反射面上被分成反射光束1和透射光束2。光束1从G反射出后投向M1镜,反射回来再穿过G。光束2投向M2镜,经M2镜反射回来再通过G膜面上反射。于是,反射光束1与透射光束2 发生干涉。

量n 与气压的变化量p ?成正比: 1n n p p -?==?常数 所以: 1n n p p ?=+ ? 又可得: 12N P n L p λ=+ ? 上式给出了气压为p 时的空气折射率n 。 1p 变化 到2p 时的条纹变化数n 即可计算压强为p 的空气折射率n 气室内压强不必从0开始。 (2) 用夫琅和费双缝干涉装置测定空气折射率 并分别通过两气室A 、B L2、L3后在屏上形成干涉条纹。当B 室相对于A 室 气压变化ΔP ΔN n 001p T n n p T l λ ?=+ ?

用椭偏仪测薄膜厚度与折射率

103 实验十二 用椭偏仪测薄膜厚度与折射率 随着半导体和大规模集成电路工艺的飞速发展,薄膜技术的应用也越加广泛。因此,精确地测量薄膜厚度与其光学常数就是一种重要的物理测量技术。 目前测量薄膜厚度的方法很多。如称重法、比色法、干涉法、椭圆偏振法等。其中,椭圆偏振法成为主要的测试手段,广泛地应用在光学、材料、生物、医学等各个领域。而测量薄膜材料的厚度、折射率和消光系数是椭圆偏振法最基本,也是非常重要的应用之一。 实验原理 由于薄膜的光学参量强烈地依赖于制备方法的工艺条件,并表现出明显的离散性,因此,如何准确、快速测量给定样品的光学参量一直是薄膜研究中一个重要的问题。椭圆偏振法由于无须测定光强的绝对值,因而具有较高的精度和灵敏度,而且测试方便,对样品无损伤,所以在光学薄膜和薄膜材料研究中受到极大的关注。 椭圆偏振法是利用椭圆偏振光入射到样品表面,观察反射光的偏振状态(振幅和位相)的变化,进而得出样品表面膜的厚度及折射率。 氦氖激光器发出激光束波长为632.8nm 的单色自然光,经平行光管变成单色平行光束,再经起偏器P 变成线偏振光,其振动方向由起偏器方位角决定,转动起偏器,可以改变线偏振光的振动方向,线偏振光经1/4波片后,由于双折射现象,寻常光和非寻常光产生π/2的位相差,两者的振动方向相互垂直,变为椭圆偏振光,其长、短轴沿着1/4波片的快、慢轴。椭圆的形状由起偏器的方位角来决定。椭圆偏振光以一定的角度入射到样品的表面,反射后偏振状态发生改变,一般仍为椭圆偏振光,但椭圆的方位和形状改变了。从物理光学原理可 以知道,这种改变 与样品表面膜层厚 度及其光学常数有 关。因而可以根据 反射光的特性来确 定膜层的厚度和折 射率。图1为基本 原理光路。 图2为入射光 由环境媒质入射到单层薄膜上,并在环境媒质——薄膜——衬底的两个界面上发生多次折射和反射。此时,折射角满足菲涅尔折射定律 332211sin sin sin ???N N N == (1)

迈克尔逊干涉仪测量空气折射率实验报告

测量空气折射率实验报告 一、 实验目的: 1.进一步了解光的干涉现象及其形成条件,掌握迈克耳孙干涉光路的原理和调节方法。 2.利用迈克耳孙干涉光路测量常温下空气的折射率。 二、 实验仪器: 迈克耳孙干涉仪、气室组件、激光器、光阑。 三、 实验原理: 迈克尔逊干涉仪光路示意图如图1所示。其中,G 为平板玻璃,称为分束镜,它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。 M1、M2为互相垂直的平面反射镜,M1、M2镜面与分束镜G 均成450角; M1可以移动,M2固定。2 M '表示M2对G 金属膜的虚像。 从光源S 发出的一束光,在分束镜G 的半反射面上被分成反射光束1和透射光束2。光束1从G 反射出后投向M1镜,反射回来再穿过G ;光束2投向M2镜,经M2镜反射回来再通过G 膜面上反射。于是,反射光束1与透射光束2在空间相遇,发生干涉。 由图1可知,迈克尔逊干涉仪中,当光束垂直入射至M1、M2镜时,两束光的光程差δ为 )(22211L n L n -=δ (1) 式中,1n 和2n 分别是路程1L 、2L 上介质的折射率。 M 2M 图1 迈克尔逊干涉仪光路示意图

