文档库 最新最全的文档下载
当前位置:文档库 › 基于分裂变压器的大型海上风电场电气主接线应用研究

基于分裂变压器的大型海上风电场电气主接线应用研究

基于分裂变压器的大型海上风电场电气主接线应用研究
基于分裂变压器的大型海上风电场电气主接线应用研究

海上风力发电发展现状解读

海上风电发展 大纲: 一、国外海上风电发展现状及各国远景规划 二、海上风电的特点与面临的困难 三、海上风电发展的关键技术 四、国外海上风电发展现状及各国远景规划 目前已进入运营阶段的海上风电场均位于西北欧,西班牙和日本也建立了各自的首个试验性海上风电场。截至2006年6月,全球共建立了24个海上风电场,累计安装了了402台海上风机,总容量805MW,年发电量约2,800,000,000千瓦时。 西北欧地区的海上风电场布局如下图所示,红色标志由兆瓦级风机构成的运营风电场,紫红色标志由小容量风机构成的运营风电场,而灰色则标志已完成规划的在建风电场。 图1 西北欧海上风电场 已投入运营的大规模海上风电场大多集中在丹麦和英国。其中丹麦海上风电总装机容量达426.8MW,其次是英国339MW,共计现有海上风电装机容量的95%。而德国早在2004年就在北海的Emden树立了首台Enercon的4.5MW风机,西班牙也于今年在其北部港市毕尔巴鄂树立了5台Gamesa 2MW风机。美国已经规划的三个海上风电场Cape Cod,Bluewater Wind,Nai Kun正处于不同阶段的论证与评估阶段,其中Cape Cod风电场将于2009年正式投入运营。 由此可见,各风电大国都不约而同地把注意力集中到海上风电开发的技术研发与运营经验实践中,以图控制海上风电发展的制高点。 根据欧盟的预测,到2020年欧洲的海上风电场总装机容量将从现有的805兆瓦增长到40,000MW。相比之下,过去7年来欧洲海上风电装机容量的年增长率约为35%。欧盟指派的工作组预测欧洲的海上风电潜力约达140,000MW。

中国海上风电行业发展现状分析报告

中国海上风电行业发展现状分析在过去的十年中,风力发电在我国取得了飞速的发展,装机容量从2004年的不到75MW跃升至2015上半年的近125GW,在全国电力总装机中的比重已超过7%,成为仅次于火电、水电的第三大电力来源。 2014 年全球海上风电累计容量达到了8759MW,相比2013 年增长了24.3%。截至2014 年底全球91%(8045MW)的海上风机安装于欧洲的海域,为全球海上风电发展的中心。我国同样具备发展海上风电的基础,目前标杆电价已到位,沿海省份已完成海上风电装机规划,随着行业技术的进步、产业链优化以及开发经验的累积,我国海上风电将逐步破冰,并在“十三五”期间迎来爆发,至2020年30GW的装机目标或将一举突破。 陆上风电的单机容量以1.5MW、2MW类型为主,截止至2014年我国累计装机类型统计中,此两种机型占据了83%的比例。而海上风电的机型则以2.5~5MW为主,更长的叶片与更大的发电机,对于风能的利用率也越高。 2014年中国不同功率风电机组累计装机容量占比

2014年底中国海上风电机组累计装机容量占比 在有效利用小时数上,陆上风电一般为0~2200h,而海上风电要高出20%~30%,达到2500h以上,且随单机规模的加大而提高。更强更稳的风力以及更高的利用小时数,意味着海上风电的单位装机容量电能产出将高于陆上。 我国风电平均利用小时数及弃风率 根据中国气象局的测绘计算,我国近海水深5-50 米围,风能资源技术开发量约为500GW(扣除了航道、渔业等其他用途海域,以及强台风和超强台风经过3 次及以上的海域)。虽然在可开发总量上仅为陆上的1/5,但从可开发/已开发的比例以及单位面积可开发量上看,海上风电的发展潜力更为巨大,年均增速也将更高。

海上风电机组要点总结

海上风电机组要点总结 一、概述: 中国已建和在建的海上风电项目有上海东海大桥10万千瓦项目、江苏如东潮间带15万千瓦示范项目以及2010年国家发改委启动的首轮100万千瓦海上风电招标项目 海上风电的优缺点: 二、基础结构的分类 基础结构类型可分为:桩式基础,导管架式基础,重力式基础,浮动式基础等多种结构形式。

1.1单桩基础 单桩基础由大直径钢管组成,是目前应用最多的风力发电机组基础,该中形式基础是用液压撞锤将一根钢管夯入海床或者钻孔安装在海床形成的基础。其重量一般为150t-400t,主要适用于浅水及 20~25 m 的中等水域、土质条件较好的海上风电场项目。这种基础目前已经广泛地应用于欧洲海上风电场,成为欧洲安装风力发电机的“半标准”方法。 优点:是无需海床准备、安装简便。 缺点:移动困难;并且于直径较大需要特殊的打桩船进行海上作业,如果安装地点的海床是岩石,还要增加钻洞的费用。 1.2多桩基础 多桩基础的概念源于海上油气开发,基础由多个桩基打入地基土内,桩基可以打成倾斜

或者竖直,用以抵抗波浪、水流力。 中间以灌浆或成型方式(上部承台/三脚架/四脚架/导管架)连接塔架适用于中等水深到深水区域风场。 优点:适用于各种地质条件、水深,重量较轻,建造和施工方便,无需做任何海床准备; 缺点:建造成本高,安装需要专用设备,施工安装费用较高,达到工作年限后很难移动。 应用情况:2007 年英国Beat rice示范海上风电场,两台5MW的风机均采用的四桩靴式导管架作为基础,作业水深达到了45m,是目前海上风机固定式基础中水深最大的;我国上海东大桥海上风场采用的是多桩混凝土承台型式。 2.三脚桩基础 三脚桩基础采用标准的三腿支撑结构,由中心柱和3根插入海床一定深度的圆柱钢管和斜撑结构组成。钢管桩通过特殊灌浆或桩模与上部结构相连,可以采用垂直或倾斜管套,中心柱提供风机塔架的基本支撑,类似于单桩基础。其重量一般在125~150t左右,适用水深为20~40m。 这种基础由单塔架结构简化演变而来,同时又增强了周围结构的刚度和强度,在海洋油气工业中较为常见。

