文档库 最新最全的文档下载
当前位置:文档库 › 3.2.2复数代数形式的乘除运算

3.2.2复数代数形式的乘除运算

3.2.2复数代数形式的乘除运算
3.2.2复数代数形式的乘除运算

§3.2.2复数代数形式的乘除运算

【学习目标】

1.知识与技能:理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算;

2.过程与方法:理解并掌握复数的除法运算实质是分母实数化类问题;

3.情感、态度与价值观:复数的几何意义单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的,让学生体会到这是生产实践的需要从而让学生积极主动地建构知识体系.

【重点难点】

重点:复数代数形式的除法运算.

难点:对复数除法法则的运用.

【学法指导】

复数乘法运算是按照多项式与多项式相乘展开得到,在学习时注意将2

i 换成1-;除法是乘法的逆运算,所以复数的除法运算可由乘法运算推导获得,但是也可由互为共轭复数的两个复数的乘积为实数,先将复数的分母实数化,再化简可得,学习时注意体会第二种方法的优势和本质. 【知识链接】

1.复数1z 与2z 的和的定义:()()()()i d b c a di c bi a z z +++=+++=+21;

2.复数1z 与2z 的差的定义:()()()()i d b c a di c bi a z z -+-=+-+=-21;

3.复数的加法运算满足交换律:1221z z z z +=+;

4.复数的加法运算满足结合律: ()()321321z z z z z z ++=++;

5.复数()R b a bi a z ∈+=,的共轭复数为bi a z -=.

【问题探究】

探究一、复数的乘法运算

引导1:乘法运算规则

设bi a z +=1、di c z +=2()R d c b a ∈,,,是任意两个复数,

规定复数的乘法按照以下的法则进行:

=?21z z

其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把2i 换成-1,并且 把实部与虚部分别合并.两个复数的积仍然是一个复数.

引导2:试验证复数乘法运算律

(1)1221z z z z ?=?

(2)()()321321z z z z z z ??=??

(3)()3121321z z z z z z z ?+?=+?

点拨:两个复数相乘,类似两个多项式相乘,在所得的结果中把2i 换成-1,并且把实部与

虚部分别合并.两个复数的积仍然是一个复数.

探究二、复数的除法运算

引导1:复数除法定义:

满足()()()bi a yi x di c +=++的复数()R y x yi x ∈+,叫复数bi a +除以复数di c + 的商,记为:()()di c bi a +÷+或者

di c bi a ++()0≠+di c . 引导2:除法运算规则:

利用()()22d c di c di c +=-+.于是将di

c bi a ++的分母有理化得: 原式=22

()()[()]()()()a bi a bi c di ac bi di bc ad i c di c di c di c d ++-+?-+-==++-+ 222222

()()ac bd bc ad i ac bd bc ad i c d c d c d ++-+-==++++. ∴(a +bi )÷(c +di )=i d

c a

d bc d c bd ac 2222+-+++. 点拨:利用初中我们学习的化简无理分式时,都是采用的分母有理化思想方法,而复数di c +与复数di c -,相当于我们初中学习的

23+的对偶式23-,它们之积为1是有理数,而()()22d c di c di c +=-+是正实数.所以可以分母实数化. 把这种方法叫做分母实数化法

【典例分析】

例1计算()()()i i i +-+-24321

引导:可先将前两个复数相乘,再与第三个复数相乘.

点拨:在复数的乘法运算过程中注意将2

i 换成-1. 例2计算:(1)()()i i 4343-+ ; (2)()

21i +.

引导:按照复数乘法运算展开即可.

点拨:注意体会互为共轭复数的两个复数的乘积是一个实数,记住一些特殊形式代数式的运算结果,便于后续学习的过程中的化简、代换等.

例3计算(12)(34)i i +÷-

引导:可按照复数除法运算方法,先将除式写成分式,再将分母实数化,然后化简即可.

点拨:本题可将除法运算转化为乘法运算,但是相对麻烦,易于采用先将除式写成分式,再将分母实数化,然后化简的办法,学习时注意体会总结,寻求最佳方法.

例4计算i

i i i 4342)1)(41(++++- 引导:可先将分子化简,再按照除法运算方法计算,注意计算的准确性.

点拨:对于混合运算,注意运算顺序,计算准确.

【目标检测】

1.复数2

2i 1+i ?? ???

等于( ) A .4i B .4i - C .2i D .2i - 2.设复数z 满足

12i i z +=,则z =( ) A .2i -+

B .2i --

C .2i -

D .2i + 3*.复数32321???

? ??+i 的值是( )

A.i -

B.i

C.1-

D.1

4.已知复数z 与()i z 822

-+都是纯虚数,求z . 提示:复数z 为纯虚数,故可设()0z bi b =≠,再代入求解即可.

5*.(1)试求87654321,,,,,,,i i i i i i i i 的值.

(2)由(1)推测()

*N n i n ∈的值有什么规律?并把这个规律用式子表示出来. 提示:通过计算,观察计算结果,发现规律.

【总结提升】

复数的乘法和除法运算是复数的基本运算,在学习时注意运算法则和方法,在乘法运算中注意把2i 换成-1,在除法运算中注意方法的本质依据,计算时注意准确性.

【总结反思】

知识 .

重点 .

能力与思想方法 .