设单色光在真空中的波长为λ,当 ,3 ,2 ,1 ,0 ,==K K λδ (2) 时干涉相长,相应地在接收屏中心的总光强为极大。由式(1)知,两束相 干光的光程差不但与几何路程有关,还与路程上介质的折射率有关。 当1L 支路上介质折射率改变1n ?时,因光程的相应改变而引起的干涉条纹的 变化数为N 。由(1)式和(2)式可知 1 12L N n λ = ? (3) 例如:取nm 0.633=λ和mm L 1001=,若条纹变化10=N ,则可以测得 0003.0=?n 。可见,测出接收屏上某一处干涉条纹的变化数N ,就能测出光路 中折射率的微小变化。 正常状态(Pa P C t 501001325.1,15?==)下,空气对在真空中波长为 nm 0.633的光的折射率00027652.1=n ,它与真空折射率之差为 410765.2)1(-?=-n 。用一般方法不易测出这个折射率差,而用干涉法能很方便地测量,且准确度高。 四、 实验装置: 实验装置如图2所示。用He-Ne 激光作光源(He-Ne 激光的真空波长为 nm 0.633=λ),并附加小孔光栏H 及扩束镜T 。扩束镜T 可以使激光束扩束。小孔光栏H 是为调节光束使之垂直入射在M1、M2镜上时用的。另外,为了测量空气折射率,在一支光路中加入一个玻璃气室,其长度为L 。气压表用来测量气室内气压。在O 处用毛玻璃作接收屏,在它上面可看到干涉条纹。 图2 测量空气折射率实验装置示意图 气压表

台阶仪测试薄膜厚度实验

东南大学材料科学与工程 实验报告 学生姓名班级学号实验日期2014.9.5 批改教师 课程名称电子信息材料专业方向大型实验批改日期 实验名称台阶仪测试薄膜厚度实验报告成绩 一、实验目的: 掌握测试薄膜厚度原理和方法,了解台阶仪操作技术。 二、实验原理: LVDT是线性差动变压器的缩写,为机电转换器的一种。利用细探针扫描样品表面,当检测到一个高度差别则探针做上下起伏之变化,此变化在仪器内部的螺旋管先圈内造成磁通量的变化,再有内部电子电路转换成电压讯号,进而求出膜厚。LVDT线性位置感应器,可测量的位移量小到几万分之一英寸至几英寸。 LVDT的工作原理是由振荡器产生一高频的参考电磁场,并内建一支可动的铁磁主轴以及两组感应线圈,当主轴移动造成强度改变由感应线圈感应出两电压值,相比较后即可推算出移动量。三、实验步骤: (1)开机准备 (2)放置样品 (3)参数设置 (4)扫描结果分析 (5)数据保存 四、实验内容: Si基底上沉积金属Cr薄膜的厚度的测量 五、实验结果与分析: 样品:硅片上镀铬薄膜; 实验参数:长度1000μm;持续时间40s;针压力3mg;表面轮廓是Hills and Valleys.

