文档库 最新最全的文档下载
当前位置:文档库 › 凝结水精处理

凝结水精处理

凝结水精处理
凝结水精处理

第一节系统说明

发电厂的凝结水有汽轮机凝汽器凝结水、汽轮机附属热力系统中加热疏水(蒸汽凝结水)。凝结水是给水中最优良的组成部分,通常也是给水组成部分中数量最大的。凝结水同补给水汇合后成为锅炉的补水,所以保证凝结水和补给水的水质是使给水水质良好的前提。

凝结水是由蒸汽凝结而成的,水质应该是极纯的,但是实际上这些凝结水往往由于以下原因而有一定程度的污染:

1 在气轮机凝汽器的不严密处,有冷却水漏入汽轮机凝结水中。

2 因凝结水系统及加热器疏水系统中,有的设备和管路的金属腐蚀产物而污染了凝结

水。

一、凝汽器的漏水

冷却水从汽轮机凝汽器不严密的地方进入汽轮机的凝结水中,是凝结水中含有盐类物质和硅化合物的主要来源,也是这类杂质进入给水的主要途径之一。凝汽器的不严密处,通常出现在用来固定凝汽器管子与管板的连接部位(或称固接处)。即使凝汽器的制造和安装质量较好,在机组长期运行的过程中,由于负荷和工况变动的影响,经常受到热应力和机械应力的作用,往往使管子与管板固接处的严密性降低,因此通过这些不严密处渗入到凝结水中的冷却水量就加大。根据对许多大型机组的凝汽器所作的检查得知:在正常运行条件下,随着凝汽器的结构和运行工况的不同,渗入到凝结水中的冷却水量有很大的差别;严密性很好的凝汽器,可以做到渗入的冷却水量为汽轮机额定负荷时凝结水量的0.005%-0.02%。就是说,即使在正常运行条件下,冷却水也是或多或少地渗入到凝结水中,这种情况称之为凝汽器渗漏。

当凝汽器地管子因制造地缺陷或者因为腐蚀出现裂纹、穿孔和破损时,当管子与管板地固接不良或者固接处地严密性遭到破坏时,那么由于冷却水进入到凝结水中而使凝结水水质劣化的现象就更加显著。这种现象称为凝汽器泄漏。凝汽器泄漏时进入凝结水的冷却水量比正常情况下高的多。

随着冷却水进入凝结水中的杂质,通常有Ca2+、Mg2+、Na+、HCO3-、Cl-、SO42-,以及硅化合物和有机物等。

由于进入凝汽器的蒸汽是汽轮机的排汽,其中杂质的含量非常少,所以汽轮机凝结水中的杂质含量,主要决定于漏入冷却水的量和其杂质的含量。现以含盐量为200-400mg/L的

冷却水为例,假若由于凝汽器泄漏使得漏入的冷却水量达到凝结水量的0.2%,则每升凝结水中的盐量就增加了400-800 μg/L。因为冷却水中往往含有较多的硬度。盐类和硅化合物,所以,凝汽器的泄漏对机组的运行有很大的危害。

当汽轮机的运行负荷很低时,凝结水量大为减少,但漏入的冷却水量并不因负荷的改变而有多大变化(它主要取决于凝汽器的严密程度)。这样,对每升凝结水来说,混入的杂质量就更多了,所以凝结水水质的劣化就更明显。在这种情况下,最容易检查凝汽器是否泄漏。

因为凝汽器的严密性对凝结水水质有很大的影响,所以必须十分重视。特别是现在在日益增多的高参数机组和直流锅炉机组,对给水水质的要求很高,凝汽器的严密性就更为重要。因为在冷却水水质已定的条件下,如果对给水水质的要求愈高,允许的凝汽器漏水量就越低,对凝汽器严密性的要求也就越高。实践证明,当凝结水未进行处理时,凝汽器的泄漏往往是引起高参数机组结垢、积盐和腐蚀等故障的一个重要原因。

二、沾染金属腐蚀产物

凝结水系统的管路和设备往往由于某些原因而遭到腐蚀,致使凝结水中带有金属腐蚀产物,其中主要是铁和铜的腐蚀产物。凝结水中铁化合物的主要形态是Fe3O4和Fe2O3等氧化物,它们呈悬浮态(粒径>0.1μm)和胶态,此外也有铁的各种离子。但在水质分析中测定的常常是铁化合物的总含量,简称为全铁,所以本文中谈到水的含铁量时,都是指全铁。

各种不同的蒸汽凝结水中,金属腐蚀产物的含量各不相同,而且随着运行条件的变化而变化,对于同一种凝结水,其含量也会有较大的差别。例如,在机组启动时,凝结水的含铁量一般为500-3000μg/L、含铜量一般为20-100μg/L;机组在常运行时,凝结水中的含铁量一般为10-30μg/L、含铜量一般为5-15μm/L。各种疏水中铁和铜的含量因运行条件的不同而有很大差别,其含量为50-5000μg/L、含铜量为50-1500μg/L。

为了防止锅炉的结垢和腐蚀,给水中腐蚀产物的含量不容许过高,例如超高压机组给水的含铁量应不大于20μg/L,含铜量应不大于5μg/L。所以对于作为给水主要组成部分的凝结水质,也就有更严格的要求。

总之,由于上述原因,凝结水中不仅含有各种盐类物质(离子态杂质)和硅化合物,还含有悬浮物、胶态的金属腐蚀产物,以及微量的有机物的。

对凝结水质量的要求,是随所供应锅炉的参数和类型的不同而不同。对于高压和超高压汽包锅炉,凝结水一般是不进行进化处理的,但是要注意防止凝汽器泄漏,以保证凝结水的水质。对于亚临界参数的汽包和直流锅炉,由于对给水水质的要求很高,所以通常需要进行凝结水处理,以保证其水质。这时虽然凝结水的水质主要决定于凝结水处理设备的运行情

况,但是凝汽器的泄漏对凝结水处理设备的运行&出水水质(指出水中胶态硅和胶态有机物的含量)会产生一定的影响,所以仍应尽量避免凝汽器泄漏。

三、凝结水精处理系统的主要作用

1. 连续除去热力系统内的腐蚀产物、悬浮杂质和溶解的胶体SiO2,防止汽轮机通流部分积盐。

2. 机组启动投入凝结水精处理装置,可缩短机组启动时间。降低汽包锅炉的排污量,节省能耗和经济成本。

3. 凝汽器微量漏泄时,保障机组安全连续运行。可除去漏入的盐份及悬浮杂质,有时间采取查漏、堵漏措施,严重漏泄时,可保证机组按预定程序停机。

4. 除去漏入凝汽器的空气中的CO2。

5. 除去因补给水处理装置运行不正常时,带入的悬浮物杂质和溶解盐类。

第二节、凝结水处理系统

凝结水处理系统的选用是一个较复杂的技术经济问题。不同的国家和地区,随机组参数、

容量的不同,以及热力设备的材质及制造工艺水平的差异等,采用的凝结水处理系统常有所不同。

一、凝结水处理流程

凝结水处理的工艺流程,可分为两大类。

一类称为有前置过滤器的系统。这种系统是在混合床除盐设备前面装有单独的过滤设备,此类系统有以下几种:

1)凝结水→覆盖过滤器→混合床;

2)凝结水→树脂粉覆盖过滤器→混合床;

3)凝结水→电磁过滤器→混合床;

4)凝结水→管式微孔过滤器→混合床;

5)凝结水→氢型阳床→混合床;

另一类是不设前置过滤器的凝结水处理系统,如:

1)凝结水→树脂粉覆盖过滤器;

2)凝结水→空气擦洗高速混床;

珠海发电厂一期2×700MW机组凝结水处理系统未设计有前置过滤器,而珠海电厂二期2×600MW机组采用的是凝结水→管式微孔过滤器→混合床的凝结水处理系统。将在下文中作详细的介绍。

二、凝结水处理设备的连接

凝结水处理设备在热力系统中的连接方式,有以下两种:

(1)凝结水处理设备连接在凝结水水泵与凝结水升压泵之间。这种连接方式可使凝结水处理设备在较低的压力(一般为1-1.3MPa)下运行,称为低压凝结水处理系统。

为了便于调节凝汽器热井和除氧器中的水位,每台机组设密封式补给水箱1-2台。除盐水先进入补给水箱,再进入凝汽器。当除氧器的水位过高时,部分凝结水可返回补给水箱,这样就起到了调节水位的作用。

经低压凝结水处理设备净化后的凝结水,由凝结水升压泵升压后才进入低压加热器系统。这种连接方式的缺点是:系统中安设二级凝结水泵,运行中有二级凝结水泵,运行中有二级凝结水泵的同步控制问题,还需要有压力、流量的自控措施。

(2)凝结水处理设备连接在凝结水泵与低压加热器之间。这种连接方式取消了凝结水升压泵经凝结水处理设备净化后的凝结水直接进入低压加热器系统。因此,凝结水处理设备就要在较高的压力(设计压力一般为3.5-3.9MPa)运行,故常称为中压凝结水处理设备。

应该指出,中压凝结水处理设备及系统中,仅仅混合床设备处于中压条件下运行,体外再生系统仍是低压力的设备。

这种连接方式省去了一级凝结水泵,因而减少了设备占地面积,简化了系统,有利于在主厂房内的布置,节省投资。在运行操作上也较为简便、便于自动化,运行的安全可靠性也更好。当今世界发达国家新建电厂的凝结水处理系统均以中压凝结水处理设备为主,这也是一种技术发展的趋势。

三、凝结水处理设备的布置

凝结水处理设备的布置较常采用的有以下两种方式:

1)凝结水处理设备和混合床的再生设备全部布置在主厂房凝汽器附近。

2)凝结水处理设备布置在主厂房零米层,靠近凝汽器。混合床的体外再生设备布置在水处理室内。水处理室应靠近主厂房,在水处理室与主厂房之间装有一条不锈钢管,用以往返输送树脂。

第三节凝结水的过滤

对凝结水中的悬浮物、胶态金属腐蚀产物,必须首先滤去,否则它们会影响凝结水除盐设备的正常工作。这是因为这些杂质会污染离子交换树脂,使其交换容量下降,因而工作周期缩短;它们还能堵塞离子交换树脂的上层(和水流先接触的部分),使阻力增大。特别是对于刚刚建成的或长期停用后启动的机组,由于在汽水循环系统中这些杂质的总量很多,所