【自我评价】你完成本学案的情况为( )

A.很好

B.较好

C.一般

D.较差

复数代数形式的乘除运算教案

复数代数形式的乘除运算教案 教学目标: 1 知识与技能:理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算 2 过程与方法:理解并掌握复数的除法运算实质是分母实数化类问题 3 情感、态度与价值观:复数的几何意义单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的,让学生体会到这是生产实践的需要从而让学生积极主动地建构知识体系。 教学重点:复数代数形式的除法运算。 教学难点:对复数除法法则的运用。 课型:新知课 教具准备:多媒体 教学过程: 复习提问: 已知两复数z1=a+bi, z2=c+di(a,b,c,d是实数) 加法法则:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i. 减法法则:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i. 即:两个复数相加(减)就是 实部与实部,虚部与虚部分别相加(减) (a+bi )±(c+di) = (a±c) + (b±d)i

复数的加法运算满足交换律: z1+z2=z2+z1. 复数的加法运算满足结合律: (z1+z2)+z3=z1+(z2+z3) 讲解新课: 一.复数的乘法运算规则: 规定复数的乘法按照以下的法则进行: 设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i. 其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把i2换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数. 探究: 复数的乘法是否满足交换律、结合律? 乘法对加法满足分配律吗? 二.乘法运算律: (1)z1(z2z3)=(z1z2)z3 证明:设z1=a1+b1i,z2=a2+b2i,z3=a3+b3i(a1,a2,a3,b1,b2,b3∈R). ∵z1z2=(a1+b1i)(a2+b2i)=(a1a2-b1b2)+(b1a2+a1b2)i, z2z1=(a2+b2i)(a1+b1i)=(a2a1-b2b1)+(b2a1+a2b1)i. 又a1a2-b1b2=a2a1-b2b1,b1a2+a1b2=b2a1+a2b1. ∴z1z2=z2z1. (2)z1(z2+z3)=z1z2+z1z3

复数代数形式的加减运算及其几何意义(教案)

新授课:3.2.1 复数代数形式的加减运算及其几何意义 教学目标 重点:复数代数形式的加法、减法的运算法则. 难点:复数加法、减法的几何意义. 知识点:.掌握复数代数形式的加、减运算法则; .理解复数代数形式的加、减运算的几何意义. 能力点:培养学生渗透转化、数形结合的数学思想方法,提高学生分析问题、解决问题以及运算的能力. 教育点:通过探究学习,培养学生互助合作的学习习惯,培养学生对数学探索和渴求的思想. 在掌握知识的同时,形成良好的思维品质和锲而不舍的钻研精神. 自主探究点:如何运用复数加法、减法的几何意义来解决问题. 考试点:会计算复数的和与差;能用复数加、减法的几何意义解决简单问题. 易错易混点:复数的加法与减法的综合应用. 拓展点:复数与其他知识的综合. 一、引入新课 复习引入 .虚数单位:它的平方等于,即; .对于复数: 当且仅当时,是实数; 当时,为虚数; 当且时,为纯虚数; 当且仅当时,就是实数. .复数集与其它数集之间的关系:. 一一对应 .复数几何意义: 复数复平面内的向量 我们把实数系扩充到了复数系,那么复数之间是否存在运算呢?答案是肯定的,这节课我们就来研究复数的加减运算. 【设计意图】通过复习回顾复数概念、几何意义等相关知识,使学生对这一知识结构有个清醒的初步认知,逐渐过渡到对复数代数形式的加减运算及其几何意义的学习情境,为探究本节课的新知识作铺垫. 二、探究新知

探究一:复数的加法 .复数的加法法则 我们规定,复数的加法法则如下: 设,是任意两个复数,那么: 提出问题: ()两个复数的和是个什么数,它的值唯一确定吗? ()当时,与实数加法法则一致吗? ()它的实质是什么?类似于实数的哪种运算方法? 学生明确: ()仍然是个复数,且是一个确定的复数; ()一致; ()实质是实部与实部相加,虚部与虚部相加,类似于实数运算中的合并同类项.【设计意图】加深对复数加法法则的理解,且与实数类比,了解规定的合理性:将实数的运算通性、通法扩充到复数,有利于培养学生的学习兴趣和创新精神. .复数加法的运算律 实数的加法有交换律、结合律,复数的加法满足这些运算律吗? 对任意的,有 (交换律), (结合律). 【设计意图】引导学生根据实数加法满足的运算律,大胆尝试推导复数加法的运算律,学生先独立思考,然后小组交流.提高学生的建构能力及主动发现问题,探究问题的能力. .复数加法的几何意义 复数与复平面内的向量有一一对应关系,那么请同学们猜想一下,复数的加法也有这种对应关系吗? 设分别与复数对应,则有,由平面向量的坐标运算有 . 这说明两个向量的和就是与复数对应的向量.因此,复数的加法可以按照向量加法的平行四边形法则来进行.这就是复数加法的几何意义.如图所示:

高中数学选修1,2《复数代数形式的四则运算》教案

高中数学选修1,2《复数代数形式的四则运算》教案 知识与技能:掌握复数的四则运算; 过程与方法:理解并掌握虚数单位与实数进行四则运算的规律 情感态度与价值观:通过复数的四则运算学习与掌握,进一步理解复数引发学生对数学学习的兴趣,激起学生的探索求知欲望。 教学重难点 熟练运用复数的加减法运算法则。 教学过程 教学设计流程 一、导入新课: 复数的概念及其几何意义; 二、推进新课: 建立复数的概念之后,我们自然而然地要讨论复数系的各种运算问题。 设Z1 =a+bi, Z2 =c+di是任意两个复数,我们规定: 1、复数的加法运算法则:Z1+Z2=(a+从)+(b+d)i 2、复数的加法运算律: 交换律:Z1+Z2=Z2+Z1 结合律:Z1+Z2+Z3=Z1+(Z2+Z3) 3、复数加法的几何意义: 4、复数的减法运算法则: Z1-Z2=(a-c)+(b-d)i 5、复数减法的几何意义: 三、例题讲解 例1:计算:(7-3i)+(-1-i)-(6+3i)