(非常好)海上风电场经验总结:由ScrobySands、Nysted等建设得到的启发

海上风电场经验总结:由ScrobySands、Nysted等建设得到的启发 作者:张蓓文陆斌发布日期:2008-5-8 18:13:30 (阅270次) 关键词: 风电总结 DS 海上风电场的风速高于陆地风电场的风速,不占用陆地面积,虽然其电网联接成本相对较高,但是海上风 能开发的经济价值和社会价值正得到越来越多的认可,海上风电的发电成本也将越来越低。海上风电场的 建设对于风电行业的进一步发展而言很关键,现已进入到一个重要阶段,进一步发展可以吸引大量项目资 金的进入,其具有震撼力的阵形正在全球范围地受到沿袭[1]。全球海上风力发电场装机容量增长详见图1。欧洲地区的发展目前领先于全球。丹麦于1991年建成第一个海上风力发电场,此后直到2006年末,全球 运行了超过900MW装机容量的海上风电场,几乎所有发电场都在欧洲[2]。 表1.17座离岸1km以外的建成或在建风电场 建设地点始建年 份风电机组数量 (台) 风电机组型号总装机容 量 TunaKnob丹麦1995 10 VestasV39/500kW 5MW Utgrunden瑞典2000 7 EnronWind70/1500kW 10.5MW Middelgrunden丹 麦2001.3 20 Bonus76/2.000MW 40MW HornsRev丹麦2002.12 80 VestasV80/2.000MW 160MW Nysted丹麦2003.11 72 Bonus82,4/2.300MW 165.6MW NorthHoyle英国2003.12 30 VestasV80/2.000MW 60MW KentishFlats英国2005.8 30 VestasV90/3.000MW 90MW Beatrice英国2006.9 2 OWEZ荷兰2006.11 36 VestasV90/3.000MW 108MW 来源:“Off-andNearshoreWindEnergy”,上海科技情报研究所整理 国外海上风力发电场技术正日趋成熟,建成的风电场容量为2.75至165.6MW(详见表1),规划中的风电场容量为4.5至1000MW[3]。而海上风电场产业还处于“做中学”的阶段[5],对于以往的经验教训进行总结对未来产业发展是很有必要的。笔者之前已依据德国专业研究机构公开的 “CaseStudy:Eur opeanOffshoreWindFarms-ASurveyfortheAnalysisoftheExperiencesandLessonsLearntbyDevelope

海上风电场政策及其效果1:概述篇

海上风电场政策及其效果1:概述篇 编者按:European Wind Energy Association (EWEA)2007 年年会于2007年5月召开,本文是对会议中一篇论文 “Offshore wind energy policies and their effects”的编译,通过比较丹麦、英国和荷兰过去和现在的政策,调查政策如何促进海上风电的发展,降低相关方的财务风险和政策不确定性,并讨论了荷兰政策的可能变化。相关方包括开发商、投资方和政府。 基于非化石燃料使能源来源多样性以确保供应安全和为应 对全球变暖减少CO2排放政治原因,可再生能源对于全球各国 家的吸引力日益增强。许多国家已制定了可再生能源的发展目标,但采用可再生能源发电还不具备价格竞争力。为了上述政治原因,各国制定政策以推动可再生能源加速发展,风电是其中一类。虽然在海上建造风电场的成本和风险远较陆上风电场高,但一些 国家陆上风电场建设地点的稀缺性使得海上风电场更具有操作性。 多个政府已开始针对海上风电场制定新的规定和法律。第一个原因原有规定和法律大部分仅适用于陆地而不包括海上。虽然建造海上风电场同石油和天然气开采等海上行动比较类似,但 相应的规定和法律并不适用。大多数国家电力法案覆盖了发电设

备的安装和并网,但没有覆盖陆地边界以外的发电。不同国家制定了不同的政策来管理和推动海上风电的发展。例如在一些国家,海上风电场连接电网被视为国家电网的延伸,因此电力法律随 之延伸。而在其它国家电网被视为发电场所有者的财产和责任。海上风电场建造审批的过程也不同,如英国和丹麦采用招标系统,而荷兰开发商则是在一个很透明的程序中进行申请。第二个原因是为了获得财政支持。同大多数可再生能源一样,海上风电具有低运行成本和高前期投入的特点。如果简单地由市场推动,这项低竞争力但应开发的技术可能会烟消云散。为了解决市场不完整性,政府应该将外部成本内在化或直接补贴支持海上风电。 本文通过比较丹麦、英国和荷兰过去和现在的政策,调查了政策如何促进海上风电的发展,降低相关方的财务风险和政策 不确定性,并讨论了荷兰政策的可能变化。相关方包括开发商、投资方和政府。 用于能源政策对比研究的三个国家(丹麦、英国和荷兰)已开始海上风电场建设,它们制定政府的目标并给予政府补贴。瑞典和爱尔兰同样拥有海上风电场(规模较小,2.5~25M W),但这两 个国家没有专门针对海上风电的政策。比利时也没有制定专门的海上风电政策,但有些项目已经开展。德国宣布未来要实现20000~25000M W发电量,第一个德国海上风电场计划在2008年