由实验曲线及数据,可得薄膜厚度约为(868.8-617.0)=251.8μm。 六、思考题: 1、对于用台阶仪对非完美薄膜的厚度测量,Step Hight的M和R Cursor点 的选择? 两个点分别选在图线中的拐点处,这样倾斜的曲线会水平,比较容易得到薄膜的厚度 2、怎么样才能得到一个比较shape的台阶? 在制备时在衬底上覆盖一个形状规则比如长方形的陪片,且覆盖片要尽量薄,边缘应整齐,这样产生的台阶才会陡峭,方便测量

薄膜厚度和消光系数的透射光谱测量方法

薄膜厚度和消光系数的透射光谱测量方法 项目完成单位:国家建筑材料测试中心 项目完成人:刘元新 鲍亚楠 孙宏娟 王廷籍 摘 要 本文提出薄膜厚度和消光系数的标准曲线测量法,论述了方法的测量原理和测量程序。该法的膜厚的测量范围为~80nm 到2000nm ;膜厚的测量误差大约为13nm 。 关键词 薄膜、厚度、消光 自洁净玻璃的自洁净性能、低幅射玻璃的低幅射性能都与其膜层的厚度、折射率和消光系数有着密切的关系[1]。近代微电子学装置,如成像传感器、太阳能电池、薄膜器件等都需要这些参数[2] 。这些参数的数据是薄膜材料、薄膜器件设计的必不可少的基础性数据。 通常都是单独测量这些参数,薄膜厚度用原子力显微镜、石英震荡器、台阶仪、椭偏仪、干涉法来测量。薄膜折射率的测量就比较麻烦,因为它是波长的函数,它可以用基于干涉、反射原理的方法测量。从薄膜的吸收谱就可测量其消光系数。显然,取得这些数据是很麻烦、很费时、成本也很高,特别是对于纳米级薄膜。 2000年,美国Princeton 等大学提出[2] ,从物理角度建立透射光谱模型,调整模型中的未知的参数,即薄膜厚度、折射率、消光系数,使透射光谱的理论曲线同实验曲线重合,这就同时取得薄膜的厚度、折射率、消光系数等数据。他们用这种方法同时测量了“玻璃-薄膜” 系统的薄膜的厚度、折射率、消光系数等数据。显然,这是取得这些数据的简便、快速、低成本的方法,是这领域的一个发展趋势。 镀膜玻璃的透射光谱既包含玻璃参数的信息,也包含薄膜参数的信息,如果能从中解析出薄膜参数的信息,也就得到了薄膜参数的测量值,这就是透过光谱法测量薄膜参数的基本思路。本文基于这个基本思路提出测量薄膜参数的另一方法,姑且称为标准曲线法,方法的原理是基于这样的实验现象,即薄膜的吸收越强,镀膜玻璃的透过率越低;在薄膜吸收的光谱区内,薄膜越厚,镀膜玻璃的透过率也越低;这就是说,镀膜玻璃在指定波长处的透过率T 是薄膜厚度t 和薄膜消光系数 的函数, ),,(λκt T T = 但镀膜玻璃透过率和薄膜参数有什么函数关系?这就是本文要研究的问题。知道这函数关系之后,如何利用这函数关系测量薄膜参数?这也是本文要研究的问题。

椭偏仪测折射率和薄膜厚度

物理实验报告 实验名称:椭偏仪测折射率和薄膜厚度 学院:xx 学院专业班级:xxx 学号:xxx 学生姓名:xxx 实验成绩 预习题(一空一分,共10 分) 1.(单选题)起偏器和检偏器的刻度范围为多少?(B) A.0 ° ~180° B.0 ° ~360° 2.(单选题)黑色反光镜在仪器调整中起什么作用?

实验预习题成绩: (B) A. 确定起偏器的方位 B. 确定检偏器的方位 C.确定波片的方位 3.(单选题)在椭偏仪实验中坐标系是选在待测薄膜的(B)上。 A 入射面 B 表面 4.(单选题)椭偏仪的数据处理方法有三种,即查图法、查表 法、迭代法解非线性超越方程,本实验中使用(B) A 查图法 B 查表法 5.(填空题))调整椭偏仪光路的步骤是,首先使激光光线与分光计仪器主轴垂直,并通过载物台中心,然后确定(C)的0 刻度位置,这要利用(A)的布鲁斯特角特性,然后再确定(B)0 刻度位置,最后调整1/4 波片,使其快轴与(C)成± 45° 选择答案: A 黑色反光镜 B 检偏器 C 起偏器

