文档库 最新最全的文档下载
当前位置:文档库 › y=a(x—h)2的图象和性质

y=a(x—h)2的图象和性质

y=a(x—h)2的图象和性质
y=a(x—h)2的图象和性质

正切函数的图像和性质-公开课教案

正切函数的图像和性质-公开课教案

1.4.2 正切函数的性质与图象 考纲要求:能画出y=tanx的图象,了解三角函数的周期性.,理解正切函数在 区间()的单调性. 教学目的 知识目标:了解利用正切线画出正切函数图象的方法; 了解正切曲线的特征,能利用正切曲线解决简单的问题; 掌握正切函数的性质。 能力目标:掌握正弦函数的周期性,奇 偶性,单调性,能利用正切 曲线解决简单的问题。 情感目标:在借鉴正弦函数的学习方法研究正切函数图象、性质的过程中体会类比的思想。 教学重点:正切函数的图象形状及其主要性质 教学难点:1、利用正切线得到正切函数的图象 2、对正切函数单调性的理解 教学方法:探究,启发式教学 教学过程 复习导入: 1. 正切函数的定义及几何表 示,正切函数tan 的定义域是什么? y x 2. 正弦曲线是怎样画的? 讲授新课: 思考1:能否类比正弦函数图象的作法,画出正切函数的图象呢?

画正切函数选取哪一段好呢? 画多长一段呢? 思考2:正切函数是不是周期函数?若 是,最小正周期是什么? 思考3. 诱导公式 体 现了正切函数的哪种性质? (一)作tan y x =,x ∈?? ? ? ?-2 ,2ππ的图象 说明: (1)根据正切函数的周期性,把上述图 象向左、右扩展,得到正切函数 R x x y ∈=tan ,且()z k k x ∈+≠ππ 2 的图象,称“正切曲线”。 tan()tan x x -=-

(2)由图象可以看出,正切曲线是由被相 互平行的直线()2x k k Z ππ=+∈所隔开的无穷多支曲线组成的。 (二)正切函数的性质 引导学生观察,共同获得: (1)定义域:? ?? ? ??∈+≠z k k x x ,2 |ππ; (2)周期性:π=T ; (3)奇偶性:由()x x tan tan -=-知,正切函数是奇函数; (4)单调性: 思考:正切函数在整个定义域内是增函数

22.1.4二次函数的图像和性质 教案

22.1 二次函数(6) 教学目标: 1.使学生掌握用描点法画出函数y =ax 2+bx +c 的图象。 2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。 3.让学生经历探索二次函数y =ax 2+bx +c 的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y =ax 2+bx +c 的性质。 重点难点: 重点:用描点法画出二次函数y =ax 2+bx +c 的图象和通过配方确定抛物线的对称轴、顶点坐标是教学的重点。 难点:理解二次函数y =ax 2+b x +c(a ≠0)的性质以及它的对称轴(顶点坐标分别是x =-b 2a 、(-b 2a ,4ac -b24a )是教学的难点。 教学过程: 一、提出问题 1.你能说出函数y =-4(x -2)2+1图象的开口方向、对称轴和顶点坐标吗? 2.函数y =-4(x -2)2+1图象与函数y =-4x 2的图象有什么关系? (函数y =-4(x -2)2+1的图象可以看成是将函数y =-4x 2的图象向右平移2个单位再向上平移1个单位得到的) 3.函数y =-4(x -2)2+1具有哪些性质? (当x <2时,函数值y 随x 的增大而增大,当x >2时,函数值y 随x 的增大而减小;当x =2时,函数取得最大值,最大值y =1) 4.不画出图象,你能直接说出函数y =-12x 2+x -5 2的图象的开口方向、对称轴和顶点 坐标吗? 5.你能画出函数y =-12x 2+x -5 2的图象,并说明这个函数具有哪些性质吗? 二、解决问题 由以上第4个问题的解决,我们已经知道函数y =-12x 2+x -5 2的图象的开口方向、对称 轴和顶点坐标。根据这些特点,可以采用描点法作图的方法作出函数y =-12x 2+x -5 2的图 象,进而观察得到这个函数的性质。 解:(1)列表:在x 的取值范围内列出函数对应值表; x … -2 -1 0 1 2 3 4 … y … -612 -4 -212 -2 - 212 -4 - 612 … (2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点。

