文档库 最新最全的文档下载
当前位置:文档库 › MOFs为模板的电容器电极材料的制备及性能研究

MOFs为模板的电容器电极材料的制备及性能研究

太原理工大学硕士研究生学位论文

目录

第一章绪论 (1)

1.1 电容器的简介 (1)

1.2 双电层电容器(EDLC)电极材料 (2)

1.2.1 活性炭 (2)

1.2.2 碳气凝胶 (3)

1.2.3 碳纳米管 (3)

1.2.4 石墨烯 (4)

1.3 赝电容器电极材料 (4)

1.3.1 金属氧化物 (4)

1.3.2 导电聚合物 (5)

1.4 以MOFs为模板剂的电极材料 (6)

1.4.1 MOFs(Metal-Organic Frameworks,MOFs)材料简介 (6)

1.4.2 MOFs作为超级电容器电极材料 (8)

1.4.3 MOFs衍生的多孔碳电容器电极材料 (11)

1.4.4 MOFs衍生的金属氧化物电容器电极材料 (17)

1.5 本课题选题的目的与意义 (19)

1.5.1 本课题选题的目的与意义 (19)

1.5.2 本课题的主要研究成果 (19)

第二章实验部分 (21)

2.1 主要实验试剂及仪器 (21)

2.1.1 实验试剂 (21)

2.1.2 实验设备及型号 (21)

2.2 样品的物理表征方法 (23)

2.2.1 粉末X-射线衍射(PXRD)表征 (23)

2.2.2 红外光谱(IR)表征 (23)

2.2.3 拉曼表征 (23)

2.2.4 热稳定性表征 (23)

2.2.5 扫描电镜和投射电镜表征 (24)

2.2.6 物理吸附表征 (24)

2.3 电极片的制备及电化学性能测试 (24)

2.3.1 电极片的制备 (24)

2.3.2 电化学性能测试 (25)

第三章基于金属有机骨架化合物MAF-6制备的多级孔碳材料及其EDLC电极性能研究27

3.1 前言 (27)

3.2 实验部分 (28)

3.2.1 模板剂MAF-6的制备 (28)

3.2.2 以MAF-6为模板剂的多级孔炭材料的制备 (28)

3.3 分析与讨论 (28)

3.3.1 X-射线衍射分析 (28)

3.3.2 热重分析 (29)

3.3.3 拉曼分析 (30)

3.3.4 扫描电镜(SEM)和投射电镜(TEM)分析 (30)

V

太原理工大学硕士研究生学位论文

3.3.5 MAF-6和HPC的N2吸脱附曲线及孔分布分析 (33)

3.3.6 HPC1000-5的电化学性能分析 (34)

3.4 本章小结 (37)

第四章基于钴基金属有机骨架化合物ZSA-1制备的介孔Co3O4@carbon复合物及其赝电容器电极性能研究 (39)

4.1 前言 (39)

4.2 实验部分 (40)

4.2.1 前驱体ZSA-1的制备 (40)

4.2.2 制备Co3O4@Carbon复合材料 (40)

4.3 结果与讨论 (41)

4.3.1 ZSA-1的X-射线粉末衍射和晶体结构 (41)

4.3.2 Co3O4@Carbon和Co3O4的X-射线粉末衍射 (42)

4.3.3 Co3O4@Carbon的拉曼谱图 (43)

4.3.4 热重分析 (43)

4.3.5 N2吸附-脱附分析 (44)

4.3.6扫描电镜(SEM)和能谱(EDS)分析 (45)

4.3.7透射电镜(TEM)分析 (46)

4.3.8电化学性能分析 (46)

4.4 本章小结 (49)

第五章结论与展望 (51)

5.1 主要结论 (51)

5.2 本论文的创新点 (52)

5.3 下阶段工作展望 (53)

参考文献 (55)

致谢 (67)

硕士期间发表学术论文 (69)

VI

太原理工大学硕士研究生学位论文

第一章绪论

1.1 电容器的简介

当前世界的发展对能源的需求日益增加,大量的化石能源燃料被消耗,同时带来了越来越严重的环境问题。为了解决能源和环境问题,科学家们致力于寻求可再生能源和研发可持续性能源储存技术。太阳能和风能是极具吸引力的可再生能源,但是太阳能和风能的间断性限制了他们在电力领域的应用,因此需要发展一种有效、可靠的能源储存技术。电池和超级电容器的发展正符合人们对这种储能技术的需求,但是就目前的发展来看,电池拥有高于超级电容器的能量密度,功率密度却低于超级电容器;电池和超级电容器的倍率性能、循环寿命及安全性能需进一步提高。因此,研发高性能的新材料仍然是电能储存领域的巨大挑战[1]。

锂离子电池是在1990年由Sony在Whittingham、Scrosati 和Armand等的研究基础上提出的[2],这种电池虽然价格昂贵,但其能量密度可以达到180 W·kg-1。多年来研究者们都期望利用纳米材料发展高性能的锂离子电池和其他二次电池,但未取得突破性进展,近年来,超级电容器引起了研究人员的关注,超级电容器弥补了锂离子电池在能量传输方面存在的速度劣势。电化学电容器,也叫超级电容器是一种功率器件,可以在数秒内实现充放电过程,因此它的能量密度(5W·h·kg-1)要比电池的低,但是可以在几秒内实现较高的功率传输(10kW·kg-1)[3],在一些能量储存领域,超级电容器可以补充甚至代替二次电池,比如在一些不间断的能量供应系统中(用于防止电力中断的备份用品)。例如,空客A380的紧急逃生门采用双电层电容器作为储能设备,证明了超级电容器在性能方面的优势,安全可靠的超级电容器装置已经可以在大范围内用作储备能源。在未来能源中,美国能源部[4]认为超级电容器和电池具有同等重要的地位,在商业杂质和流行杂志中人们对超级电容器的关注度也在不断增加。

1957年,General Electric申请了一个以多孔碳材料为电极、硫酸为电解液的电容器装置专利[5];70年代中期,在一些时钟芯片和电脑内存装置中开始使用超级电容器作为储能装置;随后,超级电容器开始应用在无线电通讯设备以及在一些混合动力电池/柴油系统的能量回收系统中用于提高能源利用效率[6]。超级电容器的能量密度取决于电容大小和电势窗口,电容越大、电压降越大,能量密度就越大,E=1/2CV2=1/2QV[7],其

