文档库 最新最全的文档下载
当前位置:文档库 › 一元一次方程应用题分类 最全,最好 最实用

一元一次方程应用题分类 最全,最好 最实用

一元一次方程应用题分类 最全,最好 最实用
一元一次方程应用题分类 最全,最好 最实用

一元一次方程应用题分类

1、和差倍分问题

(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

审题时要抓住关键词。

例1、x的3/4与1的和为8,求x?

1、已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。

例2、甲数比乙数大10,甲数的5倍与乙数的8倍的和是115,求甲、乙两数。

2、有甲、乙两个数,甲数比乙数的2倍多1,乙数比甲数小4,求这两个数。

2、等积变形问题

(1)常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高

②长方体的体积V=长×宽×高

(2)“等积变形”是以形状改变而体积不变为前提。常用等量关系为:

①形状面积变了,周长没变;②原料体积=成品体积。例1、有一根铁丝长20米,用它围成一个长是宽2倍的矩形,求长、宽分别是多少米?

例2、现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?

3、数字问题

数字问题多是整数,要注意数字、数之间的关系和区别,抓住数字间或新数、原数之间的关系,寻找等量关系。一个多位数是各位上数字与该位计数单位的积之和。

如:数321是由3、2、1这三个数字组成,3×100+2×10+1×1=321

例1 一个两位数,十位数字比个位数字的4倍多1.将两个数字调换顺序后所得的数比原数小63,求原数?

例2 一个三位数,十位上的数字比个位上的数字大3,而比百位上的数字小l,且三个数字之和的50倍比这个三位数小2,求这个三位数?

例3 一个两位数,十位上的数字与个位上数字的和是8,将十位上的数字与个位上的数字对调,得到的新数比原数的2倍多l0,求原来的两位数?

4、利润问题

出现的量有:进价、售价、标价、利润、成本、利润率、折扣等

用到的公式有:①利润=卖的钱—成本②利润=成本X利润率

注意打几折是按原价的百分之几出售。

一般的相等关系:卖的钱—成本=成本X利润率

1.一件商品的售价是30元,①、如果卖出后盈利25元,那么这件商品的进价是多少?②若卖出后亏损25元,那么进价又是多少?

2.某商品标价110元,八折出售后,仍获利10%, 则该商品的进价为多少元?

3.某商场把进价为80元的商品按标价的八折出售,仍获利10%, 则该商品的标价为多少元?

4.某商场把进价为80元的商品按标价110元折价出售后,仍获利10%, 则商品打了几折?

5.某大型服装商场内,一件新款服装的进价是400元。为了吸引顾客,提高销售量,老板向员工征集销售方案,要求保证50%的利润率。员工甲的方案是:把这件服装按进价提高1倍进行标价,然后打出“新款8折优惠”的广告。如果你是这家大商场的老板,你觉得甲的方案符合你的利润要求吗?

6、某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%,这次交易中的盈亏情况如何?

5、工程问题:工作量=工作效率×工作时间

合做的效率=各单独做的效率之和

完成某项任务的各工作量之和=总工作量=1

注意:当工作总量未给出具体数量时,常设总工作量为“1”。

例1、一项工程,甲单独做要20天完成,乙单独做需要30天完成,若让甲、乙合做需要几天完成?

2、一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,则乙共需要几天完成?

3、某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?

③已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?

④整理一批图书,由一个人做要40小时完成。现计划由一部分人先做4小时再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体先安排多少人工作?

6、行程问题:路程=速度×时间时间=路程÷速度

(1)相向而行,相遇问题:各人路程之和等于总路程或同时走时两人所走的时间相等。快+慢=原距

(2)同向而行,追及问题:两人的路程之差等于追及的路程或时间为等量关系。快-慢=原距

问题:甲、乙两地间路程为120km,一列快车从甲站开出,每小时行驶60 km,一列慢车从乙站开出,每小时行驶40 km。

(1)两车同时出发,相向而行,多少小时两车相遇

(2)快车先开1/3小时,两车相向而行,慢车行驶多少小时两车相遇?

(3)两车同时开出,同向而行,快车多少小时可以追上慢车?

(4)两车同时开出,同向而行,慢车在前,快车行驶多少小时与慢车相距20km?

(5)两车同时开出,相向而行,快车行驶多少小时与慢车相距20km?

(3)航行问题:顺水、逆水,顺风、逆风。

顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度抓住两地间距离不变,水流速和船速不变的特点考虑相等关系。

例3 一轮船航行于两个码头之间,逆水需10h,顺水需6h已知该船在静水中中每小时航行12km。求水流速度和两码头之间的距离。

1、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?

2、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离?

(4)环形跑道:这种问题有两种类型:同向和异向.当同向出发时,相当于追及问题;当异向出发时,相当于相遇问题.

①假设甲、乙两人同时从A地出发,同向而行,则快者第一次追上慢者时,快者比慢者多跑一圈路程,即S甲-S乙=1圈长

②假设甲、乙两人同时从A地出发,异向而行,则两人第一次相遇时,两人所走路程之和等于一圈长,即S甲+S乙=1圈长

例1、甲、己两人环湖散步,环湖一周是400m,甲每分钟走80m,乙速是甲速的5/4。(1)甲,乙两人在同地背向而行,多长时间后两人相遇?

(2)甲,己两人在同地同向而行,多长时间后两人向遇?

2、在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,多少分钟后俩人相遇?

(5)过桥山洞:

例4.已知某一铁路桥长1000m,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1 min,整个火车完全在桥上的时间40秒。

(1)求火车的速度。(2)求火车的车长

7、调配问题

从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。

例1、有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数的一半,应从乙队调多少人到甲队?

①甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下的人数是原乙队人数的一半还多15人,求甲、乙两队原有人数各多少人?

例2 在甲处劳动的有52人,在乙处劳动的有23人,现从甲、乙两地共调12人到丙处劳动,使在甲处劳动的人数是在乙处劳动人数的2倍,求应该从甲、乙两处各调走多少人?

例3、甲、乙两个工程队分别有188人和138人,现需要从两队抽出116人组成第三个队,并使甲、乙两队剩余人数之比为2:1,问应从甲、乙两队各抽出多少人?

4、有41人参加运土劳动,30根扁担,要安排多少人抬、多少人挑,可使扁担和人数相配不多不少?

8、配套问题

例1、某工地需要派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应该怎样安排人员,正好能使挖的土及时运走?

例2、用白铁皮做罐头盒,每张铁皮可制盒身25个或制盒底40个,一个盒身与两个盒底配成一套.现在有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?

例3、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?

例4星光服装厂接受生产一些某种型号的学生服装的订单,已知每3m 长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用750 m长的这种布料生产学生服。应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套?

例5、某车间有工人85人 平均每人每天可以加工大齿轮8个或小齿轮10,又知1个大齿轮和三个小齿轮配为一套,问应如何安排劳力使生产的产品刚好成套?

6、某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?

9、储蓄问题:在这类问题中有本金、利息、利率、本息和存款期限这些基本量.顾客存入银行的钱叫做本金,银行付给顾客的酬金叫做利息,存入的时间叫做期数,每个期数后利息与本金的比叫做利率,通常用百

分数表示。

基本量之间的关系:本息和=本金+利息=(1+利率)×本金×期数

利息=本金×利率×期数利率=利息/本金

例3某企业存入银行甲、乙两种不同性质和用途的款项共20万元,甲种存款的年利零为5.5%,乙种存款的年利率为4.5%,上缴国家的利息税率为20%,该企业一年共获利息7600元,求甲、乙两种存款各为多少万元?

2、银行定期1年存款的年利率为2.5%,某人存入一年后本息922.5元,问存入银行的本金是多少元?

3、李叔叔今年存入银行10万元,定期二年,年利率4.50%,二年后到期,扣除利息税5%,得到的利息能买一台6000元的电脑吗?

4、某同学把250元钱存入银行,整存整取,存期为半年,半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)

10、年龄问题:大小两人的年龄差不变

例1、甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是多少岁?

2、小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄?

11、方案优化问题

1、我校准备印刷一批招生宣传单,有两个印刷厂前来联系制作业务,甲厂的优惠条件是:每份定价2元,按八折收费,另收1000元制版费;乙厂的优惠条件是:每份定价2元不变,而制版900按6折优惠。

①设印刷数量为x份,分别求出表示两个印刷厂收费的式子

②请问选择哪家印刷厂收费比较合算?

2、某市剧院举办大型文艺演出,其门票价格为:一等席300元/人,二等席200元/人,三等席150元/人,某公司组织员工36人去观看,计划用5850元购买2种门票,请你帮助公司设计可能的购票方案?

3、某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店

出售两种同样品牌的乒乓球和乒乓球拍。乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠。该班需球拍5副,乒乓球若干盒不小于5盒。问①当购买乒乓球多少盒时,两种优惠办法付款一样?

②当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?

4、中国移动新疆分公司开设适合普通用户的两种通讯业务分别是:“天山通”用户先缴25元月租,然后每分钟通话费用0.2元;“神州行”用户不用缴纳月租费,每分钟通话0.4元。 通话均指拨打本地电话 ①设一个月内通话时间约为x分钟,这两种用户每月需缴的费用是多少元?用含x 的式子表示。

②一个月内通话多少分钟,两种移动通讯方式费用相同?

③若李老师一个月通话约80分钟,请你给他提个建议,应选择哪种移动通讯方式合算一些?请说明理由

5、某市出租车计价规则如下,行程不超过3千米,收起步价8元,超过部分每千米路程收费1.20元,某天该出租车行驶路程为①行驶2千米时,应收费为?②行驶5千米时,应收费为?③行驶X千米时,应收费为?

6、某城市按以下规定收取每月的煤气费,用气不超过60立方米,按每立方0.8元收,如果超过60立方米,超过部分按每立方米1.2元收,已知小明家某月共缴纳煤气费72元,那么他家这个月共用了多少?

7、某同学去公园春游,公园门票每人每张5元,如果购买20人以上(包括20人)的团体票,就可以享受票价的8折优惠。

(1)若这位同学他们按20人买了团体票,比按实际人数买一张5元门票共少花25元钱,求他们共多少人?

(2)他们共有多少人时,按团体票(20人)购买较省钱?(说明:不足20人,可以按20人的人数购买团体票)

12、计分问题:

例1、在2002年全国足球甲级联赛A组的前11轮比赛中,大连队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?

2、小明在一次篮球比赛中,共投中15个球,其中包括2分球和3分,共得34分,则小明共投中2分球和3分球各多少个?

3、某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?

4、在学完“有理数的运算”后,七年级各班各选出5名学生组成一个代表队,在数学老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,不答或答错一题倒扣1分.

⑴如果③班代表队最后得分142分,那么③班代表队回答对了多少道题?

⑵②班代表队的最后得分能为145分吗?请简要说明理由.

13、有关数的问题:

例1、有一列数,按一定规律排列成1,-3,9,-27,81,-243,···。其中某三个相邻数的和是-1701,这三个数各是多少?

2、三个连续奇数的和是327,求这三个奇数。

3、三个连续偶数的和是516,求这三个偶数。

4、如果某三个数的比为2:4:5,这三个数的和为143,求这三个数为多少?

