文档库 最新最全的文档下载
当前位置:文档库 › 关于遗传基因的

关于遗传基因的

关于遗传基因的
关于遗传基因的

血液是遗传物质吗?

“这小女孩像她爸。”“这小男孩和他妈像是一个模子印出来的。”“这孩子眼睛像他爸,可嘴像他妈。”常逛公园,或多去街头巷尾走走,这样的议论总在耳边。逗逗孩子是老人们的生活乐趣之一,而初为人父母,那份新鲜和幸福感也是值得铭记的人生体验。做父母的总是或多或少把自己的特征带到了下一代,这就是生物界遗传的概念。一母生九子,九子各不同,双胞胎也没有完全一模一样的。那么,是什么在控制着遗传的不同呢?

细胞是生命个体最小的结构单元,雄性的精子和雌性的卵细胞结合形成的受精卵是一个新的生命个体发育的开始。由此我们可以肯定,在雄性的精子和雌性的卵细胞,也就是生殖细胞中,藏着我们所要寻找的物质——遗传物质。正是生殖细胞中的遗传物质导致了子代与亲代的相似,在生物的亲代与子代之间搭起了物质传递的桥梁。当然,遗传物质并不仅仅在生殖细胞中存在,体细胞中也存在有遗传物质。

精子和卵细胞中的遗传物质是什么?

在古代,劳动人民已经在不自觉地利用生物子代与亲代之间遗传的关系来进行农作物的育种,也有一些学者对遗传现象进行了思辩式的探讨。许多学者认为,作为生殖物质的精液来源于血液。如古希腊的希波克拉底(Hippocrates,公元前460-377)、阿那克萨哥拉(Anaxagoras,公元前500-428)、德谟克利特(Democritus,公元前460-370)和亚里士多德(Aristotle,公元前384-322)等学者。直到今天,人们仍然用“血缘关系”来指亲缘关系,也有“血脉相连”“血浓于水”等说法。

1876年,达尔文的表弟高尔顿(F·Galton,1822-1911)进行了兔子的输血实验,但输血的结果并没有把一只兔子的遗传性状传给另一只兔子。这说明,血液并非遗传物质。血液虽然给精子和卵细胞的发育提供营养,但精子和卵细胞中的遗传物质却并不是从血液中来的。

遗传学作为一门独立的学科,对它的精确研究,即现代遗传学,是从孟德尔(G·Mendel,1822-1884)开始的。

孟德尔生平

孟德尔(Groegor Mendel,1822-1884)出生于捷克摩拉维亚(当时属奥地利)的一个农民家庭,从小就在家里帮助父亲嫁接果树,在学习上已经表现出非凡的才能。1844-18 48年,孟德尔在布隆大学哲学院学习神学,曾选修迪博尔(Diebl,1770-1859)讲授的农学、果树学和葡萄栽培学等课程。1848年在维也纳大学期间,孟德尔先后师从著名物理学家多普勒(C·Doppler,1803-1853)、物理学家埃汀豪生(A·Ettinghausen)和植物生理学家翁格尔(F·Unger,1800-1870),这三个人对他的科学思想无疑产生了很大影响。当时大多数科学家所惯用的方法是培根式的归纳法,而多普勒则主张,先对自然现象进行分析,从分析中提出设想,然后通过实验来进行证实或否决。埃汀豪生是一位成功地应用数学分析来研究物理现象的科学家,孟德尔曾对他的大作《组合分析》仔细拜读。孟德尔后来做豌豆实验,能坚持正确的指导思想,成功地将数学统计方法用于杂种后代的分析,与这两位杰出

物理学家不无关系。翁格尔当时正从事进化学说的研究,他认为研究变异是解决物种起源问题的关键,并且用这种观点去启发他的学生孟德尔。通过翁格尔,孟德尔了解了盖尔特纳的杂交工作。盖尔特纳是一位经济富裕的科学家,他能不受拘束地在自己的花园内实施有性杂交的宏伟计划,曾用80个属700个种的植物,进行了万余项的独立实验,从中产生了258个不同的杂交类型,这些成果都记录在1849年出版的盖尔特纳的著作《植物杂交的实验与观察》中,虽然这本书写得既单调又重复,但涉及的范围很广,包含着一些极有价值的观察结果。达尔文和孟德尔都曾仔细地读过这本书。孟德尔读过的书至今还保存在捷克布隆的孟德尔纪念馆内,书中遍布记号和批注,有的内容正是以后孟德尔的实验计划里的组成部分。由此可见,一个伟大的科学思想的形成绝非偶然。

1854年以后,在布隆修道院做神甫的孟德尔同时还在布隆国立德文高级中学代课,讲授物理学和博物学,为时长达14年之久。在此期间他完成了著名的豌豆实验,并成为摩拉维亚农业协会自然科学分会的会员。1867年,布隆修道院老院长纳普(Napp)去世,孟德尔继任。从此,孟德尔为宗教职务所累,告别了教学和研究工作,直至1884年去世。

孟德尔定律

孟德尔的豌豆实验是从1855年开始的。从孟德尔的原始论文来看,他的实验目的很明确,就是通过植物杂交来探索生物的遗传规律。他用了34个豌豆品种,花了两年时间检验它们的纯种性,从中挑选出22个品种。经过仔细观察,在这22个品种中,他又选出7对具有明显差异性状的品种。然后,孟德尔针对这7对相对性状,一对一对地进行杂交和后代分析工作,这7对相对性状分别是:种子形状、种子颜色、种皮颜色、豆荚形状、豆荚颜色、花的位置、茎的高度。

孟德尔发现,每对杂交的子一代都表现显性性状,但子一代自花授粉产生的子二代就发生显性性状与隐性性状的分离,而且显性类型数目与隐性类型数目都接近3:1。

由此,孟德尔提出颗粒性遗传因子的概念,并推论遗传因子在生物的体细胞中成对存在,体细胞形成生殖细胞时,成对的遗传因子发生分离,分别进入不同的生殖细胞中。这就是我们今天所说的遗传分离规律或孟德尔第一定律。杂交子一代产生的生殖细胞随机两两结合的结果,便导致了子二代性状呈3:1的分离。

孟德尔所说的遗传因子具有颗粒性与独立性,不同的遗传因子在细胞中并不相互融合,形成生殖细胞时成对的遗传因子会相互分离。这种颗粒性遗传思想,使人们摒弃了以前长期流传的融合式遗传概念,这是孟德尔在科学思想史上的一项重大贡献。

孟德尔从3:1这样简单的整数比得到遗传因子具有颗粒性的概念。这种从整数比到颗粒性的逻辑推理,很可能受到过英国化学家道尔顿(J·Dalton,1766-1844)的思想影响。18 07年,道尔顿发现化学中的倍比定律,即两种元素化合成多种化合物时,与定量甲元素化合的乙元素,其质量成简单的整数比,由此道尔顿推论元素由微观颗粒——原子组成的思想,并认为分子由原子组成,得出著名的“原子-分子论”。

在孟德尔之后,1900年,德国物理学家普朗克(M·Planck,1858-1947)提出,只有当振子能量为某一常量的整数倍时,黑体辐射理论中的种种困难才能消除,从而推论微观形

式的能量以颗粒性方式(量子)存在,创立量子论。这也是一个由整数比到颗粒性的逻辑推理的著名例子。

在揭示了一对相对性状的遗传规律(分离规律)之后,孟德尔就进一步研究两对相对性状的遗传。孟德尔发现,具有两对不同相对性状的亲本豌豆杂交所得的子一代,两对相对性状都只表现显性性状,但在子一代自交所得的子二代中,出现了4种不同类型,其中两种是两个亲本分别具有的性状组合,另外,还出现了不同于亲本的两种重新组合。孟德尔由此推论,在体细胞形成生殖细胞时,不同对的遗传因子可以自由组合。这就是我们今天所说的遗传的自由组合规律或孟德尔第二定律。

孟德尔为什么会取得成功?

孟德尔之所以能发现遗传因子的分离规律和自由组合规律,其成功的原因有:

(1)选择了适合的实验材料——豌豆。豌豆的一些品种具有好些易于区分的相对性状,如种子的圆形与皱缩、植株的高茎与矮茎等等。以豌豆作为杂交实验材料,还有一个显著的优点:豌豆是自花授粉植物,而且是闭花授粉(花在尚未开放时已完成了授粉),能避免外来花粉混杂。因此,用豌豆作为杂交实验材料,结果既可你好又容易分析。豌豆能产生较多的种子,便于收集数据进行分析。豌豆易于栽培,生长期短,也是豌豆作为实验材料的优点。

(2)首先只研究一对性状,尽可能使问题简化,得到结果和结论后,再从简单到复杂,研究两对性状到多对性状。

(3)孟德尔把数学统计方法应用到遗传分析中。观察群体,将数学统计方法用于遗传分析是孟德尔的首创。这也是数学在生物学领域里的第一次突破。数学统计方法的应用,使实验结果能定量而准确地揭示本质。所以说,孟德尔对人类的贡献,不仅仅局限于遗传学领域,还表现在科学思想的方法论上。可以这样说,任何一个领域里的开创性人物,都必然是一位超越该领域的思想家,因为只有在方法论上出现突破,才能在旧领域上开拓新领域。孟德尔之后,遗传学领域里的重大成就中,有好几个都是与数学方法的成功应用有关。摩尔根发现遗传的连锁规律,几乎是直接继承了孟德尔的方法。

孟德尔揭示遗传规律的过程表明,在科学研究中取得成功,不仅需要有坚强的意志和持之以恒的探索精神,还需要有严谨求实的科学态度和正确的研究方法。

孟德尔学说又为什么被遗忘?

