文档库 最新最全的文档下载
当前位置:文档库 › 第2章_金属和合金的固态结构_Exercise

第2章_金属和合金的固态结构_Exercise

第2章_金属和合金的固态结构_Exercise
第2章_金属和合金的固态结构_Exercise

第二章金属和合金的固态结构

作业

第二章金属和合金的固态结构

(第一节、第二节)

作业

1. 分别计算体心立方(bcc)和密集六方(hcp)结构时原子所占体积和空位所占体积的百分数?

(第三节)作业

1. 单胞的特征参数指的是什么?其中点阵常数是哪些?

2. 对于四方晶系,只有简单四方和体心四方两种空间点阵。请说明四方晶系的底心化和面心化都不构成新的空间点阵。

3. 说明空间点阵与晶体点阵的区别与联系?

4. 在单胞中画出(010)、(110)、(121)和(312)晶面,画出[111]、

[123]、[ 1 10]和[211]晶向。

5. 用四轴坐标系画出六方晶系的(1120)、(1012)、(1011)晶面及

[1120]、[2113]、[3125]晶向。

第二章金属和合金的固态结构

第四节金属和合金中原子间的结合

作业第五节金属和合金的晶体结构类型

1. 假定发生晶体结构变化时,体积保持不变,计算同一

种金属呈简单立方结构和面心立方结构时,原子半径

之比:r简单/r面心。

2. 画出一个六方晶系的单胞,并标出点阵参数及相互关

系?

3. 六方晶系中,只有简单六方一种平移点阵,怎样认识

密排六方?

4. 合金中的相的结构类型有哪些?

第六节固溶体

作业

第七节结构缺陷

1. 影响固溶体固溶度的主要因素是什么?

2. 合金形成超结构或超点阵指什么?

3. 晶体中缺陷的类型及主要特征?

4. 分别说明刃型位错和螺型位错的柏氏矢量与位错线的

关系?

5. 位错与点缺陷的相互作用怎样?

第一章+金属的晶体结构作业+答案

第一章金属的晶体结构 1、试用金属键的结合方式,解释金属具有良好的导电性、正的电阻温度系数、导热性、塑性和金属光泽等基本特性. 答:(1)导电性:在外电场的作用下,自由电子沿电场方向作定向运动。 (2)正的电阻温度系数:随着温度升高,正离子振动的振幅要加大,对自由电子通过的阻碍作用也加大,即金属的电阻是随温度的升高而增加的。 (3)导热性:自由电子的运动和正离子的振动可以传递热能。 (4) 延展性:金属键没有饱和性和方向性,经变形不断裂。 (5)金属光泽:自由电子易吸收可见光能量,被激发到较高能量级,当跳回到原位时辐射所吸收能量,从而使金属不透明具有金属光泽。 2、填空: 1)金属常见的晶格类型是面心立方、体心立方、密排六方。 2)金属具有良好的导电性、导热性、塑性和金属光泽主要是因为金属原子具有金属键的结合方式。 3)物质的原子间结合键主要包括金属键、离子键和共价键三种。 4)大部分陶瓷材料的结合键为共价键。 5)高分子材料的结合键是范德瓦尔键。 6)在立方晶系中,某晶面在x轴上的截距为2,在y轴上的截距为1/2;与z轴平行,则该晶面指数为(( 140 )). 7)在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2),那么AB晶向指数为(ī10),OC晶向指数为(221),OD晶向指数为(121)。 8)铜是(面心)结构的金属,它的最密排面是(111 )。 9) α-Fe、γ-Fe、Al、Cu、Ni、Cr、V、Mg、Zn中属于体心立方晶格的有(α-Fe 、 Cr、V ),属于面心立方晶格的有(γ-Fe、Al、Cu、Ni ),属于密排六方晶格的有( Mg、Zn )。 3、判断 1)正的电阻温度系数就是指电阻随温度的升高而增大。(√) 2)金属具有美丽的金属光泽,而非金属则无此光泽,这是金属与非金属的根本区别。(×) 3) 晶体中原子偏离平衡位置,就会使晶体的能量升高,因此能增加晶体的强度。(× ) 4) 在室温下,金属的晶粒越细,则其强度愈高和塑性愈低。(×) 5) 实际金属中存在着点、线和面缺陷,从而使得金属的强度和硬度均下降。 (×) 6)体心立方晶格中最密原子面是{110},原子排列最密的方向也是<111> .(对) 7)面心立方晶格中最密的原子面是{111},原子排列最密的方向是<110>。 ( 对 ) 8)纯铁加热到912℃时将发生α-Fe向γ-Fe的转变,体积会发生膨胀。 ( 错 ) 9)晶胞是从晶格中任意截取的一个小单元。(错) 10)纯铁只可能是体心立方结构,而铜只可能是面心立方结构。 (错) 4、选择题 1)金属原子的结合方式是( C )

第二章金属的晶体结构与结晶(精)

第二章金属的晶体结构与结晶 教学目的及要求 通过本章的学习,使学生掌握常用纯金属的结构特点和性能特点,建立金属材料结构与性能之间的关系。 主要内容 1.材料的结合方式 2.金属的晶体结构与结晶 学时安排 讲课2学时。 教学重点 1.金属的三种典型的晶体结构 2.晶体缺陷及其对性能的影响 3.纯金属的结晶过程 教学难点 1.金属材料的晶体结构 2.各类缺陷对结构及性能的影响 第一节纯金属的晶体结构 一、晶体结构的基本概念 晶体结构:指在晶体内部,原子、离子或原子集团规则排列的方式。晶体结构不同,其性能往往相差很大。 晶格:为了便于分析研究,通常把将晶体中实际存在的原子、离子或原子集团等物质质点,抽象为空间中纯粹的几何点,而完全忽略它的物质性,这些抽象的几何点称为阵点。用假想的直线把这些阵点连接起来,得到周期性规则排列的三维空间格子称为晶格。 晶胞:组成晶格的能反映其特征和规律的最基本几何单元,称为晶胞。晶格可以看作是由许多大小和形状完全相同的晶胞紧密地堆垛在一起而成的。 晶格常数:晶胞各棱边的长度用a、b、c表示,称为晶格常数或点阵常数,其大小通常以埃为计量单位。晶胞各边之间的相互夹角分别以α、β、γ表示。a、b、c、α、β、γ称为晶胞的六个参数。 在研究晶体结构时,通常以晶胞作为代表来考查。