6.(填空题)将起偏器套在平行光管上,使0°位置朝上,从载物台上取下黑色反射镜,将检偏器管转到共轴位置,整体调节起偏器使检流计(A),固定起偏器螺钉。此时起偏器与检偏器通光方向(C)。选择答案: A 光强最小 B 光强最大 C 平行 D 垂直

原始数据记录 成绩: 1/4 玻片起偏器角度检偏器角度+45°(> 90°)103.4 91.7 +45°(< 90°)21.2 51.6 -45 °(> 90°)106.5 98.6 -45 °(< 90°)21.2 51.6 薄膜厚度: 110.0000 折射率: 1.4800

大学物理实验报告系列之空气折射率的测定

【实验名称】空气折射率的测定 【实验目的】 1、了解空气折射率与压强的关系; 2、进一步熟悉迈克尔逊干涉仪的使用规范; 【实验仪器】 迈克尔逊干涉仪(动镜:100mm;定镜:加长);压力测定仪;空气室(L=95mm);气囊(1个);橡胶管(导气管2根) 【实验原理】 1、等倾(薄膜)干涉 根据实验7“迈克尔逊干涉仪调节和使用”可知,(如图1所示)两束光到达O点形成的光程差δ为: δ=2L 2-2L 1 =2(L 2 -L 1 ) 若在L2臂上加一个为L的气室,如图2所示,则光程差为: δ=2(L 2-L)+2n L-2L 1 δ=2(L 2-L 1 )+2(n-1)L (2) 保持空间距离L 2、L 1 、L不变,折射率n变化时,则δ随之变化,即条纹级别也 随之变化。(根据光的干涉明暗条纹形成条件,当光程差δ=kλ时为明纹。)以明纹为例有 δ 1 =2(L 2 -L 1 )+2(n 1 -1)L=k 1 λ δ 2 =2(L 2 -L 1 )+2(n 2 -1)L=k 2 λ 令:Δn=n 2 -n 1 ,m=(k 2 -k 1 ),将上两式相减得折射率变化与条纹数目变化关系式。 2ΔnL=mλ (3) 2、折射率与压强的关系 若气室内压强由大气压p b 变到0时,折射率由n变化到1,屏上某点(观察屏的中 心O点)条纹变化数为m b ,即 n-1=m b λ/2L (4)通常在温度处于15℃~30℃范围内,空气折射率可用下式求得: 设从压强p b 变成真空时,条纹变化数为m b ;从压强p 1 变成真空时,条纹变化数为m 1 ; 从压强p 2 变成真空时,条纹变化数为m 2 ;则有 根据等比性质,整理得

实验三用反射椭偏仪测量折射率和薄膜厚度

实验三 用反射椭偏仪测量折射率和薄膜厚度 物理学院 物理系 00004037 贾宏博 同组人:00004038 孙笑晨 1 实验原理 当样品对光存在强烈的吸收(如金属)或者待测薄膜厚度远远小于光的波长时,通常用来测量折射率的几何光学方法和测量薄膜厚度的干涉法均不再适用。本实验用一种反射型椭偏仪测量折射率和薄膜厚度的方法。用反射型椭偏仪可以测量金属的复折射率,并且可以测量很薄的薄膜(几十埃)。 反射型椭偏仪的基本原理是,用一束椭圆偏振光作为探针照射到样品上,由于样品对入射光中平行于入射面的电场分量(以下称p 分量)和垂直于入射面的电场分量(以下简称s 分量)由不同的反射、透射系数,因此从样品上出射的光,其偏振状态相对于入射光来说要发生变化。样品对入射光电矢量的p 分量和s 分量的反射系数之比G 正是把入射光与反射光的偏振状态联系起来的一个重要物理量。同时,G 又是一个与材料的光学参量有关的函数。因此,设法观测光在反射前后偏振状态的变化可以测定反射系数比,进而得到与样品的某些光学参量(例如材料的复折射率、薄膜的厚度等)有关的信息。 1.1 光在两种均匀、各向同性介质分界面上反射 如图3-1所示,单色平面波以入射角1?入射到折射率为1n 的介质1和折射率为2n 的介质2的分界面上,折射角为2?。选用p 、s 分量的方向分别与入射光、反射光、透射光的传播方向构成右旋直角坐标系。用(ip E ,is E ),(rp E ,rs E ),(tp E ,ts E )分别表示入射、反射、透射光电矢量的复振幅。定义下列反射和透射系数: /,//,/p rp ip s rs is p tp ip s ts is r E E r E E t E E t E E ==??? ==?? (3-1) 图3-1 光在两种介质界面上的反射 把,p s r r 写成复数形式: ex p (),ex p ()p p p s s s r r i r r i δδ== (3-2) 定义反射系数比/p s G r r = (3-3) 通常写成i G tg e ? =ψ (3-4) 由式(3-2)和式(3-3)可知

