文档库 最新最全的文档下载
当前位置:文档库 › 第5章状态空间搜索

第5章状态空间搜索

1 2 3

深蓝”对弈(右为

罪犯躲到一幢5层楼房,共2个楼门,每楼门每层2户17:126页

个确保修道士和野人都能过河,且没有修道士被

17:1217页

状态空间分析法的应用与特点

状态空间分析法的主要特点及其应用 课程:现代控制工程 教师: 学生: 班级:机电研班 学号:

状态空间分析法的主要特点及其应用 机电研班 摘要:现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时域分析方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。 本文通过分析比较经典控制理论在多输入多输出方面存在的不足,阐述了现代控制理论中的一种方法——状态空间分析法。本文以线性系统的状态空间表达式为基础对状态空间分析法的特点和应用方面作了一些阐述和论证,并结合现实生活中的一些实际工程问题的分析,论证了此种方法的实用性和先进性。 关键词:现代控制;状态空间分析法;汽轮机;调节系统;动态分析 1引言 经典控制理论主要以传递函数为基础,采用复域分析方法,由此建立起来的频率特性和根轨迹等图解解析设计法,对于单输入——单输出系统极为有效,至今仍在广泛成功地使用。但传递函数只能描述线性定常系统的外部特征,并不能反映其全部内部变量变化情况,且忽略了初始条件的影响,其控制系统的设计建立在试探的基础之上,通常得不到最优控制。复域分析法对于控制过程来说是间接的。 现代控制理论由于可利用数字计算机进行分析设计和实时控制,因此可处理时变、非线性、多输入——多输出系统的问题。现代控制理论主要以状态空间法为基础,采用时域分析方法,对于控制过程来说是直接的。它一方面能使设计者针对给定的性能指标设计出最优控制系统;另一方面还可以用更一般的输入函数代替特殊的所谓“典型输入函数”来实现最优控制系统设计。随着控制系统的高性能发展,最优控制、最佳滤波、系统辨识,自适应控制等理论都是这一领域研究的主要课题。 在用状态空间法分析系统时,系统的动态特性是由状态变量构成的一阶微分方程组来描述的。已能反映系统的全部独立变量的变化,从而能同时确定系统的全部运动状态,而且可以方便地处理初始条件。

状态空间法教案

一、问题引入 结合一些典型问题(分油问题)提出问题: 我们是怎样解决这些问题的?在人工智能领域又可以通过怎样的方法去解决呢?(状态空间法) 2、引导学生思考问题,并得出结论。 二、讲授新课 (一)基础知识部分 1、什么是状态空间法? 许多问题求解方法是采用试探搜索方法的。也就是说,这些方法是通过在某个可能的解空间内寻找一个解来求解问题的。这种基于解答空间的问题表示和求解方法就是状态空间法,它是以状态和算符(operator)为基础来表示和求解问题的。 2、状态空间法三要点 1) 状态(state):表示问题解法中每一步问题状况的数据结构; 2) 算符(operator):把问题从一种状态变换为另一种状态的手段; 3) 状态空间方法:基于解答空间的问题表示和求解方法,它是以状态和算符为基础来表示和求解问题的。

由上可知,对一个问题的状态描述,必须确定3件事: 1) 该状态描述方式,特别是初始状态描述; 2) 操作符集合及其对状态描述的作用; 3) 目标状态描述的特性。 问题的状态空间可用一个三元序组来表示: S:问题的全部初始状态的集合 F:操作的集合 G:目标状态的集合 4、用状态空间表示问题的步骤: 1)定义状态的描述形式 2)用所定义的状态描述形式把问题所有可能的状态都表示出来,并确定初始状态和目标状态的集合描述 3)定义一组算符,使得利用这些算符可以把问题由一个状态转为另一个状态。 4)利用状态空间图表示求解过程。 (二)实践应用部分

【分油问题】有A、B、C三个不带刻度的瓶子,分别能装8kg, 5kg和3kg油。如果A瓶装满油,B和C是空瓶,怎样操作三个瓶,使A中的油平分两份?(假设分油过程中不耗油) 解:第一步:定义问题状态的描述形式: 设Sk=(b,c)表示B瓶和C瓶中的油量的状态。 其中: b表示B瓶中的油量。 c表示C瓶中的油量。 初始状态集:S={(0,0)} 目标状态集:G={(4,0)} 第二步:定义操作符: 操作:把瓶子倒满油,或把瓶子的油倒空。 f1:从A瓶往B瓶倒油,把B瓶倒满。 f2:从C瓶往B瓶倒油,把B瓶倒满。 f3:从A瓶往C瓶倒油,把C瓶倒满。 f4:从B瓶往C瓶倒油,把C瓶倒满。

人工智能[第五章状态空间搜索策略]山东大学期末考试知识点复习

第五章状态空间搜索策略 搜索是人工智能的一个基本问题,是推理不可分割的一部分。搜索是求解问 题的一种方法,是根据问题的实际情况,按照一定的策略或规则,从知识库中寻找可利用的知识,从而构造出一条使问题获得解决的推理路线的过程。搜索包含两层含义:一层含义是要找到从初始事实到问题最终答案的一条推理路线;另一层含义是找到的这条路线是时间和空间复杂度最小的求解路线。搜索可分为盲目搜索和启发式搜索两种。 1.1 盲目搜索策略 1.状态空间图的搜索策略 为了利用搜索的方法求解问题,首先必须将被求解的问题用某种形式表示出来。一般情况下,不同的知识表示对应着不同的求解方法。状态空间表示法是一 种用“状态”和“算符”表示问题的方法。状态空间可由一个三元组表示(S ,F, S g )。 利用搜索方法求解问题的基本思想是:首先将问题的初始状态(即状态空间图中的初始节点)当作当前状态,选择一适当的算符作用于当前状态,生成一组后继状态(或称后继节点),然后检查这组后继状态中有没有目标状态。如果有,则说明搜索成功,从初始状态到目标状态的一系列算符即是问题的解;若没有,则按照某种控制策略从已生成的状态中再选一个状态作为当前状态,重复上述过程,直到目标状态出现或不再有可供操作的状态及算符时为止。 算法5.1 状态空间图的一般搜索算法 ①建立一个只含有初始节点S 0的搜索图G,把S 放入OPEN表中。 ②建立CLOSED表,且置为空表。