海上风电

Nysted海上风电场:项目时间表与前期招标 2007-12-06 21:45 Nysted海上风电场:项目时间表与前期招标 供稿人:张蓓文;陆斌供稿时间:2007-6-15 项目时间表 现简单介绍其项目时间表与前期招标情况。 1998年,丹麦政府同生产商达成协议,实施一个大型海上风力发电示范项目,目的在于调查发展海上风力发电场的经济,技术和环境等问题,并为未来风力发电场选择区域。 1999年,丹麦能源部原则上批准安装,并开始了Horns Rev和Nysted初期调研和设计。 2000年夏天,政府得到风力发电场的环境影响评估,于2001年批准了发电场建造的申请。 海上风力发电场的基座建设起始于2002年7月末,基座的建造和安装根据时间表执行,始于承包公布的2002年3月,2003年夏天全部完成,并做好了接收风力涡轮机的准备。第一台涡轮机于年5月9日起开始安装,2003年7月12日开始运行。最后一台涡轮机于2003年9月12日安装并电网,试运行在2003年11月1日结束。 前期招标 ENERGI E2为项目准备了一份技术上非常详细的招标书,其中评价了ENERGI E2在丹麦东部传统火和电网建造,策划和运行方面的经历,以及来自海上风力发电场Vindeby(11×450 kW Bonus)Middelgrunden(10 of 20 x 2MW Bonus)的经验。 涡轮机的选择:选择涡轮机的重要参数有:96%可用性;雷电保护;塔架低空气湿度(为防止腐采用单个起重机用于安装大型部件;能完全打开机舱;在所有电力设备采用电弧监测的防火措施等最后丹麦制造商Bonus(现为Siemens)获得了生产涡轮机的合同,涡轮机额定容量为2.3MW(是机组的升级版),是2004年Bonus所能生产的最大容量涡轮机。 风机叶片的选择:Bonus为Nysted的2.3MW涡轮机开发了一种特殊的叶片(不含胶接接头,一片成此前,叶片先在2000年1.3MW涡轮机预先检测过,运行一年后被拆卸进行全面观察。此外,Bon 专门成立队伍从生产线随机抽取叶片来检测,检测内容包括20年的寿命测试和叶片的断裂测试。基座的选择:海上风机基座设计需要考虑Nysted风力发电场的工作负载、环境负载、水文地理条地质条件。基座适用性包括涡轮机尺寸、土壤条件、水深、浪高、结冰情况等多个技术要素。水力可用于冲刷保护和起重机驳船安装基座的操作研究。基座面积大约为45000m2,占发电场总面积0.2%。水力模型研究包括各项可能的极端事件,如:波浪扰动的数值模拟和海浪,水流和冰受力算。由于Nysted海底石头较多,单桩式基座不可行,重力式基座较为合适。图1: Nysted 风电用的重力型基座,基座运载和安装的过程要求混凝土基座尽可能轻质。为此,该项目的基座采用带个开孔、单杆、顶部冰锥形的六边形底部结构,底部直径15米,最大高度16.25米,单个基座在中重量低于1300吨,适合海上操作。EIDE V号起重机船从运输码头把基座运载过去。然后,通过孔内添加重物和单杆为基座又增加了500吨重量,这些重量可保持基座的稳定性,防止滑移和倾覆刷保护分为两层结构,包括石头外层和一过滤层,材料由驳船上的液力挖掘机放置。 塔架要求:每个塔架有69米高,比陆上涡轮机的塔架低大约10%,这是由于陆上风切高于海上,只要采用较低的塔架就可获得相同的发电量。

海上风电现状及发展趋势

能源与环境问题已经成为全球可持续发展所面临的主要问题,日益引起国际社会的广泛关注并寻求积极的对策.风能是一种可再生、无污染的绿色能源,是取之不尽、用之不竭的,而且储量十分丰富.据估计,全球可利用的风能总量在53 000 TW·h/年.风能的大规模开发利用,将会有效减少石化能源的使用、减少温室气体排放、保护环境.大力发展风能已经成为各国政府的重要选择[1~6]. - 在风力发电中,当风力发电机与电网并联运行时,要求风电频率和电网频率保持一致,即风电频率保持恒定,因此风力发电系统分为恒速恒频发电机系统(CSCF 系统)和变速恒频发电机系统(VSCF 系统).恒速恒频发电机系统是指在风力发电过程中保持发电机的转速不变从而得到和电网频率一致的恒频电能.恒速恒频系统一般来说比较简单,所采用的发电机主要是同步发电机和鼠笼式感应发电机,前者运行于由电机极数和频率所决定的同步转速,后者则以稍高于同步转速的速度运行.变速恒频发电机系统是指在风力发电过程中发电机的转速可以随风速变化,而通过其他的控制方式来得到和电网频率一致的恒频电能. - 1 恒速恒频发电系统- 目前,单机容量为600~750 kW 的风电机组多采用恒速运行方式,这种机组控制简单,可靠性好,大多采用制造简单,并网容易、励磁功率可直接从电网中获得的笼型异步发电机[7~9]. -恒速风电机组主要有两种类型:定桨距失速型和变桨距风力机.定桨距失速型风力机利用风轮叶片翼型的气动失速特性来限制叶片吸收过大的风能,功率调节由风轮叶片来完成,对发电机的控制要求比较简单.这种风力机的叶片结构复杂,成型工艺难度较大.而变桨距风力机则是通过风轮叶片的变桨距调节机构控制风力机的输出功率.由于采用的是笼型异步发电机,无论是定桨距还是变桨距风力发电机,并网后发电机磁场旋转速度由电网频率所固定,异步发电机转子的转速变化范围很小,转差率一般为3%~5%,属于恒速恒频风力发电机. - 1.1 定桨距失速控制- 定桨距风力发电机组的主要特点是桨叶与轮毂固定连接,当风速变化时,桨叶的迎风角度固定不变.利用桨叶翼型本身的失速特性,在高于额定风速下,气流的功角增大到失速条件,使桨叶的表面产生紊流,效率降低,达到限制功率的目的.采用这种方式的风力发电系统控制调节简单可靠,但为了产生失速效应,导致叶片重,结构复杂,机组的整体效率较低,当风速达到一定值时必须停机. - 1.2 变桨距调节方式- 在目前应用较多的恒速恒频风力发电系统中,一般情况要维持风力机转速的稳定,这在风速处于正常范围之中时可以通过电气控制而保证,而在风速过大时,输出功率继续增大可能导致电气系统和机械系统不能承受,因此需要限制输出功率并保持输出功率恒定.这时就要通过调节叶片的桨距,改变气流对叶片攻角,从而改变风力发电机组获得的空气动力转矩. - 由于变桨距调节型风机在低风速时,可使桨叶保持良好的攻角,比失速调节型风机有更好的能量输出,因此比较适合于平均风速较低的地区安装.变桨距调节的另外一个优点是在风速超速时可以逐步调节桨距角,屏蔽部分风能,避免停机,增加风机发电量.对变桨距调节的一个要求是其对阵风的反应灵敏性. - 1.3 主动失速调节- 主动失速调节方式是前两种功率调节方式的组合,吸取了被动失速和变桨距调节的优点.系统中桨叶设计采用失速特性,系统调节采用变桨距调节,从而优化了机组功率的输出.系统遭受强风达到额定功率后,桨叶节距主动向失速方向调节,将功率调整在额定值以下,限制机组最大功率输出.随着风速的不断变化,桨叶仅需微调即可维持失速状态.另外调节桨叶还可实现气动刹车.这种系统的优点是既有失速特性,又可变桨距调节,提高了机组的运行效率,减弱了机械刹车对传动系统的冲击.系统控制容易,输出功率平稳,执行机构的功率相对较小[8~13]. -恒速恒频风力发电机的主要缺点有以下几点: -