21.2 二次函数的图像和性质

21.1 二次函数(2) 教学目标: 1、使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。 2、使学生经历、探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯 重点难点: 重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象是教学的重点。难点:用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。 教学过程: 一、提出问题 1,同学们可以回想一下,一次函数的性质是如何研究的? (先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质) 2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么? (可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象) 3.一次函数的图象是什么?二次函数的图象是什么? 二、范例 例1、画二次函数y=ax2的图象。 x …-3 -2 -1 0 1 2 3 … y …9 4 1 0 1 4 9 … 标,在平面直角坐标系中描点 (3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。 提问:观察这个函数的图象,它有什么特点? 让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象有一点交点。 抛物线概念:像这样的曲线通常叫做抛物线。 顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点. 三、做一做 1.在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别? 2.在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么? 3.将所画的四个函数的图象作比较,你又能发现什么? 对于1,在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生讨论选几个点比较合适以及如何选点。两个函数图象的共同点以及它们的区别,可分组讨论。交流,让学生发表不同的意见,达成共识,两个函数的图象都是抛物线,都关于y轴对称,顶点坐标都是(0,0),区别在于函数y=x2的图象开口向上,函数y=-x2的图象开口向下。 对于2,教师要继续巡视,指导学生画函数图象,两个函数的图象的特点;教师可引导学生类比1得出。 对于3,教师可引导学生从1的共同点和2的发现中得到结论:四个函数的图象都是抛物

余弦函数图像和性质练习含答案

课时作业10 余弦函数、正切函数的图象与性质(一) 时间:45分钟 满分:100分 一、选择题(每小题6分,共计36分) 1.函数f (x )=cos(2x -π 6)的最小正周期是( ) A.π2 B .π C .2π D .4π 解析:本题考查三角函数的周期. T = 2π 2 =π. 余弦型三角函数的周期计算公式为2π ω (ω>0). 答案:B 2.设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π 3个 单位长度后,所得的图象与原图象重合,则ω的最小值等于( ) A.13 B .3 C .6 D .9 解析:将f (x )向右平移π3个单位长度得g (x )=f (x -π 3)= cos[ω(x -π3)]=cos(ωx -π3ω),则-π 3 ω=2k π, ∴ω=-6k ,又ω>0,∴k <0,当k =-1时, ω有最小值6,故选C.

3.设f (x )是定义域为R ,最小正周期为3π 2 的函数,若f (x )= ????? cos x ? ?? ?? -π2≤x ≤0,sin x 0

二次函数yax2的图象

二次函数y=ax2的图象 教学设计示例1 课题:二次函数的图象 教学目标: 1、会用描点法画出二次函数的图象; 2、根据图象观察、分析出二次函数的性质; 3、进一步理解二次函数和抛物线的有关知识 4、渗透由非凡到一般的辩证唯物主义观点; 5、渗透数形结合的数学思想方法,培养观察能力和分析问题的能力; 6、培养学生勇于探索创创新及实事求是的科学精神. 教学重点:根据图象,观察、分析出二次函数的性质 教学难点:渗透数形结合的数学思想方法 教学用具:直尺、微机 教学方法:谈话、探究式 教学过程: 1、列表、描点画出函数与的图象,引入新课 例:画出函数与的图象 解:列两个表 x 4 3

1 0 1 2 3 4 8 2 2 8 x 2 1

1 2 8 2 2 8 分别描点画图 2、根据图象发现问题,由学生探索出新知识. 提问:你能从图象中发现抛物线是哪些性质?这两个函数图象有何异同? 这两个函数的图象都关于y轴对称.这一点可以从刚才的列表中可以看出, 时所对应的y值分别相等,如等.这样的两个点关于y轴对称.由这些点构成的抛物线也关于y轴对称.从解析式中也可以得出这个结论:互为相反数的两个数的平方数相等,因此,这两个函数的图象都是关于y轴对称

从图中可以看出,x可取x轴上的任意一点,而y对应的是大于、等于零的数.即抛物线有最低点.这一点可以从解析式中得到很好的解释, 可取 任意实数. 图象开口向上.这也说明数与形是数学中的两条线索,它们是互相对应的,反映了数形结合的思想. 从图中也可以看出抛物线不同于我们以前学过的正比例函数和一次函数,这两个函数的图象都是直线,而抛物线是曲线,有一个拐弯,函数的图象都在最低点拐了一个弯.这样它们的性质几发生了变化.在y轴的左侧,从左向右呈下坡趋势,即y随x的增大而减小;在y轴的右侧,从左向右,呈上坡趋势,即y随x的增大而增大.这一变化趋势也可以从列表中看出. 这两个图象除以上相同之处外,还有不同的地方.如: 离y轴近, 离y轴远.从列表中可以看出:如过点,而过点也就是说,当x=2时, 的图象所对应的点高于所对应的点.因此会有上述的结论. 3、画出函数的图象 与中的a都是正数,当a0时,抛物线的开口向上,当a<0时,抛物线的开口向下,a的绝对值越大,图象越靠近y 轴. 6、小结:这一节课,从始至中都是结合图象观察、归纳