1

超级电容器电极材料的研究进展

2011年第3期 新疆化工 11 超级电容器电极材料的研究进展 摆玉龙 (新疆化工设计研究院,乌鲁木齐830006) 摘要:超级电容器既具有超大容量,又具有很高的功率密度,因此它在后备电源、替代电源、大功率输出等方面都有极为广泛的应用前景。超级电容器的性能主要取决于电极材料,近年来各国学者对于超级电容器的电极材料进行了大量的研究。 关键词:超级电容器;电极材料 1 前言 超级电容器的种类按其工作原理可以分为双电层电容器、法拉第准电容器(也称为赝电容电容器)以及二者兼有的混合电容器。双电层电容器基于双电层理论,利用电极和电解质之间形成的界面双电层电容来储存能量。法拉第准电容器则基于法拉第过程,即在法拉第电荷转移的电化学变化过程中产生,不仅发生在电极表面,而且可以深入电极内部。根据这两种原理,目前作为超级电容器的电极材料的主要分为三类[1]:碳材料、金属氧化物及水合物材料、导电聚合物材料。 2 碳材料类电极材料 在所有的电化学超级电容器电极材料中,研究最早和技术最成熟的是碳材料。其研究是从1957年Beck发表的相关专利开始的。碳电极的研究主要集中在制备具有大的比表面积和较小内阻的多孔电极材料上,可用做超级电容器电极的碳材料主要有:活性炭、纳米碳纤维、玻璃碳、碳气凝胶、纳米碳管等。 活性炭(AC)是超级电容器最早采用的碳电极材料[2]。它是碳为主,与氢、氧、氮等相结合,具有良好的吸附作用。其特点是它的比表面积特别大,比容量比铂黑和钯黑高五倍以上[3]。J.Gamby[4]等对几种不同比表面积的活性炭超级电容器进行测试,其中比表面积最大为2315m2·g的样品得到的比容量最高,达到125F/g,同时发现比表面积和孔结构对活性炭电极的比容量和内阻有很大影响。 活性炭纤维(ACF)是性能优于活性炭的高效活性吸附材料和环保工程材料。ACF的制备一般是将有机前驱体纤维在低温(200℃~400) ℃下进行稳定化处理,随后进行炭化、活化(700℃~1000) ℃。日本松下电器公司早期使用活性炭粉为原料制备双电层电容器的电极,后来发展的型号则是用导电性优良、平均细孔孔径2~5nm、细孔容积0.7~1.5m3/g、比表面积达1500~3000m2/g的酚醛活性炭纤维[5],活性炭纤维的优点是质量比容量高,导电性好,但表观密度低。H. Nakagawa采用热压的方法研制了高密度活性炭纤维(HD-ACF)[6],其密度为0.2~0.8g/m3,且不用任何粘接剂。这种材料的电子导电性远高于活性炭粉末电极,且电容值随活性炭纤维密度的提高而增大,是一种很有前途的电极材料。用这种HD-ACF 制作超级电容器电极[7],结果表明,对于尺寸相同的单元电容器,采用HD-ACF为电极的电容器的电容明显提高。 炭气凝胶是一种新型轻质纳米级多孔性非晶炭素材料,其孔隙率高达80%~98%,典型孔隙尺寸<50nm,网络胶体颗粒尺寸3~20nm,比表面积高达60~1000m2/g,密度为0.05~0.80g/m3,是一种具有许多优异性能(如导电性、光导性和机械性能等)和广阔的应用前景的新型材料[8]。孟庆函,

磷酸铁锂正极材料制备方法比较

磷酸铁锂正极材料制备方法比较 A.固相法 一. 高温固相法 1.流程:传统的高温固相合成法一般以亚铁盐(草酸亚铁,醋酸铁,磷酸亚铁等) ,磷酸盐(磷酸氢二铵,磷酸二氢铵),锂盐(碳酸锂,氢氧化锂,醋酸锂及磷酸锂等)为原料,按LiFeP04分子式的原子比进行配料,在保护气氛(氮气、氩气或它们与氢气的混合气体)中一步、二步或三步加热,冷却后可得LiFeP04粉体材料。 例1: C.H.Mi等采用一:步加热法得到包覆碳的LiFeP04,其在30 C, 0.1 C 倍率下的初始放电容量达到160 mAh g-1 ;例2 : S.S.Zhang等采用二步加热法,以 FeC:2O4 2H2O和LiH2PO4为原料,在氮气保护下先于350~380 C加热5 h形成前驱体,再在800 C下进行高温热处理,成功制备了LiFePO4/C复合材料,产物在0.02 C倍率下的放 电容量为159 mAh g-1 ;例3 : A.S.Andersson等采用三步加热法,将由:Li2CO3、FeC2O4 2H2O 和(NH4)2HPO4组成的前驱体先在真空电炉中于300 C下预热分解,再在氮气保护下先于 450 C加热10 h,再于800 C烧结36 h,产物在放电电流密度为2.3 mA g-1时放电,室温初始放电容量在136 mAh g-1 左右;例4: Padhi 等以Li2CO3 , Fe(CH3COO)2 , NH4H2PO4 为原料,采用二步法合成了LiFePO4正极材料,其首次放电容量达110 mA h /g ; Takahashi 等以LiOH H2O, FeC2O4 2H2O , (NH4)2HPO4 为原料,在675、725、800 C下,制备出具有不同放电性能的产品,结果表明,低温条件下合成的产品放电容量较大;例5:韩国的Ho Chul Shin、Ho Jang等以碳酸锂、草酸亚铁、磷酸二氢铵为原料,添加5wt%的乙炔黑为碳源、以 At+5%H2为保护气氛,在700 C下煅烧合成10h,得到碳包覆的LiFePO4材料。经检测表明,用该工艺合成的LiFePO4制备的电池放电平台在3 4-3 5V之间,0 05C首次放电比容量为150mA h/g ;例 6 :高飞、唐致远等以醋酸锂、草酸亚铁、磷酸二氢铵为原料,聚乙烯醇为碳源。混料球磨所得粒径细小,分布的悬浊液。然后将悬浊液采用喷雾干燥的方法制得LiFePO4 前驱体,再通过高温煅烧合成LiFePO4/C正极材料,首次放电比容量最为139 4mA h/g,并具有良好的循环性能,经10C循环50次后,比容量仅下降0 15% ;例7:赵新兵、周鑫等以氢氧化锂、磷酸铁、氟化锂为原料,,聚丙烯为碳源,先在500 C下预烧,再在700 C下煅烧合成具有F掺杂的LiFePO酒精为球磨介质4/C材料,电化学测试结果表明,LiFePO3 98F0 02/C 具有最佳放电特性,在1C倍率充放电下比容量为146mA h/g。 2?优点:工艺简单、易实现产业化 3?缺点:颗粒不均匀;晶形无规则;粒径分布范围广;实验周期长;难以控制产物的批次 稳定性;在烧结过程中需要耗费大量的惰性气体来防止亚铁离子的氧化;所生产的LiFePO4 粉末导电性能不好,需要添加导电剂增强其导电性能 4?改性:添加导电剂(多用蔗糖,乙炔黑,聚乙烯醇,聚丙烯等碳源)增强其导电性能 二. 碳热还原法 1.流程:碳热还原法也是高温固相法中的一种,是比较容易工业化的合成方法,多数以氧化铁或磷酸铁做为铁源,配以磷酸二氢锂以及蔗糖等碳源,均匀混合后,在高温和氩气或氮气 保护下焙烧,碳将三价铁还原为二价铁,也就是通过碳热还原法合成磷酸铁锂。 例1:杨绍斌等以正磷酸铁为铁源,以葡萄糖、乙炔黑为碳源,采用碳热还原法合成橄榄石型磷酸铁锂。研究发现:双碳复合掺杂样品电性能最高为148.5 mAh/g,倍率放电性能仍具 有优势,10 C时容量保持率为88.1% ;例2 : Mich等以分析纯的FePO4和LiOH为原料,聚丙烯为还原剂,合成的材料在0.1 C及0.5 C倍率下首次放电比容量分别为160 mAh/g 和146.5 mAh/g ; 例3 : PP.Prosini 等以(NH4)2Fe(SO4)2和NH4H2PO4为原料首先合成FePO4,然后用LiI还原Fe3+,并在还原性气氛