配位数和致密度:表示晶格中原子排列的紧密程度。 配位数:指晶格中与任一原子处于相距最近并距离相等的原子数目; 致密度(K):指晶胞中原子排列的致密程度,即晶胞中原子所占的体积与晶胞体积(V)的比值,比值K越大,致密度越大。 二、金属中常见的晶体结构类型 三种典型晶体结构特征: 晶体结构与材料性能:(一般规律)面心立方的金属塑性最好,体心立方次之,密排六方的金属较差。 第二节实际金属中的晶体缺陷 一、常见晶体缺陷及分类 晶体缺陷:实际晶体中排列不规则的区域称为晶体缺陷。 分类:按空间尺寸分为三种。 1.点缺陷。不规则区域在空间三个方向上的尺寸都很小,主要是空位、置换原子、间隙原子。 2.线缺陷。不规则区域在一个方向的尺寸很大,在另外两个方向的尺寸都很小,主要是位错。 3.面缺陷:不规则区域在两个方向的尺寸很大,在另外一个方向的尺寸很小,主要是晶界和亚晶界。 二、晶体缺陷对晶体性能的影响 1.点缺陷周围晶格发生畸变,材料的屈服强度提高,塑性韧性下降,电阻增加。

33 实际金属的晶体结构 一、多晶体结构和亚结构

3.3 实际金属的晶体结构 一、多晶体结构和亚结构 实际使用的工业金属材料,即使体积很小,其内部的晶格位向也不是完全一致的,而是包含着许许多多彼此间位向不同的、称之为晶粒的颗粒状小晶体。而晶粒之间的界面称为晶界。这种实际上由许多晶粒组成的晶体结构称为多晶体结构(polycrystalline structure)。一般金属材料都是多晶体(图3-12)。通常测得的金属性能是各个位向不同的晶粒的平均值,故显示出各向同性。 图3—12 多晶体结构示意图 实践证明,即使在一个晶粒内部,其晶格位向也并不是象理想晶体那样完全一致,而是存在着许多尺寸更小,位向差也很小的小晶块。它们相互嵌镶成一颗晶粒。这些小晶块称为亚结构。可见,只有在亚结构内部,晶格的位向才是一致的。 二、晶体缺陷 实际晶体还因种种原因存在着偏离理想完整点阵的部位或结构,称为晶体缺陷(crystal defect)。晶体缺陷的存在及其多寡,是研究晶体结构、金属塑性变形的关键问题。根据其几何特性,晶体的缺陷可分为三类: 1.点缺陷——空位和间隙原子 实际晶体未被原子占有的晶格结点称为空位;而不占有正常晶格位置而处于晶格空隙之间的原子则称为间隙原子。在空位或间隙原子的附近,由于原子间作用力的平衡被破坏,使其周围的原子离开了原来的平衡位置,即产生所谓的晶格畸变。空位和间隙原子都处于不断的运动和变化之中,这对于热处理和化学处理过程都是极为重要的。 2.线缺陷——位错 晶体中某处有一列或若干列原子发生有规律的错排现象称为位错(dislocation)。有刃型

和螺型两种位错。 刃型位错如图3-13所示。垂直方向的原子面EFGH中断于水平晶面ABCD上的EF处,就像刀刃一样切入晶体,使得晶体中位于ABCD面的上、下两部分出现错排现象。EF线称为刃型位错线。在位错线附近区域,晶格发生畸变,导致ABCD晶面上、下方位错线附近的区域内,晶体分别受到压应力和拉应力。符号“┴”和“┬”分别表示多出的原子面在晶体的上半部和下半部,分别称为正、负刃型位错。 图3—13 刃型位错示意图 螺型位错如图3-14所示。晶体在BC右方的上、下两部分原子排列沿ABCD晶面发生了错动。aa’右边晶体上、下层原子相对移动了一原子间距,而在BC和aa’之间形成了一个上下层原子不相吻合的过渡区域,这里的原子平面被扭成了螺旋面。在原子面上,每绕位错线一周就推进了一个晶面间距。显然,螺型位错附近区域的晶格也发生了严重畸变,形成了一个应力集中区。 3.面缺陷——晶界和亚晶界 晶界实际上是不同位向晶粒之间原子排列无规则的过渡层(图3-15)。晶界处晶格处于畸变状态,导致其能量高于晶粒内部能量,常温下显示较高的强度和硬度,容易被腐蚀,熔点较低,原子扩散较快。