孟德尔的文章阐述得很清楚,他的理论也简明易懂(但请注意,这是针对今人的认识水平而言),而在当时也迫切需要这样一个理论,但为什么他的工作曾被完全忽视,以致被埋没了35年呢?究其原因可能是:

(1)孟德尔“生不逢时”。他所处的时代正是达尔文进化理论问世的时代。被恩格斯誉为19世纪三大发现之一的进化论在知识界几乎人所共知,达尔文也就成了整个生物学界的中心人物,他的光芒太强烈了,以致掩盖了孟德尔这样一个默默无闻的小人物。可以想象,在人们心目中,一个乡村修道院里的神甫难道还能有什么惊人的科学发现吗?

(2)马太效应。达尔文的巨大成就是他的进化学说,他在遗传学领域应该不能算权威。然而,他也有自己的遗传理论,即泛生学说。当时,融合遗传、获得性遗传较容易为生物学家们接受,这固然是泛生学说能占据大多数学者头脑的重要原因。然而,达尔文的提倡也许起着决定性作用。因为,人们不仅把达尔文看成是进化论领域的权威,也把他看成是生物学界的泰斗。既然他的进化学说如此辉煌,那么,他的遗传理论也不会逊色。这样就把本来不属于达尔文的荣耀也加在达尔文头上了。相反,对于没有得到过荣耀的孟德尔来说,本应属于他的也被剥夺了。

(3)对自己研究成果的意义认识不足。孟德尔一生做了不少的实验,但发表的论文却屈指可数,而涉及其成果的论文只有唯一的一篇。其实,孟德尔还曾用紫罗兰、玉米及紫茉莉等做过杂交实验,并进一步证实了他在豌豆实验中得到的结果。这些本来都可以作为系列文章发表,然而他却隐而不发,以致我们只能从他给耐格里的信中发现这一事实。一项成果要想得到别人的承认,作者往往需要反复强调、广征博引、大力宣传,才能如愿,孟德尔却从未这样理直气壮过。在遭到耐格里冷遇之后,他甚至没有和其他的植物学家或杂交研究者联系、交流,也没有给国际或国内的会议投寄论文。也许,在孟德尔看来,没有新发现而仅仅是重复原结论的工作,哪怕所用的实验材料不同,也都是没有发表价值的吧。不知道孟德尔为什么没有想到,用不同实验材料重复实验而得到同样的结论,这不更证明该结论的正确性和普遍性吗?

孟德尔在他的论文中没有任何突出的理论,所谓“孟德尔第一定律”、“孟德尔第二定律”,都是后人给加上的。其大量篇幅给人的感觉是:比例和数字、“纯粹的事实”。因此,人们在读孟德尔的论文时,往往看不懂他要表达什么意思,当然就更无法理解这些“意思”的重大意义了。

(4)由于数学统计方法首次引入生物学中。孟德尔以前的生物学完全是一门描述性的科学,生物学家们根本想不到数学会与生物学有联系,也搞不懂统计数学对揭示生物学规律有什么帮助。这就是当时生物学家们的思想方法,不管今天在我们看来这是多么幼稚,然而历史的事实就是这样。一位捷克学者的亲身经历就生动地说明了这一事实。捷克学者伊尔蒂斯(H·Iltis)回忆说,为了研灸愫闷学史他曾读过布隆协会的所有旧会刊。1899年,他发现了孟德尔的论文,并激动地拿给他的导师看,可这位有学问的教授说,“呵!这篇论文我知道,它无关紧要。除了数字和比例,比例和数字外,一无它物。它是纯粹毕达哥拉斯式的东西。不要为它浪费时间,把它忘了吧!”

孟德尔在临死前几个月曾说过一句令人心酸的话:“……我深信,全世界承认这项工作成果之时已为期不远了。”虽说不远,其实也不近。从孟德尔讲这句话,到他的工作完全被学术界承认,又过了16年,而距他的论文发表之时已经长达35年!

孟德尔定律的重新发现

直到1900年,孟德尔及其伟大成就才被重新发现。这一年,也是物理学中的“量子理论”诞生的一年。这似乎表明,接受遗传学中颗粒学说的时机已经成熟。事实上,在生物学领域,已有很多人想到了这种学说,以至于同时有三位著名学者发现了孟德尔及其创立的颗粒遗传学说。他们是荷兰的德弗里斯(H·deVriss,1848-1935年)、德国的科伦斯(C·Co

rrens,1864-1935年)和奥地利的丘歇玛克(E·Tschermak,1871-1962年)。

德弗里斯虽然是荷兰人,但他接受教育和训练却是在德国。早年德弗里斯着迷于生理学实验,1892年才正式转入植物杂交实验。他曾用麦瓶草、罂粟和月见草为材料。将麦瓶草的有毛变种与光滑变种杂交,他得到536株子二代植株,其中392株是有毛的,144株是光滑的。在花瓣带黑点与花瓣带白点的罂粟杂交中,子二代两者的株数则分别是158株和4 3株。这两个实验的数据分别为2.72∶1和3.67∶1,可以说德弗里斯是完全独立地发现了显性现象和分离定律的人。这些工作完成于1896年,到1899年时,他已在30多个不同物种和变种的实验中证实了这些现象。然而,就在这个时候他读到了孟德尔的论文,才发觉自己辛辛苦苦干了七八年的研究,原来别人早已有结论。他有些愤愤不平,认为他的工作无论是实验广度,还是理论深度,都比孟德尔的工作更有意义。他于1900年3月,在几个星期之内提交了三篇论文,其中两篇寄给了巴黎科学院,一篇寄给了德国植物学会,都在4

月份发表了。

科伦斯是耐格里的学生和外甥女婿,他是否早就从耐格里那里知道了孟德尔,连史学家们也不敢妄下结论。据科伦斯自己回忆,他是在进行豌豆杂交工作4年后,在一个难以入睡的夜晚“闪电”似地想到3∶1这个比例的。后来他通过福克的著作才知道他的想法与孟德尔的不谋而合。1900年4月21日,他又收到了德弗里斯关于杂交工作的单行本。这时他觉得必须马上把自己的工作公布于众了。于是,立即将论文投寄德国植物学会,并于1900年5月发表。科伦斯要谦虚一些,虽然他认为自己是一个创新者,但他从未认为自己对发现遗传学基本定律有优先权。他认为优先权应属于孟德尔。

丘歇玛克也是做的豌豆实验,发现了子叶黄色与子叶绿色、种子圆形与种子皱缩的3∶1现象。同时,他还观察到子一代子叶黄色杂种与亲代子叶绿色植株回交时,能得到1∶1比例。之后,他也是通过福克的著作知道了孟德尔,并为孟德尔工作的广泛和深入感到吃惊。丘歇玛克参考孟德尔的工作完成了他的论文,并于1900年1月17日交给了维也纳农学院杂志的出版者。在发表这篇论文时,他的杂交工作只进行了两代,还不可能证明子二代中呈显性的个体有两种基因型,也不能证明呈隐性的个体是纯种。所以,有人认为,把丘歇玛克算作孟德尔定律(而不是孟德尔论文)的再发现者有点勉强。然而,不管史学家们如何评论,丘歇玛克也一定是自己先有了与孟德尔同样的设想,然后才在孟德尔论文的启发下产生飞跃的。如果没有孟德尔定律,只不过时间上会稍许延迟一点而已。

自从1900年孟德尔定律被重新发现以后,孟德尔的名字很快就传遍了欧美,其传播速度真有点出人意料。1906年,洛克(R·H·Lock)出版了《变异、遗传和进化研究中的新进展》。1909年,贝特森(W·Bateson,1861-1926年)写的教科书《遗传的孟德尔原理》发行。这两本书都反映了作者们对孟德尔遗传学的理解已相当成熟。遗传学有如此迅速的进步,除了说明新理论很有吸引力,致使生物学界进行多项实验以检验其理论的正确性以外,也说明了35年后社会已完全消化了孟德尔的学说。由于这35年时间里细胞学研究的巨大成就,使得细胞学成果与孟德尔学说的结合水到渠成,于是,孟德尔定律就更直观,基础也更扎实了。

给遗传学取名字的贝特森

1906年,在英国伦敦召开第3届杂交与植物育种国际会议,大会主席贝特森(W·Bat

eson,1861-1926)提出“遗传学”(geneties)这个学科的正式名称。闭幕时该次大会被称为“第3届国际遗传学大会”。而1899年在英国伦敦召开的植物杂交工作国际会议,则被“追认”为首届国际遗传学大会;1902年在美国纽约召开的植物杂交工作会议则被“追认”为第2届国际遗传学大会。

1901年,贝特森率先把孟德尔的论文《植物杂交实验》从德文译为英文,并加以评注刊登在英国皇家园艺学会的杂志上。正是这篇译文,使孟德尔学说引起英语国家的注意,进而在世界各地产生巨大的反响。

1908年,贝特森被剑桥大学聘任为首任遗传学教授,以他为中心,形成了剑桥遗传学派,使遗传学首先在英国得到发展。1909年,贝特森出版《孟德尔的遗传原理》一书,对遗传学的发展起了很大的促进作用。1910年,贝特森担任约翰·英尼斯园艺学院院长,并被选举为约翰·英尼斯园艺学会会长。由于贝特森的努力,约翰·英尼斯园艺学院和学会成为英国的遗传学研究中心。

谁给基因取名字?