电极特性相关介绍

电极特性相关介绍 相关性能和了解更多加工性能可以百度绿兴金属找到我们。 电极特性指的是电极的一些特定的物理性质以及化学性质。 电极材料特性介绍 铬锆铜(CuCrZr)是最常用的电阻焊电极材料,这是由他本身优良的化学物理特性及良好的性价比所决定的。铬锆铜电极他达到焊接电极四项性能指标很好的平衡: ★优良的导电性---------保证焊接回路的阻抗最小,获到优良的焊接质量 ★高温机械性能---------较高的软化温度保证焊接高温环境下电极材料的性能及寿命 ★耐磨----------电极不易磨损,延长寿命,降低成本 ★较高的硬度和强度----保证电极头在一定的压力下工作不易变形压溃,保证焊接质量 电极是一种工业生产的消耗品,用量比较大,因而其价格成本也是一个考虑的重要因素,铬锆铜电极相对其优良的性能来说,价格比较便宜,能满足生产的需要。铬锆铜电极适用于碳钢板,不锈钢板,镀层板等零件的点焊与凸焊,铬锆铜材料适合于制造电极帽,电极连杆、电极头、电极握杆、凸焊特殊电极、滚焊轮、导电嘴等电极零件。 应用分析 氧化铝铜电极具有优良的焊接性能,但其目前造价十分昂贵,因而目前还不能普遍使用,但对镀锌板优异的焊接性能及镀锌板的普遍使用,使得其市场前景广阔。 氧化铝铜电极使用于镀锌钢板、铝制品、碳钢板、不锈钢板等零件焊接。钨电极材料有纯钨,钨基高比重合金及钨铜合金,钨基高比重合金是钨中加入少量的镍铁或镍铜烧结而成,钨铜复合材料(Tungsten-Copper)含有10-40%(重量比)的铜。钼电极(Molybdenum)。 钨钼电极具有硬度高,熔点高,高温工作性能优越等特点,适合于焊接有色金属铜、铝、镍等,如开关的铜编织带与金属片的连接。 离子选择性电极的基本特性

超级电容器电极材料研究现状及存在问题

功能材料课程报告 指导老师: 学院:材料科学与工程学院专业:材料加工工程 姓名: 学号: 日期: 2012 年7 月13 日

超级电容器电极材料研究现状及存在问题 摘要:电极材料是决定电容器性能的重要因素,高性能电极材料的开发是超级电容器研发的重点。本文主要讨论了超级电容器阳极材料的研究现状及存在问题,这些材料包括:碳材料、贵金属氧化物、导电聚合物和一些其他材料。复合或混合型电极材料可以显著提高超级电容器的综合性能,已经成为超级电容器电极材料发展的主要趋势。 关键词:超级电容器;电极材料;研究现状;存在问题

1电极材料的研究现状 1.1正极材料 目前用作超级电容器电极的材料主要有三类:碳材料、金属氧化物材料和导电聚合物材料。 1.1.1碳材料碳是最早被用来制造超级电容器的电极材料。碳电极电容器主要是利用储存在电极与电解液界面的双电层能量,其比表面积是决定电容器容量的重要因素。尽管高比表面的碳材料比表面积越大,容量也越大,但实际利用率并不高,因为多孔碳材料中孔径一般要2nm及以上的空间才能形成双电层,从而进行有效的能量储存。而制备的碳材料往往存在微孔(小于2nm)不足的情况。所以这个系列主要是向着提高有效比表面积和可控微孔孔径(大于2nm)的方向发展。除此之外,碳材料的表面官能团、导电率、表观密度等对电容器性能也有影响[1]。 碳电极电容器其电容的大小和电极的极化电位及电极比表面积大小有关,故可以通过极化电位的升高和增大电极比表面积达到提高电容大小的目的。电极/电解质双电层上可贮存的电量其典型值约为15~40μF·cm-2。选用具有高表面积的高分散电极材料可以获得较高的电容。对理想可极化体系而言,可通过无限提高充电电压而大量储存能量。但是,对于实际体系却受电极材料和电解液组成的电极系统的可极化性和溶剂分解的限制,可通过加大电极比表面积来增加电容值。电容C可由下式给出 C=ε·ε0Ad 式中:ε ε为电导体和内部赫姆霍兹面间区域的相对0为自由空间的绝对介电常数, 介电常数,A为电极表面积,d为导体与内赫姆霍兹面之间的距离。 近年来研究主要集中在提高碳材料的比表面积和控制碳材料的孔径及孔径分布,并开发出许多不同类型的碳材料,主要有: 多孔碳材料、活性碳材料、活性碳纤维、碳气溶胶以及最近才开发的碳纳米管等[2]。 多孔碳材料、活性碳材料和活性碳纤维:这个排列基本代表了碳材料为提高有效比表面积的发展方向。之所以发展为活性碳,主要是在于通过活化处理(如水蒸汽)后,可以增加微孔的数量,增大比表面积,提高活性碳的利用率。这些材料随制作电极工艺的不同先后出现过:活性碳粉与电解液混合制成的糊状电

电极用铜介绍

电极用铜介绍 氩弧焊、等离子弧焊接(切割)钨电极 高密度钨基合金 常用系列有钨镍铜、钨镍铁、机械仪表和发动机的平衡配重件、惯性旋转元件、赛车曲轴、高尔夫球、网球拍、弓箭箭头、钓鱼具鱼坠. 1、物理性能 注:钨基高比重合金材料是一类以钨为基体(W含量70----99%),并添加有Ni、Cu、Co、Mo、Cr等元素的合金。按合金组成特性及用途主要分为W-Ni-Fe、W-Ni-Cu、W-Co 、W-WC-Cu、W -Ag 等系列,因其密度高达16.5-19.0 g/cm3 ,被世人称为高比重合金。 2、钨基合金优点