课后小结 复数的加法与减法的运算及几何意义 课后习题 课本习题3.2 A组1题、2题、3题. 高中数学选修1-2《复数代数形式的四则运算》教案【二】 教学目标: 知识与技能:理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算 过程与方法:理解并掌握复数的除法运算实质是分母实数化类问题 情感、态度与价值观:复数的几何意义单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的,让学生体会到这是生产实践的需要从而让学生积极主动地建构知识体系。 教学重点:复数代数形式的除法运算。 教学难点:对复数除法法则的运用。 教学过程: 学生探究过程: 1. 复数的加减法的几何意义是什么? 2. 计算(1) (2) (3) 3. 计算:(1) (2) (类比多项式的乘法引入复数的乘法) 讲解新课: 1.复数代数形式的乘法运算 ①.复数的乘法法则:。 例1.计算(1) (2) (3) (4)

典型例题:复数的代数形式及其运算

复数的代数形式及其运算 例1.计算: i i i i i 2 1 2 1 ) 1( ) 1( 2005 40 40 + + - + + - - + 解:提示:利用i i i i= ± = ±2005 2,2 ) 1( 原式=0 变式训练1: 2 = (A)1 -(B) 1 22 +(C) 1 22 -+(D)1 解:21 2 ===-+故选C; 例2. 若0 1 2= + +z z,求2006 2005 2003 2002z z z z+ + + 解:提示:利用z z z= =4 3,1 原式=2 ) 1(4 3 2002- = + + +z z z z 变式训练2:已知复数z满足z2+1=0,则(z6+i)(z6-i)=▲ . 解:2 例3. 已知4, a a R >∈,问是否存在复数z,使其满足ai z i z z+ = + ?3 2(a∈R),如果存在,求出z的值,如果不存在,说明理由 解:提示:设) , (R y x yi x z∈ + =利用复数相等的概念有 ? ? ? = = + + a x y y x 2 3 2 2 2 3 4 2 2 2> ? ? = - + + ? a y y i a a z a 2 16 2 2 4 | | 2 - ± - + = ? ≤ ? 变式训练3:若 (2) a i i b i -=+,其中i R b a, ,∈是虚数单位,则a+b= __________

解:3 例4. 证明:在复数范围内,方程255||(1)(1)2i z i z i z i -+--+=+(i 为虚数单位)无解. 证明:原方程化简为 2||(1)(1)1 3.z i z i z i +--+=-设 yi x z += (x 、y∈R,代入上述方程得22221 3.x y xi yi i +--=- 221(1)223(2)x y x y ?+=?∴?+=?? 将(2)代入(1) ,整理得281250. x x -+=160,()f x ?=-<∴方程无实数解,∴原方程在复数范围内无解. 变式训练4:已知复数z 1满足(1+i)z 1=-1+5i ,z 2=a -2-i ,其中i 为虚数单位,a∈R, 若12z z -<1z ,求a 的取值范围. 解:由题意得 z 1=151i i -++=2+3i, 于是12z z -=42a i -+1z =13. 13,得a 2-8a +7<0,1

3.2.1 复数代数形式的加、减运算及其几何意义

复数代数形式的四则运算 3.2.1 复数代数形式的加、减运算及其几何意义 预习课本P107~108,思考并完成下列问题 (1)复数的加法、减法如何进行?复数加法、减法的几何意义如何? (2)复数的加、减法与向量间的加减运算是否相同? 1.复数的加、减法法则 设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R), 则z 1+z 2=(a +c )+(b +d )i , z 1-z 2=(a -c )+(b -d )i. 2.复数加法运算律 设z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1, (z 1+z 2)+z 3=z 1+(z 2+z 3). 3.复数加、减法的几何意义 设复数z 1,z 2对应的向量为OZ 1――→,OZ 2――→,则复数z 1+z 2是以OZ 1――→,OZ 2――→ 为邻边的平行四边形的对角线OZ ――→ 所对应的复数,z 1-z 2是连接向量OZ 1――→与OZ 2――→ 的终点并指向OZ 1――→ 的向量所对应的复数. [点睛] 对复数加、减法几何意义的理解 它包含两个方面:一方面是利用几何意义可以把几何图形的变换转化为复数运算去处

理,另一方面对于一些复数的运算也可以给予几何解释,使复数作为工具运用于几何之中. 1.判断(正确的打“√”,错误的打“×”) (1)复数与向量一一对应.( ) (2)复数与复数相加减后结果只能是实数.( ) (3)因为虚数不能比较大小,所以虚数的模也不能比较大小.( ) 答案:(1)× (2)× (3)× 2.已知复数z 1=3+4i ,z 2=3-4i ,则z 1+z 2等于( ) A .8i B .6 C .6+8i D .6-8i 答案:B 3.已知复数z 满足z +i -3=3-i ,则z 等于( ) A .0 B .2i C .6 D .6-2i 答案:D 4.在复平面内,复数1+i 与1+3i 分别对应向量OA ――→和OB ――→ ,其中O 为坐标原点,则|AB ――→ |等于( ) A. 2 B .2 C.10 D .4 答案:B [典例] (1)计算:(2-3i)+(-4+2i)=________. (2)已知z 1=(3x -4y )+(y -2x )i ,z 2=(-2x +y )+(x -3y )i ,x ,y 为实数,若z 1-z 2=5-3i ,则|z 1+z 2|=________. [解析] (1)(2-3i)+(-4+2i)=(2-4)+(-3+2)i =-2-i. (2)z 1-z 2=[(3x -4y )+(y -2x )i]-[(-2x +y )+(x -3y )i]=[(3x -4y )-(-2x +y )]+[(y -2x )-(x -3y )]i =(5x -5y )+(-3x +4y )i =5-3i , 所以????? 5x -5y =5,-3x +4y =-3, 解得x =1,y =0, 所以z 1=3-2i ,z 2=-2+i ,则z 1+z 2=1-i ,