以其危害显得更为突出。如果利用凝结水过滤设备使这些杂质能在运行过程中不断的除掉,那么就能使系统中的水质很快地恢复到正常水平,从而大大缩短机组从启动到正常运行的时间。根据过滤原理和设计结构的不同凝结水处理系统的前置过滤器可分为以下几种:覆盖过滤器、离子交换树脂粉覆盖过滤器、磁力过滤器、管式微孔过滤器、氢型阳床。这里针对珠海电厂2×600MW机组凝结水处理系统所采用的管式微孔过滤器,介绍如下。

一、目的

微孔过滤器就是利用微孔过滤器本身的微孔把水中悬浮物截留下来的水处理工艺。

二、基本原理

微孔过滤器的基本原理与覆盖过滤器相类似,只是不需要铺膜。微孔过滤器的滤元一般都做成管状,还有的由多个蜂房式管状滤芯组成。在一个过滤器中通常组装有许多滤元。

三、基本设备规范

(一)基本设备规范

某600MW机组管式微孔过滤器技术参数见表3-1所示。

表3-1 某600MW机组管式微孔过滤器技术参数

说明:

1.滤元骨架材料为不锈钢,管上打10mm孔。

2.滤元绕线材料为聚酰胺纤维。

(二)运行试验及监督

1.绕线滤元

以多孔不锈钢管或多孔聚丙烯管为骨架材料,外绕聚丙烯线或聚酰胺纤维作为滤元,欲过滤的水由滤元外通过滤层进入滤元内。此种过滤器根据其绕线方式的不同,有不同的规格,例如称为1μ、5μ、10μ等的过滤器就是指能滤去1μm、5μm、10μm以上的颗粒。

这种滤元,当其阻力上升后,可以用反冲洗的方法,使其阻力下降,重新投运。但当经过多次冲洗和运行后,阻力不能恢复到适用的程度时,就必须更换新的滤元。

2.塑料烧结管

这是由聚氯乙稀粉和糊状聚氯乙稀等原料调匀后,经高温烧结的管子,管壁上有许多孔径为几微米到几十微米的微孔。

此种过滤器的操作压力应小于0.2Mpa,温度不能超过60℃。当它运行到阻力太大时,可以用压缩空气和水进行反冲洗,也可以用酸、碱等化学药剂进行清洗。

实验表明,对于此种滤元,若原水由管外向内压,微孔较易被堵塞;若水由管内向外压,堵塞情况较轻。

3.过氯乙烯超细纤维滤布

这主要是利用过氯乙烯超细纤维棉滤布的微孔(约0.5μm)和静电吸附作用来截留和吸附水中的机械杂质。

超细纤维过滤器经使用后,由于滤布上的滤孔被杂质逐渐堵塞,水头损失便增大。当它增大到不足以保证正常的产水量时,就需要更换滤布,换下的滤布可以经清洗后再用。清洗方法为:先用2%HCl浸泡2-5min,并用水冲洗至中性;再用饱和肥皂水煮洗5-10min 后水洗干净。清洗时,不能搓洗和扭绞,防止纤维拉断。

某600MW机组管式微孔过滤器运行情况见表3-2所示。

表3-2 某600MW机组管式微孔过滤器运行情况

第四节凝结水的除盐混床

在凝结水处理中,普遍采用的除盐设备为H-OH型混合床(以下简称混床)。鉴于凝结水处理混床的运行流速很高,对混床所用的阴、阳树脂的性能和配比要求,混床的结构和再生方式,混床的运行工况等都与补给水处理混床有所不同。对这种混床的一些主要特性,简要介绍如下。

一、高速混床所有的离子交换树脂

用于高速混床处理凝结水的离子交换树脂,有特定的性能要求。在物理性能方面,树脂的机械强度必须较高,与补给水除盐系统中的树脂相比,其粒度应该大而且均匀,有良好的水力分层性能。这是因为所处理的凝结水有水量很大和含盐量低的特点,混床的运行流速很高,一般为80-100m/h,更好些的为110-120m/h,国外目前最高的可达130m/h-150m/h。对于此种高速混床,树脂颗粒受压而破碎是一个严重的问题,所以要求树脂的机械强度好。至于要求颗粒大且均匀是为了减少树脂通过树脂层的压降,高速混床的运行压降一般不超过0.2Mpa。在化学性能方面,要求树脂有较高的交换速度和较高的工作交换容量,这样才可适应混床运行流速高、运行周期长的要求。考虑上述要求,目前一般认为,大孔型树脂比凝胶树脂更适用于凝结水处理。

凝结水处理用的混床中阴、阳树脂的配比,也与补给水处理用的混床不同。因为电厂凝结水中常含有NH4OH,它会消耗阳树脂的交换容量。在凝结水处理系统中,若混床前有前置阳床,树脂的配比可采用阴:阳=1:1;若无前置阳床,则采用阴:阳=1:2。若出现凝汽器经常泄漏或冷却水含盐量很高(如海水、苦咸水)的情况,则应加大混床中阴树脂的比值,例采用阴:阳=3:2。

二、高速混床的结构特点

用于凝结水除盐的高速混床在结构上不同于补给水制备所用的低速混床。高速混床的结构特点与其采用的体外再生方式密切相关。因为采用体外再生时,混床交换器筒体内无需中间配水装置,这就简化了混床内部结构,适应高流速通水运行的要求。假若在交换器通体内安设中间配水装置,在很高流速通水的运行条件下,必将造成较大的水头损失,此中间配水配水装置也容易损坏。由于采用体外再生,高速混床就无需设置酸、碱管道,所以交换器筒体外的管系较单一,这样就可以避免因偶然发生的事故使酸液或碱液漏入凝结水中。此外,因采用体外再生方式和利用运行时的高速通水条件,高速混床交换器筒体的高度就可降低,使之便于在主厂房中的布置。

对高速混床内部结构的主要要求是,进水装置和排水装置应能保证水的分配均匀,排脂装置应能排尽筒体内的树脂,安装、检修都比较方便。

高速混床的内部结构如图所示。这几种结构的高速体外再生混床,我国均已在生产中应用。图2的底部排水装置是由一根母管和其两侧连有的几十根支管构成,支管上绕不锈钢丝。图中的底部排水装置是由许多高强度水帽构成。为了保持脂面的平整,上部设有一根漩流水管。图中所示的混床为球形外壳,可在3.3MPa压力下运行,适用于在中压凝结水系统

中应用。

三、高速混床的运行特性

用H-OH型混床处理凝结水,可以使出水的电导率在0.1μs/cm以下,通常可达0.06-0.08μs/cm。我国各电厂高速混床运行监督指标有两个:出水电导率和出水SiO2含量。其中任何一个指标超过限值〔电导率(25℃)>0.15μs/cm或者SiO2>10μg/L〕时,应将混床停运、进行再生。

在机组的正常运行工况下,高速混床的出水含铁量小于5μg/L,除铁效率一般都在50%以上。在机组启动工况下,高速混床的除铁效率一般都在90%以上,除铜效率高于60%。

H-OH型高速混床的缺点是把不该除去的NH4OH也除去了(用于调节给水的PH值而投加的NH3·H2O)。由于凝结水中的NH4OH与其他杂质相比,其量较大,所以H-OH型混床的交换容量会被NH4+大量消耗掉,这对混床的运行是不利的。

四、高速混床的体外再生工艺

要使高速混床出水水质达到很高的纯度,所需要解决的问题有很多,例如离子交换树脂的质量、再生剂的纯度和再生工艺等。这里仅就体外再生工艺简要介绍。在此种系统中一般是2-3台混床,配备一套体外再生系统。

1.空气擦洗

凝结水处理系统中,若混床前没有前置过滤设备,凝结水直接进入混床,则混床本身就是一个过滤器,即混床既是除盐设备也充当过滤装置。为此,应该有一定的措施以保证及时地将截留下来的污物清除掉,不让它们影响离子交换树脂的物理化学性能。这通常采用空气擦洗的方法,方法如下:

此法为重复地用空气-正洗-通空气-正洗……的方法进行床层的擦洗。每次通空气的时间为1min,正洗为2min。重复擦洗的次数视树脂层的污染程度而定,通常约为6-30次。从下往上通压缩空气的目的为疏松床体,用水从上向下正洗可使脱落下来的污物自底部排走。

在空气擦洗用的设备中可用长柄配水帽做成配水系统。为了保持床层中没有污染物,此种擦洗可以在再生前和再生后进行。

2.再生前使阴、阳树脂完全分离

混床中阴、阳树脂树脂的再生度不易保持很高的一个主要原因是,它们在再生前不易完全分离。在这样的情况下,混在阳树脂中的阴树脂便被再生成Cl型或SO4型(它决定于再生剂是用HCl还是H2SO4),混在阴床中的阳树脂被再生成Na型,因此在再生后的混床中

必然保留有大量的Na型和Cl型树脂。所以,再生前使阴、阳树脂分清是保证它们再生完全的前提。

使阴、阳树脂分清的方法,有以下几种:

(1)用NaOH溶液将阳树脂再生成为Na型,阴树脂再生成为OH型,以增大阴、阳树脂的密度差。

(2)用浓NaOH(例如16%)溶液浸泡,使阴树脂上浮,阳树脂下沉;

(3)把中间不易分清的树脂层留在另外的设备中,以便下次再生的树脂一起再进行分离;

(4)在床层中增添密度在阴、阳树脂之间的惰性树脂;

3.再生工艺过程

下面针对珠海发电厂一期2×700MW机组&二期2×600MW机组凝结水处理系统的再生工艺进行介绍。

(1)浮选分离法

先将失效树脂分层,再用4%NaOH溶液将混有少量阳树脂的阴树脂再生,转型后阴、阳树脂的密度差增大,再进行二次水力分离,使阴、阳树脂得到彻底分离。当运行较长时间(如半年)后,用12%—16%的NaOH溶液浸泡,并用低压空气稍加搅动,阴树脂就会全部浮在液体上面。

(2)锥体分离法

因分离塔底部设计成锥形而得名。

失效树脂从混床送至分离塔,反洗后将分离塔下部的阳树脂送至阳再生塔。由于采用了锥体,树脂在下降过程中设备的截留面逐渐减小,直至直径为80mm排脂管这么小的截面,所以混脂量很少。有资料指出,此种分离方式产生的阴、阳树脂交叉污染的量仅0.3%(体积)。在分离塔输送树脂的管道上,装有电导和光学检测装置,利用此装置监督树脂的输送。