(1) 密度高达18.5g/cm3,比重超过铅65%,也超过铁130%; (2) 在动态或静态的其中一种环境中,机械性能极佳; (3) 弱磁性;如有特殊要求,可无磁性; (4) 铅之外的另一选择; (5) 无毒性, 抗腐蚀, 易加工; (6) 与其它材料易于机械接合,黄铜焊接或紧固配合; 3、应用 (1)陀螺仪的转子材料; (2)飞机上的惯性旋转元件; (3)各种仪表及发动机上的平衡配重元件; (4)运动器材的镶件,可具有更强的攻击能力; (5)手机的振子材料; (6)渔具的环保型鱼坠; (7)在电气工业中的电热加工应用; (8)在军事工业中,应用于穿甲弹,子母弹,聚能弹中的火药性罩等等; 4、基本尺寸及允许偏差 5、产品名称、代表符号、化学成分及物理机械性能 注:(1)为改善性能而添加的元素不属杂质。(2)硬度值一般指退火后的软态值。3)密度允许误差为±0.5g/cm3 (3)钨基合金配重块必须无裂纹、鼓泡,表面无明显可见的凹痕,无缺边掉角等缺陷。 (4)钨基合金配重块断面结构应致密,无分层夹心,表面无气孔。 (5)钨基合金配重块表面粗糙度Ra应小于或等于3.2μm(或Rz≤12.8μm) (6)钨基合金配重块金相分布应均匀。 (7)钨基合金配重块凡有压脚的需倒角清晰,角尖部须有0.5mm的过渡层。

电极材料

关于电极材料 来源: 发布时间:2010-08-10 点击次数:3726 关于电极材料 点焊电极是保证点焊质量的重要零件,它主要的功能有: 1.向工件传导电流; 2.向工件传递压力; 3.迅速导散焊接区的热量。 基于电极材料的上述功能,就要求制造电极的材料有足够的电导率、热导率和高温硬度,电极的结构必须有足够的强度和刚度,以及充分冷却的条件。此外,电极与工件间的接触电阻应足够低,以防止工件表面熔化或电极与工件表面之间的合金化。 电极材料按照我国航空航天工业标准HB5420-39的规定分为四类,常用的有三类,见下表: 1类——高电导率,中等硬度的铜及铜合金。这类材料主要通过冷作变形方法达到其硬度要求。适用于制造焊铝及铝合金的电极,也可应用于镀层钢板的点焊,但性能不如2类合金。1类合金还常用于制造不受力或低应力的导电部件。 2类——具有较高的电导率、硬度高于1类合金。这类合金可以通过冷作变形和热处理相结合的方法达到其性能要求。与1类合金相比,它具有较高的力学性能,适中的电导率,在中等程度的压力下,有较强的抗变形能力,因此是通用的电极材料,广泛地用于点焊低碳钢、低合金钢、不锈钢、高温合金、电导率低的铜合金,以及镀层钢等。2类合金还适用于制造轴、夹钳、台板、电极夹头、机臂等电阻焊机中各种导电部件。 3类——电导率低于1、2类合金,硬度高于2类合金。这类合金可以通过热处理或冷作变形和热处理相结合的方法达到其性能要求。这类合金具有更高的力学性能和耐磨性能,软化温度高,但电导率较低。因此适用于点焊电阻率高和高温强度高的零件,如不锈钢、高温合金等。这类合金也适于制造各种受力的导电构件。 附:电极材料的成分和性能

超级电容器材料综述

超级电容器是一种新型的储能装置,具备充放电快、效率高、稳定性好等优点,是一种清洁的绿色能源,是21 世纪的新型绿色能源。超级电容器有很大的市场潜力。通过对超级电容器电极材料进行研究,发现多孔碳材料作为超级电容器电极材料的电化学性能的影响。 目前,用于超级电容器的电极材料主要是碳材料,市场上主要是活性炭材料,因为活性炭的成本较低,且活性炭具有很高的比表面积,这是超级电容器电极材料所必须具备的特点。但是,活性炭的导电性一般,微观结构主要以微孔形式存在,因此在电解液中会有很大的电阻,电解液浸透电极的过程会比较慢,在存储和传输电荷的时候也会比较慢,但是它的成本低,基本可以满足市场的要求,因此被作为市场上电容器的主要材料,其它的碳材料有比活性炭更优越的性能,但是成本较高,所以没有被用作商业化。因此,寻找性能好,成本低的电极材料是当前超级电容器领域的主要研究方向,从而制备出性能优越,成本低,能够广泛应用于市场的超级电容器,具有重大意义。 目前用于研究超级电容器电极材料的碳材料主要有活性炭、炭气凝胶、碳纳米管、玻璃碳、石墨烯、碳纤维以及碳/碳复合材料。碳材料原料低廉,表面积大,适合大规模生产。但是单纯不加修饰碳电极材料没有很高的比电容,还需要对其进行改性等研究。 1、活性炭材料 对于活性炭材料,不同的处理方法,会得到不同比表面积的活性炭,一般表面积可以高达1000~3000m2/g,而且具有不同的空隙,孔径范围宽,生产工艺简单,成本低廉,可以从沥青、植

物硬壳、石油焦、橡胶等各种原材料中得来。是一种已经商品化的超级电容器电极材料。活性炭材料的活化方法多种多样,可以分为物理活化和化学活化两种。 2、炭气凝胶电极材料 炭气凝胶是一种交联结构的网状的碳材料有多孔性,导电性好,表面积大,孔隙率高,孔径分布广,是唯一可以导电的气凝胶,电导率高。密度跨度大,孔隙率好,而且质量较轻,属于非晶态的纳米碳材料,同时,在制备的时候,可以通过调节工艺参数控制其孔径分布和微粒尺度。 3、碳纳米管 碳纳米管这是一种有类似石墨的六边形组成的碳材料,微观上看两端封闭的多层的管子,直径有几十纳米,层间距要比石墨层间距稍大。从超级电容器对电极材料的要求上看,碳纳米管材料是非常适合用来做电极材料的,因为碳纳米管的结构是空管的形状,表面积大,尤其是壁很薄的碳纳米管,比表面积更大,非常有利于双电层电容的储备。碳纳米管要是制成电极时,还会具备特殊的孔,这些孔是由微观状态下,碳纳米管互相缠绕,好似网状结构,管与管之间就形成了孔洞的结构,孔与孔之间都是互相连通的,没有堵死的情况,这在用作电极的时候,对于电解液的流通的很重要的。而且这种由管径互相缠绕得到的孔不会太小,一般都是属中孔,这会使电极的内阻很低,这些都是超级电容器电极所需要具备的。目前对碳纳米管作为超级电容器电极材料的研究主要集中在将它直接用于超级电容器上,或者将