在孟德尔的原始论文中,遗传因子与遗传性状常有混淆。1909年,丹麦遗传学家约翰森(W·L·Johannsen,1857-1927)提出一个新的术语——基因,用来取代孟德尔概念不十分清晰的遗传因子,把遗传因子与遗传性状严格区分开来。

在此基础上,约翰又提出基因型(gentype)和表现型(phenotype)的概念。基因型是指生物的遗传基础,即基因的组合;表现型(简称表型)则是生物表现出来的性状。表现型是基因型与环境共同作用的结果。1903年,约翰森还曾提出遗传的“纯系学说”。

孟德尔学说在中国的传播

1900年孟德尔定律在欧洲被重新发现。13年之后的1913年,我国的《进步杂志》在译载的“生命之解谜”一文中,用了专门的一章,共17页的篇幅,讲述遗传问题,着重介绍了孟德尔学说及其意义。同年,上海广学会出版的译著《格致概论》中,也介绍了孟德尔定律。这是孟德尔学说在中国传播之肇始。次年,周建人发表的文章“遗传说”,《东方杂志》连载的“宇宙连续论”、“最近生物学之进步”、“遗传进化说之应用于农艺”等文中,都介绍了孟德尔及其遗传学说。1915年,我国最早的综合性科技刊物《科学》,在创刊号上刊载了我国第一代生物学家秉志的“生物学概论”、钱崇澍的“天演论新义”、过探先的“植物选种论”等多篇文章,介绍孟德尔的遗传实验及其重大发现,自此以后,孟德尔学说即在我国广为传播。

在实验研究方面,1923年陈桢开始根据孟德尔学说对金鱼的遗传、起源和演化方面进行系统研究。冯肇传发表论文“玉蜀黍遗传的形质耀光叶”。以后我国陆续有孟德尔遗传方面的研究工作发表,对遗传学的发展作出了贡献。这中间特别值得提及的是上世纪30-40年代谈家桢发现异色瓢翅斑的镶嵌显性遗传现象,并发现决定鞘翅色斑的等位基因多达19个,被国际遗传学界公认丰富和发展了孟德尔遗传学说。

遗传病的特点和种类

遗传病的特点和种类 遗传性疾病是由于遗传物质改变而造成的疾病。 遗传病具有先天性、家族性、终身性、遗传性的特点。 遗传病的种类大致可分为三类: 一、单基因病。 单基因常常表现出功能性的改变,不能造出某种蛋白质,代谢功能紊乱,形成代谢性遗传病。单基因病又分为三种: 1.显性遗传:父母一方有显性基因,一经传给下代就能发病,即有发病的代代,必然有发病的子代,而且世代相传,如多指,并指,原发性青光眼等。 2.隐生遗传:如先天性聋哑,高度近视,白化病等,之所以称隐性遗传病,是因为患儿的双亲外表往往正常,但都是致病基因的携带者。 3.性链锁遗传又称伴性遗传发病与性别有关,如血友病,其母亲是致病基因携带者。又如红绿色盲是一种交叉遗传儿子发病是来自母亲,是致病基因携带者,而女儿发病是由父亲而来,但男性的发病率要比女性高得多。 二、多基因遗传:是由多种基因变化影响引起,是基因与性状的关系,人的性状如身长、体型、智力、肤色和血压等均为多基因遗传,还有唇裂、腭裂也是多基因遗传。此外多基因遗传受环境因素的影响较大,如哮喘病、精神分裂症等。 三、染色体异常:由于染色体数目异常或排列位置异常等产生;最常见的如先天愚型,这种孩子面部愚钝,智力低下,两眼距离宽、斜视、伸舌样痴呆、通贯手、并常合并先天性心脏病。 常见遗传病总结 常染色体显性遗传 软骨发育不全上臂、大腿短小畸形,腹部隆起;臀部后凸;身材矮小致病基因导致长骨两端软骨细胞形成出现障碍 常染色体隐性遗传 白化病患者皮肤、毛发、虹膜中缺乏黑色素,怕光,视力较差缺乏酪氨酸的正常基因,无法将酪氨酸转变成黑色素 先天性聋哑听不到声音,不能学说话,成为哑巴缺乏听觉正常的基因,听觉发育障碍 苯丙酮尿症智力低下缺乏苯丙氨酸羟化酶的正常基因,苯丙氨酸不能转化成酪氨酸而不能变成苯丙酮酸,中枢神经受损 X染色体显性遗传

第四节基因是有遗传效应的DNA片段练习答案

一、选择题 1.下列有关染色体、DNA、基因、脱氧核苷酸的说法,不正确的是 A.一个基因含有许多个脱氧核苷酸,细胞中的嘌呤碱基与嘧啶碱基数量不一定相等 B.基因是具有遗传效应的DNA片段,一个DNA分子上可含有成百上千个基因,基因型相同的个体其表现型也不一定相同 C.染色体是DNA的主要载体,G和C含量较多的DNA分子更难以解旋 D.在DNA分子结构中,与脱氧核糖直接相连的一般是一个磷酸基和一个碱基 【分析】 本题是对DNA的结构及染色体、DNA、基因、脱氧核苷酸的关系的考查,梳理有关染色体、DNA、基因、脱氧核苷酸的关系和DNA的结构,即可解答本题。 【详解】 基因的基本组成单位是脱氧核苷酸,一个基因含有许多个脱氧核苷酸。细胞中的核酸包括DNA和RNA,DNA为双链,嘌呤碱基与嘧啶碱基配对,嘌呤碱基与嘧啶碱基数量相等,RNA通常为单链结构,嘌呤碱基与嘧啶碱基数量不一定相等,A正确;基因是具有遗传效应的DNA片段,一个DNA分子上可有多个基因,表现型是基因型与环境共同作用的结果,基因型相同的个体其表现型也不一定相同,B正确;DNA主要存在于细胞核中的染色体上,所以染色体是DNA的主要载体,DNA分子中氢键越多,结构越稳定,A、T碱基对之间具有两个氢键,C、G碱基对之间有三个氢键,G和C含量较多的DNA分子更稳定,更难以解旋,C正确;在DNA分子结构中,与脱氧核糖直接相连的一般是两个磷酸和一个碱基,D错误;故选D。 2.下列关于基因的叙述,完全正确的一组是 ①基因是控制生物性状的遗传物质的基本单位 ②烟草花叶病毒的基因是有遗传效应的RNA片段 ③真核生物基因的载体包括线粒体、叶绿体和染色体 ④生物的遗传信息是指基因中的碱基序列 A.①②④B.②③④C.①③④D.①②③④ 【分析】 本题考查基因的概念,但教材概念是针对大多数生物而言,本题需要根据具体生物具体分析,考查考生的迁移运用能力。 【详解】