因阳树脂有良好的导电性,当阳树脂输送完毕后,电导率指示值将明显下降,及时停止输送就可以防止树脂输送时产生的混杂问题。

为了进一步改善分离效果,再生系统设计有一个小型混脂罐,收集阴、阳树脂界面处的混脂。

为了提高分离效果,还可以加入惰性树脂,进一步降低树脂的混杂率。这些改进,可使阳树脂在阴树脂中的混杂率降至<0.06%(体积)。这可使H+/OH-混床出水含钠量达到0.1μg/L。

这种分离方法的另一优点是:阴、阳两种树脂比例变化都无需改变再生装置的结构设计。此外,由于此系统分离效果较好,因而不必使用价格较贵的超凝胶型均粒树脂,而采用的大孔树脂即可。

锥体分离法的设计特点:

a、独特的锥斗设计

该装置正洗排水畅通;反洗分层,配水均匀,没有偏流现象,树脂分界面明显、稳定;树脂输送过程中没有树脂分界面明显波动,树脂界面随输送平稳下降。该锥斗具有配水均匀、强度大、不易堵塞等优点,使用后能达到良好的树脂水力分层效果,且因其光滑的曲面设计可使输送树脂彻底,不产生死区。由于树脂从底部输出的特点,不受阴阳树脂体积比例的变化,可随进水水质变化改变阴阳树脂体积的容积量。

b、科学合理的界面检测装置

阴阳树脂经过水力分层后,阳树脂在下(因其比重较大),阴树脂在上,要将阳树脂水力输送至另一罐(通常叫阳再生罐)中再生,为保证不使阴树脂也送过去,要具有有效的界面检测装置,能在最短的时间内捕捉到阴阳树脂层界面的信号,联动自动控制、停止输送。该装置采用电导率表和光电检测仪两种方法同时检测树脂界面。电导表检测的原理是根据树脂输送管道上电导率的变化,来判断树脂的界面,当检测到电导率变化时(亦即阴树脂出现),就反馈信号产生联动,自动停止输送。在分离过程中不断从底部通入CO2气体,通过CO2气体与阴树脂反应,使电导率下降变化更快。

光电检测的原理是依据光对阴阳树脂间因颜色不同而对光的反射的差异,当其差异产生(阴树脂出现)并被光电检测仪捕捉到时,由于光电效应,其电流发生突变,从而联动自动停止输送。(阴阳树脂的反光色差越大越好)这两种方法同时运用,实际使用过程中,以首先测到并起到作用者为准。

c、锥型底加上较大直径的筒体结构,确保充分反洗、擦洗和树脂分离,独特的底部进水下部排阳树脂系统,确保树脂面平整下降和分离截面减少到最小(DN80),从而减少混脂量。

d、阴树脂再生后进行“二次分离”,进一步降低阴树脂中的破碎阳树脂含量。

e、再生或空气擦洗时,通过独特设计的倒U形排水系统(含虹吸破坏管),确保再生和擦洗控制在最佳水位,从而保证再生质量和擦洗质量。

f、树脂输送管中残留的树脂经其专门设计的反冲洗步骤,将其分别冲至树脂隔离塔或

阴树脂再生/分离塔,确保树脂管道内不残存树脂。

第五节氨化混床

一、NH4—OH型混床的特点

NH4—OH型混床的特点如下:

(1)在阳离子交换方面,由于采用的是NH4型阳离子交换树脂,而NH4型阳树脂对Na+的吸着能力比强酸性H型小,因此Na+较容易穿透。

(2)在阴离子交换方面,由于反应产物中有氢氧化铵,即出水有一定的碱性,因此Cl-及SiO32-较容易穿透。

(3)不会除去凝结水中的氨,因而相应的延长了混床的工作周期。

(4)为了能较完全地除去凝结水中的钠、铁、铜等离子,它要求阴树脂的再生率达到

95.5%以上,阳树脂的再生率达到99.5%以上,即残留的Na型树脂应在0.5%以下。

二、NH4—OH型混床的调试

NH4—OH型混床的调试,与H—OH型混床基本类似,但更应特别注意搞好树脂再生过程,没有分离阴、阳树脂的有效方法以及使其充分再生的方法,出水水质就得不到保障。另外,选定合适的树脂及阴、阳树脂配比也是很重要的。

通常,NH4—OH型混床的再生采用体外再生方式。

1.运行前氨化法

当将阴、阳树脂仔细分离以后,用NaOH深度再生阴树脂和HCl深度再生阳树脂。再生阳树脂时,对再生用盐酸的纯度及配酸用水中的含钠量要求很严格。再生阴树脂时,对再生用氢氧化钠的纯度及配水中的含氯量的要求也很严格,要求再生用氢氧化钠(NaOH)的纯度为99.00%以上。

阴、阳树脂再生后,要用除盐水分别对阴、阳树脂进行清洗,然后用0.5%—1%的氨水分别对阴、阳树脂进行冲洗。用氨水冲洗,可将阴树脂再生后残存于阴树脂中的阳树脂由Na型转变为NH4型,以减少混合床中Na型树脂的残留率。

2.就地氨化

在混床运行初期,利用凝结水中的氨将H+型树脂转变成NH4型。采用这种方法时,除必须将阳树脂再生完全之外,在转型期内,对混床进水水质的要求也很严格。经验表明,在转型阶段,若进水的PH>9.3,入口凝结水含钠量应小于1.5μg/L;当进水PH<9.3时,入口

凝结水允许含钠量还应更低,以接近10μg/L为宜。

在机组正常运行情况下,NH4—OH型混床可得到良好的出水水质,含钠量为0.2-0.5μg/L,含硅量为5-8μg/L,电导率为0.1-0.2μs/cm(25℃)。

第六节凝结水除盐的新工艺

随着新装机组参数的提高,对其给水水质的要求也更高。国外有一些人提出,要求〔Na+〕<0.1μg/L、〔Cl-〕<0.15μg/L即所谓达到次微量级的水质要求。这样就对凝结水处理提出了更高的要求,促使人们正在继续探索更好的凝结水处理工艺。下面简要介绍几种新工艺:(1)三层混床。这就是在普通的强酸、强碱混合床中加以密度介于它们之间的惰性树脂,以便反洗后能将整个混床分离成中间为惰性树脂的三个层次(阴树脂-惰性树脂-阳树脂),这样可避免阴、阳树脂相混。

为了适应三层混合床的需要,应有配合好的树脂品种。用于三层床的各种树脂可做成不同的颜色,以便于操作人员观察。例如在美国,阴树脂为金黄色,惰性树脂为白色,阳树脂制成黑色。

三层混合床操作简便,分层清晰,而且再生所需要的时间比较短,可以在8h内完成。

据报道,有一个厂采用阳树脂Amberlite 252 CA,惰性树脂Ambersep 359和阴树脂Ambersep IRA 900 CA组成的三层混合床,当运行到有NH4+穿透(作为终点)时,出水的含钠量可经常小于0.1μg/L,即达到目前仪表所能检测的含量以下。而一般混合床的出水含钠量约为1μg/L。

(2)氢层混床。这是在混合床内阴阳树脂混合后的树脂层上,再加上一定厚度的阳树脂层。这样,在处理凝结水时,在床上部0.3-0.6m的树脂层内可起到过虑过程的作用,从而省去一个前置氢型阳离子交换器,可使凝结水处理设备结构紧凑。

氢层混床树脂失效后,将树脂送至再生系统。反洗分层后,经阴、阳树脂分别擦洗、再生、清洗等工序,阴树脂和适当配比的阳树脂先送至空着的混合床中,充分混合后,再将其余数量的阳树脂送至混合树脂上面,正洗合格后即可投运。

(3)单床和三室床。若混合床除盐装置分离再生时,阴、阳树脂的交叉污染实际上很难完全消除,那么是否可以不用混合床,而采用单独的阳床和阴床组合起来进行凝结水除盐处理呢?

如果采用一个强酸性H阳床和一个强碱性OH阴床相串连的系统来处理凝结水,则不能保证出水水质,原因如下:

1)阴床再生后虽经清洗,但总是有微量NaOH不断地洗脱下来;

2)当因凝汽器泄漏,凝结水的含盐量增大,而使阳床出水中有Na+时,在阴床的出水也会有NaOH。

所以,用来进行凝结水除盐的单床式系统设计成三个交换塔,如图8-15。它是在一阳一阴的除盐系统后面再加一个阳床,以捕捉漏过的NaOH,这称为三床式除盐系统。

为了保证出水水质,此系统中的两个阳床在再生时是按串连方式进行的,再生液先通过最后一个阳床,再通过最初一个。这样,可以最后一个阳床再生得较彻底。

在三床式除盐系统中,可以将床层得再生步骤做成:

反洗;空气擦洗;通再生液和置换冲洗;正洗;空气擦洗;循环冲洗;运行

此种三床式系统得初步实验,以获得令人满意的结果。在试验过程中,发现苯乙烯型阴树脂在运行中有放出Cl-的倾向。估计这是由于在新树脂中有微量未反应的氯甲基,因此在再生过程中进行水解而放出Cl-,这样就相当于再生液中Cl-量增多,从而增大了再生后可交换的Cl-型树脂量。后来改用丙烯酸1型强碱阴树脂,由于它的制造工艺中没有氯甲基化的步骤,这样就消除了放Cl-现象。试验中还发现阴树脂的再生工艺也会对运行有较大的影响,如果它不能将Cl型树脂完全再生,运行时易于有Cl-漏出。研究说明,如果用H2SO4和NaOH的两步再生法,则可以防止此种泄漏。

采用了这些措施以后,此系统的出水通常可以保持酸性电导率在0.06μs/L(24-27℃)以下,这已接近纯水的理论电导率。其含Na+量开始时为小于0.1μg/L,终期升至2μg/L。

单床和混合床相比,除了消除阴、阳树脂需要分离的问题外,估计还有以下优点:树

脂不会因受到酸、碱的交替作用而发生急剧的膨胀变化,这在混合床分层后的阴、阳树脂交界处是常常会发生的;可以减轻阴树脂受悬浮物的污染程度;运行中所受压力较小,因为它把树脂分装在三个设备中,所以没有像混合床底部那样,要受高层树脂压力的影响。

在这个基础上,现在还在试验将这三部分树脂分层放在一个用滤网及其支撑板隔开的设备中,形成“阳-阴-阳”三个树脂室,即所谓三室床设备系统。

(整理)凝结水精处理需要考虑的问题.