海上风电发展现状分析

海上风电发展现状分析 一、世界海上风电发展现状 1、世界海上风电发展迅猛 [慧聪机械工业网] 2009年海上风电装机容量继续增长。截至2009年底,全球共有12个国家建立了海上风电场,其中10个位于欧洲,中国和日本有小规模的安装。 截至2009年底,世界海上风电累计装机容量达2110MW,较2008年增长48.5%,占到全球风电总装机容量的1.2%。2009年世界海上风电新增装机容量达689MW,同比增幅超过100%,新增装机容量最大的前五个国家分别为英国、丹麦、中国、德国和瑞典。

2、欧洲海上风电发展令世人瞩目 欧洲是海上风电发展最快的地区。根据欧洲风能协会(EWEA)的最新统计,2009年欧洲水域的八个海上风电场总计安装199台海上风力涡轮机并实现了并网,总容量为577MW,较2008年增幅超过50%。其中,最小装机容量为2.3MW(挪威的Hywind),最大装机容量为209MW(Horns Rev 2)。另外,欧盟15个成员国和其他欧洲国家,有超过100GW的海上风力发电项目正在规划中。 在2 0 0 9年装机并网的1 9 9台风机中,西门子风机(2.3MW和3.6MW两种机型)146台,维斯塔斯风机(3MW)37台,WinWind 风机(3MW)10台,Multibrid风机(5MW)6台。除此之外,Repower 风机(5MW)6台,但尚未并网。

3、海上风电机组技术特点 目前,海上风电机组基本上是根据海上风况和运行工况,对陆地机型进行改造,其结构也是由叶片、机舱、塔架和基础组成。海上风电机组的设计强调可靠性,注重提高风机的利用率、降低维修率。当今,海上风电机组呈现大型化的趋势,国外主要风机制造商生产的海上风电机组主要集中在2~5MW,风叶直径在72~126m。

欧洲主要国家海上风电场情况

欧洲主要国家海上风电场情况 发电设备(2006No.5)LDI1-2500 阴, 阳离子交换器故障韵斩殁对策管加套双层网罩. 待买到符合要求的尼龙丝网罩( 原生产厂家或其他同类耐酸碱腐蚀性强, 强度足够的产品)后再完全更换成合格的尼龙丝网罩,同时将橡皮垫片更换为聚四氟乙烯垫片. (3) 将中间排液装置支管固定支架用的螺栓 X17X 2mm改垫片外径加大,厚度增加(由声44 为,/,55 X 21 x 5mm); (4) 将中间排液装置的所有焊缝裂纹打磨后补焊, 并仔细检查其它焊口, 将存在裂纹趋势及可能的母管, 支管焊缝以及法兰结合面等焊口重新 , 以提高其强度. 打磨后加焊 (5) 将离子交换器顶部顶压空气管管道全部 4 结论与建议 (1) 该系列离子交换器的部分阀门可考虑改为调节门, 以进行流量的调整控制. (2) 在反洗或再生时, 应先从中间排液装置或顶部进一定量的水, 淋湿树脂以减少损坏中间排液装置的可能性. (3) 在反洗或再生时应确认顶压空气已进入离子交换器内且压力满足要求后,方可开始反洗和再生工作. (4) 在出现设备故障后, 应详细分析故障原因, 然后将故障消灭在萌芽状态. 杜绝故障的重更换为不锈钢管.. 复发生, 避免大量人力和物力的浪费. 丹麦HomsRev(2002)80x2=160 瑞典 英国 德国