③判断OPEN表是否为空表,若为空,则问题无解,退出。 ④选择OPEN表中的第一个节点,把它从OPEN表移出,并放入CLOSED表中,将此节点记为节点n。 ⑤考察节点n是否为目标节点,若是,则问题有解,并成功退出。问题的解 的这条路径得到。 即可从图G中沿着指针从n到S ⑥扩展节点n生成一组不是n的祖先的后继节点,并将它们记作集合M,将M中的这些节点作为n的后继节点加入图G中。 ⑦对那些未曾在G中出现过的(即未曾在OPEN表上或CLOSED表上出现过的)M中的节点,设置一个指向父节点(即节点n)的指针,并把这些节点加入OPEN 表中;对于已在G中出现过的M中的那些节点,确定是否需要修改指向父节点(n 节点)的指针;对于那些先前已在G中出现并且已在COLSED表中的M中的节点,确定是否需要修改通向它们后继节点的指针。 ⑧按某一任意方式或按某种策略重排OPEN表中节点的顺序。 ⑨转第③步。 2.宽度优先搜索策略 宽度优先搜索是一种盲目搜索策略。其基本思想是,从初始节点开始,逐层对节点进行依次扩展,并考察它是否为目标节点,在对下层节点进行扩展(或搜索)之前,必须完成对当前层的所有节点的扩展(或搜索)。在搜索过程中,未扩展节点表OPEN中的节点排序准则是:先进入的节点排在前面,后进入的节点排在后面(即将扩展得到的后继节点放于OPEN表的末端)。 宽度优先搜索的盲目性较大,搜索效率低,这是它的缺点。但宽度优先搜索策略是完备的,即只要问题有解,用宽度优先搜索总可以找到它的解。 3.深度优先搜索 深度优先搜索也是一种盲目搜索策略,其基本思想是:首先扩展最新产生的

第三章 知识的状态空间表示法

第三章知识的状态空间表示法 1 课前思考: 人类的思维过程,可以看作是一个搜索的过程。 某个方案所用的步骤是否最少?也就是说它是最优的吗?如果不是,如何才能找到最优的方案?在计算机上又如何实现这样的搜索?这些问题实际上就是本章我们要介绍的搜索问题。 2 学习目标: 掌握回溯搜索算法、深度优先搜索算法、宽度优先搜索算法和A搜索算法,对典型问题,掌握启发式函数的定义方法。 3 学习指南: 了解算法的每一个过程和细节问题,掌握一些重要的定理和结论,在有条件的情况下,程序实现每一个算法,求解一些典型的问题。 4 难重点: 回溯搜索算法、算法及其性质、改进的A*算法。 5 知识点: 本章所要的讨论的问题如下: 有哪些常用的搜索算法。 问题有解时能否找到解。 找到的解是最佳的吗? 什么情况下可以找到最佳解? 求解的效率如何。 3.1 状态空间表示知识 一、状态空间表示知识要点 1.状态 状态(State)用于描述叙述性知识的一组变量或数组,也可以说成是描述问题求解过程中任意时刻的数据结构。通常表示成: Q={q1,q2,……,qn} 当给每一个分量以确定的值时,就得到一个具体的状态,每一个状态都是一个结点(节点)。

实际上任何一种类型的数据结构都可以用来描述状态,只要它有利于问题求解,就可以选用。 2.操作(规则或算符) 操作(Operator)是把问题从一种状态变成为另一种状态的手段。当对一个问题状态使用某个可用操作时,它将引起该状态中某一些分量发生变化,从而使问题由一个具体状态变成另一个具体状态。操作可以是一个机械步骤、一个运算、一条规则或一个过程。操作可理解为状态集合上的一个函数,它描述了状态之间的关系。通常可表示为: F={ f1 , f2,……… fm} 3.状态空间 状态空间(State Space)是由问题的全部及一切可用算符(操作)所构成的集合称为问题的状态空间。用三元组表示为: ({Qs},{F},{Qg}) Qs:初始状态,Qg:目标状态,F:操作(或规则)。 4.状态空间(转换)图 状态空间也可以用一个赋值的有向图来表示,该有向图称为状态空间图,在状态空间图中包含了操作和状态之间的转换关系,节点表示问题的状态,有向边表示操作。 二、状态图搜索 1.搜索方式 用计算机来实现状态图的搜索,有两种最基本的方式:树式搜索和线式搜索。 2.搜索策略 大体可分为盲目搜索和启发式(heuristic)搜索两大类。 搜索空间示意图 例3.1 钱币翻转问题 设有三枚硬币,其初始状态为(反,正,反),允许每次翻转一个硬币(只翻一个硬币,必须翻一个硬币)。必须连翻三次。问是否可以达到目标状态(正,正,正)或(反,反,反)。问题求解过程如下: 用数组表示的话,显然每一硬币需占一维空间,则用三维数组状态变量表示这个知识: Q=(q1 , q2 , q3) 取q=0 表示钱币的正面q=1 表示钱币的反面 构成的问题状态空间显然为: Q0=(0,0,0),Q1=(0,0,1),Q2=(0,1,0),Q3=(0,1,1)