正切函数的性质和图象

1.4.3正切函数的性质和图象 荥阳市第二高级中学 王青琴 【学习目标】 1.通过预习,能根据正切函数定义,诱导公式,正切线从“数”的角度,推出正切函数性质; 2.通过师生合作,能根据正切函数的性质与正切线,画出正切函数的图象; 3.通过师生合作,能根据正切函数的图象和性质解决相关问题。 【学习重点】 1.正切函数的图象与性质; 2.利用正切函数图象与性质解决问题 【学习难点】 利用正切线研究正切函数的单调性及值域 【学习方法】 自主探究 合作交流 【学习思想】类比、数形结合、整体代换、转化 【学习过程】 一、温故知新 1、正切的定义式是什么? 即:角a 的终边不能落在 y 轴上 即:使的集合为有意义的角tan αα . 2、正弦,弦函数的相关性质有哪些? 思考?正切函数y=tanx 是否有这样的性质呢? 二、新知探究 探究1:根据正切函数定义,诱导公式,正切线推导正切函数的相关性质。 问题1.正切函数的定义域是什么? 结论:正切函数定义域为: . 问题2、你能根据诱导公式,判断正切函数是不是周期函数吗? 结论:正切函数的最小正周期为 . 问题3、你能根据诱导公式,判断正切函数的奇偶性吗? 结论:正切函数为 函数 问题4.你能利用正切线,研究正切函数在一个周期内 的单调性吗? y =tanx y =tanx ππ(-,)22)0(tan ≠=x x y α

结论: 问题5. 观察正切线:当x 大于2π -且无限接近2π -时,正切值如何变化? 当x 小于2π且无限接近2π 时, 正切值又如何变化? 结论:正切函数的值域是___________ 探究2:利用正切线做出正切函数的图象. 问题1. 类比正弦函数图象画法,你能利用正切线,画出y=tanx 在 内的图象吗? 问题2. 根据正切函数周期性,你能画出在其整个定义域内的图象吗? 利用正切线作tan y x =,x ∈?? ? ??-2,2ππ的图象 思考? 正切函数是整个定义域上的增函数吗?为什么? 三、利用性质解题 例题1.求函数)3 2tan(ππ+=x y 的定义域、周期和单调区间。 ??? ??-2,2ππ

八年级数学下册 第二十一章 一次函数 21.2 一次函数的图象和性质教案1 冀教版

21.2一次函数的图像和性质 教学设计思想 本节内容分两个课时,第一课时主要学习的是函数图像的画法,由于一次函数是一般函数的具体化,因此在学习本节内容之前首先回顾第二十一章函数图像的画法,进而学习一次函数的画法。第二课时主要学习正比例函数的图像特征以及探索一次函数的性质及其简单应用,要使学生多动手操作经历作图过程,认真研究图像的性质。 教学目标 知识与技能 总结一次函数图像的画法并初步感受其形象; 总结归纳出一次函数的性质———k>0或k<0时图像变化的情况; 在特殊与一般的比较中概述正比例函数的概念、图像及性质; 尝试利用一次函数性质对变量变化规律进行初步预测; 提高利用函数图像解决问题的能力。 过程与方法 经历作图过程,初步了解作函数图像的一般步骤; 经历将一次函数图像与表达式y=kx+b结合的探索过程,通过观察与思考、合作探究得出正比例函数、一次函数的性质及其简单应用。 情感态度价值观 通过本节课的学习,体会数形结合思想的重要性。 教学方法启发引导、合作探究 课时安排 2课时 教具学具准备投影仪或电脑、直尺 教学过程设计第一课时 重点:一次函数图像的画法。 难点:一次函数y=kx+b的图像是一条直线。 解决办法:通过具体操作与思考使学生明白凡是满足关系式y=kx+b的点都在它的图像上,凡是在图像上的点都满足这个一次函数。进而就容易理解一次函数y=kx+b的图像是一条直线。 复习引导学生回顾第二十一章函数图像的画法。 新授 一次函数是一种形式上比较简单的函数,相应地,它的图像和性质又有什么特点呢?