复数的三角形式及乘除运算

复数的三角形式及乘除运算 一、主要内容: 复数的三角形式,模与辐角的概念及几何意义,用三角形式进行复数乘除运算及几何意义. 二、学习要求: 1.熟练进行复数的代数形式与三角形式的互化,会求复数的模、辐角及辐角主值. 2.深刻理解复数三角形式的结构特征,熟练运用有关三角公式化复数为三角形式. 3.能够利用复数模及辐角主值的几何意义求它们的范围(最值). 4.利用复数三角形式熟练进行复数乘除运算,并能根据乘除运算的几何意义解决相关问题. 5.注意多种解题方法的灵活运用,体会数形结合、分类讨论等数学思想方法. 三、重点: 复数的代数形式向三角形式的转换,复数模及复数乘除运算几何意义的综合运用. 四、学习建议: 1.复数的三角形式是彻底解决复数乘、除、乘方和开方问题的桥梁,相比之下,代数形式在这些方面显得有点力不从心,因此,做好代数形式向三角形式的转化是非常有必要的. 前面已经学习过了复数的另两种表示.一是代数表示,即Z=a+bi(a,b ∈R).二是几何表示,复数Z 既可以用复平面上的点Z(a,b)表示,也可以用复平面上的向量 来表示.现在需要学习复数的三角表示.既用复数Z 的 模和辐角来表示,设其模为r ,辐角为θ,则Z=r(cosθ+isinθ)(r≥0). 既然这三种方式都可以表示同一个复数,它们之间一定有内在的联系并能够进行互化. 代数形式r= 三角形式 Z=a+bi(a,b ∈R) Z=r(cosθ+isinθ)(r≥0) 复数三角形式的结构特征是:模非负,角相同,余弦前,加号连.否则不是三角形式.三角形式中θ应是复数Z 的一个辐角,不一定是辐角主值. 五、基础知识 1)复数的三角形式 ①定义:复数z=a+bi (a,b ∈R )表示成r (cos θ+ i sin θ)的形式叫复数z 的三角形式。即z=r (cos θ + i sin θ) 其中z r = θ为复数z 的辐角。 ②非零复数z 辐角θ的多值性。 始边,向量oz → 所在的射线为终边的角θ叫复数z=a+bi 的辐角 以ox 轴正半轴为因此复数z 的辐角是θ+2k π(k ∈z ) ③辐角主值 表示法;用arg z 表示复数z 的辐角主值。 2π)的角θ叫辐角主值 02≤

高中数学_复数代数形式的加减运算教学设计学情分析教材分析课后反思

教学设计 一、教学目标: 1.知识与技能:掌握复数的加法运算及理解其几何意义. 2.过程与方法:通过类比实数的四则运算的规律或向量的运算规律,得到复数加减运算的法则,同时了解复数加减法运算的几何意义. 3.情感、态度与价值观:通过探究复数加减运算法则的过程,感悟由特殊到一般的思想,同时由向量的加减法与复数的类比,理解复数加减的运算法则,知道事物之间是普遍联系的哲学规律. 二、教学重点和难点 教学重点掌握复数的加法与减法的运算法则及应用,难点是加减法的几何意义。 三、教学方法 使用多媒体教学辅助手段,从感性到理性的角度认识复数的加减运算,引导学生思考、探索、从解决问题的过程中建构新的知识体系。 四、教学过程

学情分析: 高二(5)班属普通中学艺术文科班,女生比例较大,学生基础普遍比较薄弱,学习习惯较差。学生受文科思维的影响,习惯于机械记忆,受文科学习方式的负面影响,文科学生

不自觉的加剧了数学学习中的机械记忆,习惯于老师讲,自己记,复习背,对概念、定理、公理的本质属性缺乏正确的认识,不重视思维训练,导致数学学习能力下降,心理压力增大,恶性循环。加之,经常要参加专业的培训课,而一段时间不能正常的进行文化课的学习,更使得学习数学的兴趣降低,信心不足,经常会出现一些非常低级的错误。因此培养学生良好的学习数学自信心与严谨的逻辑思维能力相当重要。从而在课堂上要给以学生不断的肯定和鼓励是非常重要的。 效果分析 本节的重点是复数加法法则。难点是复数加减法的几何意义。复数加法法则是教材首先规定的法则,它是复数加减法运算的基础,对于这个规定的合理性,在教学过程中要加以重视。复数加减法的几何意义的难点在于复数加减法转化为向量加减法,以它为根据来解决某些平面图形的问题,学生对这一点不容易接受。 (1)在复数的加法与减法中,重点是加法.教材首先规定了复数的加法法则.对于这个规定,应通过下面几个方面,使学生逐步理解这个规定的合理性:①当 b=0时,与实数加法法则一致;②验证实数加法运算律在复数集中仍然成立;③符合向量加法的平行四边形法则.这样讲解让学生对复数加法法则规定有更加正确的认识,从而接受复数加法法则。 (2)复数加法的向量运算讲解时,画出向量后,提问向量加法的平行四边形法则,并让学生自己画出和向量(即合向量),画出向量后,问与它对应的复数是什么,即求点Z的坐标(证法如教材所示).让学生从数到形全面理解复数加法的的实质。 (3)向学生指出复数加法的三角形法则的好处.向学生介绍一下向量加法的三角形法则是有好处的:例如讲到当与在同一直线上时,求它们的和,用三角形法则来解释,可能比“画一个压扁的平行四边形”来解释容易理解一些;讲复数减法的几何意义时,用三角形法则也较平行四边形法则更为方便. (4)一开始,我想把复数的加减法则和几何意义一起讲完,再讲解复数代数形式的加减运算的例题,再练习。后来觉得复数加减的几何意义对于学生来讲可能一时比较难理解,所以讲完法则和运算律以后,紧跟例题和练习,这样安排,使学生觉得很容易接受,然后再来讲解几何意义,再跟进几何意义的练习,这里和预先想到的一样,学生在俩个复数差的绝对值的几何意义上遇到了困难。 (5)这节课设置的例题和练习题的难度都不算大,主要是考虑到我们学校艺术类文科学生,基础不太好,数学思维比较欠缺,学习数学的自信心不够足的实际情况而定的。由于新课之前事先发下了本节课的导学案,在课堂上进行的还是比较理想的。