常见焊接电极的材料及特性

电极材料介绍: 电极是电阻焊机的易耗零件。电阻焊中电极的工作条件比较恶劣。制造电极的材料除了应有较好的导电和导热性能外,还应能承受高温和高压。目前最常用的电阻焊电极材料是铜及铜合金,在特殊焊接场合,也可采用钨、钼及氧化铝等耐高温的材料作为电极。在电阻焊中,电极材料和电极形状的不同选择直接会影响到焊接质量、生产成本和劳动生产率。铬锆铜(CuCrZr) 铬锆铜(CuCrZr)是最常用的电阻焊电极材料,这是由它本身优良的化学物理特性及很好的性价比所决定的。 1) 铬锆铜电极它达到焊接电极四项性能指标很好的平衡: 优良的导电性----------保证焊接回路的阻抗最小,获到优良的焊接质量 高温机械性能----------较高的软化温度保证焊接高温环境下电极材料的性能及寿命 耐 磨----------电极不易磨损,延长寿命,降低成本 较高的硬度和强度----保证电极头在一定的压力下工作不易变形压溃,保证焊接质量 2) 电极是一种工业生产的消耗品,用量比较大,因而其价格成本也是一个考虑的重要因素,铬锆铜电极相对其优良的性能来说,价格比较便宜,能满足生产的需要。 3) 铬锆铜电极适用于碳钢板、不锈钢板、镀层板等零件的点焊与凸焊,铬锆铜材料适合于制造电极帽、电极连杆、电极头、电极握杆、凸焊特殊电极、滚焊轮、导电嘴等电极零件。 铍铜(BeCu) 铍铜(BeCu)电极材料与铬锆铜相比,具有更高的硬度(达HRB95~104)、强度(达 800Mpa/N/mm2)及软化温度(达650℃),但其导电率要低得多,较差。 铍铜(BeCu)电极材料适用于焊接承受压力较大的板材零件,以及较硬的材料,如焊缝焊接用的滚焊轮;也用于一些强度要求较高的电极配件如曲柄电极连杆,机器人用的转换器;同时它具有良好的弹性和导热性,很适合制造螺柱焊夹头。 铍铜(BeCu)电极造价较高,我们通常将其列为特殊的电极材料. 氧化铝铜(CuAl2O3) 氧化铝铜(CuAl2O3)也叫弥散强化铜,它与铬锆铜相比, 具有更高强度(达 600Mpa/N/mm2),出色的高温机械性(软化温度达900℃)及良好的导电性(导电率80~85 IACS%),具有出色的耐磨性,寿命长。 氧化铝铜(CuAl2O3)是一种性能优异的电极材料,无论其强度、软化温度还是导电性都非常优越,尤其突出的是用来焊接镀锌板,它不会象铬锆铜电极那样产生电极与工件粘住的现象,不用经常打磨,有效解决焊接镀锌板的问题,提高了效率,降低了生产成本。 氧化铝铜电极具有优良的焊接性能,但其目前造价十分昂贵,因而目前使用还不能普遍使用,但对镀锌板优异的焊接性能及镀锌板的普遍使用,使得其市场前景广阔。 氧化铝铜电极适用于镀锌钢板、铝制品、碳钢板、不锈钢板等零件焊接. 钨(W)、钼(Mo) 钨电极(Tungsten) 钨电极材料有纯钨、钨基高比重合金及钨铜合金,钨基高比重合金是钨中加入少量的镍铁或镍铜烧结而成,钨铜复合材料(Tungsten-Copper)含有10-40% (重量比)的铜. 钼电极(Molybdenum) 钨、钼电极具有硬度高、熔点高、高温工作性能优越等特点,适合与焊接有色金属铜、铝、镍等,如开关的铜编织带与金属片的焊接。

电极材料的耐腐蚀性能

1电极材料的耐腐蚀性能 (1)含钼不锈钢:(316L,00Cr17Ni14Mo2)对于硝酸,室温下<5%硫酸,沸腾的磷酸,蚁酸,碱溶液,在一定压力下的亚硫酸,海水,醋酸等介质,有较强的耐腐蚀性,可广泛用于石油化工,尿素,维尼纶等工业.海水,盐水,弱酸,弱碱; (2)哈氏合金B:对沸点以下一切浓度的盐酸有良好的耐(HB)腐蚀性,也耐硫酸,磷酸,氢氟酸,有机酸等非氧化性酸,碱,非氧化盐液的腐蚀; (3)哈氏合金C:能耐环境的氧化性酸,如硝酸,混酸或铬(HC)酸与硫酸的混合物的腐蚀,也耐氧化性的盐类,如Fe+++,Cu++ak 或含其他氧化剂的腐蚀.如高于常温的次氩酸盐溶液,海水的腐蚀; (4)钛(Ti):能耐海水,各种氯化物和次氯化盐,氧化性酸(包括发烟,硝酸),有机酸,碱等的腐蚀.不耐较纯的还原性酸(如硫酸,盐酸)的腐蚀,但如果酸中含有氟化剂时,则腐蚀大为降低; (5)钽(Ta):具有优良的耐腐蚀性,和玻璃很相似.除了氢氟酸,发烟硫酸,碱外,几乎能耐一切化学介质腐蚀.根据被测介质的种类与温度,来选定衬里的材质。 2衬里材料主要性能适用范围 (1)氯丁橡胶耐磨性好,有极好的弹性,<80℃、一般水、污水,Neoprene高扯断力,耐一般低浓度酸、泥浆、矿浆。

3碱盐介质的腐蚀 聚氨酯橡胶有极好的耐磨性能,耐酸碱<60℃、中性强磨损的Polyurethane性能略差。矿浆、煤浆、泥浆。 4聚四氟乙烯 (1)它是化学性能最稳定的一种,<180℃、浓酸、碱 (2)PTFE材料,能耐沸腾的盐酸、硫等强腐蚀性介质,酸、硝 酸和王水,浓碱和各卫生类介质、高温种有机溶剂,不耐三氟化氯 二氟化氧。 5聚全氟乙丙烯F46 化学稳定性、电绝缘性、润滑性、<180℃盐酸、硫,不粘性和不燃性与PTFE相仿,酸、王水和强氧化。F46材料强度、耐老化性、耐温性剂等,卫生类介质。能和低温柔韧性优于PTFE。与金属粘接性能好,耐磨性好于PTFE,具有交好的抗撕裂性能。 6电极材质的选择 电极材质的选择应根据被测介质的腐蚀性、磨耗性,由用户选定,对一般介质,可查有关腐蚀手册,选定电极材质;对混酸等成分介质,应做挂片试验。

超级电容器电极材料综述

超级电容器电极材料综述 原创:jqzhu 本文对超级电容器的背景,电极材料的储能原理、性能评价和电容器的制备方法,以及国内外报道的超级电容器电极材料做了详细的归纳和总结。可作为超级电容器研究的入门资料。原创作品,学术不端检索比例小于3%,可以作为本科,硕士,博士论文中第一章文献综述的重要参考资料。(全文5万余字,参考文献齐全)。值得拥有。 目 录 超级电容器综述 (2) 1.1 引言 (2) 1.2 电化学电容器的理论基础与应用 (4) 1.2.1 电双电层电容器和法拉第赝电容器 (4) 1.2.2比电容,电压,功率和能量密度 (7) 1.2.3电解液 (10) 1.2.4电化学电容器的制备 (13) 1.2.5 电极材料的评价方法 (15) 1.2. 6 电化学电容器的优点、挑战以及应用 (18) 1.3电极材料 (25) 1.3.1 碳材料 (27) 1.3.2 导电聚合物(CPs) (30)

1.3.3 非贵金属氧化物/氢氧化物 (36) 1.3.4 贵金属氧化钌电极材料 (52) 1.4 多元活性氧化物材料的结构特点及制备技术 (65) 1.4.1 多元氧化物的结构和性能特点 (65) 1.4.2 多元氧化物的制备技术 (67) 参考文献 (71)