Middelgrund(2001) Tuno(1995) Vindeby(1991) YttreStengrund(2001) Utgrunden(2000) Bockstigen(1998) Norgensund(1990) Drouten(1996) Lely(1994) BlythOffstore(2000) HomsRev(2006)+40---~200MW 最终一416MW 在建7处,规划(2008)建成15处 在建 2 处,Noordzeewind 和Egmond;规划(2010)总容量1500MW 将建成NorthHoyle 和ScrobySands; 在建KentishFlats; 规划15 座总计7000MW (位于利物浦湾,沃什湾和泰晤士河口)(2006)500MW以上 (2010)3oooMW (2030)25000MW为1998年电力装机的15%)(赵旺初供稿) 28 52. m仙:20002加口硏思

中国海上风力发电发展现状以及趋势

中国海上风力发电发展现状以及趋势【摘要】:由于具有资源丰富,对人们的生产生活影响小,以及不占用耕地等优势,近几年,我国的海上风力发电得到越来越多的关注。本文就我国近海风电的行业背景、海上风电市场区域分析、国家政策、社会效益、技术支持、发展瓶颈及建议、以及未来发展趋势等几个方面进行论述。 【关键词】:海上风力发电,发展现状,发展趋势,海上风电技术,社会效益,国家政策 前言: 相对于我国陆地风能,海上风能以其资源丰富,风速稳定,对环境负面影响小,装机容量大,且不占用耕地等优势得到了众多风电开发商的青睐。 经过连续多年的高速增长,我国风电装机容量已居世界第1位。目前我国正在大力推动海上风电发展,将从以陆上风电开发为主向陆上和海上风电全面开发转变,目标是成为海上风电大国。近年来,政府相关部门多次出台技术和管理政策,大力推动我国海上风电开发进程。 1、行业背景: 我国近海风能资源丰富。拥有18,000多公里长的大陆海岸线,可利用海域面积多达300多万平方公里,是世界上海上风能资源最丰富的国家之一。据统计,我国可开发利用的风能资源初步估算约为10亿kW,其中,海上可开发和利用的风能储量约7.5亿kW]。 目前我国已经成功并网发电的海上风电项目有:东海大桥海上风电示范项目,响水潮间带实验项目,龙源如东潮间带风电场项目,华能荣成海上风电项目等。另外有南港海上风电项目,江苏大丰200MW海上风电项目等44个项目拟建或者在建。这意味着我国的海上风电正在高速发展着。 另外,随着海上风能的高速发展,也带动着风能产业链的高速发展。我国现有海上风机供应厂家12家,其中以明阳风能以及金风科技最为卓越,在全球最佳海上风机评选中,分别位列第二和第十,这标志着我国风机制造业已经拥有国际先进水平。 据数据分析,未来的15年内,我国风电设备市场的总利润将高达1400亿至2100亿元。巨大的利润,也必将使得我国海上风机制造业得到更加快速的发展。

海上风电场-并不那么完美

[世界] 海上风电场:并不那么完美 2010年10月19日来源:上海壹周 (2010.10.19 新闻15) 编译/壹周记者李雪清图/IC 能源世界性告急,可再生能源成了传统能源的完美替代品,其中风能的潜力最受关注。然而,当一个个海上风电场割开原本静谧美丽的海岸线,人们发现,环保的项目完美之中或许也有隐患 涌动的海岸不安的生态 北诺福克位于英格兰北部,有英国的“自然遗产海岸”和“法定特殊美景区”。那里分布着一系列国家自然保护区,其中包括一处重要的沼泽地,一个覆盖陆地和海洋的特殊保护区,以及一个欧洲法律下的候补特别保护区。冬天,

天空被成群的粉脚雁遮住光亮,给人类闯入者无比的孤独感,尽管他们同时又身处说不尽名字的物种的围绕中。每年,几千名游客走进沼泽地和广袤的沙滩,其中不少乘船去看海豹。 没人会否认北诺福克独一无二的生态价值。更重要的是,那里拥有丰富的风力和潮汐资源,地平线仿佛永远都在涌动。但现在,这块涌动的地域成了风电开发商的淘金目的地。挪威能源巨头Statoil and Statkraft通过子公司Scira 进驻这条美丽的海岸线。对于电能开发商来说,这里是最理想的工程地址,因为水深不深,沙层的底部很适合把风力发电机的直杆式底座打进去,工程耗资也较小。但对野生动物或自然风景来说,却不一定是最好的。 北诺福克的海岸边,发现了41具海豹的尸体。目前,它们的死因还不明了,海洋管理组织的调查还在进行中。但它们身上有机器造成的螺旋型伤口,尸体出现的时间也和Scira的谢林汉姆海上风电场动工的时间巧合地一致。这个风电场距离海岸仅17公里。谢林汉姆海上风电场并不是对自然遗产海岸侵犯的终结,就在它的西边,英国森特里克集团打算在Docking滩投建一个更大的风电场,其中包括100台涡轮发电机,离岸只有14公里。森特里克在林肯郡的发电场,在临近的郡都能看到。 在英格兰北部的沃什湾,Scira计划投资几十万英镑改进当地社区,他们并不想被看成海豹的威胁。Scira有一个海洋哺乳动物监控团队,打桩前先用声纳检查有没有动物接近施工区域。这里的风电场一旦全力运营,可以为近22万个家庭提供足够的电能,每年可以减少50万吨的碳排放。 诺福克郡的风力发电潜力最早是由英国皇家财产局发现的。公司和财团随即展开了对这些地域的50年租约的追逐,获胜的竞标者可以提交他们的开发企划,并申请开发许可。诺福克郡的各处风电场址至今已经被拍卖了三轮。2001年,10组涡轮机被安装在第一轮拍卖的海上,每组最多有30台涡轮机,现在大多已经安装完毕并在运行中。两年后的第二轮竞拍,10家公司瓜分了15个更大的风力发电场址,其中一些发电机组也已经落成并投入使用,另外一些还在建设或规划中。 今年1月开始的第三轮拍卖让前两轮显得小巫见大巫。九个新场址绵延100英里,其中三个北海场址面积加起来相当于整个威尔士的面积。这些海域上的风力发电机如果全部落成投入使用,将把全球风力发电能力提高15倍。 那么英国有关部门又是如何保证所有这些风力发电场址符合生态环保要求?根据法律,拍卖的每一块海域都必须通过战略环境影响评价。但这项评估的缺点在于,它只能针对人类已知的东西进行评估,而我们对海洋生物的了解并不比宇宙的诞生多多少。海上风电场到底会怎样影响野生动物、鱼类、沿岸风景和旅游业,人们目前还没有清晰全面的认识。 过去,科学家们把过多精力花在了濒危的生物上,对于生生不息的海洋生物,人们反而了解不够。动物保护组织和NGO缺乏在海上搜集数据的志愿者、船只或飞机来收集数据,“政府却一点自己收集信息的意愿都没有。”英国皇家保护鸟类协会的运动部经理安德烈·法勒抱怨道。 鲸类和海豚保护协会很担心海洋哺乳动物的安全。很多物种,尤其鲸类把听觉当成第一感官。海上风电场动工的噪音非常大。如果鱼群被吓跑,它们就会挨饿,噪音大时还会导致受伤。而在人为竖立的障碍物中游弋也会带去新的危险。诺福克郡的海豹尸体或许不是建造风电场的船只所为——海洋中有很多船只都可能是凶手——但谁知道呢?