金属与合金的晶体结构

第二章金属与合金的晶体结构 第一节纯金属的晶体结构 一、晶体结构的基本知识 1、晶体与非晶体 晶体——原子规则排列的集合体 非晶体——原子无规则堆积的集合体 晶体特征:固定的熔点,各向异性 2、晶格与晶胞 晶格:把晶体中原子看成几何点,用假象的直线连接后得到的三维格架晶胞:晶格中能全面反映原子排列规律的最小几何单元 3、晶面与晶向晶格常数:晶胞的棱边长度 晶面:晶格中各方位的原子面 晶向:任意两个原子连线所指的方向 第二节纯金属的实际晶体结构 α-Fe [100] E=135000N/mm2 [111] E=290000 N/mm2 实际测定 E=210000 N/mm2 一、多晶体结构 单晶体:各部分位向完全一致的晶体(各向异性)多晶体:许多位向不同的单晶体的聚合体(各向同性)晶粒:多晶体中外形不规则的小晶体晶界:晶粒之间的界面 二、晶体缺陷 1、点缺陷——空位和间隙原子 点缺陷→导致晶格畸变→强度↑,硬度↑ 空位和间隙原子都处于运动和变化之中,是原子扩散主 要方式之一。温度↑,空位↑ 2、线缺陷——位错 位错——整排原子有规律错排位错密度ρ=L / V (cm-2)

增加或减小,可以提高强度 3、面缺陷——晶界、亚晶界晶界处:晶格畸变→强度高 原子能量高→熔点低,易腐蚀,原子扩散快 晶粒细→晶界面积大→强度高 亚晶界:晶粒内小位向差(1-2°)的晶块(亚晶粒亚结构)边界 第三节合金的晶体结构合金的基本概念 合金:由两种或两种以上金属,或金属与非金属组成,具有金属性质的物质。 组元:组成合金的基本物质。 相:结构相同,成分相近,与其它部分有界面分开的部分 单相合金:固态下由一个固相组成的合金 多相合金:固态下由两个以上固相组成的合金 组织:相的聚合体。 ( 单相组织,多相组织,) 二、合金的相结构 合金相结构——固溶体和金属化合物。 1、固溶体 固溶体:一种元素的原子溶入另一种元素中形成的合金相。溶剂——保持原晶体结构的元素溶质——失去原晶体结构的元素 有限固溶体:溶解度有一定限度——有限互溶 无限固溶体:溶解度无一定限度——无限互溶(晶体结构相同原子直径相近)固溶体分类: 置换固溶体:溶质原子占据溶剂晶格的某些结点 间隙固溶体:溶质原子处于溶剂晶格的间隙中 固溶强化——溶质溶入固溶体,导致晶格畸变,引起强度和硬度升高 (仍保持良好的塑性和韧性) 2、金属化合物 特征: ?有金属性质 ?晶体结构不同于任何组元 ?成分可用分子式表示Fe3C 性能:硬,脆,熔点高 弥散强化(第二相强化): 当金属化合物以细小颗粒均布于固溶体上, 可使合金的强度↑↑,硬度↑↑,耐磨性↑↑ 调整合金性能的途径: ?改善固溶体溶解度 ?改变化合物形状、数量、大小、分布

二元合金的相结构与结晶 - 答案

第三章 二元合金的相结构与结晶 (一)填空题 1 合金的定义是两种或两种以上的金属(或金属与非金属)熔合而成具有金属特性的物质。 2.合金中的组元是指 组成合金最基本的、独立的物质 。 3.固溶体的定义是 在固态条件下,一种组元“组分”溶解了其它组元而形成的单相晶态固体 4.Cr 、V 在γ-Fe 中将形成 置换 固溶体。C 、N 则形成 间隙 固溶体。 5.和间隙原子相比,置换原子的固溶强化效果要 差 些。 6.当固溶体合金结晶后出现枝晶偏析时,先结晶出的树枝主轴含有较多的高熔点组元。 7.共晶反应的特征是 由一定成分的恶液相同时结晶出成分一定的两个固相 ,其反应式为 L →a+β 8.匀晶反应的特征是 ,其反应式为 9.共析反应的特征是 ,其反应式为 10.合金固溶体按溶质原子溶入方式可以分为置换固溶体和间隙固溶体,按原子溶入量可以分为 有限固溶体 和 无限固溶体 11.合金的相结构有 固溶体 和 金属化合物 两种,前者具有较高的 塑性变形 性能,适合于做 基体 相;后者有较高的 高硬度 性能,适合于做 增强 相 12.看图4—1,请写出反应式和相区: ABC 包晶反应 B A C L γα?+ ;DEF 共晶反应 F D C L βγ+? ;GHI 共析反应 I G H βαγ+? ; ① L +α ;② γα+ ;③βα+ ;④ βγ+ ;⑤ L +γ ;⑥ β+L ; 13.相的定义是 ,组织的定义是 14.间隙固溶体的晶体结构与溶剂的晶格类型 相同,而间隙相的晶体结构与 溶剂组元晶体结构 不同。 15.根据图4—2填出: 水平线反应式 E C D βαγ+? ;有限固溶体 βα、 、 无限固溶体 γ 。 液相线 ,固相线 , 固溶线 CF 、 EG

常见的金属晶体结构

第二章作业 2-1 常见的金属晶体结构有哪几种它们的原子排列和晶格常数有什么特点 V、Mg、Zn 各属何种结构答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、 2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业 4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好试用多晶体塑性变形的特点予以解释。答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:(1)强度高:Hall-Petch 公式。晶界越多,越难滑移。(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。 4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂 7~15 天,然后再精加工。试解释这样做的目的及其原因答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。 4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)答:W、Sn 的最低再结晶温度分别为: TR(W) =(~×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(~×(232+273)-273 =(-71~-20)(℃) <25℃ 所以 W 在1000℃时为冷加工,Sn 在室温下为热加工 4-9 用下列三种方法制造齿轮,哪一种比较理想为什么(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法 1、2 都可以,用方法 3 反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法 3 就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。 4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。 4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。第五章作业 5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从 A 中析出的渗碳体称为二次渗碳体。三次渗碳体:从 F 中析出的渗碳体称为三次渗碳体共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:经共析反应生成的渗碳体即珠光体中的渗