凝结水精处理需要考虑的问题 保持现代发电设备中锅炉给水有高纯度的重要意义己为中华人民共和国的同行在设计电站时所认识,因此在300MW及更大容量的汽轮发电机组中均考虑了此因素。 用凝结水过滤和凝结水精处理进行除杂质脱盐,己是高温高压汽轮发电机组运行时的常用的方法。 凝结水精处理除去微量溶解矿物质和悬浮物,这些物质可能在不同情况下与系统中金属起作用而引起过早地化学破坏,或沉积于系统中。结果造成效益降低,机械损坏。从理论上来讲,凝结水精处理装置能保证处理对象不超出指标、产生肯定的效益。 电力工业中常用的凝结水精处理类型有粒状树脂混合床精处理装置(深层混床精处理或深层混床装置)及复盖型过滤器/除盐精处理器(f/d精处理器、粉末树脂系统、过滤器/除盐器或f/d系统)在世界各地安装了各种类型的精处理器不下成千上百台。 深层混床装置使粒状阳离子交换树脂及阴离子交换树脂以混合的形式来达到除盐和过滤的双重作用,再生过的混合树脂被装到许多运行罐中,热力系统中的凝结水通过这些运行罐得到处理。 用以处理一台600MW火力发电机组100%的凝结水量,通常设计用3×50%(较好)或4×33%的运行罐以应付流量要求(约1700m3/时)。 如有一个100%全流量备用罐的精处理系统,即使在循环系统发生不利情况下仍能提供最好的保护,但不是必须遵循的。设计100%

全流量而无备用罐的精处理系统,必须在树脂失效后,树脂输送期间有旁路的设施。 通常运行罐的设计按通过915-1220mm/mm深度的树脂层、其流速按100-122米/时设计。凝结水精处理装置用于大型核电机组,其热井凝结水流量高达7500m3/时,需要8到10只运行罐并联运行处理,例如Permutit在美国Seabrook核电站的装置,其设计处理水量高达5455m3/时,与中国大亚湾核电站的凝结水流量相仿。 精处理系统现常用压力为3-4MPa(30.6-40.8公斤/公分2),系统设计压力高达5.5MPa(56公斤/公分2)。应用在中国的较好的中压系统,不需要在精处理装置后面(下游)安装凝结水升压泵、水箱等,从而简化了系统及操作,节约了占地面积。 深层混床系统中的混合树脂的再生是在体外装置中进行的,现行设计中通常有三个罐组成,例如:分离罐(SPT),阴再生罐(ART),以及阳再生、混合和贮存罐(CRST)。除三罐系统外,二罐、一罐的系统也在使用。 开始再生的第一步是将运行罐中装着的失效树脂输送出去,这种输送是用水将树脂冲到再生系统的接收罐中,一般的设计系统是用水和压缩空气作为动力,将树脂冲到分离罐(SPT)中。然后将CRT (阳树脂再生、混合、贮存罐)中己再生好作备用的树脂输回到运行罐中,从而使此罐随时可以回复到下列两种运行模式:如系统中无备用罐,就立即投入运行;如系统中有备用罐,待另一个运行罐在系统中运行到树脂失效时投入运行。

某电厂凝结水精处理

试论某电厂2×300MW机组凝结水精处理系统若干问题 摘要:针对某电厂2×300MW机组凝结水精处理系统在设计、设备制造、调试及运行过程中存在的问题提出自己的见解,以对今后同类型系统的调试及运行有一定的参考意义。 关键词:电厂300MW机组精处理存在的问题 一、前言 凝结水作为锅炉给水主要组成部分,其水质将直接影响给水质量,尤其是随着机组参数的增大,为了机组的安全经济运行,对凝结水质量提出了更高的要求。机组在运输、保管、安装及启停过程中,不可避免地形成金属腐蚀产物,同时,尽管补给水带入热力的杂质一般较少,但凝汽器总是存在一定的泄漏,影响了给水质量,因此必须对凝结水进行精处理,除去金属腐蚀产物及泄漏所带入的杂质。 二、凝结水精处理系统工艺流程概述 1.某电厂一期工程2×300MW机组2台机组共设计凝结水精处理系统为六台高速混床,采用两台机组共用一套再生系统的运行方式。该系统采用单元制中压系统,混床采用H/OH运行。凝结水精处理系统出力按850吨/时设计,配置六台Φ2200空气擦洗体外再生高速混床。单台机组正常运行时,两台混床运行,一台作备用。并分别设有一台再循环泵,既保证投运时的水质,又节省了凝结水,缩短了混床出水合格时间。经该系统处理后的水质为: 电导率≤0.2μS/cm(25℃,加氨前) SiO2≤15μg/L 硬度~0μmol/L 凝结水精处理系统流程图为: 三、水质指标及实际测定指标 1.混床初次投运水质情况 凝结水精处理系统高速混床是在机组空负荷试运结束后,进入带负荷整套调试阶段时初次投运的,投入运行均采用点动控制。控制混床入口含铁量≤1000μg/L,结合机组负荷情况,为避免树脂污染严重,尽量等凝结水水质达到最佳而除盐设备补水已满足不了机组负荷要求时才投入精处理高速混床,对凝结水进行回收。 四、凝结水精处理系统在整套试运中所起的作用 高速混床的及时投运对启动过程中除铁、硅起了关键作用。机组在启动初的一段时间里,凝结水系统中的悬浮铁及二氧化硅含量较高,此时锅炉给水主要是由除盐水直接经除氧器补充,凝结水不能回收,大量的悬浮铁及粒装铁通过凝结水泵再循环不断排出系统外,凝结水不断净化,待机组负荷达10MW时,凝结水含Fe1000μg/L,SiO2100μg/L,此时投入高速混床,不但可有效保护树脂少受污染,同时起到了截流过滤悬浮铁及二氧化硅的作用,使凝结水含Fe量降至20μg/L左右,而且也使给水SiO2含量逐渐下降至合格,随之炉水及蒸汽的SiO2含量也随着锅炉的洗硅进程下降,促进了锅炉洗硅的顺利进行,同时蒸汽品质在较短时间内即达到合格指标。

凝结水精处理的目的与其工艺流程

解析凝结水精处理的目的与其工艺流程 凝结水一般是指锅炉产生的蒸汽在汽轮机做功后,经循环冷却水冷却凝结的水。实际上凝汽器热井的凝结水还包括高压加热器(正常疏水不到热井)、低压加热器等疏水(疏水是指进入加热器将给水加热后冷凝下来的水)。由于热力系统不可避免的存在水汽损失,需向热力系统补充一定量的补给水(除盐水箱来水)。因此凝结水主要包括:汽轮机内蒸汽做功后的凝结水、各种疏水和锅炉补给水。 凝结水精处理 凝结水精处理的目的 凝结水由于某些原因会受到一定程度的污染,大概有以下几点: 1、凝汽器渗漏或泄漏 凝结水污染的主要原因是冷却水从凝汽器不严密的部位漏至凝结水中。凝汽器不严密的部位通常是在凝汽器内部管束与管板连接处,由于机组工况的变动会使凝汽器内产生机械应力,即使凝汽器的制造和安装质量较好,在使用中仍然可能会发生循环冷却水渗漏或泄漏现象。而冷却水中含有较多悬浮物、胶体和盐类物质,必然影响凝结水水质。

凝结水精处理 2、金属腐蚀产物的污染 凝结水系统的管路和设备会由于某些原因而被腐蚀,因此凝结水中常常有金属腐蚀产物。其中主要是铁和铜的氧化物(我公司热力系统设备基本上没有铜质材料)。铁的形态主要是以Fe2O3、Fe3O4为主,它们呈悬浮态和胶态,此外也有铁的各种离子。凝结水中的腐蚀产物的含量与机组的运行状况有关,在机组启动初期凝结水中腐蚀产物较多,另外在机组负荷不稳定情况下杂质含量也可能增多。 3、锅炉补给水带入少量杂质 化学水处理混床出水即为锅炉补给水,一般从凝气器补入热力系统。由于混床出水在运行中的严格控制,补给水杂质含量很少,其水质要求:DD≤0.2μs/cm ,SiO2≤20μg/L。如果混床出水不合格,就可能对凝结水造成污染。

凝结水精处理设计导则(yx)

凝结水精处理系统设计导则 一首先要确定电厂的的发电系统,以确定是否要对凝结水进行处理以及采取什么处理系统。 1.直流锅炉汽轮机组全部凝结水均要求进行精处理(精处理除盐设施要设备 用),而且必须设置除铁设施(可不设备用); 2.汽包锅炉汽轮机组: ●空冷机组:一般采用粉末树脂过滤器;超临界空冷机组除了选择单独的粉末 树脂过滤器系统外,还可以在其后增加三室床或混床; ●水冷机组:一般采用深层树脂混床或分床系统;超临界水冷机组采用“前置 过滤器 + 混床系统”前置过滤器选用10u或5u的折叠式滤元。建议前置过滤器设铺膜系统。 ●超高压汽包锅炉机组供汽的汽轮机组一包不设凝结水精处理系统。 ●精处理用树脂建议选用大孔均粒树脂。 二系统的分项叙述 (一)粉末树脂过滤器 粉末树脂过滤技术就是将粉末树脂作为覆盖介质预涂在精密过滤器滤芯上。用来置换溶解性的离子态物质、除去悬浮固体颗粒、有机物及胶体硅及其它胶体物质。 粉末树脂过滤其实质就是覆盖过滤器,覆盖过滤器是在滤元外表面铺覆不同材质的助滤剂,借助滤料架桥原理使之形成致密覆盖层,当过滤阻力达到一定值或水质变坏时,用水和空气进行爆破膜及冲洗,然后重新铺覆助滤剂,恢复其功能。助滤剂有粉末树脂、纤维粉、活性碳粉等。带有粉末树脂的覆盖过滤器是将过滤器和离子交换器结合在一起的精处理装置。覆盖过滤器在正常运行时,可不铺树脂粉,只铺纤维粉当除铁过滤器用,铺活性碳粉用于除油。在发生事故、启动期间或水质不好时,铺树脂粉或树脂粉与纤维粉的混合粉,以除掉水汽系统中的杂质、污染物、盐类。 1.粉末树脂过滤器技术(以西塞山发电有限公司的粉末树脂过滤器为例) 1.1顶管板系统