状态空间分析法

第9章 线性系统的状态空间分析与综合 重点与难点 一、基本概念 1.线性系统的状态空间描述 (1)状态空间概念 状态 反映系统运动状况,并可用以确定系统未来行为的信息集合。 状态变量 确定系统状态的一组独立(数目最少)变量,它对于确定系统的运动状态是必需的,也是充分的。 状态向量 以状态变量为元素构成的向量。 状态空间 以状态变量为坐标所张成的空间。系统某时刻的状态可用状态空间上的点来表示。 状态方程 状态变量的一阶导数与状态变量、输入变量之间的数学关系,一般是关于系统的一阶微分(或差分)方程组。 输出方程 输出变量与状态变量、输入变量之间的数学关系。 状态方程与输出方程合称为状态空间描述或状态空间表达式。线性定常系统状态空间表达式一般用矩阵形式表示: ???+=+=Du Cx y Bu Ax x & (9.1) (2)状态空间表达式的建立。系统状态空间表达式可以由系统微分方程、结构图、传递函数等其他形式的数学模型导出。 (3)状态空间表达式的线性变换及规范化。描述某一系统的状态变量个数(维数)是确定的,但状态变量的选择并不唯一。某一状态向量经任意满秩线性变换后,仍可作为状态向量来描述系统。状态变量选择不同,状态空间表达式形式也不一样。利用线性变换的目的在于使系统矩阵A 规范化,以便于揭示系统特性,利于分析计算。满秩线性变换不改变系统的固有特性。 根据矩阵A 的特征根及相应的独立特征向量情况,可将矩阵A 化为三种规范形式:对角形、约当形和模式矩阵。 (4)线性定常系统状态方程解。状态转移矩阵)(t φ(即矩阵指数At e )及其性质:

i . I =)0(φ ii .A t t A t )()()(φφφ ==& iii. )()()()()(122121t t t t t t φφφφφ±=±=+ iv. )()(1 t t -=-φφ v. )()]([kt t k φφ= vi. )( ])exp[()exp()exp(BA AB t B A Bt At =+= vii. )( )ex p()ex p(11非奇异P P At P APt P --= 求状态转移矩阵)(t φ的常用方法: 拉氏变换法 =)(t φL -1])[(1--A sI (9.2) 级数展开法 ΛΛ++++ +=k k At t A k t A At I e ! 12122 (9.3) 齐次状态方程求解 )0()()(x t t x φ= (9.4) 非齐次状态方程式(9.1)求解 ?-+=t Bu t x t t x 0d )()()0()()(τττφφ (9.5) (5)传递函数矩阵及其实现 传递函数矩阵)(s G :输出向量拉氏变换式与输入向量拉氏变换式之间的传递关系 D B A sI C s G +-=-1)()( (9.6) 传递函数矩阵的实现:已知传递函数矩阵)(s G ,找一个系统},,,{D C B A 使式(9.6)成立,则将系统},,,{D C B A 称为)(s G 的一个实现。当系统阶数等于传递函数矩阵阶数时,称该系统为)(s G 的最小实现。 传递函数矩阵的实现并不唯一。实现的常用标准形式有可控标准形实现、可观测标准形实现、对角形实现和约当形实现等。 (6)线性定常连续系统的离散化及其求解 对式(9.1)表示的线性定常数连续系统进行离散化,导出的系统离散状态空间描述

状态空间分析法的特点及其应用

状态空间法分析及其应用的特点 摘要 基于为寻求便于分析系统的性能的相应状态变量以及探究状态空间变量线性变换对系统性能的影响,来阐述状态空间分析法的特点。通过应用状态空间法到绞线一叠层橡胶复合支座隔震结构进行数值模拟分析中来进一步阐述其特点,将结构控制理论中的结构状态空间法应用到该复合支座隔震结构的数值模拟分析中。建立了普通框架、安装叠层橡胶支座和安装绞线一叠层橡胶复合支座框架的结构状态方程,应用MATLAB/SIMULINK工具箱建立结构仿真模型,得出不同条件下框架结构的时程反应曲线。通过对比分析可以看出绞线一叠层橡胶复合支座能很好地改变结构的隔震效果,应用状态空间法进行绞线一叠层橡胶复合支座隔震结构的数值模拟分析简单准确。 关键词:系统、传递函数、线性变换、状态空间变量

一、引言 状态空间分析从实质上说并不是什么新颖的东西,其关键思想起源予19世纪到拉格朗日、哈密顿等人在研究经典力学时提出的广义坐标与变分法。当然,由高斯等人奠定的古典概率、估计理论以及线性代数等也具有同样的重要性。上世纪40年代以来,布利斯、庞德里亚金和别尔曼关于极大值原理,卡尔曼、布西与巴丁等人提出的卡尔曼滤波理论,以及许许多多的学者完成的并不具有里程碑意义的研究成果,积累起来却对算法及分析结果产生了决定性意义的贡献。这些便是状态空间方法发展的历史概况。状态空间分析是对线性代数、微分方程、数值方法、变分法、随机过程以及控制理论等应用数学各学科的综台。对动态系统的性能分析,特别是对扰动的响应、稳定性的特性、估计与误差分析以及对控制律的设计及性能评估,这些便构成状态空间分析的内容。这主要表现在利用向量、矩阵等一整套数学符合,把大量资料加以整理与综合,形成了观念上统一的体系——60年代中期之后出现了现代控制理论。 状态空间分析随着动力学与控制问题维数的增加(其中包括坐标、敏感器、执行机构以及其它装置的数量)而越发显得重要。另一方面亦由于计算机软件的不断完善,特别在可靠性及用户接口方面的改善与进展,使得计算工作比以前任何时候都易于进行,使状态空间分析越发显得有生命力。它具有的特性使得在设计控制系统时,不在只局限于输入量、输出量和误差量,为提高系统性能提供了有力的工具,加之可以利用计算机进行分析设计及实时控制,因而可以应用于非线性系统、时变系统、多输入—多输出系统以及随机过程等。