x-3-2-10123 y=2x-1 直角坐标系中,以这些对应值为坐标描出相应的点,再用平滑的线连结这些点,就可以得到这个函数的图像。 (一)试着做做 已知一次函数y=2x-1。 (1)填写下表: (2)以(1)中得到的每对对应值分别为横坐标和纵坐标,在图25—2的直角坐标系中描出相应的点。 (3)把由(2)得到的点依次连结起来,就得到y=2x-1的图像。 (二)一起探究 1.一次函数y=2x-1图像的形状是怎样的?你和其他同学得到的结果一样吗? 2.凡是满足关系式y=2x-1的x,y的值所对应的点(x,y),如,(1,1),(4,7),…,都在一次函数y=2x-1的图像上吗? 3.请你从一次函数y=2x-1的图像上任意取一点,检验该点的横坐标x和纵坐标y是否满足关系式y=2x-1。 2.由画图过程知,一次函数y=2x-1的图像是由所有满足关系式y=2x-1的点(x,y)连线而得到的。因此,凡满足关系式y=2x-1的x,y的值所对应的点都在一次函数y=2x-1的图像上。

高一数学:正切函数的性质和图象

高一数学:正切函数的性质和图象 1.函数tan()3y x π =+的定义域( ). A .|,6x R x k k Z ππ??∈≠+∈???? B .|,6x R x k k Z π π??∈≠-∈???? C .|2,6x R x k k Z ππ??∈≠+∈???? D .|2,6x R x k k Z π π??∈≠-∈???? 2.函数y=5tan(2x+1)的最小正周期为( ) A .4π B .2π C .π D .2π 3.tan (,)2y x x k k Z π π=≠+∈在定义域上的单调性为( ). A .在整个定义域上为增函数 B .在整个定义域上为减函数 C .在每一个开区间(,)()22k k k Z ππ ππ-++∈上为增函数 D .在每一个开区间(2,2)()22k k k Z ππ ππ-++∈上为增函数 4.当22x ππ -<<时,函数y=tan |x|的图象( ) A .关于原点对称 B .关于x 轴对称 C .关于y 轴对称 D .不是对称图形 5.下列各式正确的是( ). A .13 17 tan()tan()45ππ-<- B .1317 tan()tan()45ππ->- C .13 17 tan()tan()45ππ-=- D .大小关系不确定 6.函数1 tan y x =(44x π π -≤≤且x ≠0)的值域是( ) A .[―1,] B .(―∞,-1]∪[1,+∞) C .(-∞,1] D .[-1,+∞) 7.已知函数y=tan (x+?)的图象过点,012π ?? ???,则?可以是( )

A .6π - B .6π C .12 π- D .12π 8.下列函数中同时满足:①在0,2π?? ???上是增函数;②奇函数;③以π为最小正 周期的函数的是( ) A .y=tan x B .y=cos x C .tan 2x y = D .y=|sin x| 9.函数5tan 3x y ??=- ??? 的最小正周期是________。 10.已知tan 2)ααπ= <<,那么α所有可能的值是 。 11. 函数 y=sinx 与 y=tanx 的图象在区间[0,2π]上交点的个数是 . 12. 函数y=tan(2x+π4 )的单调递增区间是__________. 13. 比较下列各数大小: (1)tan2与tan9; (2)tan1与cot4.

二次函数yaxh的图象与性质

2.2 二次函数的图象与性质 第3课时 二次函数y =a (x -h )2的图象与性质 1.掌握二次函数y =ax 2与y =a (x -h )2(a ≠0)图象之间的联系;(重点) 2.能灵活运用二次函数y =a (x -h )2(a ≠0)的知识解决简单的问题.(难点) 一、情境导入 二次函数y =ax 2+c (a ≠0)的图象可以由y =ax 2(a ≠0)的图象平移得到: 当c >0时,向上平移c 个单位长度; 当c <0时,向下平移-c 个单位长度. 问题:函数y = (x -2)2的图象,能否也可以由函数y = x 2平移得到?本节课我们就一起讨论. 二、合作探究 探究点:二次函数y =a (x -h )2的图象与性质 【类型一】 二次函数y =a ( x -h )2的图象 顶点为(-2,0),开口方向、形状与函数y =-1 2x 2的图象相同的抛物线的解 析式为( ) A .y =12(x -2)2 B .y =1 2(x +2)2 C .y =-12(x +2)2 D .y =-1 2(x -2)2 解析:因为抛物线的顶点在x 轴上,所 以可设该抛物线的解析式为y =a (x -h )2(a ≠0),而二次函数y =a (x -h )2(a ≠0)与y =-12x 2的图象相同,所以a =-1 2,而抛物 线的顶点为(-2,0),所以h =2,把a =-12, h =2代入y =a (x -h )2得y =-1 2 (x +2)2.故选 C. 方法总结:决定抛物线形状的是二次项 的系数,二次项系数相同的抛物线的形状完全相同. 变式训练:见《学练优》本课时练习“课堂达标训练” 第5题 【类型二】 二次函数y =a ( x -h )2的性质 若抛物线y =3(x +2)2的图象上 的三个点,A (-32,y 1),B (-1,y 2),C (0,y 3),则y 1,y 2,y 3的大小关系为________________. 解析:∵抛物线y =3(x +2)2的对称轴为x =-2,a =3>0,∴x <-2时,y 随x 的增大而减小;x >-2时,y 随x 的增大而增大.∵点A 的坐标为(-32,y 1),∴点A 在抛物线上的对称点A ′的坐标为(2,y 1).∵-1<0<2,∴y 2<y 3<y 1.故答案为y 2<y 3<y 1. 方法总结:函数图象上点的坐标满足解析式,即点在抛物线上.解决本题可采用代入求值方法,也可以利用二次函数的增减性解决. 变式训练:见《学练优》本课时练习“课后巩固提升” 第4题 【类型三】 二次函数y =a (x -h )2 的图象与y =ax 2的图象的关系 将二次函数y =-2x 2的图象平移 后,可得到二次函数y =-2(x +1)2的图象,平移的方法是( ) A .向上平移1个单位 B .向下平移1个单位 C .向左平移1个单位 D .向右平移1个单位 解析:抛物线y =-2x 2的顶点坐标是(0,0),抛物线y =-2(x +1)2的顶点坐标是(-1,0).则由二次函数y =-2x 2的图象向左平移1个单位即可得到二次函数y =-2(x +1)2的图象.故选C. 方法总结:解决本题要熟练掌握二次函