最新第三章 二元合金的相结构与结晶 - 答案

第三章 二元合金的相结构与结晶 (一)填空题 1 合金的定义是两种或两种以上的金属(或金属与非金属)熔合而成具有金属特性的物质。 2.合金中的组元是指 组成合金最基本的、独立的物质 。 3.固溶体的定义是 在固态条件下,一种组元“组分”溶解了其它组元而形成的单相晶态固体 4.Cr 、V 在γ-Fe 中将形成 置换 固溶体。C 、N 则形成 间隙 固溶体。 5.和间隙原子相比,置换原子的固溶强化效果要 差 些。 6.当固溶体合金结晶后出现枝晶偏析时,先结晶出的树枝主轴含有较多的高熔点组元。 7.共晶反应的特征是 由一定成分的恶液相同时结晶出成分一定的两个固相 ,其反应式为 L →a+β 8.匀晶反应的特征是 ,其反应式为 9.共析反应的特征是 ,其反应式为 10.合金固溶体按溶质原子溶入方式可以分为置换固溶体和间隙固溶体,按原子溶入量可以分为 有限固溶体 和 无限固溶体 11.合金的相结构有 固溶体 和 金属化合物 两种,前者具有较高的 塑性变形 性能,适合于做 基体 相;后者有较高的 高硬度 性能,适合于做 增强 相 12.看图4—1,请写出反应式和相区: ABC 包晶反应 B A C L γα?+ ;DEF 共晶反应 F D C L βγ+? ;GHI 共析反应 I G H βαγ+? ; ① L +α ;② γα+ ;③βα+ ;④ βγ+ ;⑤ L +γ ;⑥ β+L ; 13.相的定义是 ,组织的定义是 14.间隙固溶体的晶体结构与溶剂的晶格类型 相同,而间隙相的晶体结构与 溶剂组元晶体结构 不同。 15.根据图4—2填出: 水平线反应式 E C D βαγ+? ;有限固溶体 βα、 、 无限固溶体 γ 。 液相线 ,固相线 , 固溶线 CF 、 EG

金属学与热处理课后习题答案第二章

第二章纯金属的结晶 2-1 a)试证明均匀形核时,形成临界晶粒的△Gk与其体积V之间关系式为△Gk=V△Gv/2 b)当非均匀形核形成球冠状晶核时,其△Gk与V之间的关系如何? 答: 2-2 如果临界晶核是边长为a的正方体,试求出△Gk和a之间的关系。为什么形成立方体晶核的△Gk比球形晶核要大。 答:

2-3 为什么金属结晶时一定要由过冷度?影响过冷度的因素是什么?固态金属熔化时是否会出现过热?为什么? 答: 金属结晶时需过冷的原因: 如图所示,液态金属和固态金属的吉布斯自由能随温度的增高而降低,由于液态金属原子排列混乱程度比固态高,也就是熵值比固态高,所以液相自由能下降的比固态快。当两线相交于Tm温度时,即Gs=Gl,表示固相和液相具有相同的稳定性,可以同时存在。所以如果液态金属要结晶,必须在Tm温度以下某一温度Tn,才能使G s<Gl,也就是在过冷的情况下才可自发地发生结晶。把Tm-Tn的差值称为液态金属的过冷度 影响过冷度的因素: 金属材质不同,过冷度大小不同;金属纯度越高,则过冷度越大;当材质和纯度一定时,冷却速度越大,则过冷度越大,实际结晶温度越低。 固态金属熔化时是否会出现过热及原因: 会。原因:与液态金属结晶需要过冷的原因相似,只有在过热的情况下,Gl<G s,固态金属才会发生自发地熔化。 2-4 试比较均匀形核和非均匀形核的异同点。 答: 相同点: 1、形核驱动力都是体积自由能的下降,形核阻力都是表面能的增加。

2、具有相同的临界形核半径。 3、所需形核功都等于所增加表面能的1/3。 不同点: 1、非均匀形核的△Gk小于等于均匀形核的△Gk,随晶核与基体的润湿角的变 化而变化。 2、非均匀形核所需要的临界过冷度小于等于均匀形核的临界过冷度。 3、两者对形核率的影响因素不同。非均匀形核的形核率除了受过冷度和温度的 影响,还受固态杂质结构、数量、形貌及其他一些物理因素的影响。 2-5 说明晶体生长形状与温度梯度的关系。 答: 液相中的温度梯度分为: 正温度梯度:指液相中的温度随至固液界面距离的增加而提高的温度分布情况。负温度梯度:指液相中的温度随至固液界面距离的增加而降低的温度分布情况。固液界面的微观结构分为: 光滑界面:从原子尺度看,界面是光滑的,液固两相被截然分开。在金相显微镜下,由曲折的若干小平面组成。 粗糙界面:从原子尺度看,界面高低不平,并存在着几个原子间距厚度的过渡层,在过渡层中,液固两相原子相互交错分布。在金相显微镜下,这类界 面是平直的。 晶体生长形状与温度梯度关系: 1、在正温度梯度下:结晶潜热只能通过已结晶的固相和型壁散失。 光滑界面的晶体,其显微界面-晶体学小平面与熔点等温面成一定角度,这种情况有利于形成规则几何形状的晶体,固液界面通常呈锯齿状。 粗糙界面的晶体,其显微界面平行于熔点等温面,与散热方向垂直,所以晶体长大只能随着液体冷却而均匀一致地向液相推移,呈平面长大方式,固液界面始终保持近似地平面。 2、在负温度梯度下: 具有光滑界面的晶体:如果杰克逊因子不太大,晶体则可能呈树枝状生长;当杰克逊因子很大时,即时在较大的负温度梯度下,仍可能形成规则几何形状的晶体。具有粗糙界面的晶体呈树枝状生长。 树枝晶生长过程:固液界面前沿过冷度较大,如果界面的某一局部生长较快偶有突出,此时则更加有利于此突出尖端向液体中的生长。在尖端的前方,结晶潜热散失要比横向容易,因而此尖端向前生长的速度要比横向长大的速度大,很块就长成一个细长的晶体,称为主干。这些主干即为一次晶轴或一次晶枝。在主干形成的同时,主干与周围过冷液体的界面也是不稳的的,主干上同样会出现很多凸出尖端,它们会长大成为新的枝晶,称为称为二次晶轴或二次晶枝。二次晶枝发展到一定程度,又会在它上面长出三次晶枝,如此不断地枝上生枝的方式称为树枝状生长,所形成的具有树枝状骨架的晶体称为树枝晶,简称枝晶。 2-6 简述三晶区形成的原因及每个晶区的特点。 答: 三晶区的形成原因及各晶区特点: 一、表层细晶区