人工智能第五章状态空间搜索策略山东大学期末考试知识点复习

第五章状态空间搜索策略搜索是人工智能的一个基本问题,是推 理不可分割的一部分。搜索是求解问题的一种方法,是根据问题的实际情况,按照一定的策略或规则,从知识库中寻找可利用的知识,从而构造出一条使问题获得解决的推理路线的过程。搜索包含两层含义:一层含义是要找到从初始事实到问题最终答案的一条推理路线;另一层含义是找到的这条路线是时间和空间复杂度最小的求解路线。搜索可分为盲目搜索和启发式搜索两种。 1.1 盲目搜索策略 1.状态空间图的搜索策略 为了利用搜索的方法求解问题,首先必须将被求解的问题用某种形式表示出来。一般情况下,不同的知识表示对应着不同的求解方法。状态空间表示法是一种用“状态”和“算符”表示问题的方法。状态空间可由一个三元组表示(S,F, 0S)。g利用搜索方法求解问题的基本思想是:首先将问题的初始状态(即状态空间图中的初始节点)当作当前状态,选择一适当的算符作用于当前状态,生成一组后继状态(或称后继节点),然后检查这组后继状态中有没有目标状态。如果有,则说明搜索成功,从初始状态到目标状态的一系列算符即是问题的解;若没有,则按照某种控制策略从已生成的状态中再选一个状态作为当前状态,重复上述过程,直到目标状态出现或不再有可供操作的状态及算符时为止。 算法5.1 状态空间图的一般搜索算法 ①建立一个只含有初始节点S的搜索图G,把S放入OPEN表中。00表,且置为空表。CLOSED②建立 ③判断OPEN表是否为空表,若为空,则问题无解,退出。 ④选择OPEN表中的第一个节点,把它从OPEN表移出,并放入CLOSED表中,将此节点记为节点n。 ⑤考察节点n是否为目标节点,若是,则问题有解,并成功退出。问题的解即可从图G中沿着指针从n到S的这条路径得到。0⑥扩展节点n生成一组不是n的祖先的后继节点,并将它们记作集合M,将M中的这些节点作为n的后继节点加入图G中。 ⑦对那些未曾在G中出现过的(即未曾在OPEN表上或CLOSED表上出现过的)M中的节点,设置一个指向父节点(即节点n)的指针,并把这些节点加入OPEN 表中;对于已在G中出现过的M中的那些节点,确定是否需要修改指向父节点(n 节点)的指针;对于那些先前已在G中出现并且已在COLSED表中的M中的节点,确定是否需要修改通向它们后继节点的指针。 ⑧按某一任意方式或按某种策略重排OPEN表中节点的顺序。 ⑨转第③步。 2.宽度优先搜索策略 宽度优先搜索是一种盲目搜索策略。其基本思想是,从初始节点开始,逐层对节点进行依次扩展,并考察它是否为目标节点,在对下层节点进行扩展(或搜索)之前,必须完成对当前层的所有节点的扩展(或搜索)。在搜索过程中,未扩展节点表OPEN中的节点排序准则是:先进入的节点排在前面,后进入的节点排

状态空间分解法计算公式分析

同批工件间同时到达的耦合关系? 工件本来是一个个到达,如C-C+1-C+2,但考虑为批次同时到达,C 可以直接到C+2; 基于更新过程的关键更新定理,将小车与B2、B4间的耦合关系用节点间的批量到达速率、批量离开速率变化替代?B2的输出与B4的输入之间相互依赖 节点二: 两次小车装载之间通常会有多个工件到达B2,在小车两次到达的间隔中B2内的工件数量曲线是单调非减的。因此,实际上小车回到B2时B2拥有的工件数量的期望(锯齿的上尖点)远远比稳态后(稳态后不变,中间水平线)计算的期望要大 节点四: 实际上小车来到B4时B4拥有的工件数量的期望远远比稳态后计算的期望要小,当小车容量C 越大、小车速度越慢(保持当量运载能力不变)的时候这个偏差越明显,这样将提高小车由于阻塞停留在B4处的计算概率(实际堵塞概率比计算值要小),降低前环节的处理能力。 平均在制品数量: ()()()() ()121112223331122334444444441112123 ,,,01 01 11 11C 4,,201 1 WIP=; N N C S w b S w b S w b b w b w b w N i S w b S w b w w P w P w P w P w P N +======+===?+?+?+?+?∑∑∑∑∑∑∑ ∑∑ 第4项改为乘以W4;第五项(节点四在制品数期望)就是小车阻塞的概率乘以节点4的个数 (N4+1) 状态之间的转换速率:存在概率路径,则用概率路径乘以速率,不存在概率路径,则直接用速率。实际上概率路径之和一定=1 1 i b =-0 i b =1 i b =2 i b = B2 B4 节点3:2C+2个状态对应2C+2个方程 右边第一项:上标为W3,漏了V ,第二项是只可能是从小车上只有一个变为空车返回状态