正切函数的图像和性质 公开课教案

1.4.2 正切函数的性质与图象 考纲要求:能画出y=tanx 的图象,了解三角函数的周期性.,理解正切函数在区间 ()的单调性. 教学目的 知识目标: 了解利用正切线画出正切函数图象的方法; 了解正切曲线的特征,能利用正切曲线解决简单的问题; 掌握正切函数的性质。 能力目标: 掌握正弦函数的周期性,奇偶性,单调性,能利用正切曲线解决简单的 问题。 情感目标: 在借鉴正弦函数的学习方法研究正切函数图象、性质的过程中体 会类比的思想。 教学重点:正切函数的图象形状及其主要性质 教学难点:1、利用正切线得到正切函数的图象 2、对正切函数单调性的理解 教学方法:探究,启发式教学 教学过程 复习导入: 1. 正切函数的定义及几何表示,正切函数tan y x =的定义域是什么? 2. 正弦曲线是怎样画的? 讲授新课: 思考1:能否类比正弦函数图象的作法,画出正切函数的图象呢? 画正切函数选取哪一段好呢?画多长一段呢? 思考2:正切函数是不是周期函数?若是,最小正周期是什么? 思考3. 诱导公式 体现了正切函数的哪种性质? (一)作tan y x =,x ∈??? ? ?- 2,2ππ的图象 tan()tan x x -=-

说明: (1)根据正切函数的周期性,把上述图象向左、右扩展,得到正切函数 R x x y ∈=tan ,且()z k k x ∈+≠ ππ 2 的图象,称“正切曲线” 。 (2)由图象可以看出,正切曲线是由被相互平行的直线()2 x k k Z π π=+∈所隔开的 无穷多支曲线组成的。 (二)正切函数的性质 引导学生观察,共同获得: (1)定义域:? ?? ? ??∈+≠ z k k x x ,2|ππ ; (2)周期性:π=T ; (3)奇偶性:由()x x tan tan -=-知,正切函数是奇函数; (4)单调性: 思考:正切函数在整个定义域内是增函数吗? 引导学生观察正切曲线,小组讨论的形式。 师举例说明:

正弦函数和余弦函数图像与性质

6、1正弦函数与余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T 、 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α= ===; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角与它的正弦值(或余弦值)之间就是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值; 步骤2:描点——平移定点,即描点()x x sin ,; 步骤3:连线——用光滑的曲线顺次连结各个点 小结:几何描点法作图精确,但过程比较繁。 【方案2】——五点法 步骤1:列表——列出对图象形状起关键作用的五点坐标;