凝结水精处理运行规程

凝结水精处理运行规程 1.总则 1.1 凝结水精处理系统概述 1.1.1 概述 襄樊电厂#1~4机组采用美国Permutit过滤器公司生产的中压凝结水精处理系统。每台机组配置二台出力为380t/h的体外再生高速混床,每二台机组共用一套体外再生系统。凝结水精处理装置直接串联在凝结水泵与低压加热器之间,不设凝升泵。 中压凝结水精处理系统采用以微机处理器为基础的可编程序控制器(PLC)进行程序控制,控制系统对整个工艺进行集中监视和自动控制。控制方式分为全自动、半自动、CRT点操和就地手操四种。 每台机组的凝结水精处理系统配备一台独立的CRT站。正常运行时一台CRT站监控同一单元内两台机组的凝结水精处理系统和两台机组公用的再生系统。处在同一控制室的两台机组的CRT站可互为备用,即可在任一台CRT站上监视和操作两台机组公用的再生系统和每台机组的凝结水精处理系统。 1.1.2系统流程 NH3 凝结水泵中压凝结水处理系统低压加热器 旁路装置 1.1.3 中压凝结水精处理系统旁路装置 每台机组中压凝结水精处理系统设有一套旁路装置,即安装一个德国阿达

姆斯阀门公司生产的MAK气动蝶阀和相应的控制部分。旁路门有三种开启状态:0%,50%,100%;旁路门设有两种控制方式:自动和手动。自动情况下,一台混床运行,旁路门50%的开度;两台混床运行,旁路门0%的开度;没有混床运行时,旁路门100%全开。

当进出口母管压差ΔP﹥0.35MPa时,PLC发出信号至旁路阀,旁路阀自动打开,凝结水走旁路,同时发出报警信号,而混床在运行人员介入前保持运行状态。 当进口母管凝结水温度超过50℃,旁路门自动开到100%打开状态,混床由自动退出运行,同时发现报警信号。处理完高温异常后,再投入混床。 在失电或断线的情况下,旁路门会自动全开到100%的状态;当控制面板上紧急按钮被按下时,旁路门自动全开至100%的状态。 当混床出口导电度﹥0.20μ/cm或SiO2﹥15μg/l时,首先加以核实,无误后,退出失效混床,旁路门自动开至50%的状态。 1.2 水质控制指标

凝结水精处理

凝结水精处理 一、凝结水精处理的必要性 凝结水的含义:凝结水一般是指锅炉产生的蒸汽在汽轮机做功后,经循环冷却水冷却凝结的水。实际上凝汽器热井的凝结水还包括高压加热器(正常疏水不到热井)、低压加热器等疏水(疏水是指进入加热器将给水加热后冷凝下来的水)。由于热力系统不可避免的存在水汽损失,需向热力系统补充一定量的补给水(除盐水箱来水)。因此凝结水主要包括:汽轮机内蒸汽做功后的凝结水、各种疏水和锅炉补给水。 1、凝汽器泄漏: 凝汽器的泄漏可使冷却水中的悬浮物和盐类进入凝结水中。泄漏可分两种情况:严重泄漏和轻微泄漏。 前者多见于凝汽器中管子发生应力破裂、管子与管板连接处发生泄漏、腐蚀或大面积的腐蚀穿孔等。此时,大量冷却水进入凝结水中,凝结水水质严重恶化。后者多因凝汽器管子腐蚀穿孔或管子与管板连接处不严密,使冷却水渗入凝结水中。 即使凝汽器的制造和安装较好,在机组长期运行过程中,由于负荷和工况的变动,引起凝汽器的震动,也会使管子与管板连接处的严密性降低,造成轻微的泄漏。 当用淡水作冷却水时,凝汽器的允许泄漏率一般应小于0.02%。严密性较好的凝汽器,泄漏量小于此值,甚至可以达到0.005%。当用海水作为冷却水时,要求泄漏率小于0.0004%。 凝汽器泄漏往往是电厂热力设备结垢、腐蚀的重要原因。 2、金属腐蚀产物带入: 火电厂的汽水系统中的设备和管道,往往由于某些腐蚀性物质的作用而遭到腐蚀,致使凝结水中含有金属腐蚀产物,其中主要为铁和铜的氧化物。进入凝结水中金属腐蚀产物的量与很多因素有关,如机组的运行工况,设备停用时保护的好坏,凝结水的pH值,溶解气体(氧和二氧化碳)的含量等。 凝结水进入锅炉后,其所含的金属腐蚀产物将在水冷壁管中沉积,引起锅炉结垢和腐蚀。一般情况下,在机组启动和负荷波动时,凝结水中的铁、铜含量急剧上升。 3、补充水带入的悬浮物和盐分: 锅炉补充水虽经深度除盐处理,但由于种种原因(如原水中有机物含量高等),除盐水在25℃的电导率不能低于0.2μS/cm,即使电导率小于0.1μS/cm,补充水中仍含有一定量的残留盐分。此外,除盐水流过除盐水箱、除盐水泵和管道,也会携带少量的悬浮物及溶解气体而进入给水。 4、热电厂返回水夹带的杂质污染 从热用户返回的凝结水中通常含有很多杂质。、生产用汽的凝结水一般含有较多的油类物质和铁的腐蚀产物,返回后需要进一步处理来满足机组对水质的要求。 二、凝结水精处理技术概况 凝结水处理设备与热力系统的连接方式 1、低压系统连接方式 水处理设备串联在凝结水泵和凝升泵之间,见图(a)。由于凝结水泵在

凝结水精处理存在问题及对策分析

凝结水精处理存在问题及对策分析 发表时间:2017-12-22T17:21:31.423Z 来源:《电力设备》2017年第25期作者:赵宏科 [导读] 摘要:凝结水精处理在电厂以及锅炉中使用极为普遍,其主要功能在于去掉凝结水中存在的各种可能的金属腐蚀物以及各类微量溶解性物质。 (大唐陕西发电有限公司灞桥热电厂陕西西安 710038) 摘要:凝结水精处理在电厂以及锅炉中使用极为普遍,其主要功能在于去掉凝结水中存在的各种可能的金属腐蚀物以及各类微量溶解性物质。近年来,随着我国各种大型火力发电厂的建设及投入使用,各类先进的凝结水精处理装置得到了普遍使用,因此,如何保证该装置在使用过程中的安全、高效,稳定,事关电厂安全生产的全局。 关键词:凝结水精;处理;问题;对策;分析 1导言 凝结水精处理系统是百万压水堆核电站二回路重要的系统之一。其位于凝结水泵与低压加热器之间,对二回路水中杂质离子进行树脂交换处理,保证蒸汽发生器供水水质。主要功能是:一是连续去除热力系统在机组正常运行或机组启停期间形成的腐蚀产物和离子杂质,为蒸汽发生器提供悬浮物质含量极低的给水;二是机组启动时可以大大减少系统冲洗时间,使机组尽快投入运行并节约除盐水用量。 2热电厂凝结水精处理系统概述 从理论上来看,凝结水是指锅炉产生的蒸汽在汽轮机做功后,经循环冷却水冷却凝结的水。但从生产实际来看,凝汽器热井的凝结水还包括高压加热器、低压加热器等疏水———即进入加热器将给水加热后冷凝下来的水。因此凝结水主要包括:汽轮机内蒸汽做功后的凝结水、各种疏水和锅炉补给水。凝结水作为锅炉给水主要组成部分,其水质将直接影响给水质量,尤其是随着机组参数的增大,为了机组的安全运行,对凝结水质量提出了更高的要求。 3凝结水精处理的目标 凝结水在一些状况下会受到污染,如凝汽器渗漏或泄漏、金属腐蚀产物的污染、锅炉补给水带入少量杂质等,部分超临界参数的机组,对给水水质的要求很高,需要进行凝结水的高纯度净化,也就是凝结水精处理。这就要求建立凝结水精处理系统。凝结水精处理系统高速混床是在机组空负荷试运结束后,进入带负荷整套调试阶段时初次投运的,投入运行均采用点动控制。控制混床入口含铁量≤1 000μg/L,结合机组负荷情况,为避免树脂污染严重,尽量等凝结水水质达到最佳而除盐设备补水已满足不了机组负荷要求时才投入精处理高速混床,对凝结水进行回收,从而实现凝结水的精处理。 4发电厂凝结水精处理中存在的问题分析 发电厂凝结水精处理中存在最为严重的问题就是在步骤顺序方面,在设备的调试以及处理期间都存在一定问题,设备调试人员自身技术水平较低,在发电厂凝结水精处理过程中要求设备调试人员具有较高的专业素质,因此在调试的过程中大多调试人员依赖供应商提供的步骤进行调试,达不到预期调试效果的同时也保证不了质量。在发电厂凝结水精处理的过程中,不能够保证设备的质量,进而不能够使设备稳定的运行,特别是在树脂再生的过程中,更是达不到标准,以此造成树脂严重流失,对整个发电厂凝结水精处理都有一定的影响甚至造成一定的经济损失。此外,在发电厂凝结水精处理过程中监控系统不完善,对调试中产生的问题不能及时的解决,使问题严重化。混床出水一直是发电厂凝结水精处理的关键问题,对水质以及出水水量不能保证,因此失去最初的处理效果。关于发电厂凝结水精处理存在的问题,发电厂应当进行重视,并且能够对问题进行有效的解决策略,以下便是对发电厂凝结水精处理策略的分析,希望能够对凝结水精处理有所帮助。 5凝结水精处理过程中存在问题的对策建议 加强凝结水精处理程控系统的设计和改进。从当前实际情况来看,各大电厂中凝结水精处理中程控系统不力的最主要的原因在于其主要是以时间步骤和顺序为核心来进行的,这种程控系统无法很好地完成树脂的分离与混合过程,同样无法保证正常生产的稳定性。在长期的生产过程中,这种以固定的时间为设计的程控系统存在着设计上的瑕疵,主要体现在树脂分离过程中的水力分离一般不适合采用固定的流量和时间来进行控制,因为在运行过程中经常需要采用水力分层的操作,实际过程中需要按照树脂观察窗所反映的实际情况来定,有时候也需要工作人员视实际情况来进行手动人工操作,因此不宜采用固定时间和步骤来进行程控系统的设计,凝结水精处理过程中程控系统不力将直接导致树脂分离效果不佳,影响了树脂的再生,要想彻底解决这一问题,就必须将凝结水精处理过程中的运行和再生由统一的单一固定时间参数来进行控制,同时由专业人员加强对凝结水精处理的前期调试,吸取国内外成熟的精处理调试经验,优化系统设计。除此之外,还应切实考虑到程控系统发生故障之后的应急处理步骤及方案的设计,保障在程控系统发生故障之后工作人员可以迅速按照预定方案到达预定地点迅速开启人工操作,保障生产工作的进行并将损失降到最低。树脂再生过程的优化与改进。 树脂泄漏的防护措施。在凝结水精处理的过程中要防止树脂泄漏渗入处理系统中,阻塞水泵的排水口,工作人员要采取必要措施在平时对系统进行常规维护等,防止此类情形发生,同时如果发生了树脂泄漏的情况,也要及时采取相应的可行措施,在发生树脂泄漏的情况下主要应采取以下应对措施: (1)立即关闭电动门,包括除氧器中的电动门以及旁路电动门。发生树脂泄漏后,工作人员应立即切断这两个电动门,以防止泄漏的树脂进入除氧器中,同时启动精处理系统中的凝结水再循环设施,从而使得凝结水可以通过水泵进入凝聚水管道中去,防止泄漏的树脂流入凝汽器中,保证设备的正常运转。(2)清理凝汽器后,要将过滤网进行手动拆除后进行清理,并启动再循环装置,将流入设备中的树脂彻底清扫。(3)如果凝结水精处理设备中由于树脂泄漏而出现堵塞,同时凝泵出现腐蚀的情况,这时要先将设备推出系统,然后停止整个机组凝泵的工作。(4)保证凝结水精处理正常工作并不使其出现树脂泄漏的事故,工作人员要在平时不断改进技术,不断完善凝结水精处理的技术,在平时要做好设备的维护、清理等工作,提高凝结水精处理运行的信息化程度,例如将混床的进出口阀门和凝泵采用计算机进行连接,这样就可以在发生可能的树脂泄漏后凝泵跳闸后,进出口阀门接收到信号后及时关闭,防止树脂进入凝汽器中去,保证系统的运转正常,为工作人员的抢修赢得时间。 6结论 通过对上述的内容进行分析研究之后能够得出,以上就是对发电厂凝结水精处理问题的分析,要想提高发电厂凝结水精处理质量,首