合金的相结构

教学课题合金的相结构 教学课时 2 教学目的让学生了解合金相的概念 掌握合金相的分类 教学难点合金相的分类 教学重点合金相的分类 教学方法讲解法 教具准备教材 教学过程

§2.1 固溶体 固溶体:以合金某一组元为溶剂,在其晶格中溶入其他组元原子(溶质)后所形成的一种合金相,其特征是仍保持溶剂晶格类型,结点上或间隙中含有其他组元原子。 主要讨论溶剂为纯金属的固溶体。 一、固溶体的分类 根据溶质原子在溶剂晶格中所占据 的位置:置换固溶体和间隙固溶体; 根据溶质原子在溶剂中的固溶能力 :有限固溶体和无限固溶体。固溶度(溶解度):在一定温度和压力下,溶质在固溶体中的浓度有一定限度,该浓度极限称为固溶度。 根据溶质原子在固溶体中的分布是否有规律:无序固溶体和有序固溶体。 二、置换固溶体 影响置换固溶体固溶度的主要因素 1.晶体结构因素 晶体结构相同是组元间形成无限固 溶体的必要条件。 2.原子尺寸因素 指溶剂、溶质原子半径之差与溶剂 原子半径之比,即△r = ∣r A-r B∣/ r A , A-溶剂,B-溶质,△r越小,即组元间原子半径越接近,固溶度越大。△r<0.14-0.15时,固溶度较大,或形成无限固溶体。3.电负性因素 电负性:原子接受电子形成负离子 的能力,即元素得失电子的能力。易得电子,电负性大。在周期表中,同一周期元素的电负性从左到右递增;同一族元素的电负性从下到上递增。两元素电负性越相近,固溶度越大。两元素电负性相差大,化学亲和力越强,易形成化合物。4.电子浓度因素 电子浓度:各组元价电子总数e与原子总数a之比, 即C电子= e/a=[V A(100-X)+V B X]/100 V A-溶剂原子价; 100-X-溶剂原子百分数; V A(100-X)-溶剂价电子数; V B-溶质原子价; X-溶质原子百分数; V B X-溶质价电子数. 电子浓度对固溶度的影响: 溶剂为一价FCC金属,不同溶质元素的最大固溶度所对应的极限电子浓度均为1.36左右; 溶剂为一价BCC金属,其极限电子浓度约为1.48. 所以,溶质的原子价越高,其固溶度越低. 举例 总之,组元元素的晶格类型相同,原子半径相差不大,在周期表中的位置邻近时,固溶度较大,甚至形成无限固溶体。 三、间隙固溶体 1.溶质、溶剂元素

第一章__金属的晶体结构习题答案

第一章 金属得晶体结构 (一)填空题 3.金属晶体中常见得点缺陷就是 空位、间隙原子与置换原子 ,最主要得面缺陷就是 。 4.位错密度就是指 单位体积中所包含得位错线得总长度 ,其数学表达式为V L =ρ。 5.表示晶体中原子排列形式得空间格子叫做 晶格 ,而晶胞就是指 从晶格中选取一个能够完全反应晶格特征得最小几何单元 。 6.在常见金属晶格中,原子排列最密得晶向,体心立方晶格就是 [111] ,而面心立方晶格就是 [110] 。 7 晶体在不同晶向上得性能就是 不同得 ,这就就是单晶体得 各向 异性现象。一般结构用金属为 多 晶体,在各个方向上性能 相同 ,这就就是实际金属得 伪等向性 现象。 8 实际金属存在有 点缺陷 、 线缺陷 与 面缺陷 三种缺陷。 位错就是 线 缺陷。 9.常温下使用得金属材料以 细 晶粒为好。而高温下使用得金属 材料在一定范围内以粗 晶粒为好。 10.金属常见得晶格类型就是 面心立方、 体心立方 、 密排六方 。 11.在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1, 1,1/2),D(1/2,1,1/2),那么AB 晶向指数为10]1[- ,OC 晶向指数为[221] ,OD 晶向指数为 [121] 。 12.铜就是 面心 结构得金属,它得最密排面就是 {111} , 若铜得晶格常数a=0、36nm,那么最密排面上原子间距为 0、509nm 。 13 α-Fe 、γ-Fe 、Al 、Cu 、Ni 、Cr 、V 、Mg 、Zn 中属于体心立方 晶格得有 α-Fe 、Cr 、V ,属于面心立方晶格得有 γ-Fe 、Al 、Cu 、Ni 、 ,属于密排六方晶格得有 Mg 、Zn 。 14.已知Cu 得原子直径为0.256nm ,那么铜得晶格常数为 。 1mm 3Cu 中得原子数为 。 15.晶面通过(0,0,0)、(1/2、1/4、0)与(1/2,0,1/2)三点,这个晶 面得晶面指数为 、 16.在立方晶系中,某晶面在x 轴上得截距为2,在y 轴上得截距为 1/2;与z 轴平行,则该晶面指数为 (140) 、 17.金属具有良好得导电性、导热性、塑性与金属光泽主要就是因为 金属原子具有 金属键 得结合方式。 18.同素异构转变就是指 当外部条件(如温度与压强)改变时,金