薄膜厚度的测量

薄膜厚度的测量 ——台阶仪安装操作说明 一、台阶仪的安装 1、硬件的安装 1)打开电脑机箱盖,将台阶仪自带的电视卡插入PCI扩展槽,插好后将电脑机箱盖合上; 2)接上台阶仪电源线,将台阶仪上的USB线和视频线与电脑箱连接; 2、软件的安装 1)打开电脑机箱和显示器,将台阶仪自带的光盘插入电脑光驱; 2)将光盘上所有的内容都复制到电脑C盘根目录下; 3)安装光盘中的两个驱动程序,安装完成后重启计算机; 4)计算机重启后将拷入C盘中的注册表文件导入,导入成功后将台阶仪操作软件图标发送到桌面; 二、台阶仪的操作 1、台阶仪的标定 1)打开电脑机箱和显示器,打开台阶仪电源,等待10秒后将电脑桌面上的操作软件打开,几秒后自动弹出两个对话框,点击确认后进入操作界面; 2)拿出标定用的标准样品,拿出样品后立即合上盒盖,防止灰尘进入;

3)打开台阶仪保护盖,将标准样品贴紧样品台滑到台中央; 4)调节样品台位置,使标样在探针正下方; 5)点击操作软件上的“Setup”按键,设置扫描参数,将Speed设置为0.07mm/sec,Length设置为0.6mm,Range设置为10microns,Stylus Force设置为1mg,Filter Level设置为4,点击OK进行确认; 6)点击Engage,观察标准样品与探针所处的位置,如果样品台阶中央不在探针下方,点击Z+将探针升高,通过调节样品台使标准样品处于探针的正下方,合上保护盖,点击Engage,继续观察标准样品与探针的位置,如此反复操作,直到标准样品的台阶在探针的正下方;7)点击Scan,并点击确认扫描对话框,台阶仪自动进行扫描,扫描结束后,探针自动复位,测出的数据会自动弹出来; 8)用鼠标引动R,M光标,(R为参照光标,M为测量光标)到台阶的两侧,点击Level Date将台阶的曲线调平; 9)在曲线图窗口中点击鼠标右键,选择Size Cursors,将R,M光标线进行展开到适合宽度,然后点击鼠标右键将M光标移动到台阶上,窗口的右上角就会显示出台阶的平均高度; 10)重复7-9的步骤,反复测量几次,带测量数据稳定后,在曲线图窗口点击右键,选择Calibrate Height,在弹出的对话框中填写1063?,点击确定; 11)重复7-9的步骤,将测量出的台阶数据和标准样品给出的数据对比,一般来说只有几个?的差别; 12)台阶仪标定完成;