凝结水精处理系统

凝结水精处理系统 一、概述 1.1.1 凝结水的含义:凝结水一般是指锅炉产生的蒸汽在汽轮机做功后,经循环冷却水冷却凝结的水。实际上凝汽器热井的凝结水还包括高压加热器(正常疏水不到热井)、低压加热器等疏水(疏水是指进入加热器将给水加热后冷凝下来的水)。由于热力系统不可避免的存在水汽损失,需向热力系统补充一定量的补给水(除盐水箱来水)。因此凝结水主要包括:汽轮机内蒸汽做功后的凝结水、各种疏水和锅炉补给水。 1.1.2 凝结水精处理的目的 凝结水由于某些原因会受到一定程度的污染,大概有以下几点: 1)凝汽器渗漏或泄漏 凝结水污染的主要原因是冷却水从凝汽器不严密的部位漏至凝结水中。凝汽器不严密的部位通常是在凝汽器内部管束与管板连接处,由于机组工况的变动会使凝汽器内产生机械应力,即使凝汽器的制造和安装质量较好,在使用中仍然可能会发生循环冷却水渗漏或泄漏现象。而冷却水中含有较多悬浮物、胶体和盐类物质,必然影响凝结水水质。 2)金属腐蚀产物的污染 凝结水系统的管路和设备会由于某些原因而被腐蚀,因此凝结水中常常有金属腐蚀产物。其中主要是铁和铜的氧化物(我公司热力系统设备基本上没有铜质材料)。铁的形态主要是以Fe2O3、Fe3O4为主,它们呈悬浮态和胶态,此外也有铁的各种离子。凝结水中的腐蚀产物的含量与机组的运行状况有关,在机组启动初期凝结水中腐蚀产物较多,另外在机组负荷不稳定情况下杂质含量也可能增多。 3)锅炉补给水带入少量杂质 化学水处理混床出水即为锅炉补给水,一般从凝气器补入热力系统。由于混床出水在运行中的严格控制,补给水杂质含量很少,其水质要求:DD≤0.2μs/cm ,SiO2≤20μg/L。如果混床出水不合格,就可能对凝结水造成污染。 由于以上几种原因,凝结水或多或少有一定的污染,而对于超临界参数的机组而言,由于其对给水水质的要求很高,所以需要进行凝结水的更深程度的净化,即凝结水精处理。 1.1.3 凝结水精处理设备介绍 凝结水精处理系统采用中压凝结水混床系统,具体为前置过滤器与高速混床的串连,每台机组设置2×50%管式前置过滤器和3×50%球形高速混床,混床树脂失效后采用三塔法体外再生系统,其中1、2号机组精处理共用一套再生装置。再生系统主要包括分离塔、阴塔和阳塔(即“三塔”),另外还包括酸碱设备、热水罐、冲洗水泵、罗茨风机、储气罐等设备。1.1.4 凝结水精处理系统流程 1.1.5 凝结水精处理体外再生系统树脂流程 二、设备结构及原理 1.1.6 前置过滤器 1)作用 除去凝结水中悬浮物、胶体、腐蚀产物和油类等物质。它主要用在机组启动时对凝结水除铁、洗硅,缩短机组投运时间。另外除去了粒径较大的物质,延长了树脂运行周期和使用寿命。2)结构及工作原理 前置过滤器整体为直筒状,采用碳钢结构。内部滤元为管式,滤元骨架采用316不锈钢材质,共有268根管(管束)竖着固定在前置过滤器上下端之间。每根管上有若干水孔,并且在管外缠绕着聚丙烯纤维滤料,滤料过滤精度为10μm。水从前置过滤器底部进入管束之间,流

凝结水精处理注意事项

凝结水精处理注意事项 1、运行期间所有阀门操作必须再三确认之后方可在上位机上操作,以防止如误 关过滤器进水门或出水门致使凝结水被化学精处理截断流量至零跳机,如误开排气阀或反洗排水阀致使瞬间大量跑水造成排汽装置、除氧器水位低跳机,如停运过滤器未泄压直接开排气阀、反洗排水阀,造成水锤阀门损坏等;2、运行期间,旁路电动阀联锁一定要投入,且发现运行过滤器“进出水水管差 压高”一直存在时,说明过滤器已失效压差超过0.175MPa,此时需将旁路电动阀解除联锁,并设开度100%,后及时汇报专业,以便安排爆膜、铺膜。3、运行期间,取精处理出水水样时需仔细检查精处理有无漏水处、各气源管有 无漏气处,并定期检查各水泵油位是否过低。 4、过滤器投运、停运、爆膜、铺膜程序执行时,与之有关的阀门、泵必须处远 方、自动状态,否则程序不会自己往下走,必须不断按“步进”方可执行(例如进水母管隔离阀处关闭时执行停运程序) 5、爆膜前需将废水池抽至低位,#1过滤器爆膜时间已设定好,#2过滤器因进 水手动阀。进水气动阀漏水严重无法爆膜、铺膜。#1过滤器爆膜前需确认工艺储气罐出气总阀全开、关闭#1过滤器进水手动阀、凝结水进水母管隔离阀(原因是阀门内漏) 6、爆膜时注意废水池水位,并及时排水,当水位过高,易造成爆膜进气时池子 或地沟向外溅水,要防止水溅至电机、柜子上; 7、铺膜时,铺膜注射泵自循环流量要一直存在,一旦无自循环水流即表示注射 泵进料管堵塞或铺膜注射泵进气,此时空气会从自循环管进入铺膜泵入口,造成过滤器进气; 8、铺膜时,液位低于铺膜箱搅拌器上部螺旋桨时必须停搅拌器,否则搅拌产生 的漩涡会使铺膜注射泵频繁进气; 9、铺膜时,要注意观察铺膜箱液位下降速度,一旦不下降(此时往往注射泵自 循环水量无),此时需手动启反洗水泵、开铺膜注射泵进料管冲洗手动阀5-10秒钟,对进料管进行反冲或排气。 10、铺膜中铺膜准备时,程序上水仅上到中位(上位机上显示高位),为防止树脂粉浓度过大造成注射泵进料管堵塞,需手动上水至高位(临近溢流) 精处理过滤器停运、爆膜、铺膜、投运: 1、运行期间发现运行过滤器“进出水管差压高”一直存在时,需将旁路电动阀 解除联锁,并设开度100%,后启动废水提升泵,将废水池打水至低位; 2、开精处理旁路手动门,关过滤器进水手动门,后执行“过滤器停运程序”, 执行至卸压时,点“延迟”,操作人员至就地查看过滤器压力是否降为零;若为零,上位机上再点“延迟”,程序运行完后停其护膜保持泵,上位机上关进水母管隔离阀; 3、点击“过滤器爆膜”,并启动废水提升泵,当爆膜运行至注水3时,仔细观 察排气母管上的液位开关是否动作,当确定动作后,点击“步进”,当运行至注水4时,仔细观察排气母管上的液位开关是否动作,当确定动作后,点击“步进”,其余由程序自动运行; 4、第一次爆膜完毕后,再进行第二次、第三次爆膜,注意事项同第三步; 5、第三次爆膜完毕后,关闭铺膜箱底部排污阀,点击“过滤器铺膜”,当铺膜 准备上水完毕后,一人至零米观察铺膜箱水位及铺膜注射泵自循环水量是否正常,一人将将铺膜箱补水阀置为远方手动并开启、反洗水泵置为远方手动