人教版七年级数学上册一元一次方程解应用题专题练习

一元一次方程应用题专题 1.列一元一次方程解应用题的一般步骤 (1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子, 然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解, 是否符合实际,检验后写出答案. 2.和差倍分问题 增长量=原有量×增长率现在量=原有量+增长量 3.等积变形问题 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变. ①圆柱体的体积公式V=底面积×高=S·h= r2h ②长方体的体积V=长×宽×高=abc 4.数字问题 一般可设个位数字为a,十位数字为b,百位数字为c. 十位数可表示为10b+a,百位数可表示为100c+10b+a. 然后抓住数字间或新数、原数之间的关系找等量关系列方程. 5.市场经济问题 (1)商品利润=商品售价-商品成本价(2)商品利润率= 商品利润 商品成本价 ×100% (3)商品销售额=商品销售价×商品销售量 (4)商品的销售利润=(销售价-成本价)×销售量 (5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售. 6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间 (1)相遇问题:快行距+慢行距=原距 (2)追及问题:快行距-慢行距=原距 (3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.

一元一次方程应用题精选(带答案)

一元一次方程应用题精选(带答案) 1.有一旅客携带了30公斤行李从南京禄口国际机场乘飞机去天津,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格应是( ). A .1000元 B .800元 C .600元 D .400元 2.某学生从家到学校时,每小时行5千米;按原路返回家时,每小时行4千米 ,结果返回的时间比去学校的时间多花10分钟.设去学校所用时间为x 小时,则可列方程得(_________________________) 3.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期成,问规定日期为﹙ ﹚天 A .3 B .4 C .5 D .6 4.小王去早市为餐馆选购蔬菜,他指着标价为每斤3元的豆角问摊主:“这豆角能便宜吗?”摊主:“多买按八折,你要多少斤?”小王报了数量后摊主同意按八折卖给小王,并说:“之前一人只比你少买5斤就是按标价,还比你多花了3元呢!”小王购买豆角的数量是( ) A .25斤 B .20斤 C .30斤 D .15斤 5.如图,宽为50cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ) A .4002cm B .5002cm C .6002cm D.40002 cm 6.铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( ) A .5(211)6(1)x x +-=- B .5(21)6(1)x x +=- C .5(211)6x x +-= D .5(21)6x x += 7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为( ) A .1800元 B .1700元 C .1710元 D .1750元 8.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是( ) A .120元 B .100元 C .72元 D .50元 9.甲乙两地相距100千米,一艘轮船往返两地,顺流用4小时,逆流用5小时,那么这艘轮船在静水中的航速与水流速度分别是( ) A .24/,8/km h km h B .22.5/,2.5/km h km h C .18/,24/km h km h D .12.5/,1.5/km h km h

七年级上册_一元一次方程组应用题合集(学生练习)

用一元一次方程解应用题典型例题荟萃 1、分配问题: 例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生? 变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走? 变式2:某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人? 2、匹配问题: 例题2、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母? 变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数? 变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。一个盒身与两个盒底配成一套罐头盒。现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮? 3、利润问题 (1)一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______. 变式:一件衣服的进价为x元,若要利润率是20%,应把售价定为________. (2)一件衣服的进价为x元,售价为80元,若按原价的8折出售,利润是______元,利润率是__________. 变式1:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________. 变式2:一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元. 变式3:一件商品每件的进价为250元,按标价的九折销售时,利润为15.2%,这种商品每件标价是多少?

一元一次方程应用题专项练习(含答案)

一元一次方程应用题专项练习 1.种一批树,如果每人种10棵,则剩6棵未种;如果每人种12棵,则缺6棵.有多少人种树有多少棵树? 2.某中外合资企业,按外商要求承做一批机器,原计划13天完成,科技人员采用一种高新技术后,每天多生产10台,结果用12天,不但完成任务,而且超额了60台,问原计划承做多少台机器? 3.心连心艺术团在世纪广场组织了一场义演为“灾区”募捐活动,共售出3000张门票,已知成人票每张15元,学生票每张6元,共收入票款34200元,问:成人票和学生票各多少张? 4.甲、乙两人分别后,沿着铁轨反向而行,此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15秒,然后在乙身旁开过,用了17秒,已知两人的步行速度都是3.6千米∕时,这列火车有多长? 5.一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际按照他的设计,鸡场的面积是多少?

6.甲乙两个工厂,去年计划总产值为360万元,结果甲厂完成了计划的112%,乙厂比原计划增加了10%,这样两厂共完成的产值为400万元,求去年两厂各超额完成产值多少万元? 7.(1)某长方形足球场的周长为310米,长和宽之差为25米,这个足球场的长与宽分别是多少米?(2)小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米.如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬? 8.某工厂加强节能措施,2008年下半年与上半年相比,月平均用电量减少了0.5万度,全年用电39万度,问这个工厂2008年上半年每月平均用电多少万度? 9.某周日小明在家门口搭乘出租车去参观博物馆,出租车的收费标准是:不超过3公里的付费7元;超过3公里后,每公里需加收一定费用,超出部分的公里数取整,即小数部分按1公里计算.小明乘出租车到距家6.2公里远的博物馆的车费为18.4元(其中含有1元的燃油附加税),问超过3公里的,每公里加收多少元?