椭偏测厚仪主要参数与工作原理

“椭偏测厚仪”有关情况介绍 一、引言: 1、椭偏法是一种测量光在样品表面反射后偏振状态改变的广西方 法,它可以同时测得样品薄膜的厚度和折射率。由于此法具有非接触性、非破坏性以及高灵敏度、高精度等优点,鼓广泛用于薄膜厚度及材料的光学常数的测定。 2、椭偏法测量数据可在短时间快速采集,可对各类薄膜的生长和工 艺过程进行实时监测,故已成为半导体行业重要的在线监测设备之一。 3、纳米技术是当今科技的发展热点,能精确测得纳米级薄膜厚度和 折射率的椭偏测量技术受到人们的高度重视和关注。 二、椭偏测厚仪发展概况: 1、椭偏测厚仪在我国起步较晚,70年代我国自行设计生产的椭偏 测厚仪只有“TP-77型椭偏测厚仪”和“WJZ型椭偏测厚仪”。基本上是手动测量,仅配一种入射角和衬底材料的薄膜(n,d)~(Ψ,Δ)函数表(如SiO2,70°入射角,波长632.8nm)。 2、 90年代末,华东师大学研制并生产了“HST-1型”和“HST-2型” 多功能智能椭偏测厚仪。该仪器使用计算机技术,利用消光法自动完成,测量薄膜的厚度和折射率。 3、进入二十一世纪,国生产自动椭偏测厚仪的厂家逐渐多起来。如: 天津港东科技发展生产的“SGC-1型椭圆偏振测厚仪”、“SGC-2型自动椭圆偏振测厚仪”。天津拓普仪器生产的“TPY-1型椭圆偏振测厚

仪”和“TPY-2型自动椭圆偏振测厚仪”等。 现将目前国生产的几种自动椭圆偏振测厚仪,其性能指标等参数列表如下,供参考: 国几种“椭圆偏振测厚仪”的性能参数 三、消光法测量薄膜和折射率的计算公式:

1. 在椭偏法测量中,为了简便,通常引入两个物理量——Ψ,Δ来 描述反射光偏振态的变化,它们与总反射系数p R (p 分量,在入射面),s R (s 分量,在垂直于入射面)之间的关系,定义如下: tan Ψi e ?=p R /s R ————————— 偏振方程 ○ 1 式中:Ψ,Δ —— 椭偏参数(均为角度度量) Ψ —— 相对振幅衰减 Δ —— 相位移动之差 在固定实验条件下:~ 1n 和~ 3n 为已知,则Ψ=Ψ(d ,~ 2n ), Δ=Δ(d ,~ 2n ) 2122121i p p p i p p r r e R r r e δδ--+?= +??,2122121i s s s i s s r r e R r r e δ δ --+?=+?? 式中:2δ——相邻两光束的相位差,设膜厚为d ,光波长为λ, 则有: 122~~~22221122()d n Cos d n n Sin ππ δ??λλ =???=??-?——— ○2 若:P-起偏角,A-检偏角 则:Ψ=A ,Δ=k ×180°+90°-2p (当0°≤p ≤135°时,k=1;当 135°≤p ≤180°时,k=3) 综上:通过测得起偏角P 和检偏角A ,即可求得Ψ,Δ,还可反求 d ,~ 2n 。 1) 对于透明膜,~ 2n 只有实部,上述椭偏方程(复数方程)只有d , ~ 2n 两个未知数,由两个已知实测的Ψ,Δ原则上可解出d , ~ 2n ,