关于几种常见的多基因遗传病

关于几种常见的多基因遗传病 发表时间:2012-03-09T15:26:16.310Z 来源:《现代教育教学导刊》2012年第1期供稿作者:吕继红[导读] 基因多态性是指基因的某些位点可以发生中性改变,使DNA 的一级结构各不相同,但并不影响基因的表达,形成多态。中央民族大学附属中学吕继红 传统的疾病诊断,是以疾病或病原体的表型改变为依据的表型诊断。由于疾病的表型改变往往出现较晚,当表型改变出现时,基因型的改变早已出现。因此,只针对表现型的诊断,容易错过治疗的最佳时期。大量遗传学与分子生物学的研究表明,除外伤外,人类疾病几乎都与基因相关。和基因相关的疾病大致可分为三类:单基因病(由一个基因位点突变引起),多基因病(遗传信息通过两对以上致病基因的累积效应所致的遗传病,其遗传效应较多地受环境因素的影响。与单基因遗传病相比,多基因遗传病不是只由遗传因素决定,而是遗传因素与环境因素共同起作用),获得性基因病(由病原微生物感染引起的感染性疾病)。我们经常提到的常见疾病即为其中的多基因病,它具有明显的遗传异质性、表型复杂性及种族差异性等特征。 基因多态性是指基因的某些位点可以发生中性改变,使DNA 的一级结构各不相同,但并不影响基因的表达,形成多态。基因的多态性可以看作是在分子水平上的个体区别的遗传标志,有很多表现的方式:最常见的是单核苷酸多态性(SNP),还有短片段重复序列、插入和缺失多态性等。与稀有和高外显率的致病性突变不同,SNP 广泛存在于人群中,是广义上基因点突变,其发生率在1%以上。易感基因的特点是基因变异本身,并不直接导致疾病的发生,而只造成集体患病的潜在危险性增加,一旦外界有因素介入,即可导致疾病发生。多基因病属高发疾病,严重影响着人类的健康。常见的多基因病及其诱发基因:其一,精神分裂症。精神分裂症是一种严重的精神疾病,全世界约有1%的人患有这种疾病。表现为患者认知能力的障碍和大脑异常。目前认为,精神分裂症是一种多基因遗传病。经典的连锁分析和候选基因关联分析及最近的全基因组扫描,发现可能的精神分裂症易感基因主要包括:COMT,NRGI,DTNBP1,DISCI,G72,DAAO,RGS4 等;对患者死后脑组织的分子水平研究也发现一些易感基因:DLX1,REELIN,SEMAPHORIN3A 等。通过对精神分裂症患者和正常人的脑容量比较发现,精神分裂症患者的脑容量较小。一些研究中也发现,与大脑容量相关的易感基因GULP1 与精神分裂症也相关,人的GULP1 基因位于2 号染色体上。研究表明,GULP1 基因的两个单核苷酸多肽位点(SNP)rs2004888 和rs4522565 都显著的与精神分裂症有关。 其二,心血管疾病。冠状动脉硬化性心脏病(简称冠心病)是由遗传和环境因素共同所致的复杂疾病,许多研究表明血管紧张素转换酶(ACE)基因、血管紧张素原(AGT)基因及内皮型一氧化氮合酶(eNOS)基因多态性与基因型表达的冠心病相关。急性心肌梗死(AMI)也被证明是与环境相关的多基因病,其家族史被认为是一个独立的危险因素。随着近年来对基因组学和分子生物学的发展,确定了一系列的AMI易感基因及相关单核苷酸多肽(SNP)位点。除上述致冠心病的易感基因外,还包括与男性AMI 相关的CX37 基因的C1019T 及AT1R 基因A1166C。原发性高血压(EHT)也是由遗传易感性和环境因素共同决定的疾病,研究表明,AGT235M,ACEALUD 和ApoBXall 被证明与中国汉族人群原发性高血压有关。 其三,唇腭裂。唇腭裂是一种常见的先天畸形,发生率为0.1豫耀0.2豫。在不同人群中有15%耀20%的家族史,因此遗传因素被认为在唇腭裂的病因学中占重要地位。不同的人特定区域如1q,2p,4p,6p,14q,17q,19q 均发现与唇腭裂的发病相关的基因位点。在我国,非综合征型唇腭裂发病率较高。非综合征型唇裂伴或不伴腭裂指不伴发其它系统畸形的不属于任何综合征的唇裂、唇裂合并腭裂的总称,这是一种常见的颌面部先天畸形。已确定的非综合征型唇腭裂易感基因包括:定位于1p36.3,编码5,10原亚甲基四氢叶酸还原酶基因MTH-FR;定位于2p13,编码多肽类生长因子的基因TG原F琢;定位于1q32原1q41,编码蛋白质与DNA 结合域的干扰素调节因子IRF6;定位于4p16 的同源异型盒基因MSX1;定位于11q23 的脊髓灰质炎受体相关基因PVRL1 等。 其四,瘢痕疙瘩家系。瘢痕疙瘩是人类特有的一种创伤后病理性瘢痕愈合现象,其发病的主要因素,其遗传模式为常染色体显性遗传伴外显不完全,且瘢痕疙瘩的发病存在显著的种族差异。对日本家系和非洲裔美国人家系的易感基因定位研究,确定其易感基因位点分别与染色体2q23 和7p11存在连锁关系。 其五,新生儿聋病。耳聋是环境和遗传因素引起的常见疾病,新生儿严重听力受损的发生率约为0.1豫,其中约60豫的耳聋患者是遗传性的。听力损失相关基因具有明显的异质性,在不同种族人群中,极重度非综合征型听力损失患者,单纯由GJB2 基因突变导致的听力损失高达30% 耀50%。线粒体12SrRNA1555G,1494T 以及SLC26A4 基因的突变患者在出生之时未必表现出听力损失,而是在接触药物和头部震荡外伤后出现听力损失。可以通过家系分析,给予家系中高位人群预警,也能避免聋病患者的出现。也可以通过婚前遗传学咨询的产前咨询、检测,避免耳聋基因的继续下传。 其六,域型糖尿病。20 世纪90 年代,采用定位克隆策略发现了一些符合孟德尔遗传模式的糖尿病。但II 型糖尿病与之有所不同,属于复杂的多基因遗传病,基因突变、环境因素、个体易感性这三者共同作用最终导致了疾病的发生,其中单个基因的突变只对疾病的发生起最小的作用。近年来,全基因组关联研究和数以万计的病例对照研究发现了许多对糖尿病的发生起作用的基因,如肝细胞核因子1茁(TCF2)、WFS1(Wolfram)、锌转运子(SLC30A8)、干细胞表达同源盒(HHEX)、周期素依赖性蛋白激酶抑制因子2A/2B (CDKN2A/2B)、胰岛素样生长因子2mRNA 结合蛋白2(IGF2BP2)。其中,TCF7L2 是目前发现的在欧洲人群中作用最强的基因。一种参与葡萄糖代谢的酶基因(G6PC2),存在与中国人群空腹血糖相关的新的变异位点。这一缺陷变异基因可使个体患域型糖尿病的风险增加19%。IB(HNF1B)基因的一个变异位点,可使个体患域型糖尿病的风险增加16%。

遗传病的种类大致可分为三类

遗传病的种类大致可分为三类: 一、单基因病。 单基因常常表现出功能性的改变,不能造出某种蛋白质,代谢功能紊乱,形成代谢性遗传病。单基因病又分为三种: 1.显性遗传:父母一方有显性基因,一经传给下代就能发病,即有发病的代代,必然有发病的子代,而且世代相传,如多指,并指,原发性青光眼等。 2.隐生遗传:如先天性聋哑,高度近视,白化病等,之所以称隐性遗传病,是因为患儿的双亲外表往往正常,但都是致病基因的携带者。 3.性链锁遗传又称伴性遗传发病与性别有关,如血友病,其母亲是致病基因携带者。又如红绿色盲是一种交叉遗传儿子发病是来自母亲,是致病基因携带者,而女儿发病是由父亲而来,但男性的发病率要比女性高得多。 二、多基因遗传:是由多种基因变化影响引起,是基因与性状的关系,人的性状如身长、体型、智力、肤色和血压等均为多基因遗传,还有唇裂、腭裂也是多基因遗传。此外多基因遗传受环境因素的影响较大,如哮喘病、精神分裂症等。三、染色体异常:由于染色体数目异常或排列位置异常等产生;最常见的如先天愚型,这种孩子面部愚钝,智力低下,两眼距离宽、斜视、伸舌样痴呆、通贯手、并常合并先天性心脏病。 常见遗传病总结 常染色体显性遗传 软骨发育不全上臂、大腿短小畸形,腹部隆起;臀部后凸;身材矮小致病基因导致长骨两端软骨细胞形成出现障碍 常染色体隐性遗传 白化病患者皮肤、毛发、虹膜中缺乏黑色素,怕光,视力较差缺乏酪氨酸的正常基因,无法将酪氨酸转变成黑色素 先天性聋哑听不到声音,不能学说话,成为哑巴缺乏听觉正常的基因,听觉发育障碍 苯丙酮尿症智力低下缺乏苯丙氨酸羟化酶的正常基因,苯丙氨酸不能转化成酪氨酸而不能变成苯丙酮酸,中枢神经受损 X染色体显性遗传 抗维生素D佝偻病 X型腿(O型),骨骼发育畸形,生长缓慢致病基因使钙磷吸收不良没,导致骨骼发育障碍 X染色体隐性遗传 红绿色盲不能分辨红色和绿色缺乏正常基因,不能合成正常视蛋白引起色盲血友病受伤后流血不止缺乏凝血因子合成基因,导致凝血障碍 进行性肌营养不良患者肌无力或萎缩,行走困难正常基因缺乏,进行性肌肉发育障碍 染色体数目异常 常染色体 21三体综合症智力低下,身体发育缓慢,面容特殊,眼间距宽,口常开,舌伸出第21号染色体多一条 性染色体性腺发育不良(XO)身材矮小,肘外翻,颈部皮肤松弛,外观女性无生育能力少一X染色体 XYY个体男性,身材高大,具有反社会行为多一Y染色体

第21讲 基因突变和基因重组

第21讲基因突变和基因重组 考点1基因突变 一、可遗传变异和不可遗传变异 在光学显微镜下可见的可遗传变异为染色体变异, 的变异为基因突变、基因重组,只在减数分裂过程发生的变异为基因重组,真、原核生物和病毒共有的变异类型为基因突变。 二、基因突变 1.基因突变的实例:镰刀型细胞贫血症