状态空间分析法的特点及其应用

状态空间分析法的主要特点及其应用 1.引言 60年代以前,研究自动控制系统的传统方法 主要使用传递函数作为系统的数学描述,研究对象是 SISO 系统,这样建立起来的理论就是现在所说的“古典控制理论”。随着宇航和生产技术的发展及电子计算机的出现,控制系统日渐复杂(MIMO ,时变,不确定,耦合,大规模),传统的研究方法难以适应新的形势。在 50s'后期,Bellman 等人提议使用状态变量法,即状态空间法来描述系统,时至今日,这种方法已成为现代控制理论的基本模型和数学工具。 所谓状态空间是指以状态变量n 21X X X ,为轴所构成的n 维向量空间。这样,系统的任意状态都可以用状态空间中的一个点表示。利用状态空间的观点分析系统的方法称为状态空间法,状态空间法的实质不过是将系统的运动方程写成一阶微分方程组,这在力学和电工上早已使用,并非什么新方法,但用来研究控制系统时具有如下优点。 1、适用面广:适用于 MIMO 、时变、非线性、随机、采样等各种各样的系统,而经典法主要适用于线性定常的 SISO 系统。 2、 简化描述,便于计算机处理:可将一阶微分方程组写成向量矩阵方程, 因而简化数学符号,方便推导,并很适合于计算机的处理,而古典法是拉氏变换法,用计算机不太好处理。 3、内部描述:不仅清楚表明 I-O 关系,还精确揭示了系统内部有关变量及初始条件同输出的关系。 4、有助于采用现代化的控制方法 :如自适应控制、最优控制等。 上述优点便使现代控制理论获得了广泛应用,尤其在空间技术方面还有极大成功。 状态空间法的缺点: 1、不直观,几何、物理意义不明显:不象经典法那样, 能用 Bode 图及根轨迹进行直观的描述。对于简单问题,显得有点烦琐。 2、对数学模型要求很高:而实际中往往难以获得高精度的模型,这妨碍了它的推广和应用。。 2.状态空间分析法在部分系统中的应用 2.1状态空间分析法在PWM 系统中的应用 状态空间分析法不仅适用于时变系统(例如PWM 系统),而且可以将其简化,同时便于计算机处理。 在许多控制系统中,包括直流和交流电源系统,采用了脉冲宽度调制(卫WM)方式。可用于计算机和重要负荷的UPS(不停电供电电源),采用PWM ,除对输出电压进行调节外,还可通过合理选择每周期脉冲数,消除指定的高次谐波,并可加快系统的动态响应速度。在对DC 一Dc 变换器等只具有正脉冲调制的系统分析中,如满足一定条件,则可运用状态空间平均值法。对交变的PWM 系统,每周期系统状态变化较大,有的变量正负值交替变化,因而不能运用平均值法分析,故采用状态空间分析方法。 PWM 系统通常均含开关器件,不同的脉冲间隔对应于开关器件的不同状态,即器件的导通或开断。开关状态的变化引起系统结构或参数的变化,则描述系统运动过程的状态方程也相应改变。

状态空间设计与分析

状态空间分析及设计 姓名:周海波 学号:200740297(15) 班级:自控实验0701班 日期:2010-5-2

目录 一.系统能控性和能观性判定 二.主导极点法进行状态反馈极点配置 三.对称根轨迹法(SRL)进行状态反馈极点配置 四.主导极点法和SRL状态反馈极点配置对比 五.全维观测器设计和分析 1.观测器设计 2.分离定理验证 六.带全维观测器的状态反馈与直接状态反馈对比 七.降阶观测器和带降阶观测器的状态反馈系统的设计和分析八.全维观测器的状态反馈与降阶观测器的状态反馈对比 1.抗过程干扰能力 2.抗测量噪声能力 九.采用内模原则设计状态反馈系统 1.跟踪性能分析 2.抗干扰性能分析

状态空间分析及设计 有以下系统 122201101011x x μ ???????????=?+?????????????i []100y x =要求:对系统设计状态反馈使得系统闭环阶跃响应的超调量小于5%,且在稳态误差值为1%范围内的调节时间小于4.6s. 一.系统能控性和能观性判定 由系统能控性判别矩阵: 224001013115rank B AB A B rank ???????==????????? 由系统能观性判别矩阵:21001223142C rank CA rank CA ????????=???=????????????? 所以系统既是能控的又是能观的。 二.主导极点法进行状态反馈极点配置1.当 4.61% 4.6s n t s ζω?== <%5%e πζσ?=<解得:0.691n ζζω>??>?取0.75 2n ζω==则:2222340 n n s s s s ζωω++=++=所以1,2 1.5 1.323s j =?±,取非主导极点38s =?,则期望特征多项式为: 232(34)(8)112832 s s s s s s +++=+++设[]123K k k k =又