一元一次方程应用题 (含答案)

一元一次方程应用题 列方程解应用题的一般步骤(解题思路) (1)审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系). (2)设出未知数:根据提问,巧设未知数. (3)列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值. (5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案. (注意带上单位) 一、相遇与追击问题 1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间 2.行程问题基本类型 (1)相遇问题:快行距+慢行距=原距 (2)追及问题:快行距-慢行距=原距 1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40 千米,设甲、乙两地相距x千米,则列方程为。 2、某人从家里骑自行车到学校。若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定 时间晚到15分钟;求从家里到学校的路程有多少千米? 3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经 过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米? 4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6km,骑自行车的人 的速度是每小时10.8km。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。⑴行人的速度为每秒多少米?⑵这列火车的车长是多少米? 6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度是60千米/时,步行的 速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。出发地到目的地的距离是60千米。问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)

一元一次方程应用题专题讲义

一元一次方程应用题专题练习 一、年龄问题 1.小明今年6年,他爷爷今年72岁,问多少年之后小明年龄是他爷爷年龄的1 4 倍? 解:设x 年后小明的年龄是爷爷的 1 4 倍,根据题意得方程为 : 二、数字问题 2.一个两位数它的个位数字比十位数字大3,那么这个两位数可以表示为什么? 如果把个位数字和十位数字对调,新的两位数可以表示为什么?(添表格并完成解答过程) 解:设这个数的十位数字是x , 根据题意得 解方程得: 答 3.两个连续奇数的和为156,求这两个奇数,设最小的数为x ,列方程得 三、日历时钟问题 4、你能在日历中圈出2×2的一个正方形,使得圈出的4个数之和是77吗? 如果能,求出这四天分别是几号?如果不能,请说明理由. 四、几何等量变化问题(等周长变化,等体积变化) 常用公式:三角行面积= ,正方形面积 圆的面积 , 梯形面积 矩形面积 柱体体积 椎体体积 球体体积 5、已知一个用铁丝折成的长方形,它的长为9cm ,宽为6cm ,把它重新折成一个宽为5cm 的长方形, 则新的长方形的宽是多少? 个位 十位 表示为 原数 对调后的新数

设新长方形长为xcm ,列方程为 6、将棱长为20cm 的正方体铁块没入盛水量筒中,已知量筒底面积为12cm 2 ,问量筒中水面升高了多少cm ? 五、打折销售:公式:利润=售出价-进货价(成本价) 利润率=×100%商品利润 商品进价 7、某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售的? 8、某种商品的市场需求量D(千件)与单价 p(元/件)服从需求关系: 117033D P +-=.问: (1)当单价为4元时,市场需求量是多少? (2)若单价在4元基础上又涨价1元,则需求量发生了怎样的变化? 9、八一体育馆设计一个由相同的正方体搭成的标志物(如图所示),每个正方体的棱长为1 米,其暴露在外面的面(不包括最底层的面)用五夹板钉制而成,然后刷漆。每张五夹板可做两个面,每平方米用漆500克. (1)建材商店将一张五夹板按成本价提高40%后标价,又以8折优惠卖出,结果每 张仍获利4.8元(五夹板必须整张购买): (2)油漆店开展“满100送20,多买多送的酬宾活动”,所购漆的售价为每千克34 元.试问购买五夹板和油漆共需多少钱? 六、人员分配调配问题: 10、某班级开展植树活动而分为甲乙两个小组,甲队29人,乙队19人,后来发现任务比较重,人手不够,从另外一个班调来12个人分配给两个队,怎样分配才能使甲对人数是乙队的2倍

华师大版七年级数学下册用一元一次方程解应用题专题训练

一、数字问题。 要正确区分“数”与“数字”两个概念,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系。 1、一个两位数十位上的数字与个位上的数字之和是6,把这个两位数加上18后,正好等于这个两位数的十位数字与个位数字对调后的两位数,请问这个两位数是多少? 二、日历中的方程(巧设未知数) 日历中的规律:横行相邻两数相差____;竖行相邻两数相差___。 1、观察一个月的日历,一个竖行上的三个数字之和是27,这三天分别是。 2、小斌外出旅行三天,这三天的日期之和是42,则小斌回来的日期是号。 3、如果某一年5月份中,有五个星期五,他们的日期之和为80,那么这个月4号是星期 几? 4、在日历表中,用一个正方形任意圈出2x2个数,则它们的和一定能被___________整除。

三、水箱变高了-----等积变形问题 此类问题的关键在“等积”上,须掌握常见图形的面积、体积公式。“等积变形”是以形状改变而体积不变为前提。常用等量关系:①形状面积变了,周长没变;②原料体积=成品体积。公式关系: 圆柱体积= 立方体体积= 长方体体积= 1、将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少? 2、将一个边长为5m的正方形铁丝框改成长方形,且该长方形的长比宽多1.4米,问长 方形的长和宽各为多少米? 3、用长7.2m的木料做成如图所示的“日”字形窗框,窗的高比宽多0.6m。求窗的高和 宽。(不考虑木料加工时损耗) 4、鱼儿离不开水,用一个底面半径为20厘米,高为45厘米的圆柱形的塑料桶给一个长方形的玻璃养鱼缸倒水,养鱼缸的长为120厘米、宽为40厘米、高为1米,将满满一桶水倒下去,鱼缸里的水会升高多少? 5、一块正方形铁皮,四角截去4个一样的小正方形,折成底面边长是50cm的无盖长方

一元一次方程应用题及答案经典汇总大全

一元一次方程应用题类型知能点1:市场经济、打折销售问题 (1)商品利润=商品售价-商品成本价 (2)商品利润率= 商品利润 商品成本价 ×100% (3)商品销售额=商品销售价×商品销售量 (4)商品的销售利润=(销售价-成本价)×销售量 (5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.