(1)图示中a 、b 、c 过程分别代表DNA 复制、转录和翻译。突变发生在a(填字母)过程中。 (2)患者贫血的直接原因是血红蛋白异常,根本原因是发生了基 因突变,碱基对由=====A T 突变成=====T A 。 2.基因突变的概念 DNA 分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变。 3.发生时间 主要发生于有丝分裂间期或减Ⅰ分裂前的间期。 4.诱发基因突变的因素(连线) 类型 举例 引发突变原因 ①物理因素 a .亚硝酸、碱基类似物 Ⅰ.影响宿主细胞DNA ②化学因素 b .某些病毒的遗传物质 Ⅱ.损伤细胞内DNA ③生物因素 c .紫外线、X 射线 Ⅲ.改变核酸碱基 答案: 5.基因突变的特点 (1)普遍性:一切生物都可以发生。 (2)随机性:生物个体发育的任何时期和部位。 (3)低频性:自然状态下,突变频率很低。 (4)不定向性:一个基因可以向不同的方向发生突变。

(5)多害少利性:大多数基因突变对生物体是有害的,但有些基因突变,可使生物获得新性状,适应改变的环境。 6.基因突变的结果 产生一个以上的等位基因。 7.意义 (1)新基因产生的途径; (2)生物变异的根本来源; (3)提供生物进化的原始材料。 判断正误(正确的打“√”,错误的打“×”) 1.观察细胞有丝分裂中期染色体形态可判断基因突变发生的位置。(×) 2.有丝分裂前期不会发生基因突变。(×) 提示:基因突变不只发生在分裂间期。引起基因突变的因素分为外部因素和内部因素,外部因素对DNA的损伤不仅发生在间期,而是在各个时期都有;另外,外部因素还可直接损伤DNA分子或改变碱基序列,并不是通过DNA的复制来改变碱基对,所以基因突变不只发生在间期。 3.基因突变不一定会引起生物性状的改变。(√) 4.基因突变不一定都产生等位基因。(√) 提示:病毒和原核细胞的基因组结构简单,基因数目少,而且一般是单个存在的,不存在等位基因。因此,真核生物基因突变可产生它的等位基因,而原核生物和病毒基因突变产生的是一个新基因。 5.基因突变不一定都能遗传给后代。(√) 提示:基因突变如果发生在有丝分裂过程中,一般不遗传,但有些植物可能通过无性生殖传递给后代。如果发生在减数分裂过程中,可以通过配子传递给后代。 6.由基因B1突变的等位基因B2可能是由于碱基对替换或碱基

人教版必修2 基因是有遗传效应的DAN片段 作业

一、选择题 1.下列物质的层次关系由大到小的是() A.染色体→DNA→基因→脱氧核苷酸 B.染色体→DNA→脱氧核苷酸→基因 C.染色体→脱氧核苷酸→DNA→基因 D.基因→染色体→脱氧核苷酸→DNA 2.下列有关基因的说法,错误的一项是() A.每个基因都是DNA分子上的一个片段 B.DNA分子上的每一个片段都是基因 C.基因是控制生物性状的遗传物质的功能单位和结构单位 D.基因位于染色体上,在染色体上呈线性排列 3.下列关于DNA、染色体、基因的关系的叙述,不正确的是() A.染色体经复制每条染色单体上有一个DNA分子 B.每个DNA分子上有许多基因,基因是有遗传效应的DNA片段 C.基因在染色体上呈线性排列 D.基因在DNA分子双链上成对存在 4.在人类染色体DNA不表达的碱基中,有一部分是串联重复的短序列,它们在个体之间有显著的差异性,这种短序列可用于() A.生产基因工程药物B.侦查罪犯 C.遗传病的产前诊断D.基因治疗 5.最新研究表明,人类24条染色体上含有3万~4万个蛋白质编码基因。这一事实说明() A.基因是DNA上有遗传效应的片段 B.基因是染色体 C.1条染色体上有许多个基因 D.基因只存在于染色体上 6.下列有关染色体、DNA、基因、脱氧核苷酸的说法,不正确的是() A.在DNA分子结构中,与脱氧核糖直接相连的一般是一个磷酸和一个碱基 B.基因是具有遗传效应的DNA片段,一个DNA分子上可含有成百上千个基因 C.一个基因含有许多个脱氧核苷酸,基因的特异性是由脱氧核苷酸的排列顺序决定的 D.染色体是DNA的主要载体,一条染色体上含有1个或2个DNA分子 7.关于基因和染色体的叙述不正确的是() A.染色体是基因的主要载体,基因在染色体上呈线性排列 B.基因在染色体上是由萨顿提出的,而证实基因位于染色体上的是摩尔根 C.果蝇的X染色体比Y染色体短小,因此Y染色体上含有与X染色体对应的全部基因,而X染色体

高中生物遗传病的类型

高中生物遗传病的类型2019年3月21日 (考试总分:108 分考试时长: 120 分钟) 一、填空题(本题共计 2 小题,共计 8 分) 1、(4分)下图是具有两种遗传病的家族系谱图,家属中有的成员患甲种遗传病(设显性基因为D,隐性基因为d),有的成员患乙种遗传病(设显性基因为E,隐性基因为e),如系谱图所示。现已查明Ⅱ6不携带致病基因。问: (1)甲种遗传病的致病基因位于____________染色体上,属于____________(显性或隐性)遗传,乙种遗传病的致病基因位于____________染色体上,属于__________(显性或隐性)遗传。 (2)写出下列两个体的基因型:Ⅱ5__________,Ⅲ8_________________ (3)若Ⅲ8和一个正常人(不携带甲、乙致病基因)婚配,子女中只患甲种遗传病的概率为__________ _。 2、(4分)下图为某家族某病的遗传系谱图(基因用A、a表示),据图回答: (1)该病是___________(显性或隐性)性状。 (2)Ⅱ4和Ⅲ10的基因型相同的概率是________。如果Ⅱ5和的Ⅱ6出现了患病后代,属于性状分离吗?_ __。 (3)若Ⅲ8和一个该病基因携带者结婚,生一个孩子为正常的几率为______。 (4)图中Ⅲ9、Ⅲ10、Ⅲ11都表现正常,他们的父亲Ⅱ5最可能的基因型是_______。 二、单选题(本题共计 20 小题,共计 100 分) 3、(5分)有关染色体结构变异叙述,正确的是 A.基因突变与染色体结构变异都导致个体表现型改变 B.染色体易位不改变基因数量,对个体性状不会产生影响 C.在减数分裂和有丝分裂过程中,非同源染色体之间交换一部分片段,可导致染色体结构变异 D.染色体变异不能在显微镜下观察到4、(5分)下图为人类某种单基因遗传病系谱图,Ⅱ4为患者。下列相关叙述不合理的是 A.该病可能属于X染色体隐性遗传病 B.Ⅱ3是携带者的概率为1/2 C.若Ⅰ2不携带致病基因,则Ⅰ1的一个初级卵母细胞中含有2个该病的致病的基因 D.若Ⅰ2携带致病基因,则Ⅰ1和Ⅰ2再生一个患病男孩的概率为1/8 5、(5分)多指属常染色体显性遗传病,红绿色盲属伴X染色体隐性遗传病。下列系谱图中有上述两种遗传病,已知I2、I4、II2和II4均不含上述两种遗传病的致病基因。下列叙述错误的是 A.携带红绿色盲基因的是乙家族 B.红绿色盲基因是通过基因突变产生的 C.若III1和III2生了一个男孩,则该男孩两病均患的概率为1/16 D.若III1和III2生了一个女孩,则该女孩只患一种病的概率为1/2 6、(5分)下列关于遗传咨询与优生的叙述,正确的是 A.近亲结婚会导致后代各种遗传病的发病率都增加 B.只有自身是遗传病患者才有必要进行遗传咨询 C.羊膜腔穿刺不能用于确诊遗传性代谢疾病 D.畸形胎常在早孕期形成 7、(5分)如图为甲乙两种单基因遗传病的遗传系谱图,下列叙述正确的是 A.甲病为伴X染色体隐性遗传病 B.乙病患者都是男性,该遗传病为伴Y遗传 C.调查乙的发病率需在患者家系中统计 D.乙病患者的一个细胞中最多可存在4个致病基因 8、(5分)下列关于生物变异的叙述,正确的是 A.可遗传变异均是由遗传物质改变引起的