超级电容器综述 1.1 引言 随着经济和科学技术的发展,人类对能源的需求逐年递增,导致不可再生的石化能源储量逐年减少,而排放的有害气体,温室气体却与日俱增,环境污染日趋严重。因此,当前世界各国都在致力于开发清洁、高效的可再生能源,以及能源储存和转换的新技术和新设备。 在大多数应用领域,最为有效的和实用的能量储存与转换的技术包括蓄电池、燃料电池、以及电化学超级电容器(ES)。最近的十几年里,由于具有高功率密度、长循环寿命等性能优点,超级电容器越来越受到广泛的重视。超级电容器的性能介于传统介电容器(超高功率/低能量密度)和蓄电池/燃料电池(高能量密度/低功率密度)之间,刚好填补它们的性能间隙[1, 2],因此有着广泛的应用的前景。 最早的电化学电容专利申请于1957年。然而,直到20世纪90年代,电化学电容器才真正进入人们的视野,逐渐受到少数行业的重视,例如混合电动交通工具开发领域[3, 4]。此时电化学电容器的作用是提升电池/燃料电池的性能,在汽车启动、加速或刹车瞬间提供充足的动力[5, 6]。在随后发展过程中,人们才逐渐意识到,电化学电容器还有一个非常重要的作用,即作为电池和燃料电池的能量补充,在电池或燃料电池出现瞬间断电时提供备用电能[7]。鉴于此,美国能源总署认定在未来能源储存系统中电化学电容器和电池/燃料

超级电容器电极材料综述

超级电容器电极材料 超级电容器,作为当下储能研究的一大热点,普遍具有以下优势: 1、快速的充放电特性 2、很高的功率密度 3、优良的循环特性 然而,它的不足完全制约了它的实际应用——能量密度很低。目前,商用的超级电容器可以提供10WhKg-1,而相比之下,锂离子电池的能力密度高达18010WhKg-1。因此,如何能提高超级电容器的能量密度,称为眼下超级电容器研究领域亟待解决的首要问题。学术圈致力于通过开发新的电极材料、电解质、独创的器件设计方案等方法,来实现这一问题的突破。 想要通过更好的电极材料(同时需要价格低廉,环境友好)来实现在超级电容器性能上的重大的进展,需要对电荷储存机理,离子电子的传输路径,电化学活性位点有全面、深远的认识。由此,纳米材料因为其可控的离子扩散距离、电化学活性位点数量的扩大等特点成为研究热门。 根据储能机理的不同,超级电容器可以分为:双电层电容器EDLC,赝电容。EDLC通过物理方法储存电荷——在电解质、电极材料界面上发生可逆的离子吸附。而赝电容通过化学方法储存电荷——在电极表面(几纳米深)发生氧化还原反应。通常,EDLC的电极材料为碳材料,包括活性炭,碳纳米管,石墨烯等。然而赝电容的电极材料包括:金属氧化物(RuO2, MnO2, CoOx, NiO,Fe2O3),导电高分子(PPy,

PANI,Pedot)。 设计一款高性能的超级电容的标准是: 1、很高的比容量 (单位质量的比容量,单位体积的比容量,或者是活性物质的面积) 2、很高的倍率性能 在高的扫速下200mV/s或电流密度下,容量的保持率。 3、很长的循环寿命 另外,活性材料的价格与毒性也需要计入考量。 为了制备高容量的电极材料,上述因素需要进一步讨论。 1、表面积:因为电荷是储存在电容器电极的表面,具有更高表面积的电极可以提高比容量。纳米结构的电极可以很好的提高电极的表面积。 2、电子和离子的导电性:因为比容量、倍率性能是由电子、离子的导电性共同决定,高的离子、电子电导将会很好的维持CV曲线中的矩形图线,以及GCD中充放电曲线的对称性。 同时,这也将减少充电电流增大后的比容量损失。 典型的增加电子电导的方法有: (1)Binder-free electrode design 不实用粘结剂 (2)纳米结构集流体设计——这可以为电子传输的提供高效途径 增加离子电导的方法:

石墨电极材料特性

本文精辟地介绍了石墨电极材料特性和加工特点,并以挂机面板注射模定模芯石墨电极为例详细阐述了普通石墨电极的加工方法和编程要点,通过采用石墨电极取代铜电极进行模具制造,大大缩短了模具的制造周期,提高了劳动生产效率,降低了模具的制造成本。 近年来随着精密模具及高效模具(模具周期越来越短)的推出,人们对模具制作的要求越来越高,由于铜电极自身种种条件的限制,已越来越不能满足模具行业的发展要求。石墨作为EDM电极材料,以其高切削性、重量轻、成形快、膨胀率极小、损耗小、修整容易等优点,在模具行业已得到广泛应用,代替铜电极已成为必然。 一、石墨电极材料特性 1. CNC加工速度快、切削性高、修整容易 石墨机加工速度快,为铜电极的3~5倍,精加工速度尤其突出,且其强度很高,对于超高(50~90mm)、超薄(0.2~0.5mm)的电极,加工时不易变形。而且在很多时候,产品都需要有很好的纹面效果,这就要求在做电极时尽量做成整体公电极,而整体公电极制作时存在种种隐性清角,由于石墨的易修整的特性,使得这一难题很容易得到解决,并且大大减少了电极的数量,而铜电极却无法做到。 2. 快速EDM成形、热膨胀小、损耗低 由于石墨的导电性比铜好,所以它的放电速度比铜快,为铜的3~5倍。且其放电时能承受住较大电流,电火花粗加工时更为有利。同时,同等体积下,石墨重量为铜的1/5倍,大大减轻EDM的负荷。对于制作大型的电极、整体公电极极具优势。石墨的升华温度为4200℃,为铜的 3~4倍(铜的升华温度为1100℃)。在高温下,变形极小(同等电气条件下为铜的1/3~1/5),不软化。可以高效、低耗地将放电能量传送到工件上。由于石墨在高温下强度反而增强,能有效地降低放电损耗(石墨损耗为铜的1/4),保证了加工质量。 3. 重量轻、成本低 一套模具的制作成本中,电极的CNC机加工时间、EDM时间、电极损耗等占总体成本的绝大部分,而这些都是由电极材料本身所决定。石墨与铜相比,石墨的机加工速度和EDM速度都是铜的3~5倍。同时,磨损极小的特性与整体公石墨电极的制作,都能减少电极的数量,也就减少了电极的耗材与机加工时间。所有这些,都可大大降低模具的制作成本。 二、石墨电极机电加工要求与特点 1. 电极的制作 专业的石墨电极制作主要采用高速机床来加工,机床稳定性要好,三轴运动要均匀稳定不振动,而且像主轴这些回转精度也要尽可能的好。对一般的机床也可以完成电极的加工,只是编写刀路的工艺与铜电极有所不同。 2. EDM放电加工