第二章 金属及合金的晶体结构

第二章金属及合金的晶体结构 金属材料是指以金属键来表征其特性的材料,它包括金属及其合金。金属材料在固态下通常都是晶体状态,所以要研究金属及合金的结构就必须首先研究晶体结构。 一、晶体的基本概念 晶体结构指晶体内部原子规则排列的方式。晶体结构不同,其性能往往相差很大。为了便于分析研究各种晶体中原子或分子的排列情况,通常把原子抽象为几何点,并用许多假想的直线连接起来,这样得到的三维空间几何格架称为晶格,如图2-3(b)所示;晶格中各连线的交点称为结点;组成晶格的最小几何单元称为晶胞,晶胞各边的尺寸a、b、c称为晶格常数,其大小通常以为计量单位(A),晶胞各边之间的相互夹角分别以α、β、γ表示。图2-3(c)所示的晶胞为简单立方晶胞,其晶格常数a=b=c,而α=β=γ=90o。由于晶体中原子重复排列的规律性,因此晶胞可以表示晶格中原子排列的特征。在研究晶体结构时,通常以晶胞作为代表来考查。 为了描述晶格中原子排列的紧密程度,通常采用配位数和致密度(K)来表示。配位数是指晶格中与任一原子处于相等距离并相距最近的原子数目;致密度是指晶胞中原子本身所占的体积百分数,即晶胞中所包含的原子体积与晶胞体积(V)的比值。 图2-3 简单立方晶体 (a)晶体结构(b)晶格(c)晶胞 二、常见纯金属的晶格类型 在金属元素中,除少数具有复杂的晶体结构外,大多数具有简单的晶体结构,常见的晶格类型有以下三种:1.体心立方晶格 体心立方晶格的晶胞如图2-4所示。它的形状是一个立方体,其晶格常数a=b=c,所以只要一个常数a即可表示;其α=β=γ=90o。在体心立方晶胞中,原子位于立方体的八个顶角和中心。属于这类晶格的金属有α-Fe、Cr、V、W、Mo、Nb等。

第一章 金属的晶体结构

第一章金属的晶体结构 1-1. 作图表示立方晶系中的(123),(012),(421)晶面和[102],[211],[346]晶向。 附图1-1 有关晶面及晶向 1-2、立方晶系的{111}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。 {111}=(111)+(111)+(111)+(111) (111)与(111)两个晶面指数的数字与顺序完全相同而符号相反,这两个晶面相互平行,相当于用-1乘某一晶面指数中的各个数字。 1-3 (题目见教材) 解:x方向截距为5a,y方向截距为2a,z方向截距为3c=3 2a/3=2a。 取截距的倒数,分别为 1/5a,1/2a,1/2a

化为最小简单整数分别为2,5,5 故该晶面的晶面指数为(2 5 5) 1-4 (题目见课件) 解:(100)面间距为a/2;(110)面间距为2a/2;(111)面间距为3a/3。 三个晶面中面间距最大的晶面为(110)。 1-5 (题目见课件) 解:方法同1-4题 1-7 证明理想密排六方晶胞中的轴比c/a=1.633。 证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内 的原子相切,构成正四面体,如图所示。 则OD= 2 c ,AB=BC=CA=AD=BD=CD=a 因?ABC 是等边三角形,所以有OC=3 2CE 因(BC)2 =(CE)2 +(BE) 2 则CE=23a ,OC=32×23a =3 3 a 又(CD)2 =(OC)2 +( 21c )2,即(CD)2=(3 3a )2+(21c )2=(a )2 因此, a c =3 8≈1.633 1-8 解:面心立方八面体间隙半径 r=a/2-2a/4=0.146a , 面心立方原子半径R=2a/4,则a=4R/2,代入上试有

纯金属与合金的晶体结构

淮安信息职业技术学院教案首页 一、章节:第二章纯金属与合金的晶体结构 第一节纯金属的晶体结构第二节纯金属的实际晶体结构第三节合金的晶体结构 二、教学目的:使学生了解纯金属与合金的晶体结构,晶胞、晶格、合金的基本概念,了解固溶体与金属化合物。 三、教学方法: 讲授法。 四、教学重点: 晶胞、晶格、合金的基本概念,了解固溶体与金属化合物。 五、教学难点: 晶胞、晶格、合金的基本概念,了解固溶体与金属化合物。 六、使用教具: 挂图。 七、课后作业: P17:1、2、6。 八、课后小结:

第二章纯金属与合金的晶体结构 第一节纯金属的晶体结构 一、晶体结构的基本知识 1.晶体与非晶体 晶体内部的原子按一定几何形状作有规则地重复排列,如金钢石、石墨及固态金属与合金。而非晶体内部的原子无规律地规律地堆积在一起,如沥青、玻璃、松香等。 晶体具有固定的熔点和各向异性的特征,而非晶体没有固定的熔点,且各向同性。 2.晶体管格与晶胞 为便于分析晶体中原子排列规律,可将原子近似地看成一个点,并用假想的线条将各原子中心连接起来,便形成一个空间格子。 晶格——抽象的、用于描述原子在晶体中的规则排列方式的空间几何图形。结点——晶格中直线的交点。 晶胞——晶格是由一些最基本的几何单元周期重复排列而成的,这种最基本的几何单元称为晶胞。