高中生物《基因是有遗传效应的DNA片段》教学设计

高中生物《基因是有遗传效应的DNA片段》教学设计 南昌市实验中学裴丽丽 一、设计指导思想 本节教材提供了多个实例,通过创设一系列的问题情境,引导学生思考,让学生从实例中逐步得出基因是DNA分子上的片段、基因具有遗传效应的结论、最终获得基因是有遗传效应的 DNA片段这一综合认识。合理组织探究活动,帮助学生借助于数学方法、利用数学思维解决生物学问题。通过分组探究实验,提高学生科学素养,培养团队合作能力。通 过小组代表发言,培养学生表达能力。 二、教材分析 《基因是有遗传效应的DNA片段》是人教版新课标教材高中生物必修2第3章中第四节内容。本节内容既是对本章内容的概括与提升,又为第4章《基因的表达》作铺垫。本节教学的核心是说明基因是有遗传效应的DNA片段,运用数学方法推算碱基排序,让学生进一步理解抽象的内容、认同DNA分子结构的多样性和特异性。本节课通过介绍DNA指纹的应用,让学生感受到理论知识的奇妙应用,充分体现STS教育。 三、学情分析 高一年级的学生具有较强的求知欲和探究欲望,比较喜欢发言,乐于探究。初中生物课本中“细胞核是遗传信息库”一节中有关遗传信息在细胞核中,DNA具有贮存遗传信息的功能,以及细胞核中的染色体是由蛋白质和DNA组成的等内容,已经使学生对有关的知识有了比较清楚的认识,为本节内容的学习打下了一定的基础。 四、教学目标 1. 知识目标 (1)举例说明基因是有遗传效应的DNA片段。 (2)说明基因和遗传信息的关系。 2. 能力目标 (1)运用数学方法说明DNA分子的多样性和特异性。 (2)掌握分析材料的方法。 3.情感态度价值观目标 通过了解人类基因组计划和DNA指纹技术的应用,培养热爱科学和爱国主义情感。 五、教学重点和难点: 1.教学重点 (1)基因是有遗传效应的DNA片段。 (2)DNA分子具有多样性和特异性。 2.教学难点: 脱氧核苷酸序列与遗传信息的多样性。 六、教学方法: 启发式教学 七、课时安排: 1课时

单基因遗传和多基因遗传

辅导4 单基因遗传和多基因遗传 前面几章学习得怎么样?有什么问题吗?没问题的话,我们就进行第五章的学习了。 根据控制人类遗传性状的基因数目将人类遗传性状的遗传方式分为两大类:单基因遗传和多基因遗传。 单基因遗传性状受一对基因的控制,遗传方式符合孟德尔定律;多基因遗传性状受多对微效基因的控制,还受环境因素的影响。遗传规律比较复杂。 一、遗传的基本规律 经典遗传学的基本规律是分离定律、自由组合定律及连锁互换定律。 分离规律说的是遗传性状有显隐性之分,这样具有明显显隐性差异的一对性状称为相对性状。相对性状中的显性性状受显性基因控制,隐性性状由一对纯合隐性基因决定。杂合体往往表现显性基因的性状。基因在体细胞中成对存在,在形成配子时,彼此分离,进入不同的子细胞。 自由组合定律是说两对及两对以上的基因,在形成配子时彼此分离,形成合子时又自由组合,因而产生了亲本类型和重新组合的类型。F2代四种类型的比例为9:3:3:1。 连锁互换定律是说位于同一条染色体上的基因是互相连锁的,它们常一起传递,但有时也会发生分离和重组,是因为同源染色体上的各对等位基因进行了交换。基因间距离越远,交换发生的可能性越大。根据交换率可以确定基因间的相对位置,可以绘制基因连锁图。 互换率(%)=重组合类型数/(重组合类型数+亲组合类型数)×100% 二、单基因遗传 遗传性状受一对基因控制的,称单基因遗传。由单基因突变引起的疾病叫单基因病。人类单基因遗传分为五种主要遗传方式:常染色体隐性遗传、常染色体显性遗传、X连锁隐性遗传、X连锁显性遗传和Y连锁遗传。 临床上判断遗传病的遗传方式常用系谱分析法。 (一)常染色体隐性遗传 系谱特点为:(1)与性别无关,男女发病机会均等;(2)病例散发,系谱中看不到连续遗传的现象;(3)患者的双亲表型正常,但都是致病基因的携带者。患者的同胞患病的概率是1/4,正常的概率为3/4,但表型正常的同胞中有2/3的可能性是携带者。(4)近亲婚配后代发病率高。 (二)常染色体显性遗传 类型:完全显性、不完全显性、不规则显性、共显性、延迟显性。

《基因是有遗传效应的DNA片段》说课稿(1)改好

《基因是有遗传效应的DNA片段》说课稿 各位评委老师:大家好!今天我说课的题目是《基因是有遗传效应的DNA 片段》。我将从六部分进行说课。 一.教材分析:这节课是人教版必修二第三章第4节的内容。第三章主 要在分子水平上阐述遗传的物质基础和作用原理,本节内容既是对第三章内 容的概括与提升,又为第四章《基因的表达》作好铺垫,所以本节内容起着 概括总结与承上启下的作用。学习本节知识有利于帮助学生从分子水平上理 解遗传规律,锻炼了学生的逻辑推理能力,进一步理解数学知识在生物研究 中的重要作用。 二.教学目标:依据课标,结合本节课的内容及学生的认知特点,我确定了以下教学目标: 1.知识目标(1)说明基因和遗传信息的关系 (2)了解DNA分子的多样性和特异性。 2.能力目标(1)培养学生的逻辑思维能力,掌握整理、分析、归纳材料的方法。 (2)掌握数学知识在生物研究中的应用。 3.情感目标与价值观:通介过绍DNA技术,对学生进行科学价值观的教育 三.学情分析及教法、学法的指导 1.学情:学习本节内容以前,学生已经掌握了遗传的两大规律,明确了基 因位于染色体上,知道了DNA是主要的遗传物质以及DNA的结构和复制方 式,必然会产生这样的疑问——基因和DNA之间存在怎样的联系呢?所以本 节课是前几节课的自然延伸,学生很容易接受从而积极探究学习。 2.教法:结合学情,采用问题启发、模型建构、小组讨论等教学方法,形成师生互动、生生互动的教学氛围,帮助学生更好的理解和掌握本节知识。 3.学法:以新课程倡导的“自主-合作-探究”的学习方式为理论依据,学生通过分析整理资料、课堂探究、小组讨论等形式掌握和理解本节知识。 四.教学过程: 教学流程我设计了以下五个板块:其中新课教学是整堂课的核心环节。下面我分析一下每个板块的设计依据和预期效果。 1.复习旧知,导入新课

严重的遗传病有哪些

严重的遗传病有哪些 严重的遗传病有哪些 遗传病的特点和种类 遗传性疾病是由于遗传物质改变而造成的疾病。 遗传病具有先天性、家族性、终身性、遗传性的特点。 遗传病的种类大致可分为三类: 一、单基因病。 单基因常常表现出功能性的改变,不能造出某种蛋白质,代谢功能紊乱,形成代谢性遗传病。单基因病又分为三种: 1.显性遗传:父母一方有显性基因,一经传给下代就能发病,即有发病的代代,必然有发病的子代,而且世代相传,如多指,并指,原发性青光眼等。 2.隐生遗传:如先天性聋哑,高度近视,白化病等,之所以称隐性遗传病,是因为患儿的双亲外表往往正常,但都是致病基因的携带者。 3.性链锁遗传又称伴性遗传发病与性别有关,如血友病,其母亲是致病基因携带者。又如红绿色盲是一种交叉遗传儿子发病是来自母亲,是致病基因携带者,而女儿发病是由父亲而来,但男性的发病率要比女性高得多。 二、多基因遗传:是由多种基因变化影响引起,是基因与性状的关系,人的性状如身长、体型、智力、肤色和血压等均为多基因遗传,还有唇裂、腭裂也是多基因遗传。此外多基因遗传受环境因素的影响较大,如哮喘病、精神分裂症等。 三、染色体异常:由于染色体数目异常或排列位置异常等产生;最常见的如先天愚型,这种孩子面部愚钝,智力低下,两眼距离宽、斜视、伸舌样痴呆、通贯手、并常合并先天性心脏病 常见遗传病总结 常染色体显性遗传 软骨发育不全上臂、大腿短小畸形,腹部隆起;臀部后凸;身材矮小致病基因导致长骨两端软骨细胞形成出现障碍 常染色体隐性遗传

白化病患者皮肤、毛发、虹膜中缺乏黑色素,怕光,视力较差缺乏酪氨酸的正常基因,无法将酪氨酸转变成黑色素 先天性聋哑听不到声音,不能学说话,成为哑巴缺乏听觉正常的基因,听觉发育障碍 苯丙酮尿症智力低下缺乏苯丙氨酸羟化酶的正常基因,苯丙氨酸不能转化成酪氨酸而不能变成苯丙酮酸,中枢神经受损 X染色体显性遗传 抗维生素D佝偻病X型腿(O型),骨骼发育畸形,生长缓慢致病基因使钙磷吸收不良没,导致骨骼发育障碍 X染色体隐性遗传 红绿色盲不能分辨红色和绿色缺乏正常基因,不能合成正常视蛋白引起色盲 血友病受伤后流血不止缺乏凝血因子合成基因,导致凝血障碍 进行性肌营养不良患者肌无力或萎缩,行走困难正常基因缺乏,进行性肌肉发育障碍 染色体数目异常 常染色体21三体综合症智力低下,身体发育缓慢,面容特殊,眼间距宽,口常开,舌伸出第21号染色体多一条 性染色体性腺发育不良(XO)身材矮小,肘外翻,颈部皮肤松弛,外观女性无生育能力少一X染色体 XYY个体男性,身材高大,具有反社会行为多一Y染色体 八、人类几种遗传病及显隐性关系: 类别名称 单基因遗传病 常染色体遗传 隐性白化病、先天性聋哑、苯丙酮尿症 显性多指、并指、短指、软骨发育不全 性(X)染色体遗传 隐性红绿色盲、血友病、果蝇白眼、进行性肌营养不良 显性抗维生素D佝偻病 多基因遗传病唇裂、无脑儿、原发性高血压、青少年型糖尿病 染色体异常遗传病 常染色体病数目改变21三体综合症(先天愚型)结构改变猫叫综合症