初三二次函数的图像与性质

龙文教育学科导学 教师:学生:年级:日期: 星期: 时段: 学情分析二次函数部分内容中考难度不大,所以本套教案注重于基础知识的准确掌握。 课题二次函数的图像与性质 学习目标与考点分析学习目标:1、理解二次函数的概念;会识别最基本的二次函数并利用二次函数的概念求解析式中的未知数; 2、熟练的画出各种抛物线的图像,根据解析式的变化判断图像的平移方法; 3、熟练的选用合适的解析式利用待定系数法求解析式。 学习重点图像的平移;待定系数法求解析式 学习方法讲练结合、师生讨论、启发引导 学习内容与过程 教学内容: 知识回顾 1.一般地,形如y=ax2 +bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。其中,x 是自变量, a,b,c分别是函数解析式的二次项系数,一次项系数和常数项. 2.二次函数的解析式及其对称轴 (1)二次函数解析式的一般式(通式):,它的顶点坐标为(,),对称轴为;(2)二次函数解析式的顶点式(通式):,顶点坐标为(,)对称轴是;(3)二次函数解析式的交 点式:。此时抛物线的对称轴为。其中,(x 1,0)(x 2 ,0)是抛 物线与X轴的交点坐标。显然,与X轴没有交点的抛物线不能用此解析式表示的 3.二次函数y=a(x-h) 2+k的图像和性质 4.二次函数的平移问题 5. 二次函数y=ax2 +bx+c中a,b,c的符号与图像性质的关系: 6.抛物线y=ax2+bx+c与X轴的交点个数与一元二次方程的根的判别式△的符号之间的的关系

二次函数的常规解法: 一、若已知二次函数图象上的三个点的坐标或是x、y的对应数值时,可选用y=ax2+bx+c(a≠0)求解。我们称y=ax2+bx+c(a≠0)为一般式(三点式)。 例:二次函数图象经过A(1,3)、B(-1,5)、C(2,-1)三点,求此二次函数的解析式。 说明:因为坐标满足函数解析式的点一定在函数的图象上,反之函数图象上的点的坐标一定满足函数解析式。所以将已知三点的坐标分别代入y=ax2+bx+c (a≠0)构成三元一次方程组,解方程组得a、b、c的值,即可求二次函数解析式。 二、若已知二次函数的顶点坐标或对称轴或最值时,可选用y=a(x+m)2+k (a≠0)求解。我们称y =a(x+m)2+k (a≠0)为顶点式(配方式)。 例:若二次函数图像的顶点坐标为(-2,3),且过点(-3,5),求此二次函数的解析式。 说明:由于顶点式中要确定a、m、k的值,而已知顶点坐标即已知了-m、k的值。用顶点式只要确定a的值就可以求二次函数解析式。若已知这两点的坐标用一般式来解是不能确定a、b、c的值的,不妨让学生尝试一下加深印象。 三、若已知二次函数与X轴的交点坐标是A(x1,0) 、B(x2,0)时, 可选用y=a(x-x1)(x- x2 ) (a≠0)求解。我们称y=a(x-x1)(x- x2 ) (a≠0)为双根式(交点式)。 例:已知一个二次函数的图象经过点A(-1,0)、B(3,0)和C(0,-3)三点,求此二次函数的解析式。 说明:很多同学看到此例会想到使用一般式来解,将已知三点的坐标分别代入去求a、b、c的值来求此二次函数的解析式。往往忽略A、B两点的坐标就是二次函数图象与x轴的交点坐标,而用双根式来求解就相对比较简单容易。 四、若已知二次函数在X轴上截得的线段长为d时,可选用 或 例:抛物线y=2x2-mx-6在X轴截锝线段长为4,求此二次函数的解析式。 说明:对于此例主要让学生明白这两种二次函数解析式中线段长d的推导过程,记住公式套进去就行了。注意相互之间不要混淆。 总之,要求一个二次函数的解析式,可以根据不同的已知条件选择恰当的解题方法,使计算过程简单化,达到迅速解题的目的。当然,也只有在平时的练习中对基本解法的适用情况做到心中有数,才能在具体的问题中结合图形及二次函数的相关性质择优选取适当的解法,提高解题能力。 二次函数的概念 如果y=ax2+bx+c(a≠0,a,b,c为常数),那么y叫做x的二次函数 注意:二次函数的表达形式为整式,且二次项系数不为0,b ,c可分别为0,也可同时为0 自变量的取值范围是全体实数 练习:

21.2.4二次函数的图象与性质课时练习含答案解析

九年级上学期数学课时练习题 21.2 二次函数y=a(x+h)2+k的图象和性质 一、精心选一选 1﹒二次函数y=(x+2)2-1的图象大致为() A.B.C.D. 2﹒已知二次函数y=a(x-1)2-c的图象如图所示,则一次函数y=ax+c的大致图象可能是() A.B.C.D. 3﹒若抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值范围为() A.m>1 B.m>0 C.m>-1 D.-1<m<0 4﹒设二次函数y=(x-3)2-4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是() A.(1,0) B.(3,0) C.(-3,0) D.(0,-4) 5﹒抛物线y=2(x+1)2+3的顶点坐标为() A.(1,3) B.(1,-3) C.(-1,-3) D.(-1,3) 6﹒将抛物线y=(x-1)2+2向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为() A.y=(x-1)2+4 B. y=(x-4)2+4 C.y=(x+2)2+6 D.y=(x-4)2+6 7﹒当-2≤x≤1时,二次函数y=-(x-m)2+m2+1有最大值4,则实数m的值为() A.-7 4 B.3或-3 C.2或-3 D.2或3或-7 4 8﹒如图所示的直角坐标系中,两条抛物线有相同的对称轴,下列关系中不正确的是() A.h=m B.k=n C.k>n D.h>0,m>0 9﹒在二次函数y=- 1 12 (x-2)2+3的图象上有两点(-1,y1),(1,y2),则y1与y2的大小关系是 () A. y1<y2 B. y1=y2 C. y1>y2 D.不能确定 10.对于抛物线y=-(x+1)2+3,有下列结论: ①抛物线的开口向下; ②对称轴为直线x=1;