复数代数形式的加减运算及其几何意义优秀教学设计

复数代数形式的加减运算及其几何意义 【教学目标】 知识与技能:掌握复数的加法运算及意义情感、态度与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部) 理解并掌握复数相等的有关概念;画图得到的结论,不能代替论证,然而通过对图形的观察,往往能起到启迪解题思路的作用 【教学重难点】 重点:复数加法运算,复数与从原点出发的向量的对应关系。 难点:复数加法运算的运算率,复数加减法运算的几何意义。 【教学准备】 多媒体、实物投影仪 。 【教学设想】 复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。复数z =a +bi (a 、b ∈R )与有序实数对(a ,b )是一一对应关系这是因为对于任何一个复数z =a +bi (a 、b ∈R ),由复数相等的定义可知,可以由一个有序实数对(a ,b )惟一确定。 【教学过程】 一、复习回顾: 1.复数的定义: 2.复数的代数形式: 3.复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当 时,复数a +bi (a 、b ∈R )是实数a ;当 时,复数z =a +bi 叫做虚数;当 时,z =bi 叫做纯虚数;当且仅当 时,z 就是实数0.

4.复数集与其它数集之间的关系: 。 5.两个复数相等的定义: 一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就 只有当两个复数不全是实数时才不能比较大小 6.复平面、实轴、虚轴: 点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可 用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫 做复平面,也叫高斯平面,x 轴叫做实轴,y 对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z =0+0i =0复数集C 和复平面内所有的点所成的集合是一一对应关系,即复数z a bi =+←??? →一一对应复平面内的点(,)Z a b 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。 二、讲解新课: 复数代数形式的加减运算 1.复数z 1与z 2的和的定义:z 1+z 2=(a +bi )+(c +di )= 2.复数z 1与z 2的差的定义:z 1-z 2=(a +bi )-(c +di )= 3.复数的加法运算满足交换律: z 1+z 2=z 2+z 1. 证明: 4.复数的加法运算满足结合律: (z 1+z 2)+z 3=z 1+(z 2+z 3) 证明:设z 1=a 1+b 1i 。z 2=a 2+b 2i ,z 3=a 3+b 3i (a 1,a 2,a 3,b 1,b 2,b 3∈R )。

复数的乘除法运算练习题(教师版)

复数的乘除法运算练习题(教师版) 1. i 为虚数单位,1i +1i 3+1i 5+1i 7等于( A ) A .0 B .2i C .-2i D .4i 2. 若a ,b ∈R ,i 为虚数单位,且(a +i)i =b +i ,则( D ) A .a =1,b =1 B .a =-1,b =1 C .a =-1,b =-1 D .a =1,b =-1 3. 在复平面内,复数i 1+i +(1+3i)2对应的点位于( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4. 设复数z 的共轭复数是z ,若复数z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则实数t 等于( A ) A.34 B.43 C .-43 D .-34 5. 若z =1+2i i ,则复数z 等于( D ) A .-2-i B .-2+I C .2-i D .2+i 6.复数11z i =-的共轭复数是( B ) A .i 2121+ B .i 2121- C .i -1 D .i +1 7. 若复数z 1=1+i ,z 2=3-i ,则z 1·z 2等于( A ) A .4+2i B .2+i C .2+2i D .3+i 8.设复数z 满足,2)1(i z i =-则z =( A ) (A )i +-1 (B )i --1 (C )i +1 (D )i -1 9.若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是( C ) A.(2,4) B.(2,-4) C.(4,-2) D.(4,2) 10.复数的11 Z i =-模为( B ) (A )12 (B )2 (C (D )2 11.()3=( A ) (A )8- (B )8 (C )8i - (D )8i 12. i 是虚数单位,3(1)(2)i i i -++等于 ( D ) A .1+i B .-1-i C .1+3i D .-1-3i 13.已知复数512i z i =+(i 是虚数单位),则_________z =14.若bi a i i +=++)2)(1(,其中,,a b R i ∈为虚数单位,则a b += 4