现代控制理论基础_周军_第二章状态空间分析法

2.1 状态空间描述的基本概念 系统一般可用常微分方程在时域内描述,对复杂系统要求解高阶微分方程,这是相当困难的。经典控制理论中采用拉氏变换法在复频域内描述系统,得到联系输入-输出关系的传递函数,基于传递函数设计单输入-单输出系统极为有效,可从传递函数的零点、极点分布得出系统定性特性,并已建立起一整套图解分析设计法,至今仍得到广泛成功地应用。但传递函数对系统是一种外部描述,它不能描述处于系统内部的运动变量;且忽略了初始条件。因此传递函数不能包含系统的所有信息。由于六十年代以来,控制工程向复杂化、高性能方向发展,所需利用的信息不局限于输入量、输出量、误差等,还需要利用系统内部的状态变化规律,加之利用数字计算机技术进行分析设计及实时控制,因而可能处理复杂的时变、非线性、多输入-多输出系统的问题,但传递函数法在这新领域的应用受到很大限制。于是需要用新的对系统内部进行描述的新方法-状态空间分析法。 第一节基本概念 状态变量指描述系统运动的一组独立(数目最少的)变量。一个用阶微分方程描述含有个独立变量的系统,当求得个独立变量随时间变化的规律时,系统状态可完全确定。若变量数目多于,必有变量不独立;若少于, 又不足以描述系统状态。因此,当系统能用最少的个变量 完全确定系统状态时,则称这个变量为系统的状态变量。 选取状态变量应满足以下条件:给定时刻的初始值, 以及的输入值,可唯一确定系统将来的状态。而时 刻的状态表示时刻以前的系统运动的历史总结,故状态变量是对系统过去、现在和将来行为的描述。 状态变量的选取具有非唯一性,即可用某一组、也可用另一组数目最少的变量。状态变量不一定要象系统输出量那样,在物理上是可测量或可观察的量,但在实用上毕竟还是选择容易测量的一些量,以便满足实现状态反馈、改善系统性能的需要。

(word完整版)状态空间平均法建模总结,推荐文档

7.1 状态空间平均法 151109,状态空间平均法是平均法的一阶近似,其实质为:根据线性RLC 元件、独立电源和周期性开关组成的原始网络,以电容电压、电感电流为状态变量,按照功率开关器件的“ON ”和“OFF ”两种状态,利用时间平均技术,得到一个周期内平均状态变量,将一个非线性电路转变为一个等效的线性电路,建立状态空间平均模型。 对于不考虑寄生参数的理想 PWM 变换器,在连续工作模式(CCM )下一个开关周期有两个开关状态相对应的状态方程为: 11i x A x B v =+& 0t dT ≤≤ (7-1) 22i x A x B v =+& dT t T ≤≤ (7-2) 式中d 为功率开关管导通占空比,/on d t T =,on t 为导通时间,T 为开关周 期;[] v L C x i =,x 是状态变量,x &是状态变量的导数,L i 是电感电流C v 是电容电压,i V 是开关变换器的输入电压;1A ,2A ,1B ,2B 是系数矩阵与电路的结构参数有关。 对式(7.1)和(7.2)进行平均得到状态平均方程为 x Ax Bv =+& 0t T ≤≤ (7-3) 式中,12(1)A dA d A =+-,12(1)B dB d B =+-,这就是著名的状态空间平均法。可此式可见,时变电路变成了非时变电路,若d 为常数,则这个方程描述的系统是线性系统,所以状态空间平均法的贡献是把一个开关电路用一个线性电路来替代。 对状态平均方程进行小扰动线性化,令瞬时值?d D d =+、'?'d D d =-、'1D D +=、?vg Vg vg =+、?x X x =+。其中?d 、?vg 、?x 是相应D 、vg 、X 的扰动量,将之代入到式(7-3)为: ????()()i i X x A X x B V v +=+++& (7-4) ''1212????????()()()()()()i i i A X x B V v Ax Bx D d A D d A X D d B D d B V ????+++=++++-+++-??? ? (7-5) 将其中的扰动参数变量分离就得到了动态的小信号模型式。 1212????[()()]i i x Ax Bv A A X B B V d =++-+-& (7-6)

第八章 控制系统的状态空间分析

第八章 控制系统的状态空间分析 一、状态空间的基本概念 1. 状态 反应系统运行状况,并可用一个确定系统未来行为的信息集合。 2. 状态变量 确定系统状态的一组独立(数目最少的)变量,如果给定了0t t =时刻 这组变量的值())()() (00201t x t x t x n Λ 和0t t ≥时输入的时间函数)(t u ,则系 统在0t t ≥任何时刻())()() (21t x t x t x n Λ 的行为就可完全确定。 3. 状态向量 以状态变量为元素构成的向量,即[])()()()(21t x t x t x t x n Λ =。 4. 状态空间 以状态变量())()() (21t x t x t x n Λ 为坐标的n 维空间。系统在某时 刻的状态,可用状态空间上的点来表示。 5. 状态方程 描述状态变量,输入变量之间关系的一阶微分方程组。 6. 输出方程 描述输出变量与状态变量、输入变量间函数关系的代数方程。 二、状态空间描述(状态空间表达式) 1. 状态方程与输出方程合起来称为状态空间描述或状态空间表达式,线性定常系统状 态空间描述一般用矩阵形式表示,对于线性定常连续系统有 ? ? ?+=+=)()()()()()(t Du t Cx t y t Bu t Ax t x & (8-1) 对于线性定常离散系统有 ?? ?+=+=+) ()()() ()()1(k Du k Cx k y k Hu k Gx k x (8-2) 2. 状态空间描述的建立:系统的状态空间描述可以由系统的微分方程,结构图(方框 图),状态变量图、传递函数或脉冲传递函数(Z 传递函数)等其它形式的数学模型导出。 3. 状态空间描述的线性变换及规范化(标准型) 系统状态变量的选择不是唯一的,状态变量选择不同,状态空间描述也不一样。利用线性变换可将系统的矩阵A (见式8-1)规范化为四种标准型:能控标准型、能观标准型、对角标准型、约当标准型。