正切函数的性质与图象课后反思.docx

《正切函数的性质与图象》课后反思 三角函数是函数这个系统中的一个小分支,而正切函数是三角函数这个小分支中的一个内容节点,让学生能清晰的认识所研究的内容与方法:在内容上主要研究函数的性质一一定义域、值域、奇偶性、周期性、单调性;在方法选择上,数形结合应是对其性质研究的主要途径。在此也向学生进一步说明“数缺形少直观,形少数难入微”的精妙,借助一切机会向学生渗透数学文化观念,让学生体会数的美无处不在,数学无处不美。 在本节课中我采用“类比一一探究一一讨论”教学法。在学习了正弦函数图像与性质,平移正弦线得到正弦函数图像的方法类比作正切函数图象。设计问题让学生进一步探究正切函数的性质与图象,学生通过对这些“有结构”的材料进行探究,获得对止切函数的感性认识和形成止切函数图象的了解。通过创设问题情境,引发认知冲突,较好地调动了学生的积极性和主动性,符合新课程理念的精神. 通过多媒体显示得出函数图像。引导学生在有限的时间内完成正切函数性质的归纳和总结,让学生思考、动手画图、课堂交流、亲身实践。通过互相交流、启发、补充、争论,使学生对正切函数图像与性质的认识从感性的认识上升到理性认识,获得一定水平层次的科学概念。这节课主要是教给学生“动手做,动脑想;多训练,勤钻研。”的学习方法。这样做,增加了学生主动参与的机会,增强了参与意识,教给学生获取知识的途径;思考问题的方法。使学生真正成为教学的主体。学生才会逐步感到数学美,会产生一种成功感,从而提高学生学习数学的兴趣。 在课堂教学屮注重学生的学,让学生自己思考得到问题的答案,以至于后半段课堂吋间仓促,课堂练习只能变成课后练习。在以后的教学中会注意调节好学牛的研究时间。 一、指导思想与理论依据 贝塔朗菲强调,任何系统都是一个有机的整体,它不是各个部分的机械组合或简单相加, 而

二次函数图像与性质总结

二次函数的图像与性质 一、二次函数的基本形式 1.二次函数基本形式:2 =的性质: y ax 2.2 =+的性质: y ax c 上加下减。 =-的性质: y a x h 左加右减。

4.()2 y a x h k =-+的性质: 1.平移步骤: 方法一:⑴将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标 ()h k ,; ⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2.平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.

概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确 定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我 们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对 称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 五、二次函数2y ax bx c =++的性质 1.当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. 2.当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值2 44ac b a -. 六、二次函数解析式的表示方法 1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);

二次函数的图像和性质总结

二次函数的图像和性质 1.二次函数的图像与性质: 解析式 a 的取值 开口方向 函数值的增减 顶点坐标 对称轴 图像与y 轴的交点 时当0>a ;开口向上;在对称轴的左侧y 随x 的增大而减小,在对称轴的 右侧y 随x 的增大而增大。 时当0k 时向上平移;当0>k 时向下平移。 (2)抛物线2 )(h x a y +=的图像是由抛物线2 y ax =的图像平移h 个单位而得到 的。当0>h 时向左平移;当0k 时向上平移;当0>k 时向下平移;当0>h 时向左平移;当0

3.二次函数的最值公式: 形如 c bx ax y ++=2 的二次函数。时当0>a ,图像有最低点,函数有最小值 a b ac y 442-= 最小值 ;时当0?时抛物线与x 轴有两个交点;当0=?抛物线与x 轴有一个交点;当 0