1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元? 2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少? 3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为() A.45%×(1+80%)x-x=50 B. 80%×(1+45%)x - x = 50 C. x-80%×(1+45%)x = 50 D.80%×(1-45%)x - x = 50 4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折. 5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价. 知能点2:方案选择问题 6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,?经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,?但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案: 方案一:将蔬菜全部进行粗加工. 方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,?在市场上直接销售. 方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成. 你认为哪种方案获利最多?为什么? 8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。(1)某户八月份用电84千瓦时,共交电费30.72元,求a. (2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时??应交电费是多少元? 9.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3?种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元. (1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,?销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案? 10.小刚为书房买灯。现有两种灯可供选购,其中一种是9瓦的节能灯,售价为49元/盏,另一种是40瓦的白炽灯,售价为18元/盏。假设两种灯的照明效果一样,使用寿命都可以达到2800小时。已知小刚家所在地的电价是每千瓦时0.5元。 (1).设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯和用一盏白炽灯的费用。(费用=灯的售价+电费) (2).小刚想在这种灯中选购两盏。假定照明时间是3000小时,使用寿命都是2800小时。请你设计一种费用最低的选灯照明方案,并说明理由。 知能点3储蓄、储蓄利息问题 (1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做

(完整版)二元一次方程组应用题经典题

实际问题与二元一次方程组题型归纳 知识点一:列方程组解应用题的基本思想 列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来, 找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等. 知识点二:列方程组解应用题中常用的基本等量关系 1.行程问题: (1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。这类问题比较直观,画线 段,用图便于理解与分析。其等量关系式是:两者的行程差=开始时两者相距的路程;; ; (2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。这类问题也比较直观, 因而也画线段图帮助理解与分析。这类问题的等量关系是:双方所走的路程之和=总路程。 (3)航行问题:①船在静水中的速度+水速=船的顺水速度; ②船在静水中的速度-水速=船的逆水速度; ③顺水速度-逆水速度=2×水速。 注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。 2.工程问题:工作效率×工作时间=工作量. 3.商品销售利润问题: (1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率; (4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率; 注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。打几折就是按标价 的十分之几或百分之几十销售。(例如八折就是按标价的十分之八即五分之四或者百分之八十)4.储蓄问题: (1)基本概念 ①本金:顾客存入银行的钱叫做本金。②利息:银行付给顾客的酬金叫做利息。 ③本息和:本金与利息的和叫做本息和。④期数:存入银行的时间叫做期数。 ⑤利率:每个期数内的利息与本金的比叫做利率。⑥利息税:利息的税款叫做利息税。 (2)基本关系式 ①利息=本金×利率×期数 ②本息和=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数) ③利息税=利息×利息税率=本金×利率×期数×利息税率。

一元一次方程应用题带答案

一元一次方程应用题带答案 1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运.还要运几次才能完? 还要运x次才能完 29.5-3*4=2.5x 17.5=2.5x x=7 还要运7次才能完 2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米? 它的高是x米 x(7+11)=90*2 18x=180 x=10 它的高是10米 3、某车间计划四月份生产零件5480个.已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个? 这9天中平均每天生产x个 9x+908=5408 9x=4500 x=500 这9天中平均每天生产500个 4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米.甲每小时行45千米,乙每小时行多少千米? 乙每小时行x千米 3(45+x)+17=272 3(45+x)=255 45+x=85 x=40 乙每小时行40千米 5、某校六年级有两个班,上学期级数学平均成绩是85分.已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分? 平均成绩是x分 40*87.1+42x=85*82 3484+42x=6970 42x=3486 x=83 平均成绩是83分 6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒? 平均每箱x盒 10x=250+550 10x=800

x=80 平均每箱80盒 7、四年级共有学生200人,课外活动时,80名女生都去跳绳.男生分成5组去踢足球,平均每组多少人? 平均每组x人 5x+80=200 5x=160 x=32 平均每组32人 8、食堂运来150千克大米,比运来的面粉的3倍少30千克.食堂运来面粉多少千克? 食堂运来面粉x千克 3x-30=150 3x=180 x=60 食堂运来面粉60千克 9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵.平均每行梨树有多少棵? 平均每行梨树有x棵 6x-52=20 6x=72 x=12 平均每行梨树有12棵 10、一块三角形地的面积是840平方米,底是140米,高是多少米? 高是x米 140x=840*2 140x=1680 x=12 高是12米 11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服.每件大人衣服用2.4米,每件儿童衣服用布多少米? 每件儿童衣服用布x米 16x+20*2.4=72 16x=72-48 16x=24 x=1.5 每件儿童衣服用布1.5米 12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁? 女儿今年x岁 30=6(x-3) 6x-18=30 6x=48 x=8 女儿今年8岁 13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?

一元一次方程应用题(50道)

1.某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.求甲、乙两个班组平均每天各掘进多少米? 2.将一个内部长、宽、高分别为300cm,300mm和80mm的长方体容器内装满水,然后倒入一个内径是200mm,高是200mm的圆柱形容器内,问水是否溢出来? 3.北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2010年10月11日到2011年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次? 4.全班同学去划船,如果减少一条船,每条船正好坐9位同学;如果增加一条船,每条船上正好坐6位同学。问这个班有多少位同学? 5.在收获季节的某星期天,某中学抽调七年级(1)、(2)两班部分学生去果园帮助村民采摘椪柑,其中,七年级(1)班抽调男同学2人,女同学8人,共摘得柑840千克;七年级(2)班调男同学4人,女同学6人,共摘得椪柑880千克,问这天被抽调的同学中,男同学每人平均摘椪柑多少千克?女同学每人平均摘椪柑多少千克? 6.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?