海上风电施工控制重点

海上风电施工控制重点 (一)自然条件是影响海上风电施工的重要因素 1、分析 海上风电场都是离岸施工,工作场地远离陆地,受海洋环境影响较大,可施工作业时间偏短,因此施工承包商要根据工程区域海洋环境特点,选择施工设备、确定施工窗口期、制定施工工艺和对策,才能更好地完成本工程。 2、控制措施 (1)要求施工承包商必须充分收集现场自然条件资料,包括风、浪、流、潮汐、气温、降雨、雾等的历年统计资料和实测资料; (2)根据统计和实测资料,分析影响施工的自然条件因素; (3)分析统计影响施工作业的时间和可施工的窗口期; (4)根据统计资料和现场施工计划,有针对性的布置现场自然条件观测仪器,以便对自然条件的现场变化进行预测和指导施工安排。 (5)施工承包商必须根据自然条件的可能变化,做出有针对的现场施工应变措施。 (二)质量方面 1、海上测量定位是本工程的重点、难点 (1)分析 在茫茫大海是进行工程建设,测量定位是决定项目成败的关键。海上风电对质量要求很高,例如风机基础施工中单桩结构对桩的垂直度要求很高;导管架结构对桩台位置、桩的垂直度与间距要求很高,不是一般的测量与控制措施能够实现。另外,导管架安装定位精度高,如何通过测量定位手段指导安装导管架难度大,因此海上测量定位是本工程的重点、难点。 (2)控制措施 ①要求施工承包商制定测量施工专项方案;使用高精度测量仪器设备在投入工程使用前,必须进行精测试比对; ②借鉴其他海上风电场的成功施工经验,特制专用的打桩的定位及限制垂直度的定位及限定垂直度的辅助“定位架”,保证桩的垂直度及间距高精度要求; ③施工承包商必须有专用的打桩船,减少风浪对打桩的影响;