凝结水精处理讲课内容

凝结水精处理系统杨清亮 树脂的工作原理 除去水中溶解性盐类的方法主要有三种:离子交换法、膜分离法和蒸馏法,其中离子交换树脂是目前在水处理过程中运用最广泛的方法。 工作原理:树脂是一类带有活性基团的网状结构高分子化合物,在树脂中有一活动部分,遇水可以电离,并能在一定范围内移动,可与周围水中的其他带同类电荷的离子进行交换反应。所以当含有盐类的水溶液通过树脂时,树脂可以将水中的盐份交换下来。 树脂的特性 1、树脂具有选择性 离子交换树脂的选择性主要取决于被交换离子的结构。有两个规律: 1)离子带的电荷越多越容易被吸收。 2)带有相同电荷的离子,原子序数大的较容易被吸收。 对于强酸性阳树脂:Fe3+>Al3+>Ca2+>Mg2+>K+=NH4+>Na+>H+ 对于强碱性阴树脂: SO42->HSO4->N03->Cl->OH->HCO3->HSiO3- 2、树脂具有可逆性 阴、阳树脂交换的离子反应: 1)阳树脂的交换反应:RH+Na+=RNa+H+ 2)阴树脂的交换反应:ROH+Cl-=RCl+OH- 再生时的离子反应: 1)阳树脂: RNa+H+=RH+Na 2) 阴树脂: RCl+OH-= ROH+Cl 1.二期凝结水精处理系统介绍 1)二期凝结水精处理采用中压处理系统,#3、4机组各配备两台高速混床,两台机组共用一套再生系统,机组正常运行时两台混床并列运行,当有一台混床失效时,凝水50%旁路。 2)系统分为两个部分,一部分为凝结水精处理部分,另一部分为再生部分。 3)该系统的作用:可以除去凝结水中的溶解盐类、热力系统的腐蚀产物以及因凝汽器泄漏而进入凝结水中的盐份。 4)混床的监督项目:钠离子,二氧化硅,DD,温度(大于50℃时旁路门自动开启),压差。 1.1混床系统介绍 1.1.1每台机组的凝结水精处理由2×50%高速混床、二台树脂捕捉器、一台再循环泵和一套旁路系统组成。二台混床同时运行,不设备用。机组启动初期,凝结水含铁量超过1000 μg/L时,不进入凝结水处理装置,直接通过旁路100%排放。正常运行后,混床启动初期出水不符合要求时,需经再循环泵循环至混床出水合格方可向系统供水。 1.1.2每个精处理混床系统设有一套自动旁路系统,当混床进出口母管压差大于0.3MPa或水温度超过50℃时,旁路阀自动打开,并关闭每个混床的进出水阀,凝结水100%通过旁路系统,保护树脂和混床不受损坏;当有一台混床树脂失效时,机组旁路阀门开启适当开度使50%凝结水流量通过旁路系统;另外50%凝结水流量通过没有失效的混床。失效混床内的树脂送入树脂分离塔以进行树脂的再生处理,失效树脂从混床转移完毕后,将阳再生塔兼树脂贮存塔内再生好的备用树脂送入该混床,准备投运。 1.2精处理再生系统介绍 每两台机组的混床共用一套再生装置,再生装置的主要功能能满足混床NH+4/OH-型运行时的树脂彻底分离、彻底清洗、完全再生的全部要求,且不会对树脂造成不必要的损害。再生装置主要有分离塔、阴再生塔、阳再生塔兼树脂贮存塔及废水树脂捕捉器组成。分离塔通过高速水流将树脂彻底分层,用上下进水的方法将阳阴树脂分别输送至阳阴再生塔,树脂经彻底清洗后分别进行同时再生,清洗合格后,将阴树脂输送至阳再生塔,混合清洗,导电度合格后备用。废水树脂捕捉器是捕捉通过再生塔的树脂,防止再生塔中树脂

某电厂凝结水精处理系统的若干问题

某电厂凝结水精处理系统的若干问题 更新时间:09-12-14 16:52 一、前言 凝结水作为锅炉给水主要组成部分,其水质将直接影响给水质量,尤其是随着机组参数的增大,为了机组的安全经济运行,对凝结水质量提出了更高的要求。机组在运输、保管、安装及启停过程中,不可避免地形成金属腐蚀产物,同时,尽管补给水带入热力的杂质一般较少,但凝汽器总是存在一定的泄漏,影响了给水质量,因此必须对凝结水进行精处理,除去金属腐蚀产物及泄漏所带入的杂质。 二、凝结水精处理系统工艺流程概述 1.某电厂一期工程2×300MW机组2台机组共设计凝结水精处理系统为六台高速混床,采用两台机组共用一套再生系统的运行方式。该系统采用单元制中压系统,混床采用H/OH 运行。凝结水精处理系统出力按850吨/时设计,配置六台Φ2200空气擦洗体外再生高速混床。单台机组正常运行时,两台混床运行,一台作备用。并分别设有一台再循环泵,既保证投运时的水质,又节省了凝结水,缩短了混床出水合格时间。经该系统处理后的水质为:电导率≤0.2μS/cm(25℃,加氨前) SiO2≤15μg/L 硬度~0μmol/L 三、水质指标及实际测定指标 1.混床初次投运水质情况 凝结水精处理系统高速混床是在机组空负荷试运结束后,进入带负荷整套调试阶段时初次投运的,投入运行均采用点动控制。控制混床入口含铁量≤1000μg/L,结合机组负荷情况,为避免树脂污染严重,尽量等凝结水水质达到最佳而除盐设备补水已满足不了机组负荷要求时才投入精处理高速混床,对凝结水进行回收。 四、凝结水精处理系统在整套试运中所起的作用 高速混床的及时投运对启动过程中除铁、硅起了关键作用。机组在启动初的一段时间里,凝结水系统中的悬浮铁及二氧化硅含量较高,此时锅炉给水主要是由除盐水直接经除氧器补充,凝结水不能回收,大量的悬浮铁及粒装铁通过凝结水泵再循环不断排出系统外,凝结水不断净化,待机组负荷达10MW时,凝结水含Fe1000μg/L,SiO2100μg/L,此时投入高速混床,不但可有效保护树脂少受污染,同时起到了截流过滤悬浮铁及二氧化硅的作用,使凝

凝结水精处理运行规程

凝结水精处理运行规程

目录 1.总则 1.1 凝结水处理系统的设计说明 1.2 设备规范 2.凝结水处理设备运行 2.1 凝结水混床启动前检查 2.2 凝结水混床的启动、停止、切换2.3 凝结水混床运行监督 2.4 凝结水混床旁路的开启 3.凝结水设备再生操作 3.1再生前的检查 3.2 树脂输送 3.3 凝结水混床的再生操作 4. 凝结水处理设备的故障处理

1.总则 1.1凝结水处理系统的设计说明 1.1.1凝结水处理系统的作用 凝结水为给水的组成部分,其质量的好坏将直接影响到给水的质量,而给水质量的好坏又直接影响到机组的安全经济运行。应该说,凝结水的品质是比较好的,但是在机组运行过程中,凝汽器总有少量的冷却水渗漏而混入凝结水中,这些冷却水带入了盐份、胶体、悬浮物等杂质,污染了凝结水,同时在机组正常运行和投运、停运过程中,不可避免地产生金属氧化物,为了保证给水水质,以保证机组安全运行,必须进行凝结水处理,除去这些金属氧化物和因凝汽器泄漏而带入的杂质。 1.1.2 凝结水处理的方式选择 我厂凝结水处理采用体外再生空气擦洗高速混床,中压运行系统,不设前置过滤器,高速混床及再生系统均布置在汽机房0米层。 高速混床按单元制配置,每台机组配二台高速混床,并预留有扩建一台的位置,凝结水100%处理,两台机组公用一套体外再生设备。 1.1.3 凝结水除盐系统设计工况 凝结水流量:正常:733 m3/h 最大:781 m3/h 每台混床设计流速:正常:100 m/h 最大:120 m/h 混床设计压力: 3.53 Mpa 混床运行压力: 2.8 Mpa 树脂比例: 1:1 设计温度: 60℃ 运行温度:正常:33℃ 夏季:49℃ 为了提高再生效果,确保凝结水出水质量,我厂凝结水体外再生阴阳树脂采用KENNICOTT公司的CONESEP’S锥体分离技术,以求得阴阳树脂较好的分离效果,高速混床按H+/OH型运行,有NH4+/OH运行的可能。 凝结水除盐设备由以下部分组成: 凝结水除盐混床 阳树脂再生塔兼贮存塔

(完整版)凝结水精处理技术

凝结水精处理技术 凝结水精处理技术主要包括膜分离技术和离子交换技术。欧梅塞尔是同时拥有膜和离子交换树脂两大技术和产品的公司。从蒸汽凝结水零排放到炼油废水处理,从电子超纯水到海水淡化处理,欧梅塞尔膜和离子交换技术和产品都能够为用户提供各种需求的水资源解决方案。 中国蒸汽凝结水回收率不足30%。其中很主要的原因是所回收的凝结水中含有过量油 类等污染物,包括动植物油脂,石油烃类,环烷酸,酚醛等衍生物。高温凝结水中水和油的比重、粘度降低、油水分散的阻力减少。除悬浮状态的机械分散油(15~100um )外,高温 凝结水中油主要以乳化油(0.5~15um)和溶解油(0.005um)形式存在。通常分散由悬浮在水面上,乳化油稳定分散在水中,溶解油则完全溶解在水中。 蒸汽输送管线材质一般为碳钢,碳钢容易在有氧和酸性环境下腐蚀。腐蚀产物主要为悬浮态和胶体态的 Fe3O4、Fe2O3,少量不溶性的Fe(0H)3以及离子形式的Fe2+和Fe3+。蒸汽凝结水中铁离子由于氧腐蚀和酸腐蚀。 根据蒸汽凝结水实际温度、流量、水质状况、生产工艺特点以及用户资金状况,可采用不同处理技术进行优化组合。以满足低压锅炉(含油量w 2mg/L,含铁量w 0.3mg/L )、中压锅 炉(含油量w 1mg/L ,含铁量w 0.05mg/L )、高压锅炉(含油量w 0.3mg/L,含铁量w 0.03mg/L )的水质标准要求。 前置过滤技术 前置过滤装置作为凝结水经处理系统的预处理部分,是去除凝结水中的悬浮物、胶体、金属氧化产物等粒径较大的杂质,起到预处理的作用,保护下游膜分离或离子交换设备免受颗粒无损伤和污染,提高周期制水量。前置过滤装置可根据蒸汽凝结水的水质实际情况可选择采用精密过滤器、在线自动清洗过滤器、盘式过滤器、多介质过滤器、电磁过滤器等多种过滤方式实现。 除油技术 陶瓷中空纤维超滤膜分离技术 陶瓷中空纤维超滤膜采用耐温性,机械强度和化学稳定性都极强的a -AL2O3无机材料, 超长使用寿命,从容应对各种极端运行条件。 OMEX陶瓷中空纤维膜由a -氧化铝制成(筛分孔径从0.005?0.1卩m),拥有超长的使用寿命,可在高温、高压、极端PH 值和高固含量等条件下使用。它能够解决不同工业里所遇到的分离难题,包括金属和钢铁制造业,化学工业,饮食业和生物医药业等。陶瓷中空纤维膜的技术优势在于独特的中空纤维结构。普通的陶瓷膜多半是多通道模式,其缺点是在长时间的操作后产生严重污染,膜孔堵塞,造成永久性过滤量下降。陶瓷中空纤维膜不仅能更容易及有效地清洗膜表层上的杂质,克服以上的问题,并能提供更大的过滤面积,同时保留陶瓷膜材质上原有的优势。对凝结水中的各种状态的油以及胶体、悬浮颗粒、色度、浊度、大 分子有机物都具极好的分离能力。