基因是有遗传效应的DNA片段 教案

基因是有遗传效应的DNA片段教案

基因是有遗传效应的DNA片段 教材分析 基因是有遗传效应的DNA片段是人教版生物必修二第三章第四节,本节内容是从旧教材中的基因表达中分离并提前,既是对本章内容的概括与提升,又为“第 4 章基因的表达”作铺垫,为此基因的概念将是本节教学的核心,DNA的多样性和特异性侧重用数学方法来理解。教材通过分析资料使学生认识基因与DNA 的关系,让学生自然得出基因是有遗传效应的 DNA 片段的结论。在 DNA 片段中的遗传信息的内容教学时,通过探究活动使学生认识 DNA 上的脱氧核苷酸序列信息多样性的关系。通过DNA结构分析设法引导学生通过数学推算的方法,得出 DNA 分子中可以贮存大量遗传信息的结论,从而推出 DNA 分子具有多样性和特异性,从分子水平上揭示生物体的多样性和特异性的物质基础。 学习者分析 就知识而言,在学习《基因在染色体上》这一节中,学生了解了基因与染色体的关系,并结合“染色体与DNA的关系”,在类比推理的技能训练得到了一些假说:基因位于DNA上,一个DNA上有多个基因,基因在DNA上成线性排列等等。在本章前三节的学习中了解DNA是主要的遗传物质,DNA的分子结构和复制。熟练曾在孟德尔自由组合定律中运用的排列组合的数学计算原则。 教学目标 1.通过本节学习深刻理解并能举例说明“基因是有遗传效应的DNA片段”。 2.通过本节学习熟练掌握运用排列组合计算方法。 3.通过本节学习理解DNA分子的三个特征。 教学重点、难点 一、教学重点 1.通过本节学习深刻理解“基因是有遗传效应的DNA片段”。 2.通过本节学习熟练掌握运用排列组合计算方法。 3.通过本节学习理解DNA分子的三个特征。 二、教学难点 脱氧核苷酸序列与遗传信息的多样性。 教学方法 通过归纳总结学过的知识推理,运用数学计算方法。 教学过程 一、导入 各位老师、同学们,大家早上好!我叫李淑珍,下面由我来带领大家参观介绍基因的世界。在学习之前,我们先回忆一下学过的相关知识。在孟德尔分离

最新人类遗传病练习(含答案详解)

人类遗传病练习 一、单项选择题 1.(2009·全国卷Ⅰ,1)下列关于人类遗传病的叙述,错误的是() A.单基因突变可以导致遗传病 B.染色体结构的改变可以导致遗传病 C.近亲婚配可增加隐性遗传病的发病风险 D.环境因素对多基因遗传病的发病无影响 解析人类遗传病通常是指由于遗传物质发生改变而引起的疾病,主要分为单基因遗传病、多基因遗传病和染色体异常遗传病,A、B选项正确;由于近亲婚配可使从同一祖先那里继承 同一隐性致病基因的概率增加,所以近亲婚配会使隐性致病基因纯合的概率大大增加,C选项正确;多基因遗传病往往表现为家族聚集现象,且易受环境的影响,D选项错误。 答案D 2.(2009·广东生物,20)某人群中某常染色体显性遗传病的发病率为19%,一对夫妇中妻子患病,丈夫正常,他们所生的子女患该病的概率是( ) A.10/19 B.9/19 C.1/19 D.1/2 解析设此致病基因由Aa控制,由题意知,该常染色体显性遗传病的发病率为19%,则隐性纯合子aa的概率为81%,a的基因频率即为90%,A的基因频率则为10%。则该夫妇基因型及基因型频率为:妻子:AA(1/19)\,Aa(18/19),丈夫:aa。此夫妇所生子女中,正常的概率为:18/19×1/2=9/19,患病的概率即为1-9/19=10/19。 A 3.某常染色体隐性遗传病在人群中的发病率为1%,色盲在男性中的发病率为7%。现有一对表现正常的夫妇,妻子为该常染色体遗传病致病基因和色盲致病基因携带者。那么他们所生小孩同时患上述两种遗传病的概率是() A.1/88 B.1/22 C.7/2200 D.3/800 解析设该常染色体隐性遗传病的基因为A、a。由题知,该种遗传病发病率为1%,则a=10%, A=90%,AA=81%,Aa=18%,Aa/(AA+Aa)=2/11,正常的丈夫是携带者的概率为2/11。就本病来说,生一个患病孩子的概率=2/11×1/4=1/22,色盲的患病率为1/4,所以两病皆患的可能性为1/88。 A 4.对如图所示的遗传病进行分析,则一定携带致病基因的一组是 ( B ) A.3号、5号、13号、15号 B.3号、5号、11号、14号 C.2号、3号、13号、14号 D.2号、5号、9号、10号 5.下列有关人类遗传病的叙述中,错误的是(D ) A.抗维生素D佝偻病是由显性基因控制的遗传病 B.冠心病可能是受两对以上的等位基因控制的遗传病 C.猫叫综合征是人的第5号染色体部分缺失引起的遗传病 D.21三体综合征患者的21号染色体比正常人多出一对 解析21三体综合征患者的21号染色体比正常人多出一条。冠心病是多基因控制的遗传病,具有在群体中发病率高,容易受环境影响的特点。 6.优生优育关系到国家人口的整体质量,也是每个家庭的自身需求,下列采取的优生措施正确的是() A.胎儿所有先天性疾病都可通过产前诊断来确定

基因突变与疾病

第九章基因突变与疾病 基因(gene)是DNA分子上一段具有遗传功能的核苷酸序列,是细胞内遗传物质的主要结构和功能单位。基因具有如下特征:①基因能自我复制。一个基因随DNA的复制而成为两个相同的基因。②基因决定性状。DNA上某一结构基因经转录和翻译,决定某种酶和蛋白质的合成,从而表现出某一性状。③基因能发生突变。在生物进化过程中,由于多种因素的影响,基因可发生突变,基因突变是生物进化、分化的分子基础,也是某些疾病的基础,是生物界普遍存在的现象。 第一节基因突变的概念和原因 基因突变(gene mutation)是指DNA分子上核苷酸序列或数目发生改变。由一个或一对碱基发生改变引起核苷酸序列改变所致的突变,称为点突变(point mutation);把核苷酸数目改变的基因突变称为缺失性或插入性突变(deletional and insertionar mutation)。基因突变后在原有位置上出现的新基因,称为突变基因(mutant gene)。基因突变后变为和原来基因不同的等位基因,从而导致了基因结构和功能的改变,且能自我复制,代代相传。 基因突变可以发生在生殖细胞,也可发生在体细胞。发生在生殖细胞的基因突变可通过受精卵将突变的遗传信息传给下一代,并在子代所有细胞中都存在这种改变。由于子代生殖细胞的遗传性状也发生了相应的改变,故可代代相传。发生于有性生殖生物体细胞的基因突变不会传递给子代,但可传给由突变细胞分裂所形成的各代子细胞群,在局部形成突变细胞群体。通常认为肿瘤就是体细胞突变的结果。 基因突变的原因很多,目前认为与下列因素有关:

一、自发性损伤 大量的突变属于自发突变,可能与DNA复制过程中碱基配对出现误差有关。通常DNA复制时碱基配对总有一定的误配率,但一般均可通过DNA损伤的修复酶快速修正。如果少数误配碱基未被纠正或诸多修复酶某一种发生偏差,则碱基误配率就会增高,导致DNA分子的自发性损伤。 二、诱变剂的作用 诱变剂(mutagen)是外源诱发突变的因素,它们的种类繁多,主要有: (一)物理因素 如紫外线、电离辐射等。大剂量紫外线照射可引起DNA主链上相邻的两个嘧啶碱以共价键相结合。生成嘧啶二聚体,相邻两个T、相邻两个C或C与T 之间均可形成二聚体,但最容易形成的二聚体是胸苷酸二聚体(thyminedimerTT )。由于紫外线对体细胞DNA的损伤,从而可以诱发许多皮肤细胞突变导致皮肤癌。电离辐射对DNA的损伤有直接效应和间接效应。前者系电离辐射穿透生物组织时,其辐射能量向组织传递,引起细胞内大分子物质吸收能量而激发电离,导致DNA理化性质的改变或损伤;后者系电离辐射通过扩散的离子及自由基使能量被生物分子所吸收导致DNA损伤。生物组织中的水 经辐射电离后可产生大量稳定的、高活性的自由基及H 2O 2 等。这些自由基与活 性氧与生物大分子作用不但可引起DNA损伤,而且也能引起脂质和生物膜的损伤及蛋白质和酶结构与功能的异常。电离辐射使DNA损伤的作用机制主要表现在三个方面:①碱基破坏脱落与脱氧戊糖分解。②DNA链断裂。③DNA交联或DNA-蛋白质交联。 (二)化学因素 如某些化工原料和产品、工业排放物、汽车尾气、农药、食品防腐剂和添加剂等均具有致突变作用。目前已检出的致突变化合物已达6万余种。现择下列常见化学诱变剂说明对DNA损伤的机制。