复数代数形式的四则运算

复数代数形式的四则运算(教学设计)(1) §3.2.1复数代数形式的加减运算及几何意义 教学目标: 知识与技能目标: 掌握复数代数形式的加法、减法运算法则,能进行复数代数形式加法、减法运算,理解并掌握复数加法与减法的几何意义 过程与方法目标: 培养学生参透转化、数形结合的数学思想方法,提高学生分析问题、解决问题以及运算的能力。 情感、态度与价值观目标: 培养学生学习数学的兴趣,勇于创新的精神,并且通过探究学习,培养学生互助合作的学习习惯,形成良好的思维品质和锲而不舍的钻研精神。 教学重点:复数代数形式析加法、减法的运算法则。 教学难点:复数加减法运算的几何意义。 教学过程: 一、复习回顾: 1、复数集C 和复平面内所有的点所成的集合是一一对应关系,即 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应. 这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法 2、. 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=, b a -),(2121y y x x --= 两个向量和与差的坐标分别等于这两个向量相应坐标的和与差 3、 若),(11y x A ,),(22y x B ,则()1212,y y x x --= 一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标 即 AB =OB -OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1) 二、师生互动、新课讲解: 1、复数代数形式的加减运算 (1)复数z 1与z 2的和的定义:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i . (2)复数z 1与z 2的差的定义:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i . (3)复数的加法运算满足交换律: z 1+z 2=z 2+z 1. 证明:设z 1=a 1+b 1i ,z 2=a 2+b 2i (a 1,b 1,a 2,b 2∈R ). ∵z 1+z 2=(a 1+b 1i )+(a 2+b 2i )=(a 1+a 2)+(b 1+b 2)i . z 2+z 1=(a 2+b 2i )+(a 1+b 1i )=(a 2+a 1)+(b 2+b 1)i . 又∵a 1+a 2=a 2+a 1,b 1+b 2=b 2+b 1. ∴z 1+z 2=z 2+z 1.即复数的加法运算满足交换律. (4)复数的加法运算满足结合律: (z 1+z 2)+z 3=z 1+(z 2+z 3) 证明:设z 1=a 1+b 1i .z 2=a 2+b 2i ,z 3=a 3+b 3i (a 1,a 2,a 3,b 1,b 2,b 3∈R ). ∵(z 1+z 2)+z 3=[(a 1+b 1i )+(a 2+b 2i )]+(a 3+b 3i ) =[(a 1+a 2)+(b 1+b 2)i ]+(a 3+b 3)i =[(a 1+a 2)+a 3]+[(b 1+b 2)+b 3]i =(a 1+a 2+a 3)+(b 1+b 2+b 3)i . z 1+(z 2+z 3)=(a 1+b 1i )+[(a 2+b 2i )+(a 3+b 3i )]

数学人教A版选修1-23.2.1 复数代数形式的加减运算及其几何意义

§3.2 复数代数形式的四则运算 3.2.1 复数代数形式的加减运算及其几何意义 学习目标 1.理解并掌握复数代数形式的加减运算法则.2.了解复数代数形式的加法、减法的几何意义,掌握不同数集中加减运算法则的联系与区别.3.在研究复数代数形式的加法、减法的几何意义时,充分利用向量加法、减法的性质. 知识点一 复数代数形式的加减法 思考1 类比多项式的加减法运算,想一想复数如何进行加减法运算? 答案 两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减),即(a +bi)±(c+di)=(a±c)+(b±d)i. 思考2 若复数z 1,z 2满足z 1-z 2>0,能否认为z 1>z 2? 答案 不能,如2+i -i>0,但2+i 与i 不能比较大小. 梳理 (1)运算法则 设z 1=a +bi ,z 2=c +di 是任意两个复数,那么(a +bi)+(c +di)=(a +c)+(b +d)i ,(a +bi)-(c +di)=(a -c)+(b -d)i. (2)加法运算律 对任意z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3). 知识点二 复数加减法的几何意义 思考1 复数与复平面内的向量一一对应,你能从向量加法的几何意义出发讨论复数加法的几何意义吗? 答案 如图,设OZ 1→,OZ 2→ 分别与复数a +bi ,c +di 对应,

则OZ 1→=(a ,b),OZ 2→ =(c ,d), 由平面向量的坐标运算,得OZ 1→+OZ 2→ =(a +c ,b +d), 所以OZ 1→+OZ 2→ 与复数(a +c)+(b +d)i 对应,复数的加法可以按照向量的加法来进行. 思考2 怎样作出与复数z 1-z 2对应的向量? 答案 z 1-z 2可以看作z 1+(-z 2).因为复数的加法可以按照向量的加法来进行.所以可以按照平行四边形法则或三角形法则作出与z 1-z 2对应的向量(如图).图中OZ 1→对应复数z 1,OZ 2→对应复数z 2,则Z 2Z 1―――→ 对应复数z 1-z 2. 梳理

3-2-2 复数代数形式的乘除运算

1.(2013·陕西理)设z1、z2是复数,则下列命题中的假命题是() A.若|z1-z2|=0,则z1=z2 B.若z1=z2,则z1=z2 C.若|z1|=|z2|,则z1·z1=z2·z2 D.若|z1|=|z2|,则z21=z22 [答案] D [解析]本题考查复数相等,共轭复数. 设z1=a+b i,z2=c+d i,a、b、c、d∈R,若|z1-z2|=0,则z1-z2=0,∴a=c,b=d,所以z1=z2,故A项正确.若z1=z2,则a=c,b=-d,所以z1=z2,故B项正确.若|z1|=|z2|,则a2+b2=c2+d2,所以z1z1=z2·z2,故C项正确.z21=a2-b2+2ab i,z22=c2-d2+2cd i,在a2+b2=c2+d2的条件下,不能得出a2-b2=c2-d2,2ab =2cd,故D项错误. 2.(2013·浙江理)已知i是虚数单位,则(-1+i)(2-i)=() A.-3+i B.-1+3i C.-3+3i D.-1+i [答案] B [解析]本题考查复数的四则运算. (-1+i)(2-i)=-2+i+2i-i2=-1+3i. 3.(2013·广东理)若复数z满足i z=2+4i,则在复平面内,z对应的点的坐标是() A. (2,4) B.(2,-4)