晶胞大小和形状可用晶胞的三条棱长a、b、c(单位,1A=108cm)和棱边夹角来描述,其中a、b、c称为晶格常数。 各种晶体由于其晶格类型和晶格常数不同,故呈现出不同的物理、化学及力学性能。 二、常见的晶格类型 1.体心立方晶格 体心立方晶格的晶胞为一立方体,立方体的八个顶角各排列着一个原子,立方体的中心有一个原子。其晶格常数a=b=c。属于这种晶格类型的金属有α铁、铬、钨、钼、钒等。 2.面心立方晶格 面心立方晶格的晶胞也是一个立方体,立方体的八个顶角和六个面的中心各排列一个原子。属于这种晶格类型的金属有γ铁、铝、铜墙铁壁、镍、金、银等。 3.密排六方晶格 密排六方晶格的晶胞是一个六方柱体,柱体的十二个顶角和上、下中心各排列着一个原子,在上、下面之间还有三个原子。属于这种晶格类型的金属有镁、锌、铍等、α-Ti。 晶格类型不同,原子排列的致密度也不同。体心立方晶格的致

第一章 金属的晶体结构习题答案

第一章 金属的晶体结构 (一)填空题 3.金属晶体中常见的点缺陷是 空位、间隙原子和置换原子 ,最主要的面缺陷是 。 4.位错密度是指 单位体积中所包含的位错线的总长度 ,其数学表达式为V L =ρ。 5.表示晶体中原子排列形式的空间格子叫做 晶格 ,而晶胞是指 从晶格中选取一个能够完全反应晶格特征的最小几何单元 。 6.在常见金属晶格中,原子排列最密的晶向,体心立方晶格是 [111] ,而面心立方 晶格是 [110] 。 7 晶体在不同晶向上的性能是 不同的 ,这就是单晶体的 各向异性现象。一般结构用金属 为 多 晶体,在各个方向上性能 相同 ,这就是实际金属的 伪等向性 现象。 8 实际金属存在有 点缺陷 、 线缺陷 和 面缺陷 三种缺陷。位错是 线 缺陷。 9.常温下使用的金属材料以 细 晶粒为好。而高温下使用的金属材料在一定范围内以粗 晶粒为好。 10.金属常见的晶格类型是 面心立方、 体心立方 、 密排六方 。 11.在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2), 那么AB 晶向指数为10]1[- ,OC 晶向指数为[221] ,OD 晶向指数为 [121] 。 12.铜是 面心 结构的金属,它的最密排面是 {111} ,若铜的晶格常数a=0.36nm, 那么最密排面上原子间距为 0.509nm 。 13 α-Fe 、γ-Fe 、Al 、Cu 、Ni 、Cr 、V 、Mg 、Zn 中属于体心立方晶格的有 α-Fe 、Cr 、 V ,属于面心立方晶格的有 γ-Fe 、Al 、Cu 、Ni 、 ,属于密排六方晶格的有 Mg 、 Zn 。 14.已知Cu 的原子直径为0.256nm ,那么铜的晶格常数为 。1mm 3Cu 中的原子数 为 。 15.晶面通过(0,0,0)、(1/2、1/4、0)和(1/2,0,1/2)三点,这个晶面的晶面指数为 . 16.在立方晶系中,某晶面在x 轴上的截距为2,在y 轴上的截距为1/2;与z 轴平行,则 该晶面指数为 (140) . 17.金属具有良好的导电性、导热性、塑性和金属光泽主要是因为金属原子具有 金属键 的 结合方式。 18.同素异构转变是指 当外部条件(如温度和压强)改变时,金属内部由一种金属内部由 一种晶体结构向另一种晶体结构的转变 。纯铁在 温度发生 和 多晶型转变。 19.在常温下铁的原子直径为0.256nm ,那么铁的晶格常数为 。 20.金属原子结构的特点是 。 21.物质的原子间结合键主要包括 离子键 、 共价键 和 金属键 三种。 (二)判断题 1.因为单晶体具有各向异性的特征,所以实际应用的金属晶体在各个方向上的性能也是不 相同的。 (N) 2.金属多晶体是由许多结晶位向相同的单晶体所构成。 ( N) 3.因为面心立方晶体与密排六方晶体的配位数相同,所以它们的原子排列密集程度也相同 4.体心立方晶格中最密原子面是{111}。 Y 5.金属理想晶体的强度比实际晶体的强度高得多。N 6.金属面心立方晶格的致密度比体心立方晶格的致密度高。 7.实际金属在不同方向上的性能是不一样的。N 8.纯铁加热到912℃时将发生α-Fe 向γ-Fe 的转变。 ( Y ) 9.面心立方晶格中最密的原子面是111},原子排列最密的方向也是<111>。 ( N ) 10.在室温下,金属的晶粒越细,则其强度愈高和塑性愈低。 ( Y ) 11.纯铁只可能是体心立方结构,而铜只可能是面心立方结构。 ( N ) 12.实际金属中存在着点、线和面缺陷,从而使得金属的强度和硬度均下降。 ( Y ) 13.金属具有美丽的金属光泽,而非金属则无此光泽,这是金属与非金属的根本区别。N