基因是有遗传效应的dna片段》教学设计

《基因是有遗传效应的DNA片段》教案 张丽雯 教材分析 本节是人教版生物必修二第三章第四节,本节内容既是对本章内容的概括和提升,也为第四章“基因的表达”做铺垫。因此,基因的概念和基因、DNA、染色体的关系是本节的重点,DNA的多样性和特异性用数学方法来表现理解。教材通过四节资料分析,让学生认识基因的概念,同时通过一个探究活动,让学生了解了DNA的多样性和特异性,从分子水平上揭示生物体的多样性和特异性的物质基础。 学情分析 对高二学生来说,在前两章时认识到了基因与染色体的关系,在本章前三节中了解了DNA是主要的遗传物质,DNA的分子结构和复制,但是,对基因的本质没有确切的了解,还未能弄清基因与DNA、染色体的关系,通过资料分析和结构图的方式,引导学生观思考,总结,并得出结论。 教学目标: 1.知识目标:说明基因的概念;了解DNA分子的多样性和特异性;理解基因、DNA、染色体三者之间的关系。 2.能力目标:培养学生逻辑思维能力,掌握分析,归纳材料的方法;掌握数学知识在生物研究中的应用。 3.情感和价值目标:1.通过介绍DNA技术,对学生进行科学价值观的教育。教学重点 1.基因是有遗传效应的DNA片段 2.DNA分子具有多样性和特异性 教学难点 1.基因、DNA、染色体三者的关 2.脱氧核苷酸序列与遗传信息的多样性 教法学法 讲述、讨论与探究相结合;归纳总结资料,运用数学计算方法。 教学准备 教师准备:多媒体课件。 学生准备:用数学方法推算。 课时安排 1课时

教学过程

课后作业 课本第58页练习,基础题1、2、3 教后反思 本节课的亮点和难点是在DNA遗传信息多样性和特异性的探究活动中,利用数学中的排列组合方法解决生物学问题。但在教学过程中可能会由于时间较紧,给学生探究讨论的时间不足,提高学生兴趣和教学效果有一定的限制。

《基因是有遗传效应的DNA片段》习题

《基因是有遗传效应的DNA片段》习题 1、下列叙述中正确的是() A、细胞中的DNA都在染色体上 B、细胞中每条染色体都只有一个DNA分子 C、减数分裂过程中染色体与基因的行为一致 D、以上叙述均对 2、下列关于基因的叙述中,正确的是() A、基因是DNA的基本组成单位 B、基因全部存在于细胞核中 C、基因是遗传物质的结构和功能单位 D、基因是DNA分子上任意一个片段 3、染色体、DNA、基因三者关系密切,下列叙述中不正确的是() A、每个染色体含一个DNA分子,每个DNA分子上有很多个基因 B、复制、分离和传递,三者都能相伴随而进行 C、三者都是遗传物质,三者都能行使生物的遗传作用 D、在生物的传种接代的过程中,染色体行为决定后二者 4、下列有关遗传信息的叙述,错误的是() A、遗传信息可以通过DNA复制传递给后代 B、遗传信息控制蛋白质的分子结构 C、遗传信息是指DNA分子的脱氧核甘酸的排列顺序 D、遗传信息全部以密码子的方式体现出来 5、下列物质从结构层次看,从简单到复杂的顺序是() A、脱氧核苷酸→基因→染色体→DNA B、脱氧核苷酸→基因→DNA→染色体 C、基因→脱氧核苷酸→染色体→DNA D、基因→DNA→脱氧核苷酸→染色体 6、下列关于遗传信息的说法不确切的是() A、基因的脱氧核苷酸排列顺序就代表遗传信息 B、遗传信息的传递主要是通过染色体上的基因传递的 C、生物体内的遗传信息主要储存在DNA分子上 D、遗传信息即生物体所表现出来的遗传性状

7、人类14号染色体信息已破译,总计含87410661个碱基对,并于2003年1月4日发表在英国科学周刊《自然》杂志上,研究报告称,第14号染色体含有1050个基因和基因片段。则平均每个基因含有的碱基数为() A、83248 B、166496 C、1050 D、不能确定 8、下列哪一项不是基因的“遗传效应”() A、能控制一种生物性状的表现 B、能控制一种蛋白质的生物合成 C、能转录一种信使RNA D、在蛋白质合成中能决定一种氨基酸的位置 9、生物界这样形形色色、丰富多彩的根本原因在于() A、蛋白质的多种多样 B、DNA的分子的复杂多样 C、自然环境的多种多样 D、非同源染色体组合形式的多样 10、左图是用DNA测序仪测出的某人DNA片段的碱基排列顺序。右四幅图是DNA测序仪测出的另外四人DNA片段的碱基排列顺序,请认真比较这四幅图,其中与左图碱基排列顺序最相似的是() 11、分析下图,回答有关问题: (l)图中A是_________,C是_________,G是_________。 (2)B有4种,即:_________[]、________[]、_________[]、________[](直线上写文字,括号内写字母) (3)D与F的关系是。 (4)E与F的关系是。

单基因遗传病

单基因遗传病 单基因遗传病是指受一对等位基因控制的遗传病,有6600多种,并且每年在以10-50种的速度递增,单基因遗传病已经对人类健康构成了较大的威胁。较常见的有红绿色盲、血友病、白化病等。 DNA 人类受精卵继承来自双亲的23对染色体,这些染色体传递由脱氧核糖核酸(DNA)组成的遗传信息。这些DNA片段构成了基因,已知是由10万个基因控制着人体的生长发育和功能。基因位于染色体上的不同位置。基因可在细胞复制时发生差错,也可因外界因素作用产生突变。 突变的基因可以有害,或为中性,少数也可能有益。20世纪80年代后期已将人类4550余种性状与特定的基因联系起来,90%与疾病有关,少数性状属于正常变异,如ABO血型。其中真正危及人类健康的遗传病约1300余种。 遗传因素的作用包括主要基因、特异性基因和染色体畸变的影响。由于环境污染、生态平衡遭到破坏,使基因突变频率增高,人群中致病基因增加。已知的4000多种遗传病中,其遗传方式大多已阐明。应注意一些表现相似的疾病,其病因和遗传方式可能各异,因而其预防、再发风险和预后也不相同。遇到问题时,应注意进行完整的谱系分析和有关的特殊检查。 疾病特征 据 单基因遗传病分类 有关医学研究证明,80年代统计,人类单基因病有3300多种,其遗传方式及再发风险符合Mandel规律。

常染色体显性遗传病位于常染色体上的两个等位基因中,如有一个突变,这个突变基因的异常效应就能显示发病。这类疾病已达17OO多种,如家族性多发性结肠息肉。多指、并指等。其遗传系谱特点是;遗传与性别无关,男女发病机会均等;患者双亲往往有一方为患者。若双亲无病,子女一般不发病;患者常为杂合型,苦与正常人婚配,其子女患病概率为50%;常见连续几代的遗传。显性致病基因有时由于内外环境的影响,杂合子个体携带显性致病基因并不表达,即不完全外显。常染色体显性遗传病的外显率为60%-90%。 常染色体隐性遗传病致病基因为位于常染色体上的隐性基因,当隐性基因纯合时才能发病。即隐性遗传病 单基因遗传病 患者,大多是由两个携带者所生的后代。已确定这类疾病约1200多种,如先天性聋哑、白化病、苯丙酮尿症。 杂合型隐性致病基因携带者,本身不表达相应的性状,但可将致病基因传给后代。 常染色体隐性遗传病的谱系特点:男女发病机会均等,发病与性别无关;双亲为无病携带者,子女发病概率为25%;常是越代遗传;近亲婚配时,子女中隐性遗传病患病率大为增高。如苯丙酮尿症在人群中随机婚配时,发病率为1:14500;表兄妹婚配则为1:1700。全身性白化病在人群中发病率为1:40000;表兄妹婚配则为1:3600。 性连锁遗传病多为隐性致病基因,位于X染色体上,男女发病率有显著差异如红绿色盲、血友病。已确定这类疾病近200种。致病基因一般是父传女,母传子,即所谓交叉遗传,患者可隔代出现,人群中男性患者远较女性患者为多。 常染色体显性遗传病 概述

相关文档
相关文档 最新文档