超级电容器材料综述

目前,用于超级电容器的电极材料主要是碳材料,市场上主要是活性炭材料,因为活性炭的成本较低,且活性炭具有很高的比表面积,这是超级电容器电极材料所必须具备的特点。但是,活性炭的导电性一般,微观结构主要以微孔形式存在,因此在电解液中会有很大的电阻,电解液浸透电极的过程会比较慢,在存储和传输电荷的时候也会比较慢,但是它的成本低,基本可以满足市场的要求,因此被作为市场上电容器的主要材料,其它的碳材料有比活性炭更优越的性能,但是成本较高,所以没有被用作商业化。因此,寻找性能好,成本低的电极材料是当前超级电容器领域的主要研究方向,从而制备出性能优越,成本低,能够广泛应用于市场的超级电容器,具有重大意义。 目前用于研究超级电容器电极材料的碳材料主要有活性炭、炭气凝胶、碳纳米管、玻璃碳、石墨烯、碳纤维以及碳/碳复合材料。碳材料原料低廉,表面积大,适合大规模生产。但是单纯不加修饰碳电极材料没有很高的比电容,还需要对其进行改性等研究。 1、活性炭材料 对于活性炭材料,不同的处理方法,会得到不同比表面积的活性炭,一般表面积可以高达 1000~3000m2/g,而且具有不同的空隙,孔径范围宽,生产工艺简单,成本低廉,可以从沥青、植物硬壳、石油焦、橡胶等各种原材料中得来。是一种已经商品化的超级电容器电极材料。活性炭材料的活化方法多种多样,可以分为物理活化和化学活化两种。 2、炭气凝胶电极材料

炭气凝胶是一种交联结构的网状的碳材料有多孔性,导电性好,表面积大,孔隙率高,孔径分布广,是唯一可以导电的气凝胶,电导率高。密度跨度大,孔隙率好,而且质量较轻,属于非晶态的纳米碳材料,同时,在制备的时候,可以通过调节工艺参数控制其孔径分布和微粒尺度。 3、碳纳米管 碳纳米管这是一种有类似石墨的六边形组成的碳材料,微观上看两端封闭的多层的管子,直径有几十纳米,层间距要比石墨层间距稍大。从超级电容器对电极材料的要求上看,碳纳米管材料是非常适合用来做电极材料的,因为碳纳米管的结构是空管的形状,表面积大,尤其是壁很薄的碳纳米管,比表面积更大,非常有利于双电层电容的储备。碳纳米管要是制成电极时,还会具备特殊的孔,这些孔是由微观状态下,碳纳米管互相缠绕,好似网状结构,管与管之间就形成了孔洞的结构,孔与孔之间都是互相连通的,没有堵死的情况,这在用作电极的时候,对于电解液的流通的很重要的。而且这种由管径互相缠绕得到的孔不会太小,一般都是属中孔,这会使电极的内阻很低,这些都是超级电容器电极所需要具备的。目前对碳纳米管作为超级电容器电极材料的研究主要集中在将它直接用于超级电容器上,或者将碳纳米管和别的材料复合用作超级电容器。 4、活性炭纤维 活性炭纤维是一种环保材料,具有比活性炭更加优越的吸附性能,由它得到的高表面积的活性炭纤维布已经成功用于商业化的电极

电极材料的耐腐蚀性能

电极材料的耐腐蚀性能 电极材料耐腐蚀性能 含钼不锈钢: (316L)对于硝酸,室温下<5%硫酸,沸 (00Cr17Ni14Mo2) 腾的磷酸,蚁酸,碱溶液,在一定压力下的亚硫酸,海水,醋酸等介质,有较强的耐腐蚀性,可广泛用于石油化工,尿素,维尼纶等工业.海水,盐水,弱酸,弱碱; 哈氏合金B:对沸点以下一切浓度的盐酸有良好的耐 (HB)腐蚀性,也耐硫酸,磷酸,氢氟酸,有机 酸等非氧化性酸,碱,非氧化盐液的腐蚀; 哈氏合金C:能耐环境的氧化性酸,如硝酸,混酸或铬 (HC)酸与硫酸的混合物的腐蚀,也耐氧化性的盐类, 如Fe+++,Cu++ak或含其他氧化剂的腐蚀.如高于常温的 次氩酸盐溶液,海水的腐蚀; 钛(Ti):能耐海水,各种氯化物和次氯化盐,氧化 性酸(包括发烟,硝酸),有机酸,碱等的腐蚀. 不耐较纯的还原性酸(如硫酸,盐酸)的腐蚀, 但如果酸中含有氟化剂时,则腐蚀大为降低; 钽(T a):具有优良的耐腐蚀性,和玻璃很相似.除了氢氟酸, 发烟硫酸,碱外,几乎能耐一切化学介质腐蚀. 根据被测介质的种类与温度,来选定衬里的材质。 衬里材料主要性能适用范围 氯丁橡胶耐磨性好,有极好的弹性,〈80℃、一般水、污水 Neoprene 高扯断力,耐一般低浓度酸、泥浆、矿浆。 碱盐介质的腐蚀。

聚氨酯橡胶有极好的耐磨性能,耐酸碱〈60℃、中性强磨损的 Polyurethane 性能略差。矿浆、煤浆、泥浆。 聚四氟乙烯它是化学性能最稳定的一种〈180℃、浓酸、碱 PTFE 材料,能耐沸腾的盐酸、硫等强腐蚀性介质, 酸、硝酸和王水,浓碱和各卫生类介质、高温种有机溶剂,不耐三氟化氯二氟化氧。 F46 化学稳定性、电绝缘性、润滑性、〈180℃盐酸、硫 不粘性和不燃性与PTFE相仿,酸、王水和强氧化 F46材料强度、耐老化性、耐温性剂等,卫生类介质。 能和低温柔韧性优于PTFE。与金 属粘接性能好,耐磨性好于PTFE, 具有交好的抗撕裂性能。 五、电极材质的选择 电极材质的选择应根据被测介质的腐蚀性、磨耗性,由用户选定,对一般介质,可查有关腐蚀手册,选定电极材质;对混酸等成分介质,应做挂片试验。 材质耐腐蚀性能 316L 对于硝酸、室温下〈5%的硫酸,沸腾的硝酸、碱 溶液;在一定压力下的亚硝酸、海水、醋酸等介质

超级电容器材料综述

超级电容器材料综述 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

超级电容器是一种新型的储能装置,具备充放电快、效率高、稳定性好等优点,是一种清洁的绿色能源,是21 世纪的新型绿色能源。超级电容器有很大的市场潜力。通过对超级电容器电极材料进行研究,发现多孔碳材料作为超级电容器电极材料的电化学性能的影响。 目前,用于超级电容器的电极材料主要是碳材料,市场上主要是活性炭材料,因为活性炭的成本较低,且活性炭具有很高的比表面积,这是超级电容器电极材料所必须具备的特点。但是,活性炭的导电性一般,微观结构主要以微孔形式存在,因此在电解液中会有很大的电阻,电解液浸透电极的过程会比较慢,在存储和传输电荷的时候也会比较慢,但是它的成本低,基本可以满足市场的要求,因此被作为市场上电容器的主要材料,其它的碳材料有比活性炭更优越的性能,但是成本较高,所以没有被用作商业化。因此,寻找性能好,成本低的电极材料是当前超级电容器领域的主要研究方向,从而制备出性能优越,成本低,能够广泛应用于市场的超级电容器,具有重大意义。 目前用于研究超级电容器电极材料的碳材料主要有活性炭、炭气凝胶、碳纳米管、玻璃碳、石墨烯、碳纤维以及碳/碳复合材料。碳材料原料低廉,表面积大,适合大规模生产。但是单纯不加修饰碳电极材料没有很高的比电容,还需要对其进行改性等研究。 1、活性炭材料 对于活性炭材料,不同的处理方法,会得到不同比表面积的活性炭,一般表面积可以高达1000~3000m2/g,而且具有不同的空隙,孔径范围宽,生产工艺简单,成本低廉,可以从沥青、植物硬壳、石油