631306050120刘忠钊+状态空间搜索+启发式搜索

重庆交通大学计算机与信息学院验证性实验报告 班级:计算机科学与技术(软件开发)专业13级1班学号: 631306050120 姓名:刘忠钊 实验项目名称:状态空间搜索 8数码问题 实验项目性质:验证性实验 实验所属课程:人工智能 实验室(中心):软件中心实验室(语音楼8楼) 指导教师:朱振国 实验完成时间: 2016 年 6 月 11 日

1. 熟悉人工智能系统中的问题求解过程; 2. 熟悉状态空间的盲目搜索和启发式搜索算法的应用; 3. 熟悉对八数码问题的建模、求解及编程语言的应用。 二、实验内容及要求 (一、)实验内容 八数码问题:在3×3的方格棋盘上,摆放着1到8这八个数码,有1个方格是空的,其初始状态如图1所示,要求对空格执行空格左移、空格右移、空格上移和空格下移这四个操作使得棋盘从初始状态到目标状态。 图1 八数码问题示意图 请任选一种盲目搜索算法(深度优先搜索或宽度优先搜索)或任选一种启发式搜索方法(A 算法或A* 算法)编程求解八数码问题(初始状态任选),并对实验结果进行分析,得出合理的结论。 三、实验设备及软件 WIN7系统64位系统笔记本电脑 TC2.0 或VC6.0 编程语言或其它编程语言 四、设计方案 ㈠题目 状态空间搜索8数码问题

㈡设计的主要思路 程序采用宽度优先搜索算法,基本流程如下: ㈢主要功能 完成对八数码问题的求解。 五、主要代码 #include #include #include using namespace std; const int ROW = 3;//行数

状态空间分析法的作用与意义

状态空间分析法的作用与意义 Ⅰ.状态空间分析法的提出 随着科学技术的发展,单输入单输出系统已不能满足生产需求,在二十世纪五十年代末开始,随着计算机的飞速发展,推动了核能技术、空间技术的发展,从而对出现的多输入多输出系统、非线性系统和时变系统的分析与设计问题的解决。 20世纪60年代,现代控制理论在工业发展驱使下开始发展,由卡尔曼提出的线性控制系统的状态空间分析方法、能控性和能观测性的概念,奠定了现代控制理论的基础,并提出卡尔曼滤波,它在随机控制系统的分析与控制中得到广泛应用;由庞特里亚金等人提出最大值原理,深入地研究了最优控制问题;由贝尔曼提出动态规划,广泛用于各类最优控制问题。随后的半个多世纪中,虽然现代控制理论得到很大发展,并广泛用于各个领域,但其最重要的基础仍然是前述三个方面;其中状态空间分析法为分析复杂系统不可或缺的数学工具。 Ⅱ.状态空间分析法的浅析 所谓状态空间,是以状态变量12,n X X X ??????为轴所构成的n 维向量空间,该空间中的变量则表示系统内部的状态变量。这样,系统的任意状态都可以由状态空间中的一个点来表示;选取适当的状态变量来描述系统运动状态的过程,称为状态空间分析法,状态空间分析法的实质只不过将系统的运动方程写成一阶微分方程组,每一个状态变量对应微分方程组的系数,分析系统的过程即为分析微分方程系数矩阵的过程。状态空间分析法有如下优点:其一.适用面广,适用于线性、时变、非线性、随机、采样等各种各样的系统;其二.简化描述,便于随机处理,可将一阶微分方程写成矩阵微分方程,因而简化数学符号,方便推导,并且很适用于计算机处理;其三.内部描述,不仅表明I-O 关系,通过观察系数矩阵的关系还揭示了系统内部有关变量之间的耦合关系及初始条件同输出的关系;其四.有助于采用现代化的控制方法,例如自适应控制、最优控制等等。 正由于状态空间分析法有以上诸多优点,使得现代控制理论得到了广泛的应用,尤其在空间技术方面获得极大的成功,并且还在不断发展与优化;但是其仍有如下不足:其一.模型不直观,几何意义不明显,不像经典控制理论那样,能用Bode 图及根轨迹进行直观的描述,对于简单的问题显得有点繁琐;其二.对数学模型要求很高,而在实际工程中往往很难获得高精度的模型,这使其存在一定的局限性;但是仍然不能限制其应用,状态空间分析法在工业、化工、建筑、医药等各方面都有着广泛的应用;由于篇幅有限,下面就以在工业应用上的汽车ABS 建模仿真的实例来阐述其应用。 由汽车ABS 的单轮模型分别对车辆和车轮进行运动学分析,可得: 车辆运动方程:xb dv m F dt =(1) 车轮运动方程:xb d I F r T dt ωμ=-(2) 地面制动方程:xb s z F F ?=(3)

第三章 知识得状态空间表示法

第三章知识得状态空间表示法 1 课前思考: 人类得思维过程,可以瞧作就是一个搜索得过程。 某个方案所用得步骤就是否最少?也就就是说它就是最优得吗?如果不就是,如何才能找到最优得方案?在计算机上又如何实现这样得搜索?这些问题实际上就就是本章我们要介绍得搜索问题。 2 学习目标: 掌握回溯搜索算法、深度优先搜索算法、宽度优先搜索算法与A搜索算法,对典型问题,掌握启发式函数得定义方法。 3 学习指南: 了解算法得每一个过程与细节问题,掌握一些重要得定理与结论,在有条件得情况下,程序实现每一个算法,求解一些典型得问题。 4 难重点: 回溯搜索算法、算法及其性质、改进得A*算法。 5 知识点: 本章所要得讨论得问题如下: 有哪些常用得搜索算法。