第三章 二元合金的相结构与结晶 - 答案

第三章二元合金的相结构与结晶 (一)填空题 1 合金的定义是两种或两种以上的金属(或金属与非金属)熔合而成具有金属特性的物质。 2.合金中的组元是指组成合金最基本的、独立的物质。 3.固溶体的定义是在固态条件下,一种组元“组分”溶解了其它组元而形成的单相晶态固体 4.Cr 、V 在γ-Fe 中将形成置换固溶体。C 、N 则形成间隙固溶体。 5.和间隙原子相比,置换原子的固溶强化效果要差些。 6.当固溶体合金结晶后出现枝晶偏析时,先结晶出的树枝主轴含有较多的高熔点组元。 7.共晶反应的特征是由一定成分的恶液相同时结晶出成分一定的两个固相,其反应式为L →a+β 8.匀晶反应的特征是,其反应式为 9.共析反应的特征是,其反应式为 10.合金固溶体按溶质原子溶入方式可以分为置换固溶体和间隙固溶体,按原子溶入量可以分为有限固溶体和无限固溶体 11.合金的相结构有固溶体和金属化合物两种,前者具有较高的塑性变形性能,适合于做基体相;后者有较高的高硬度性能,适合于做增强相 12.看图4—1,请写出反应式和相区: ABC 包晶反应B A C L γα?+;DEF 共晶反应F D C L βγ+?;GHI 共析反应I G H βαγ+?; ①L +α;②γα+;③βα+;④βγ+;⑤L +γ;⑥β+L ; 13.相的定义是,组织的定义是 14.间隙固溶体的晶体结构与溶剂的晶格类型相同,而间隙相的晶体结构与溶剂组元晶体结构不同。 15.根据图4—2填出: 水平线反应式E C D βαγ+?;有限固溶体βα、、无限固溶体γ。 液相线,固相线,固溶线CF 、EG

16.接近共晶成分的合金,其铸造性能较好;但要进行压力加工的合金常选用匀晶成分的合金。 17.共晶组织的一般形态是片状。 (二)判断题 1.共晶反应和共析反应的反应相和产物都是相同的。( N) 2.铸造合金常选用共晶或接近共晶成分的合金,要进行塑性变形的合金常选用具有单相固溶体成分的合金。( Y) 3.合金的强度与硬度不仅取决于相图类型,还与组织的细密程度有较密切的关系。( Y) 4.置换固溶体可能形成无限固溶体,间隙固溶体只可能是有限固溶体。( Y) 5.合金中的固溶体一般说塑性较好,而金属化合物的硬度较高。( Y ) 6.共晶反应和共析反应都是在一定浓度和温度下进行的。( Y) 7.共晶点成分的合金冷却到室温下为单相组织。( N) 8.初生晶和次生晶的晶体结构是相同的。( Y ) 9.根据相图,我们不仅能够了解各种合金成分的合金在不同温度下所处的状态及相的相对量,而且还能知道相的大小及其相互配置的情况。( Y ) 10.亚共晶合金的共晶转变温度与共晶合金的共晶转变温度相同。( Y ) 11.过共晶合金发生共晶转变的液相成分与共晶合金成分是一致的。( Y) (三)选择题 1.固溶体的晶体结构是A A.溶剂的晶型B.溶质的晶型 C 复杂晶型D.其他晶型 2 金属化合物的特点是C A.高塑性B.高韧性 C 高硬度D.高强度 3.当匀晶合金在较快的冷却条件下结晶时将产生D A.匀晶偏析 B 比重偏析C.枝晶偏析D.区域偏析 4.当二元合金进行共晶反应时,其相组成是C A.由单相组成 B 两相共存 C 三相共存D.四相组成 5.当共晶成分的合金在刚完成共晶反应后的组织组成物为C A. α+βB.(α+L) C.(α+β) D.L+α+β 6.具有匀晶型相图的单相固溶体合金B A.铸造性能好B.锻压性能好 C 热处理性能好D.切削性能好 7.二元合金中,共晶成分的合金A A.铸造性能好 B 锻造性能好 C 焊接性能好D.热处理性能好 8.共析反应是指B A.液相→固相Ⅰ+固相Ⅱ B 固相→固相Ⅰ+固相Ⅱ C.从一个固相内析出另一个固相 D 从一个液相中析出另一个固相 9.共晶反应是指A

第二章金属及合金相的晶体结构

Chapter Outline ?金属的晶体结构 ?密排面堆积方式 ?晶体结构间隙 ?固溶体 ?中间相结构

常见金属的晶体结构 面心立方结构(A1)face-centred cubic lattice 体心立方结构(A2) body-centred cubic lat tice 密排立方结构(A3)hexagonal close-packed lattice A B A ?金属键无饱和性和方向性,使其晶 体结构倾向于最紧密堆垛。 ?将原子看作刚性球,构成相互接触 圆球模型,更确切表示原子排列。 ?面心原子shared by 2 cells: 6 x 1/2 = 3?顶角原子shared by 8 cells: 8 x 1/8 = 1 面心立方结构金属:γ-Fe, Al, Cu, Ni, Au, Ag 和Pt 等。 面心立方结构 ?结构符号A1,Pearson 符号c F4。 ?每个晶胞含4个原子。(0,1/2,1/2)● (0,0,0) ●(1/2,1/2,0)●●(1/2,0,1/2)

配位数与致密度 面心立方结构的致密度η为?致密度η是衡量原子堆垛紧密程度的,为晶胞中原子所占体积(V a )与晶胞体积(V )的比值:η=V a / V ?面心立方晶胞面对角线为原子半径的4倍,即()r 24/=a ?配位数(Coordination Number——CN )是晶体结构中每个原子的最近邻原子数目。a/2 2密排面{111}密排方向 <110> ?面心立方结构的配位数为12,最近 原子间距离为?结构符号A2,Pearson 符号c I2?每个晶胞含2个原子 体心立方结构 ?体心立方结构的金属包括:α-Fe, Cr, W, Mo, V 和Nb 等。 ?体心立方结构配位数为8,原子间距a/23?还有6个次近邻原子,间距为a ,相差15.5%。?体心配位数也表示为CN=8+6。 体心立方结构的致密度η为 体心立方晶胞体对角线为原子半径的4倍,即()r 34/=a 体心原子shared by 0 cells: 1 x 1 = 1 顶角原子shared by 8 cells: 8 x 1/8 = 1 (1/2 1/2 1/2)●(000)●密排面{110} 密排方向<111>

相关文档
相关文档 最新文档