C. (4,-2) D .(4,2) [答案] C [解析] 本题考查复数的运算与复数的几何意义. ∵i z =2+4i ,∴z =2+4i i =4-2i. 即对应点坐标为(4,-2). 4.已知3-3i =z ·(-23i),那么复数z 在复平面内对应的点应位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 [答案] A [解析] z =3-3i -23i =12+32i. 5.若复数2+a i 1-i (a ∈R )是纯虚数(i 是虚数单位),则a 的值为( ) A .-2 B .-1 C .1 D .2 [答案] D [解析] 2+a i 1-i =(2+a i )(1+i )(1-i )(1+i ) =(a +2)i +(2-a )2为纯虚数,∴????? 2-a =0a +2≠0,∴a =2. 6.设复数z 满足1+2i z =i ,则z 等于( ) A .-2+i B .-2-i C .2-i D .2+i [答案] C

复数乘除法极坐标

学之导教育中心教案 学生: 梁庭苇授课时间: 课时: 2 年级: 高二教师:廖 课题复数乘除法、极坐标 教学构架 一、知识回顾 二、错题再现 三、知识新授 四、知识小结 教案内容 一、知识回顾 1、几何证明选讲 二、错题再现 1、如图ABC中,D是AB的三等分点,// DE BC,// EF BC,2 AF=,则AB=__________ F E D A B C 2、如图,在ABC中,AD是BC边上中线,AE是BC边上的高,DAB DBA ∠=∠ ,18 AB=,12 BE=,则CE=__________. 本次内容掌握情况总结教师签字学生签字

3、如图所示,圆O 的直径AB=6,C 圆周上一点,BC=3,过C 作圆的切线l ,过A 作l 的垂线AD AD 分别与直线l 、圆交于点D 、E ,则∠DAC = __,线段AE 的长为 __. 4、如图所示,从圆O 外一点A 引圆的切线AD 和割线ABC ,已知AD=23,AC=6,圆O 的半径为3, 则圆心O 到AC 的距离为________. . 5、如图所示,圆O 上一点C 在直径AB 上的射影为D ,CD=4,BD=8,则圆O 的半径等于 . 6、如图,四边形ABCD 内接于⊙O ,BC 是直径,MN 切⊙O 于A ,∠MAB=250,则∠D= ___ . 7.如图,AB 是圆O 的直径,直线CE 和圆O 相切于点C ,AD ⊥CE 于D ,若AD=1,∠ABC=300, 则圆O 的面积是______. 8.如图,⊙O 的割线PAB 交⊙O 于A 、B 两点,割线PCD 经过圆心O ,PE 是⊙O 的切线。已知PA=6, AB=3 17,PO=12,则PE=____ ⊙O 的半径是_______.

复数代数形式的四则运算教案

复数代数形式的四则运算 —乘除运算 授课人:霍阳郜格陈丹董秀清宋广东 指导教师:黄海鹏 一、教学目标:1、理解复数代数形式的四则运算法则 2、能运用运算律进行复数的四则运算 3、培养类比思想和逆向思维 4、培养学生探索精神和良好的自学习惯 二、教学重点:复数的加减运算、乘除运算 三、教学难点:灵活准确地进行复数代数形式的四则运算及类比思想 四、教学方式:学生自主探究教师指导学习 五、教学用具:多媒体 六、教学过程 (一)知识回顾 1、复数的乘法运算 设z1=a+bi,z2=c+di(a,b,c,d∈R)是任意两个复数, 则它们积为z1?z2=(a+bi) (c+di)=(ac-bd)+(bc+ad)i 复数的积仍然为一个复数,复数的乘法与多项式的乘法相似。 复数乘法满足(1)交换律:z1?z2=z2?z1; (2)结合律(z1?z2)?z3=z1?(z2?z3); (3)分配律z1 (z2+z3)=z1z2+z1z3 2、共轭复数 实部相等而虚部互为相反数的两个数。复数z的共轭复数用z表示。 若z=a+bi,则z=a-bi (a,b∈R) z z=a2+b2z+z=2a z-z=2bi 3、复数的除法运算(乘法的逆运算)

复数a +bi 除以复数c +di 的商是指 满足(c +di) (x +yi)=a +bi 的复数x +yi ,记作 di c bi a ++ (c +di ≠0) 根据复数相等的定义:di c bi a ++=22 d c bd ac +++22d c a d bc +-i 利用共轭复数性质: di c bi a ++=))(())((di c di c di c bi a -+-+=22)()(d c a d bc bd ac +--+=22d c bd ac +++22d c ad bc +-i (二) 习题讲解 例1、 已知复数)(,)31()1)(31(R a ai z w i i i i z ∈+=+--+-=,当2≤z w 时, 求a 的取值范围。 思路:先根据四则运算法则算化简z ,然后得w ,然后球的 z w ,进而求其模,解不等式。 例2、已知复数z 满足5=z 且z i ?-)43(是纯虚数,则z =___________ 思路:先求z 在代入模的运算,进而用共轭得出 例3、已知复数1121)12(,2z i i z z i z -++=+=(1)求2z (2)在ABC ?的三个内角C B ,,A 依次成等差数列,且2 cos 2cos 2C i A u +=,求2z u +的取值范围。 思路:(1)将1z 代入式子求2z (2)利用三角形内角和、等差数列性质求得B ,再利用二倍角公式求得u 的最简解析式,进而利用三角函数的值域求范围。 七、 小结

复数的乘除运算

双基限时练(十一) 1.在复平面内,复数z =1 2+i 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析 z =12+i =2-i 5=25-15i ,∵点(25,-1 5)在第四象限.∴复数 z 对应的点在第四象限. 答案 D 2.复数3 (1-i )2的值是( ) A.32i B .-3 2i C .i D .-i 解析 3(1-i )2 =3-2i =3 2i. 答案 A 3.2-3i 3+2i 等于( ) A .-15i B.15i C .-i D .i 解析 2-3i 3+2i =(2-3i )(3-2i )(3+2i )(3-2i )=6-13i -632+22=-i. 答案 C 4.(1-i )(1+2i )1+i 等于( ) A .-2-i B .-2+i