7.学校有校舍20000平方米,计划拆除部分旧校舍,建造新校舍,新校舍的建造面积是旧校舍的3倍还多1000平方米。这样建设完成后的校舍面积比现有校舍面积增加20%,拆除的旧校舍和新建的校舍面积各是多少?已知拆除旧校舍每平方米需费用80元,建造新校舍每平方米需费用700元,完成该计划需多少费用? 8.某山中学组织七年级师生秋游,如果单独租用45座客车若干辆,则刚好坐满;如果单独租用60座客车,则可少租1辆,并且剩余15个座位.(1)求参加秋游的人数?(2)已知45座客车的日租金为每辆250元,60座客车的日租金为每辆300元,问:租用哪种车更合算? 9.学校组织各班开展“阳光体育”活动,某班体育委员第一次到时商店购买了5个毽子和8根跳绳,花费34元,第二次又去购买了3个毽子和4根跳绳,花费18元,求每个毽子和每个跳绳各多少元? 10.在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的人数为在乙处的人数的2倍,应调往甲、乙两处各多少人? 11.某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲.乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种各买多少件? 12.在高铁上运行的一列“和谐号”动车组有一等车厢和二等车厢共6节,一共设有座位496个.其中每节一等车厢设座位64个,每节二等车厢设座位92个.试求该列车一等车厢和二等车厢各有多少节?

一元一次方程应用题专题复习

一元一次方程全章专题训练 (一)方程、一元一次方程 <练习> 1.关于x 的方程(m -1)x 2+(m -2)x+4=0是一元一次方程,则m (二)是方程的解 1.如果x=-2是方程 ()()x a x a x -=++22 1 13的解,求代数式56a 2-a 的值。 2.小明在做解方程作业时,不小心将方程中一个常数污染了,被污染的方程是3x -,怎么办 呢?小明想了想,便翻开看了答案,方程的解是x=-3,他很快补好了这个常数,并迅速地完成了作业,请你补出这个常数。 (三)解相同 1.关于x 的方程4 ) 2(35)3(m 10-- =+-x m x x 与方程8-2x =3x -2的解相同,求m 的值。 (四)解方程 1.下列的叙述正确的是( ) A.若ac=bc ,则a=b; B .若 c b =c a ,则a=b; C .若a 2=b 2,则a=b ; D.若-31x =6,则x=-2 (五)应用题 找等量关系 有规律的 3个量 分量之和=总量 一个量的两种表示方法 题目中的一句话

【A.简单应用题】 1. 当x 等于什么值时,代数式 2x 3-与53 x 24-+互为相反数。 【B.行程问题】--------三个量: 1.汽车匀速行驶途径王家庄、青山、秀水三地的时间分别为10:00,13:00;15:00,翠湖在青山和秀水之间,距青山50千米,距秀水70千米,王家庄到翠湖的路程有多远? (1)顺逆流问题:等量关系-----顺流路程=逆流路程 1.一架飞机在两个城市之间飞行,无风时飞机每小时飞行552千米,在一次往返飞行中,顺风飞行用了5.5小时,逆风飞行6小时,求这次飞行时风的速度。 2.一架飞机在无风情况下每小时航速为1200千米,该飞机逆风飞行一条x 千米的航线用了3小时,顺风飞行这条航线用了2小时,依照题意列出方程为1200- 3x =2 x -1200,这个方程表示的意义是 。 3.一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时50分,逆风飞行需3小时,求无风的速度和两城之间的距离。 (2)相遇问题:等量关系-----S 相遇=S 甲+S 乙 1.甲乙两人相距33千米,分别以5千米/小时,6千米/小时的速度同时同向而行,甲所带的狗以7.5千米/小时的速度奔向乙,狗遇到乙后即回头奔向甲,遇到甲后又奔向乙,遇到乙后又奔向甲...直到甲乙相遇,求狗所走的路程。 2.电汽车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电汽车速度的5倍还快20千米/小时,半小时后两车相遇,两车的速度各是多少? 3.甲从A 地到B 地,乙从B 地到A 地,两人都匀速行驶,一只两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米。求A,B 两地间的距离。

一元一次方程解应用题分类(全)

(一)和差倍分问题 1、已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。 2、某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值。 ¥ 3、两筐鸭梨共重154千克,其中第一筐比第二筐的2倍少14千克,求两筐鸭梨各有多少千克 4、初一(1)班举办了一次集邮展览。展出的邮票比平均每人3张多24张,比平均每人4张少26张。这个班级有多少学生一共展出了多少邮票 … 5、初一(4)班课外乒乓球小组买了两副乒乓球板,如果每人付9元,那么多了5元,如果每人付8元,那么还缺2元,请你根据以上情境提出问题,并列方程求解. 6、某校住校生分配宿舍,如果每间住5人,则有2人无处住;如果每间住6人,则可以多住8人。问该校有多少住校生有多少间宿舍

7、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人 ( 8、有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,?这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克 (二)调配问题 1、甲、乙两个工程队分别有80人和60人,为了支援乙队,需要从甲队调出一部分人进乙队,使乙队的人数比甲队人数的2倍多5人,问从甲队调出的人数应是多少 @ 2、甲乙两运输队,甲队32人,乙队28人,若从乙队调走一些人到甲队,那么甲队人数恰好是乙队人数的2倍,问:从乙队调走了多少人到甲队 3、甲处劳动的有29人,在乙处劳动的有17人,现在赶工期,总公司另调20人去支援,使在甲处的人数为在乙处人数的2倍,应分别调往甲处、乙处各多少人 .