海上风电输电与并网关键技术研究

海上风电输电与并网关键技术研究 发表时间:2019-04-03T09:59:32.597Z 来源:《电力设备》2018年第30期作者:李飞 [导读] 摘要:在所有可再生能源中,风力发电是拥有相关技术最为完善的发电方式,同样也是最具潜力的能源开发方式。 (山东电力建设第三工程有限公司山东青岛 266100) 摘要:在所有可再生能源中,风力发电是拥有相关技术最为完善的发电方式,同样也是最具潜力的能源开发方式。当前世界对能源资源需求迫切,由于海上存在丰富的能源,可以被利用非常多的风能,所以有非常多人进行研究海上风电输电并网关键技术。文章则对海上风电输电并网的研究进行了分析。并对现有的相关技术进行分析和总结。最后提出海上风电的发展仍需要进一步提升的结论。 关键词:海上风电;并网技术;海上变电站;风电的研究 引言:与陆上风电发展对比,我国相关的对于海上风电发展的研究仍比较落后。海上风电并网的研究预测等技术还处于初级发展阶段。然而随着国家逐渐发展海上能源技术,就急需相关人员尽快研究海上发电技术。文章就介绍了海上风电输电并网方面的技术的发展,并且对未来海上风电输电并网的发展给予期许。 一、海上风电输电技术 1.1 高压交流输电技术 要进行海上高压风电交流输电需要满足许多条件,要保障海上风电并网的电质量,要平衡电压电流。除此之外,因为电网与电场之间的作用是共同作用的,可以相互影响,当电压差突然过大或过小都会产生不良作用。更会造成在风电输电的整个过程产生的安全隐患。基于以上情况,就更需要海上风电场具备较强的防控能力。 1.2 高压直流输电技术 然而如果海上风电站距离岸边超过最高限度。那么采取当高压交流输电就难以实现远距离输电。也因此高压直流输电就具有输送距离远的优点。那么我们也可以说,高压直流输电就将成为未来海上输电的重要方式。 1.3 其他输电技术 而除了交流输电,直流输电等常见形式之外,还有分频输电和多相输电等方式。分频输电技术可以不提高电压减低输电频的方式进行输电。运用这种方式可以减少输电的路数提高输电频率,并且还可以提高线路的使用寿命。但其也有一些缺点,运用该技术会使低频变压器的花费增多。多相输电是指相数多于三相的输电技术,其技术具有提高输送效率的优点,但是由于相数的增多,会导致故障事故的增加,使操作更加困难。结合以上数据,考虑到资金、应用性来看,在以后海上输电仍以高压直流输电和高压交流输电为主。而由于海上风电技术的逐渐发展,未来海上风电场的规模应该更大,距离岸边更远的方向发展。那么海上风电直流输电的优势便凸显出来。 二、海上风电集电与变电设计技术 海上风电场电气系统由海上风电场集电与变电系统组成,其具有电气设备完善,连接方式复杂的特点。而海上风电场集电系统和海上升压站设计两部分。 2.1 海上风电集电系统设计技术 因为海上风电场运行复杂,海上条件较大,所以如果系统发生故障,则很难进行维护,并且进行维护的耗费也会加大。因此,要想使海上输电系统平稳运行,就需要更加维护集电系统。集电系统的优化技术包含系统优化、设备选型等。虽然当前相关技术已经取得了一定成绩,但仍需要结合相关实践取得的经验来进行进一步优化。海上风电场集电系统任务是将各风电机组输出的电能通过中压海底电缆汇集到海上变电站的汇流母线。 2.2 海上风电变电系统设计技术 自从我国发展海上输电技术以来,目前已经有多座海上电站建成并开始使用。而英国等欧洲地区则是我国海上电站的主要建成地。在实际应用中,工作人员通常会通过分析风电场位置,环境规模,地形等因素综合考虑设计、施工、运行、资金等情况对海上输电站进行优化选址。而在海上输电站内部设计建设过程中,合理的电气主接线方案和设备选型对提升变电站的可靠性。 三、海上风电功率预测技术 3.1 区域海气耦合模式研究 根据相关数据,,海上不受地形和植物、建筑等外部影响,海上流速较小,风电机影响距离远,范围大。同时由于海上会出现台风,波浪,大雾等恶劣环境都会使发电站运行受到不利影响。这些环境影响都会使得监测结果不同于陆地。同时由于海上环境复杂,海洋状况和大气之间都会相互制约,相互影响。基于海洋–海浪–大气模式耦合的数据模式,不仅可以改良风场和水汽运输的能力。而且可以通过海–气等物理过程来预报天气。当然由于海上风电预测的发展比陆地上相关技术发展较晚,还不能完全满足实际工程的需要。 3.2 台风预测技术 为了增强风电并网安全运行,则需要提高风电功率的预测准确程度。提高气象预报的精确程度,提高相关数据的分析编辑,来提升系统的自我保护能力。 四、海上风电集群控制技术 4.1海上风电控制技术 海上风电远程集群控制的目的,是将地舆上相邻、特性上相关且拥有1个共同地点接收的风电场集群进行整体分析、集中控制处理,以至于控制出力的周期性和运动性,以形成在规模和外部控制特性等与常规电厂类似的电源,具备灵活响应电网改动与控制的能力。海上风电集群控制技术按照功能可分为有功控制技术、无功控制技术及安全稳定控制技术。 4.2 海上风电有功控制技术 海上风电场的远距离有功控制技术大都被采用于海上风电,让风电集成系统能够在最大发动状态下参加各种系统调整、调频以及在特殊状态下的响应电网的活动。我国为了规范风电并网技术的应用,制定了国家相关的数据标准,并将其纳入法律规定。而根据国家电网发布的官方制度法规,都规定了电网场在运行过程中的准确的输出功率等数据。并且国内外学者都也研究了有功控制研究技术中相关的风电机组的运行状况。不仅这样,相关专家学者都将研究重心放在单个的电场。现在现有的功率分配的算法粗略可以分成加权和数学规划两种算法。其中平均分配,按风电场比例容量分配的为加权电场。这种算法操作简单,容易完成。而数学规划法则是从不同数据中选择最合适

海上风电现状与发展

全球海上风电现状与发展趋势 、全球海上风电现状 根据最新数据显示,风能发电仅次于水力发电占到全球可再生资源发电量的16%在全 球高度关注发展低碳经济的语境下,海上风电有成为改变游戏规则的可再生能源电力的潜质。在人口密集的沿海地区,可以快速地建立起吉瓦级的海上风电场,这也使得海上风电可 以成为通过经济有效的方式来减少能源生产环节碳排放的重要技术之一。海上风电虽然起步 较晚,但是凭借海风资源的稳定性和大发电功率的特点,海上风电近年来正在世界各地飞速 发展。在陆上风电已经在成本上能够与传统电源技术展开竞争的情况下,目前海上风电也正 在引发广泛关注,它具有高度依赖技术驱动的特质,已经具备了作为核心电源来推动未来全 球低碳经济发展的条件。 据全球风能理事会(GWEC统计,2016年全球海上风电新增装机2,219MW主要发生在七个市场。尽管装机量比去年同期下降了31%但未来前景看好,全球14个市场的海上风电 装机容量累计为14,384MW英国是世界上最大的海上风电市场,装机容量占全球的近36%其次是德国占29% 2016年,中国海上风电装机量占全球装机量的11%取代了丹麦,跃居 第三。其次,丹麦占8.8%,荷兰7.8%,比利时5%瑞典1.4%。除此之外还包括芬兰、爱尔兰、西班牙、日本、韩国、美国和挪威等市场,共同促进了整个海上风电的发展。