[实验报告]两种光路测空气折射率

两种光路测空气折射率 摘要:折射率是表征介质光学特性的物理量之一。空气折射率会随空气状态而改变,在许多研究领域有重要的参考价值。本实验使用迈克耳孙干涉仪和夫琅禾费双缝干涉,通过改变气压室气压,使空气折射率发生改变,来观察干涉条纹的移动。根据折射率与压强关系,得出空气折射率。 关键词:空气折射率测量;迈克耳孙干涉仪;夫琅禾费双缝干涉;气压; Study on two measurement methods of air refractive index Abstract:Refractive index is one of the physical quantities that can characterize optical properties of medium.The refractive index of air will change with the state of air,which many research fields can make great reference to.In this experiment, we use Michelson interferometer and Fraunhofer interferometer to detect the air refractive index. We change the air refractive index by adjust the pressure of air in air room, and observe the move of stripes. Then use relationships between refractive index and pressure to work out the air refractive index. Key words:measurement of air refractive index;Michelson interferometer;Fraunhofer interferometer ;atmospheric pressure; 一、引言 介质的折射率是表征介质光学特性的物理量之一,气体折射率与温度和压强有关,。气折射率对各 种波长的光都非常接近于1,然而在很多科学研究领域中,仅把空气折射率近似为1远远满足不了科研的要求,所以研究空气折射率的精确测量方法是很必要的。本文将用迈克耳孙干涉仪和夫琅禾费双缝干涉2种方法对空气折射率进行测量。 二、实验原理 1. 迈克耳孙干涉仪测空气折射率 实验光路如图一所示,其中,G为平板玻璃,称为分束镜, 它的一个表面镀有半反射金属膜,使光在金属膜处的反射 光束与透射光束的光强基本相等。M 1、M 2 为互相垂直的平 面反射镜,M 1、M 2 镜面与分束镜G均成450角; M 2 ’表示M 2 对G 金属膜的虚像。从光源S发出的一束光,在分束镜G的半反射面上被分成反射光束1和透射光束2。光束1从G反射出后 投向M 1镜,反射回来再穿过G;光束2投向M 2 镜,经M 2 镜反射 回来再通过G膜面上反射。于是,反射光束1与透射光束2在空间相遇,发生干涉。 在一定温度(15~30),气压不太大时, 气体折射率变 M 2 M O 图1 迈克尔逊干涉仪光路示意图

薄膜厚度和消光系数的透射光谱测量方法

262 薄膜厚度和消光系数的透射光谱测量方法 项目完成单位:国家建筑材料测试中心 项目完成人:刘元新 鲍亚楠 孙宏娟 王廷籍 摘 要 本文提出薄膜厚度和消光系数的标准曲线测量法,论述了方法的测量原理和测量程序。该法的膜厚的测量范围为~80nm 到2000nm ;膜厚的测量误差大约为±13nm 。 关键词 薄膜、厚度、消光 自洁净玻璃的自洁净性能、低幅射玻璃的低幅射性能都与其膜层的厚度、折射率和消光系数有着密切的关系[1]。近代微电子学装置,如成像传感器、太阳能电池、薄膜器件等都需要这些参数[2] 。这些参数的数据是薄膜材料、薄膜器件设计的必不可少的基础性数据。 通常都是单独测量这些参数,薄膜厚度用原子力显微镜、石英震荡器、台阶仪、椭偏仪、干涉法来测量。薄膜折射率的测量就比较麻烦,因为它是波长的函数,它可以用基于干涉、反射原理的方法测量。从薄膜的吸收谱就可测量其消光系数。显然,取得这些数据是很麻烦、很费时、成本也很高,特别是对于纳米级薄膜。 2000年,美国Princeton 等大学提出[2] ,从物理角度建立透射光谱模型,调整模型中的未知的参数,即薄膜厚度、折射率、消光系数,使透射光谱的理论曲线同实验曲线重合,这就同时取得薄膜的厚度、折射率、消光系数等数据。他们用这种方法同时测量了“玻璃-薄膜” 系统的薄膜的厚度、折射率、消光系数等数据。显然,这是取得这些数据的简便、快速、低成本的方法,是这领域的一个发展趋势。 镀膜玻璃的透射光谱既包含玻璃参数的信息,也包含薄膜参数的信息,如果能从中解析出薄膜参数的信息,也就得到了薄膜参数的测量值,这就是透过光谱法测量薄膜参数的基本思路。本文基于这个基本思路提出测量薄膜参数的另一方法,姑且称为标准曲线法,方法的原理是基于这样的实验现象,即薄膜的吸收越强,镀膜玻璃的透过率越低;在薄膜吸收的光谱区内,薄膜越厚,镀膜玻璃的透过率也越低;这就是说,镀膜玻璃在指定波长λ处的透过率T 是薄膜厚度t 和薄膜消光系数κ的函数, ),,(λκt T T = 但镀膜玻璃透过率和薄膜参数有什么函数关系?这就是本文要研究的问题。知道这函数关系之后,如何利用这函数关系测量薄膜参数?这也是本文要研究的问题。

相关文档
相关文档 最新文档