【冀教版】八年级数学下册:21.2 一次函数的图像和性质教案

21.2 一次函数的图像和性质 1.会用两点法画出正比例函数和一次函数的图象,并能结合图象说出正比例函数和一次函数的性质;(重点) 2.能运用性质、图象及数形结合思想解决相关函数问题.(难点) 一、情境导入 做一做:在同一个平面直角坐标系中画出下列函数的图象. (1)y =12x ; (2)y =1 2x +2; (3)y =3x; (4)y =3x +2. 观察函数图象有什么形式? 二、合作探究 探究点一:一次函数的图象 【类型一】 一次函数图象的画法 在同一平面直角坐标中,作出下 列函数的图象. (1)y =2x -1; (2)y =x +3; (3)y =-2x; (4)y =5x . 解析:分别求出满足各直线的两个特殊点的坐标,经过这两点作直线即可.(1)一次函数y =2x -1图象过(1,1),(0,-1);(2)一次函数y =x +3的图象过(0,3),(-3,0);(3)正比例函数y =-2x 的图象过(1,-2),(0,0);(4)正比例函数y =5x 的图象过(0,0),(1,5). 解:如图所示. 方法总结:此题考查了一次函数的作 图,解题关键是找出两个满足条件的点,连线即可. 【类型二】 判定一次函数图象的位置 已知正比例函数y =kx (k ≠0)的函 数值y 随x 的增大而减小,则一次函数y =x +k 的图象大致是( ) 解析:∵正比例函数y =kx (k ≠0)的函数值y 随x 的增大而减小,∴k <0.∵一次函数y =x +k 的一次项系数大于0,常数项小于0,∴一次函数y =x +k 的图象经过第一、三、四象限,且与y 轴的负半轴相交.故选B. 方法总结:一次函数y =kx +b (k 、b 为常数,k ≠0)是一条直线.当k >0,图象经过第一、三象限,y 随x 的增大而增大;当

三角函数正余弦函数的图像及性质复习汇总

课题三角函数的图像及性质 1.借助单位圆中的三角函数线推导出诱导公式( π2/±α , π的±正α弦、余弦、正切) 教学目标 2.利用单位圆中的三角函数线作出y sin x,x R的图象,明确图象的形状; 3.根据关系cosx sin(x ) ,作出y cosx,x R的图象; 2 4.用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题; 重点、难点 1、正确地用三角函数线表示任意角的三角函数值 2、作余弦函数的图象。 教学内容 、正弦函数和余弦函数的图象: -1 正弦函数y sin x 和余弦函数y cos x图象的作图方法:五点法:先取横坐标分别为0,, ,3 ,2 22 的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。 二、正弦函数y sin x(x R) 、余弦函数y cosx(x R) 的性质: ( 1)定义域:都是R。 (2)值域: 1、都是1,1 , 2、y sinx ,当x 2k k 2 3、y cosx ,当x 2k k Z 例: ( 1)若函数y a bsin(3 x Z 时,y 取最大值1 ;当x 时,y 取最大值1,当x 2k ) 的最大值为3,最小值为 62 3 2k 3 k Z 时,y 取最小值-1; 2 k Z 时,y 取最小值- 1 。 1,则 a __, b _ 2 3 y -2 1 y=cosx -3 -5 -32 -4 -7 -2 -3 22

1 答: a 1 2,b 1或b 1); ⑵ 函数 y=-2sinx+10 取最小值时,自变量 x 的集合是 3)周期性 : (正(余)弦型函数的对称轴为过最高点或最低点且垂直于 x 轴的直线,对称中心为图象与 x 轴的交 点)。 5)单调性 : 别忘了 k Z ! ⑴函数 y=sin2x 的单调减区间是( ① y sin x 、 y cos x 的最小正周期都是 2 ; ② f ( x) A sin( x )和 f (x) Acos( 2 x ) 的最小正周期都是 T 2 sin 3x ,则 f (1) f (2) ⑵.下列函数中,最小正周期为 例: (1)若 f (x) f (3) L 的是( A. y cos 4x B. y sin 2x C.y f (2003) = 答: 0); x sin 2 D.y x cos 4 ( 4)奇偶性与对称性 : 1、正弦函数 y sin x ( x R ) 是奇函 数, 对称中心是 k ,0 k Z ,对称轴是直线 x k k Z ; 2 2、余弦函数 y cosx (x R ) 是偶函数, 对称中心是 k 2 ,0 k Z ,对称轴是直线 x k k Z 5 例:(1) 函数 y sin 5 2 2x 的奇偶性是 答:偶函数); 2)已知函数 f ( x ) a x bsin 3 x 1( a,b 为常数), 且 f (5 ) 7, 则 f ( 5) 答:- 5); y sin x 在 2k , 2k 2 k Z 上单调递增,在 2k , 2k 2 3 k Z 单调递减; 2 y cosx 在 2k ,2 k Z 上单调递减,在 2k ,2k k Z 上单调递增。 特别提醒 ,

相关文档
相关文档 最新文档