问题有解时能否找到解。 找到得解就是最佳得吗? 什么情况下可以找到最佳解? 求解得效率如何。 3、1 状态空间表示知识 一、状态空间表示知识要点 1.状态 状态(State)用于描述叙述性知识得一组变量或数组,也可以说成就是描述问题求解过程中任意时刻得数据结构。通常表示成: Q={q1,q2,……,qn} 当给每一个分量以确定得值时,就得到一个具体得状态,每一个状态都就是一个结点(节点)。实际上任何一种类型得数据结构都可以用来描述状态,只要它有利于问题求解,就可以选用。 2.操作(规则或算符) 操作(Operator)就是把问题从一种状态变成为另一种状态得手段。当对一个问题状态使用某个可用操作时,它将引起该状态中某一些分量发生变化,从而使问题由一个具体状态变成另一个具体状态。操作可以就是一个机械步骤、一个运算、一条规则或一个过程。操作可理解为状态集合上得一个函数,它描述了状态之间得关系。通常可表示为: F={ f1 , f2,……… fm} 3.状态空间 状态空间(State Space)就是由问题得全部及一切可用算符(操作)所构成得集合称为问题得状态空间。用三元组表示为: ({Qs},{F},{Qg}) Qs:初始状态,Qg:目标状态,F:操作(或规则)。 4.状态空间(转换)图 状态空间也可以用一个赋值得有向图来表示,该有向图称为状态空间图,在状态空间图中包含了操作与状态之间得转换关系,节点表示问题得状态,有向边表示操作。 二、状态图搜索

状态空间法

状态空间法 对于下列的单自由度系统,其相关参数如下: 1kg m =,100N/m k =,0.2N.s/m c = 系统的运动方程: [M]X +[C]X +[K]X =[P] 对于单自由度系统,其运动方程为: mx cx kx p ++= 0.2100x x x p ++= 对于多自由度系统,其状态空间方程为: x =Ax +Bu y =Cx +Du 式中,A —状态矩阵; B —输入形状矩阵; C —输出形状矩阵; 其具体表达式如下: -1-122-n n ???=????0I A -[M][K][M][C] -12n n ???=????0B -[M] []2n n ?=C I 0 []n n ?=D 0 对于上述单自由度系统,其状态矩阵为: 011000.2x x x x ??????=??????--?????? 011000.2??=??--?? A 求解状态矩阵的特征值与特征向量:

0λ-=A I {}{}φλφ=A 得到的特征值为: 10.110j λ≈-+,20.110j λ≈-- 11{}0.110j φ??=??-+??,21{}0.110j φ??=??--?? 同时可以看出: {}{}(2)1 1(1)1 =0.110j φλφ=-+,{}{}(2)22(1)2=0.110j φλφ=-- 取虚部为正的特征值求系统的特征参数。 系统的固有频率: 110/n rad s ωλ===≈ 阻尼比: 11Re() 0.01λξλ-==≈ 根据其阵型图可以看出,其位于左半平面(即负半平面),因此系统是稳定的。系统阻尼是正值,阻尼起到耗能效果;若阻尼为负值,将位于右半平面,系统将变得不稳定,此时阻尼起到吸收能量的作用。

考研必备之自动化专业自控原理第九章状态空间分析法答案-计算题

9.3.5 计算和证明题 9.3.5.1 已知机械系统如图9-7所示,21,m m 为质量块,1m 受外力)(t F 作用。弹簧的弹性系数如图示,如不计摩擦,自选一定数目的状态变量,建立系统的状态空间描述。 图9-7 题9.3.5.1图 提示:设中间变量质量块1m 的位移为z ,根据牛顿定律有 z m y z k t F 11)()( ① 同理对质量块2m 有 y m y k y z k 221)( ② 设状态变量 z x 1 12x z x y x 3 34x y x 由式① 1 3111112) (m t F x m k x m k z x 由式② 32 211214x m k k x m k y x 因此有 )(00100010 0000 00 1 1432 12 2 1 2 11 1 1143 2 1t F m x x x x m k k m k m k m k x x x x 43210100x x x x y 9.3.5.2 已知系统结构图如图9-8所示。试写出系统的状态方程和输出方程(要求写成矢量形式)。 y 图 9-8 题9.3.5.2图 提示: x y u x x 01101212

9.3.5.3 已知系统的微分方程,试建立其相应的状态空间描述,并画出相应的状态结构图。 (1)u u u y y y y 86375 (2)u u u y y y y 23375 提示:(1) x u x x 168100573100010 y ,状态结构图略 (2) u x u x x 541 10057310 001 y ,状态结构图略。 9.3.5.4判断下列矩阵是否满足状态转移矩阵的条件,如果满足,试求与之对应的A 阵。 (1) t t t t t sin cos 0cos sin 0001)(Φ (2) t t e e t 220 )1(2 11)(Φ 提示:(1)不是状态转移矩阵,因为I )0(Φ。 (2)是。 2010) (0 t t A Φ 9.3.5.5 线性系统u x x 101000 , 11)0(x ,在单位阶跃输入时系统的响应x (t)。 提示: t e t 001)(Φ, )(t x d e e t t t )(110001110010 121t e 9.3.5.6 已知状态空间描述为 x y u x x 02102010 ,试求: (1)根据状态空间描述画出系统状态结构图; (2)判断系统的能控性和能观测性; (3)求系统的传递函数; (4)求系统状态转移矩阵; (5)求该系统的特征方程。 提示:(1)状态结构图略(2)能控且能观测 (3) b A I c 1 )()(s s G ) 2(2 s s (4) t t e e t 220)1(2 11 )(Φ (5)022 s s s A I

相关文档
相关文档 最新文档