C .2-i D .2+i 解析 (1-i )(1+2i )1+i =(1-i )(1+2i )(1-i )(1+i )(1-i ) = -2i (1+2i ) 2 =-i(1+2i) =2-i. 答案 C 5.i 是虚数单位,若1+7i 2-i =a +b i(a ,b ∈R ),则乘积ab 的值是 ( ) A .-15 B .-3 C .3 D .15 解析 1+7i 2-i =(1+7i )(2+i ) (2-i )(2+i ) =-1+3i =a +b i , ∴a =-1,b =3,∴ab =-3. 答案 B 6.投掷两颗骰子,得到其向上的点数分别为m 和n ,则复数(m +n i)(n -m i)为实数的概率为( ) A.1 3 B.1 4 C.16 D.112 解析 (m +n i)(n -m i)=2mn +(n 2-m 2)i ,由此复数为实数得n 2 -m 2=0,即n =±m ,故所求的概率为P = 66×6 =1 6.

《复数代数形式的加减运算及其几何意义》参考教案2

3.2.1 复数的代数形式的加减运算 教学要求:掌握复数的代数形式的加、减运算及其几何意义。 教学重点:复数的代数形式的加、减运算及其几何意义 教学难点:加、减运算的几何意义 教学过程: 一、复习准备: 1. 与复数一一对应的有? 2. 试判断下列复数14,72,6,,20,7,0,03i i i i i i +----在复平面中落在哪象限?并画出其对应的向量。 3. 同时用坐标和几何形式表示复数121472z i Z i =+=-与所对应的向量,并计算12OZ OZ +。向量的加减运算满足何种法则? 4. 类比向量坐标形式的加减运算,复数的加减运算如何? 二、讲授新课: 1.复数的加法运算及几何意义 ①.复数的加法法则:12z a bi Z c di =+=+与,则12()()Z Z a c b d i +=+++。 例1.计算(1)(14)(72)i i +-+ (2)(72)(14)i i -++ (3)[(32)(43)](5)i i i --++++ (4)(32)(43)(5)]i i i --++++[ ②.观察上述计算,复数的加法运算是否满足交换、结合律,试给予验证。 例2.例1中的(1)、(3)两小题,分别标出(14),(72)i i +-,(32),(43),(5)i i i --++所对应的向量,再画出求和后所对应的向量,看有所发现。 ③复数加法的几何意义:复数的加法可以按照向量的加法来进行(满足平行四边形、三角形法则) 2.复数的减法及几何意义:类比实数,规定复数的减法运算是加法运算的逆运算,即若12Z Z Z +=,则Z 叫做21Z Z 减去的差,21Z Z Z =-记作。 ④讨论:若12,Z a b Z c di =+=+,试确定12Z Z Z =-是否是一个确定的值? (引导学生用待定系数法,结合复数的加法运算进行推导,师生一起板演) ⑤复数的加法法则及几何意义:()()()()a bi c di a c b d i +-+=-+-,复数的减法运算也可以按向量的减法来进行。

复数代数形式的乘除运算

课时跟踪检测(二十) 复数代数形式的乘除运算 一、题组对点训练 对点练一 复数的乘除运算 1.下列各式的运算结果为纯虚数的是( ) A .i(1+i)2 B .i 2(1-i) C .(1+i)2 D .i(1+i) 2.(2019·全国卷Ⅰ)设z =3-i 1+2i ,则|z |=( ) A .2 B . 3 C . 2 D .1 3.已知i 是虚数单位,若复数z 满足z i =1+i ,则z 2=( ) A .-2i B .2i C .-2 D .2 4.计算: (1)(1-i)(3+2i)+(2+2i)2;(2)4+4i 1-3i +1 i ; (3)(2+i )(1-i )2 1-2i . 对点练二 共轭复数 5.复数z =-3+i 2+i 的共轭复数是( ) A .2+i B .2-i C .-1+i D .-1-i 6.已知a ∈R ,i 是虚数单位.若z =a + 3 i ,z ·z =4,则a =( ) A .1或-1 B.7或-7 C .- 3 D. 3 7.已知z ∈C ,z 为z 的共轭复数,若z ·z -3i z =1+3i ,求z . 对点练三 复数范围内的方程根问题 8.设x ,y 是实数,且x 1-i +y 1-2i =5 1-3i ,则x +y =________. 9.已知复数z =(1-i )2+3(1+i ) 2-i . (1)求复数z ; (2)若z 2+az +b =1-i ,求实数a ,b 的值. 二、综合过关训练 1.复平面内表示复数z =i(-2+i)的点位于( ) A .第一象限 B .第二象限

C .第三象限 D .第四象限 2.已知复数z =3+i (1-3i )2 ,z 是z 的共轭复数,则z ·z =( ) A .14 B .12 C .1 D .2 3.已知复数z =1-i ,则z 2-2z z -1 =( ) A .2i B .-2i C .2 D .-2 4.设i 是虚数单位, z 是复数z 的共轭复数.若z ·z i +2=2z ,则z =( ) A .1+i B .1-i C .-1+i D .-1-i 5.若21-i =a +b i(i 为虚数单位,a ,b ∈R ),则a +b =________. 6.已知a ∈R ,i 为虚数单位,若a -i 2+i 为实数,则a 的值为________. 7.已知复数z 1满足(z 1-2)(1+i)=1-i(i 为虚数单位),复数z 2的虚部为2,且z 1·z 2是实数,求z 2. 8.已知z ,ω为复数,(1+3i)z 为实数,ω=z 2+i ,且|ω|=52,求ω.

相关文档
相关文档 最新文档