一元一次方程应用题及答案

应用题 1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇? 2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地距离。 3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的2倍,从甲队调16人到乙队,则甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数? 4、已知某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。 5、某校为寄宿学生安排宿舍,如果每间宿舍住7人,呢么有6人无法安排。如果每间宿舍住8人,那么有一间只住了4人,且还空着5见宿舍。求有多少人? 6、一千克的花生可以炸0.56千克花生油,那么280千克可以炸几多花生油?按比例解决

7、一批书本分给一班每人10本,分给二班每人15本,现均分给两个班,每人几本? 8、六一中队的植树小队去植树,如果每人植树5棵,还剩下14棵树苗,如果每人植树7棵,就少6棵树苗。这个小队有多少人?一共有多少棵树苗? 9、一桶油连油带筒重50kg,第一次倒出豆油的的一半少四千克,第二次倒出余下的四分之三多二又三分之二kg,这时连油带桶共重三分之一kg,原来桶中有多少油? 10、用一捆96米的布为六年级某个班的学生做衣服,做15套用了33米布,照这样计算,这些布为哪个班做校服最合适?(1班42人,2班43人,3班45人) 11、一个分数,如果分子加上123,分母减去163,那么新分数约分后是3/4;如果分子加上73,分母加上37,那么新分数约分后是1/2,求原分数。 12、水果店运进一批水果,第一天卖了60千克,正好是第二天卖的三分之二,两天共卖全部水果的四分之一,这批水果原有多少千克(用方程解) 13、仓库有一批货物,运出五分之三后,这时仓库里又运进20吨,此时的货物正好是原来的二分之一,仓库原来有多少吨?(用方程解)

一元一次方程应用题的几种常见类型

一元一次方程应用题的几种常见类型 姓名: 列一元一次方程解应用题的一般步骤 (1)审题 (2)找出等量关系 (3)设出未知数,列出方程 (4)解方程 (注意步骤) (5)检验,写答案 (检验是否是方程的解,?是否符合实际) 1.行程问题: 路程=速度×时间 时间=路程÷速度 速度=路程÷时间 (1)相遇问题: S S +慢快=原距 (2)追及问题: S S -慢快=原距 (3)航行问题: V =V +V 顺静水 V =V V -逆静水 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系. 2. 工程问题: 工作量=工作效率×工作时间 各个阶段工作量的和=总工作量(1) 3. 市场经济问题 (1)商品利润=商品售价-商品成本价 (2)商品利润率=商品利润商品成本价 ×100% (3)商品销售额=商品售价×商品销售量 (4)商品的销售利润=(销售价-成本价)×销售量 (5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售. 4.数字问题 一般可设个位数字为a ,十位数字为b ,百位数字为c . 十位数可表示为10b+a , 百位数可表示为100c+10b+a . 然后抓住数字间或新数、原数之间的关系找等量关系列方程. 5.球赛积分问题 胜场积分+平场积分+负场积分=总积分 6.储蓄问题 利率=每个期数内的利息 本金×100% 利息=本金×利率×期数 7.等积变形问题 ①圆柱体的体积 V=底面积×高=S ·h =πr 2h ②长方体的体积 V =长×宽×高=abc 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变. 8.和差倍分问题 (年龄问题、搭配问题 ) 增长量=原有量×增长率 现在量=原有量+增长量 9.溶液配制问题 溶液质量=溶质质量+溶剂质量 浓度=溶质质量溶液质量 ?100% 找出配制前后溶质质量的变化关系(用列表法分析相等关系) 10.比例问题 各部分之和=总体(一般设每一份为x ) 列表法分析: 数字问题 年龄问题 工程问题 等积变形问题 和差倍分问题 溶液配制问题

一元一次方程应用题专题训练

一元一次方程应用题归类汇集 一般行程问题(相遇与追击问题) 1.行程问题中的三个基本量及其关系: 路程=速度×时间时间=路程÷速度速度=路程÷时间 2.行程问题基本类型 (1)相遇问题:快行距+慢行距=原距 (2)追及问题:快行距-慢行距=原距 1、从甲地到乙地,某人步行比乘公交车多用小时,已知步行速度为每小时8千米,公交车的速度为 每小时40千米,设甲、乙两地相距x千米,则列方程为。 2、某人从家里骑自行车到学校。若每小时行15千米,可比预定时间早到15分钟;若每小时行9千 米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米 3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车 车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米 4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6km, 骑自行车的人的速度是每小时10.8km。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。⑴行人的速度为每秒多少米⑵这列火车的车长是多少米 6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度是60千 米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。出发地到目的地的距离是60千米。问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)

7、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因 事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。 8、一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。隧道的顶上有一盏灯,垂直向下 发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度火车的长度是多少若不能,请说明理由。 9、甲、乙两地相距x千米,一列火车原来从甲地到乙地要用15小时,开通高速铁路后,车速平均 每小时比原来加快了60千米,因此从甲地到乙地只需要10小时即可到达,列方程得。 环行跑道与时钟问题: 1、在6点和7点之间,什么时刻时钟的分针和时针重合 2、甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地 同向出发,几分钟后二人相遇若背向跑,几分钟后相遇 3、在3时和4时之间的哪个时刻,时钟的时针与分针:⑴重合;⑵成平角;⑶成直角;