凝结水精处理

第一节系统说明 发电厂的凝结水有汽轮机凝汽器凝结水、汽轮机附属热力系统中加热疏水(蒸汽凝结水)。凝结水是给水中最优良的组成部分,通常也是给水组成部分中数量最大的。凝结水同补给水汇合后成为锅炉的补水,所以保证凝结水和补给水的水质是使给水水质良好的前提。 凝结水是由蒸汽凝结而成的,水质应该是极纯的,但是实际上这些凝结水往往由于以下原因而有一定程度的污染: 1 在气轮机凝汽器的不严密处,有冷却水漏入汽轮机凝结水中。 2 因凝结水系统及加热器疏水系统中,有的设备和管路的金属腐蚀产物而污染了凝结 水。 一、凝汽器的漏水 冷却水从汽轮机凝汽器不严密的地方进入汽轮机的凝结水中,是凝结水中含有盐类物质和硅化合物的主要来源,也是这类杂质进入给水的主要途径之一。凝汽器的不严密处,通常出现在用来固定凝汽器管子与管板的连接部位(或称固接处)。即使凝汽器的制造和安装质量较好,在机组长期运行的过程中,由于负荷和工况变动的影响,经常受到热应力和机械应力的作用,往往使管子与管板固接处的严密性降低,因此通过这些不严密处渗入到凝结水中的冷却水量就加大。根据对许多大型机组的凝汽器所作的检查得知:在正常运行条件下,随着凝汽器的结构和运行工况的不同,渗入到凝结水中的冷却水量有很大的差别;严密性很好的凝汽器,可以做到渗入的冷却水量为汽轮机额定负荷时凝结水量的0.005%-0.02%。就是说,即使在正常运行条件下,冷却水也是或多或少地渗入到凝结水中,这种情况称之为凝汽器渗漏。 当凝汽器地管子因制造地缺陷或者因为腐蚀出现裂纹、穿孔和破损时,当管子与管板地固接不良或者固接处地严密性遭到破坏时,那么由于冷却水进入到凝结水中而使凝结水水质劣化的现象就更加显著。这种现象称为凝汽器泄漏。凝汽器泄漏时进入凝结水的冷却水量比正常情况下高的多。 随着冷却水进入凝结水中的杂质,通常有Ca2+、Mg2+、Na+、HCO3-、Cl-、SO42-,以及硅化合物和有机物等。 由于进入凝汽器的蒸汽是汽轮机的排汽,其中杂质的含量非常少,所以汽轮机凝结水中的杂质含量,主要决定于漏入冷却水的量和其杂质的含量。现以含盐量为200-400mg/L的

凝结水精处理现状及新技术应用研究

凝结水精处理现状及新技术应用研究 发表时间:2018-11-09T17:28:13.913Z 来源:《防护工程》2018年第21期作者:凌小凤 [导读] 有助于电厂实际生产运行,改进工艺的缺陷;经过对某电厂德国全套设备运营参数分析,其优点值得国内电厂借鉴。 武汉凯迪水务有限公司湖北武汉 430070 摘要:本文分析了凝结水精处理现状,指出树脂分离与混合的固有矛盾是技术上的不足之处,另一不足之处是树脂分离再生工艺较为复杂,而以时间为步骤的程骤控制方式过于机械,简单,二者不能匹配是程控系统投入不好的主要原因。 关键词:凝结水精处理;再生;浮床;程序控制 中国的电网很大,高参数、大容量机组相继推出,对凝结水精处理也有更高的要求。水是火力发电机组机炉间能量传递的唯一介质,为此,它对机组安全、经济作用是很大的,特别是凝结水的质量(相对于整个汽水系统)起着决定作用。 1 精处理系统的不足之处 1.1 程控系统投入不好或不能投入 从现场的运行效果来看,精处理的程控系统普遍投入不好,部分精处理的程控系统甚至从未调试成功,即使调试投入,在生产过程也不能稳定运行。其表现为:按照程控步序完成树脂分离、再生后,树脂不能得到再生并且树脂的混和效果不好,从而影响混床制水量或水质。运行人员只能逐个操作有关阀门完成树脂再生和混和过程,这不仅大大增加了运行人员的工作量,而且对设备投资造成极大浪费。且认为是控制设备诸如气动阀门、反馈信号装置等性能和质量不好造成的。经原因分析可知:以固定时间步序为主的程控系统和复杂的树脂再生过程存在矛盾,这种矛盾的产生是由于树脂再生过程的时间参数不确定性造成的。程控系统投入不好就成为精处理系统的普遍现象。 1.2 混床出水水质和制水量有时出现问题 当阴阳树脂经过正确再生输送到混床内投入不久,混床即失效;其周期制水量明显低于正常值,有时还伴有混床出水pH偏低和水质下降的现象。 2 原因分析 精处理系统的制水量和出水水质发生问题是由于精处理工艺中树脂不能实现完全分离和完全混合所致。而树脂的完全分离和混合是不能实现的,这一点也就成为精处理系统的主要技术不足。 2.1 混合不完全产生的问题 在长期的生产实践中发现,阴阳树脂经过再生后,制水量和出水水质出现问题主要是由于再生后的阴阳树脂混合不匀所致。其机理是:由于阴阳树脂密度不同,混合不好时,混床上部阴树脂明显增多,而下部阳树脂偏多嗍。目前,国内电厂绝大部分采用全挥发处理的碱性给水工况,凝结水pH为9.1~9.4之间,碱性凝结水直接进入混床,混床上部较少的阳树脂很快被中和失效,碱性凝结水直接和阴树脂接触,使得阴树脂不能除掉阴离子,即阴树脂的交换容量得不到发挥。这是因为碱性凝结水中OH-的浓度远大于其它阴离子浓度,而阴树脂中ROH也远大于RCl。当这种阴树脂和碱性凝结水接触时,碱性凝结水刚好和阴树脂达到平衡或接近平衡。此时阴树脂将不能吸收凝结水中的阴离子。 实际运行中还存在另外一种情况,由于阴树脂的再生用碱含有相当数量的NaCl,即阴树脂进行再生后,树脂相中除ROH外,还有相当数量的RCl,当再生用碱质量较差时(NaCl含量较大),经过再生后的阴树脂中RCl的含量较大,阴树脂直接和碱性凝结水接触,树脂相的RCl和凝结水平衡后,树脂相的RCl有可能变为ROH,Cl-被释到凝结水中。 上述两种情况下,混床上部较多的阴树脂不能发挥交换容量,甚至向外释放Cl-。混床下部阴树脂较少而阳树脂较多,阴树脂将很快被消耗。由于阳树脂偏多,凝结水需除掉的阳离子中NH4+占有很大比例。经过交换后RH变为RNH4+,H+被释放到出水中。当底部阴树脂消耗完后,运行中则表现为周期制水量减小,HC03-、Cl-、HSiO3-很快漏出,同时伴有pH偏低的现象。 2.2 分离不完全产生的问题 几十年来,人们一直致力于树脂完全分离的研究。如何实现树脂的分离,几种精处理系统各不相同。锥体分离工艺是将失效树脂在树脂分离器内完成水力分层后,将阳树脂从分离器底部水力输送到阳树脂再生器。二次分离再生工艺是将失效树脂完成分离后,将上部阴树脂水力输送到阴树脂再生器,中间混合树脂送入混杂树脂塔中。单塔再生工艺是将阴、阳树脂完成水力分层后,同时进行酸碱再生。三种类型的主导思想是实现树脂的完全分离。而实际运行则做不到。这是因为: (1)由于树脂制造的原因,阴、阳树脂中总有一些细碎部分。这些细碎部分在水力分层后由于沉降速度小而存于树脂上部。即阴树脂中总混有阳树脂。 (2)树脂在水力分层时,阴、阳树脂中间层由于水流扰动,阴、阳树脂总是相互混合的。 (3)阴、阳树脂进行水力分层后,受到树脂转型和水流压实程度变化的影响,阴、阳树脂的中间层不能始终稳定在树脂分离器的树脂出口位置。 (4)在进行水力输送时,树脂分离器和混床内总有残留树脂。 由于上述4个方面的原因,树脂不能实现完全分离,因而形成交叉污染。即经过这样再生后的阴阳树脂中,阴树脂中的阳树脂成为RNa:阳树脂中的阴树脂成为RCl。当再生后的阴阳树脂输送回混床后,树脂相中RH和ROH含量下降,RNa和RCl含量升高,混床出水和这种树脂平衡后出水的杂质含量必然升高。从而影响出水水质。 2.3 树脂分离与混合间的固有矛盾是技术上的不足之处 树脂分离不完全则导致水质不良,树脂混合不好则导致制水量下降。树脂的分离和混合又同时存在于现今的精处理系统中。另外,从树脂的生产角度上讲,生产厂家总是追求树脂的良好分离性能,这样的树脂其混合性能必然不好。现今的精处理系统无法解决树脂的完全分离和混合所产生的矛盾。程控方式不适当。以时间步序为主的程控无法完成树脂的分离和混合过程是程控系统不能投入的主要原因。精处理的程控系统均设计为以固定时间步序为主。在长期的生产实践中发现:树脂的水力分离过程是不能以同定流量和固定时间来控制的。水力冲洗分层的流量必需是一个从0到较大的渐变流量。否则,树脂很容易被冲洗掉。同时,反洗时间也不同定,有时需重复水力分层操作。这一切都需要通过树脂观察窗观察树脂的分层情况而定。 由于前文所述的水力分层时树脂体积的变化,导致在分层后树脂层面位置不固定,中间层树脂或高或低。这样,当依然按照固定时间

相关文档