5QOO 1. : f ww -r i vw - ? ?- z 毅据采痕:GWEC 1. 欧洲海上风电现状 欧洲风能协会(WindEurope )日前发布的《欧洲海上风电产业统计报告 2016》中指出, 2016年欧洲海上风电投资达到 182亿欧元,创历史新高,同比增长 39%全年新增并网338 台风力发电机,新增装机容量1558MW 较2015年减少了 48%累计共有3589台风力发电机 并网,装机总量达 12.6GW 分布在10个国家的81个风电场。2016年,比利时、德国、荷 兰和英国还有11个风电项目正在建设当中,完成后将增加 4.8GW 装机,使得累计装机量可 达 17.4GW 2. 欧洲海上风电市场展望 虽然2016年欧洲海上风电的并网容量远低于 2015年,但大量项目的开工建设意味着, 在未来两年,并网容量将会显著增加。 由于第三轮拍卖被延期,在 2016年增长出现放缓后,英国海上风电发展速度将明显加 快。德国市场将持续增长。 比利时也将有新增装机, 这主要来自于 Nobelwind 风电场和两个 于2016年8月被核准的项目。未来两年,丹麦和荷兰于 2015年和2016年获得特许权的项 目也将开始动工。 到2019年,欧洲开工建设的海上风电项目数量将减少,因为彼时欧盟各个成员国此前 依据可再生能源指令(Ren ewable En ergy Directive )制定的国家可再生能源行动计划 (NationaIRenewableEnergy Action Plans , NREAPS 将到期。与 2016 年相似,到 2020

海上风电场的建设安装方法和设备

海上风电场的建设、安装方法 和设备 Garrad Hassan & Partners Ltd. Jan., 2009, Beijing

综述 1.运输和物流 2.支撑结构 3.风电机组 4.海底电缆 5.变电站 6.船只和设备 Offshore wind farm construction, installation methods and plant

风电场间的比较 Source: GH 05101520253035 4045500 20 40 60 80 100 120 140 Distance to Shore M a x D e p t h 20082010BE DE DK ES FR IE NL SE UK 中国将处在什么位置?

根据海床和水深的条件而定的基础的选择水深增加 重力式单桩多桩 浮动的吸力桶式 绗架到目前为止,这 些基础是最常用 的形式

已建海上风场的基础 Steel monopile 8Siemens 3.6 25 6 2007 Burbo Quadropod 45REpower 5M 2252007Beatrice Steel monopile 22Vestas V903610-182006OWEZ Steel monopile 20Vestas 3MW 3082006Barrow Steel monopile 5Vestas 3MW 30122005Kentish Flats Concrete gravity 10Bonus 2.3MW 72122004Nysted, DK Steel monopile 4 > 12Vestas 2MW 302.52004Scroby Sands, UK Steel monopile 5 > 8.5GE 3.6 MW 7142004Arklow Bank, Ireland Steel monopile 10 > 15Vestas 2000kW 307 > 8 2003North Hoyle, UK Steel monopile 6.5 > 13.5 Vestas 2000kW 80172001Horns Rev, Denmark Steel monopile 9Neg Micon 2000kW 562001Yttre Stengrund Sweden Concrete gravity 2 > 5Bonus 2000kW 2022000Middlegrunden, Sweden Steel monopile 7.5Vestas 1800 & 2000kW 20.52000Blyth, UK Steel monopile 7.2 > 10Enron Wind 1500kW 78 > 12.52000Utgrunden, Sweden Steel monopile 6Wind World 500kW 541998Bockstigen, Sweden Steel monopile 5Nordtank 600kW 280.41997Dronten, Netherlands Concrete gravity 3 > 5Vestas 500kW 1061995Tuno Knob Steel monopile Nedwind 500kW 411994Lely, Netherlands Concrete gravity 2.5 > 5 Bonus 450 kW 111.5 > 3.0 1991Vindeby, Denmark Foundation type Water depth (m)Turbine type & rating No of turbines Distance from Shore (km)Date of Commissioning Location

海上风电施工简介(经典)

海上风电施工简介 目录 1 海上风电场主要单项工程施工方案 (1) 1.1 风机基础施工方案 (1) 1.2 风机安装施工方案 (13) 1.3 海底电缆施工方案 (19)

1.4海上升压站施工方案 (23) 2 国内主要海上施工企业以及施工能力调研 (35) 2.1 中铁大桥局 (35) 2.2 中交系统下企业 (41) 2.3 中石(海)油工程公司 (46) 2.4 龙源振华工程公司 (48) 3 国内海洋开发建设领域施工业绩 (52) 3.1 跨海大桥工程 (52) 3.2 港口设施工程 (55) 3.3 海洋石油工程 (55) 3.4 海上风电场工程 (58) 4 结语 (59)

1 海上风电场主要单项工程施工方案 1.1 风机基础施工方案 国外海上风电起步较早,上世纪九十年代起就开始研究和建设海上试验风电场,2000年后,随风力发电机组技术的发展,单机容量逐步加大,机组可靠性进一步提高,大型海上风电场开始逐步出现。国外海上风机基础一般有单桩、重力式、导管架、吸力式、漂浮式等基础型式,其中单桩、重力式和导管架基础这三种基础型式已经有了较成熟的应用经验,而吸力式和漂浮式基础尚处于试验阶段。舟山风电发展迅速。 目前国内海上风机基础尚处于探索阶段,已建成的四个海上风电项目,除渤海绥中一台机利用了原石油平台外,上海东海大桥海上风电场和响水近海试验风电场均采用混凝土高桩承台基础,江苏如东潮间带风电场则采用了混凝土低桩承台、导管架及单桩三种基础型式。 图1.1-1 重力式基础型式 图1.1-2 多桩导管架基础型式

图1.1-3 四桩桁架式导管架基础型式图1.1-4单桩基础型式 图1.1-5 高桩混凝土承台基础型式图1.1-6低桩承台基础型式基于国内外海上、滩涂区域风电场的建设经验,结合普陀6号海上风电场2区工程的特点及国内海洋工程、港口工程施工设备、施工能力,可研阶段重点考察桩式基础,并针对5.0MW风电机组拟定五桩导管架基础、高桩混凝土承台基础和四桩桁架式导管架基础作为代表方案进行设计、分析比较。 1.1.1 多桩导管架基础施工 图1.1-7 五桩导管架基础型式图1.1-8 四桩桁架式基础型式

相关文档
相关文档 最新文档