(完整版)一元一次方程的应用题100道

一元一次方程的应用题 用方程解决问题(1) ---------比例问题与日历问题 1、甲、乙、丙三种货物共有167吨,甲种货物比乙种货物的2倍少5吨,丙种货物比甲种货物的多3吨,求甲、乙、丙三种货物各多少吨? 2、有蔬菜地975公顷,种植青菜、西红柿和芹菜,其中青菜和西红柿的面积比是3∶2,种西红柿和芹菜的面积比是5∶7,三种蔬菜各种的面积是多少公顷? 3、甲、乙、丙三村集资140万元办学,经协商甲、乙、丙三村的投资之比是5:2:3。问他们应各投资多少万元? 4、建筑工人在施工中,使用一中混凝土,是由水、水泥、黄沙、碎石搅拌而成的,这四种原料的重量的比是0.7:1:2:4.7,搅拌这种混凝土2100千克,分别需要水、水泥、黄沙、碎石多少千克? 5、小名出去旅游四天,已知四天日期之和为65,求这四天分别是哪几日? 6、小华在日历上任意找出一个数,发现它连同上、下、左、右的共5个数的和为85,请求出小华找的数。 7日历上同一竖列上3日,日期之和为75,第一个日期是几号? 用方程解决问题(2) ---------调配问题 1、甲车队有15辆汽车,乙车队有28辆汽车,现调来10辆汽车分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车? 2、某班女生人数比男生的还少2人,如果女生增加3人,男生减少3人,那么女生人数等于男生人数的,那问男、女生各多少人? 3、某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10人,又知二个大齿轮和三个小齿轮配套一套,问应如何安排劳力使生产的产品刚好成套? 4、某同学做数学题,如果每小时做5题,就可以在预定时间完成,当他做完10题后,解题效率提高了60%,因而不但提前3小时完成,而还多做了6道,问原计划做几题?几小时完成? 5、小丽在水果店花18元,买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元,小丽买了苹果和橘子各多少千克?

一元一次方程应用题(人教版)(含答案)

学生做题前请先回答以下问题 问题1:解一元一次方程的步骤是什么? 问题2:在求解应用题时,首先需要审题梳理信息,用什么方式梳理信息? 问题3:跟经济问题相关的六个概念是什么? 问题4:经济问题最常用的两个公式是什么? 问题5:某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,如果设该电子产品的标价为x元,请分别表达出售价和利润. 一元一次方程应用题(人教版) 一、单选题(共8道,每道12分) 1.某商店销售一种服装的进价是每件498元,按标价的九折销售,设这种服装的标价是每件x元,则这种服装的售价是( )元. A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:一元一次方程的应用——打折销售 2.某商场购进某种商品的进价是每件20元,销售价是每件25元.现为了扩大销售量,把每件的销售价降低x%出售,降价后,卖出一件商品所获得的利润为( )元. A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:一元一次方程的应用——打折销售 3.用一根铁丝围成一个长4米、宽2米的长方形,然后将这个长方形改成正方形,下列说法错误的是( )

A.铁丝长度没变 B.正方形的面积比长方形多1平方米 C.图形的形状发生了变化 D.长方形和正方形的面积相等 答案:D 解题思路: 试题难度:三颗星知识点:一元一次方程的应用——等积等容问题 4.一个两位数,个位数字与十位数字之和是9,若设个位数字为a,则对调个位数字和十位数字后所得新的两位数可表示为( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:一元一次方程应用——数字规律问题 5.某年数学竞赛共出了15道选择题,选对一题得4分,选错一题扣2分,若某学生做了全部15道题得了36分,设他选对了x道题,则他选错题目的得分可表示为( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:一元一次方程应用——得分问题 6.一商场购进某种商品的进价是每件8元,销售价是每件10元.现为了扩大销售,把每件的销售价降低x%出售,但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,根据题意可列方程为( )

一元一次方程的应用题练习

路程类型: 1.小刚同学在400米跑测试时,先以6米/秒的速度跑完了大部分路程,最后以8米/秒的速度冲刺到达终点,成绩为1分5秒,问小刚在冲刺阶段花了多少时间? 2.某地的出租车计价标准如下:行程不超过3千米,收起步价8元,超出部分每千米路程收费1.20元。如果坐出租车付车费17.60元,问一共坐了多少千米的路程? 3.从甲地到乙地公共汽车原需行驶7小时,开通高速公路后,路程近了30千米,而车的平均速度每小时增加了30千米,只需4小时即可到达。求甲、乙两地之间高速公路的路程。 4.一架飞机在两个城市之间飞行,顺风需要5小时30分钟,逆风需要6小时;一直风速是24千米/时,求两城市间的距离。 5.甲、乙两地相距1610千米,一列火车从甲地出发,每小时行驶90千米,一列快车从乙地出发,每小时行驶140千米,若两车同时出发,相向而行,求两车多少小时相遇? 6.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地(C 在AB 之 间 ),共用4小时,已知船在静水中的速度为7.5千米/小时,水流速度为0.5千米/时,若A 、C 两地的距离为8千米,求AB 的距离? 7.一个通讯员骑自行车需要在规定时间内把信送到某地,每小时走15公里,早到24分钟;如果每小时走12公里,就要迟到15分钟,原定时间是多少?他去某地路程有多远? 8.A 、B 两地相距37千米,甲、乙二人分别在两地同时出发,相向而行,半小时后二人还相距22千米,甲的速度是16千米/时,乙的速度是多少? 9.甲,乙两站间的路程为365km ,一列慢车从甲站开往乙站,每小时行驶65km ;慢车行驶了1小时后,另有一列快车从乙站开往甲站,每小时行85km ,快车行驶了几小时与慢车相遇? 10.甲乙两人环湖竞走,环湖一周是400米,乙每分钟走80米,甲速是乙 速的14 1倍。若甲在乙前面100米,多少分钟后两人相遇? 13. 14.甲在城东,乙在城西,两人相距140千米,甲以3.2千米/时的速度向西行进,乙以3.8千米的速度向东行进,两人同时出发,则多少小时

相关文档
相关文档 最新文档