电极丝简介

电火花加工作为一种特种精密加工技术,近年来得到了迅速的发展。特别是慢走丝线切割加工,已经成为模具制造和金属加工行业必不可少的加工手段。线切割技术的发展,离不开电极丝技术的同步发展。因为线切割机的切割效率和切割质量与电极丝的性能紧密相关,而电极丝技术的突破往往会导致线切割机设计的革新。从1979年镀锌电极丝的发明到今天,市场上不断出现了各种各样比普通黄铜丝性能更好的电极丝,电极丝的正确选用已经成为使线切割机的性能得到最大限度的发挥并为用户创造更多利润的关键。 现在,在欧美和日本等发达国家,以镀锌电极丝为主的高性能电极丝正在逐渐取代放电性能受到很大局限的黄铜丝。同时,除了早已将镀锌电极丝作为标准配置的线切割机制造商Agie和Charmilles外,现在Mitsubishi和Sodick公司也在最新的机型上增加了采用镀锌丝的模式和加工参数,使这些设备的切割速度较之采用黄铜丝有30%~50%的显著提升。 但是在国内,前几年由于欧洲进口的镀锌电极丝价格较高,不仅几乎所有的日本、台湾和国产慢走丝机的用户都只用黄铜丝,一些本来使用镀锌电极丝的Agie机和Charmilles机用户,也改用了"便宜"的黄铜丝,造成了相当多的用户以为"电极丝就是黄铜丝"这一行业内的误区。有不少国内的用户在引进最新高性能的线切割机的同时,忽视了电极丝的重要性,以为它只不过是一种普通的消耗品。不管什么机型或加工要求,黄铜丝都以其低廉的价格似乎成了唯一的选择。从2002年起,来自韩国的性价比较好的镀锌电极丝在广东地区为不少用户所采用,取得了明显的效益,至2003年行业内越来越多的用户开始关注镀锌电极丝的应用,"不同的加工,采用不同的电极丝"这一概念开始为精明的线切割用户所接受。实际上现在的线切割加工有着比过去更多的变化,从加工材料、切割速度、轮廓精度、表面质量到工厂的运行模式等等。对于这些相互起作用的变数来说,只有选择合适的电极丝才能使工厂对加工效率、加工成本和加工质量整体进行优化。 一、电极丝的性能 高性能的电极丝必须是各种有用特性的有机组合,那么电极丝有哪些有用的特性呢? 1、电气特性 现代线切割电源对电极丝提出了严格的要求。它要能承受峰值超过700安培或平均值超过45安培的大切割电流,而且能量的传输必须非常有效,才能提供为达到高表面光洁度(0.2Ra以上)所需的高频脉冲电流。这取决于电极丝的电阻或电导率。紫铜是电导率最高的材料之一,它被用来作为衡量其他材料的基准。紫铜的电导率标为100%IACS(国际退火紫铜标准),而黄铜的电导率为20%。 2、机械特性 拉伸强度:

关于超级电容器电极材料性能测试常用的三种电化学手段

循环伏安cyclic voltammetry (CV) 由CV曲线,可以直观的知道大致一下三个方面的信息 ? Voltage window(水系电解液的电位窗口大致在1V左右,有机电解液的电位窗口会在2.5V 左右)关于很多虫虫问,电位窗口应该从具体的哪个电位到哪个电位,这个应该和你的参比电极和测试体系有关。工作站所测试的电位都应该是相对于参比电极的,所以不要纠结于为什么别人的是0-1V,而你测试的是-0.5-0.5V,这个与参比电极的本身电位(相对于氢标的电位)以及测试的体系本身有很大关系。 ?Speci fic capacitance (比电容,这个是超级电容器重要的参数之一,可以利用三种测试手段来计算,我一般都是利用恒电流充放电曲线来计算) ?Cycle life (超级电容器电极材料好坏的另一个比较重要的参数,因为一个很棒的电极材料应该是要做到既要有比较高的比电容又要有比较好的循环稳定性) 测试的时候比较重要的测试参数:扫描速度和电位扫描范围。电位的扫描范围,一般会在一个比较宽的范围扫描一次然后选择电容性能还比较好的区间再进行线性扫描,扫描速度会影响比电容,相同的电极材料相同测试体系扫速越大计算出的比电容会越小。 恒电流充放电galvanostatic charge–discharge (GCD) 由GCD测试曲线,一般可以得到以下几方面的信息: ?the change of specific capacitance(比电容的变化可以从有限多次的恒电流充放电中体现,直观的就是每次充放电曲线的放电时间的变化) ?degree of reversibility(由充放电曲线的对称也可以中看出电极材料充放电的可逆性) ?Cycle life(循环寿命,换句话也就是随着充放电次数的增多,电极材料比电容的保持率)恒电流充放电测试过程中比较重要的测试参数有电流密度,还有充放电反转的电位值。电流密度可以设置为电流/电极面积,也可以设置为电流/活性物质质量。我在测试的过程中一般依据活性物质的质量设置为XXmA/mg。充放电反转的电位值可以依据循环伏安的电位窗口,可以设置为该区间或者小于该区间。 交流阻抗electrochemical impedance spectroscopy (EIS) 由交流阻抗曲线可以看出体系随着频率改变的变化趋势,得出测试体系某个状态下的包括溶液电阻、扩散阻抗的情况,可以通过测试交流阻抗对测试的未知体系进行电化学元件模拟。关于交流阻抗,谈谈频率和体系元件的响应关系,总的来说,交流阻抗之所以能得到诸多信息,关键在于不同器件本身对于频率的相应不同。Nyquist图中最先响应的总是纯电阻,然后是电容和电化学反应,最后是扩散过程。纯电阻,在电场建立的同时即可响应。交流阻抗的测试过程中会出现两个图:Nyquist图和Bode图,Nyquist图反应的是随着频率的变化虚轴的阻抗值和实轴的阻抗值的变化,Bode图反应的是阻抗的模值随着频率的变化以及相位角随频率的变化。 交流阻抗测试过程中比较重要的设置参数有:交流幅值以及频率范围。交流幅值对于超级电容器一般会选择5mV,频率一般会选择100kHz-10mHz,当然也会有不同体系不同对待,很多文献中会选择测试到0.1Hz就停止了,这样来说根本没有测试低频区体系真正的性能测试就已经停止了。真正反映测试体系的电容性能,漏电性的低频区的直线很重要。当然如果测

相关文档
相关文档 最新文档