文档库 最新最全的文档下载
当前位置:文档库 › 磁场问题专题训练

磁场问题专题训练

磁场问题专题训练
磁场问题专题训练

有界磁场问题分类

一、带电粒子在圆形磁场中的运动

例1、圆心为O 、半径为r 的圆形区域中有一个磁感强度为B 、方向为垂直于纸面向里的匀强磁场,与区域边缘的最短距离为L 的O '处有一竖直放置的荧屏MN ,今有一质量为m 的电子以速率v 从左侧沿OO'方向垂直射入磁场,越出磁场后打在荧光屏上之P 点,如图1所示,求O 'P 的长度和电子通过磁场所用的时间.

解析 :电子所受重力不计。它在磁场中做匀速圆周运动,圆心为O ″,半径为R 。圆弧段轨迹AB 所对的圆心角为θ,电子越出磁场后做速率仍为v 的匀速直线运动, 如图2所示,连结OB ,∵△OAO ″≌△OBO ″,又OA ⊥O ″A ,故OB ⊥O ″B ,由于原有BP ⊥O ″B ,可见O 、B 、P 在同一直线上,且∠O 'OP =∠AO ″B =θ,在直角三角形OO'P 中,

O 'P =(L +r )tan θ,而)

2

(tan 1)

2tan(2tan 2θθ

θ-=

,R

r =)2tan(θ,所以求得R 后就可以求出O 'P 了,电子经过磁场的时间可用t =V

R

V AB θ=

来求得。 由R V m

BeV 2

=得R=θtan )(.r L OP eB

mV

+= mV eBr R r ==)2tan(θ,2

222222)

2

(tan 1)2tan(2tan r

B e V m eBrmV -=-=θθ

θ 2

222

2,)(2tan )(r B e V m eBrmV

r L r L P O -+=+=θ, )2arctan(22222r

B e V m eBrmV

-=θ

)2arctan(2

2222r

B e V m eBrmV eB m V R t -==θ

例2、如图2,半径为cm r 10=的匀强磁场区域边界跟y 轴相切于坐标原点O ,磁感强度T B 332.0=,方向垂直纸面向里.在O 处有一放射源S ,可向纸面各个方向射出速度为

s m v /102.36?=的粒子.已知α粒子质量kg m 271064.6-?=,电量C q 19102.3-?=,试画出α粒子通过磁场空间做圆周运动的圆心轨道,求出α粒子

通过磁场空间的最大偏角.

M N

O ,

图1

M N

O ,

图2

解析:设粒子在洛仑兹力作用下的轨道半径为R ,由R v m Bqv 2

= 得

cm m m Bq mv R 2020.010

2.3332.0102.31064.619

6

27==?????==-- 虽然α粒子进入磁场的速度方向不确定,但粒子进场点是确定的,因此α粒子作圆周运动的圆心必

落在以O 为圆心,半径cm R 20=的圆周上,如图2中虚线. 由几何关系可知,速度偏转角总等于其轨道圆心角.在半径R 一定的条件下,为使α粒子速度偏转角最大,即轨道圆心角最大,应使其所对弦最长.该弦

是偏转轨道圆的弦,同时也是圆形磁场的弦.显然最长弦应为匀强磁场区域圆的直径.即α粒子应从磁场圆直径的A 端射出.

如图2,作出磁偏转角?及对应轨道圆心O ',据几何关系得

2

1

2

sin

==

R r ?

,得060=?,即α粒子穿过磁场空间的最大偏转角为060. 二、带电粒子在半无界磁场中的运动 例3、(1999年高考试题)如图3中虚线MN 是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B 、方向垂直纸面向外的匀强磁场.O是MN上的一点,从O点可以向磁场区域发射电荷量为+q 、质量为m 、速率为v 的粒子,粒子射入磁场时的速度可在纸面内各个方向,已知先后射入的两个粒子恰好在磁场中给定的P点相遇,P到O点的距离为L,不计重力和粒子间的相互作用.

(1)求所考察的粒子在磁场中的轨道半径. (2)求这两个粒子从O点射入磁场的时间间隔. 解析:(1) 粒子的初速度与匀强磁场的方向垂直,在洛仑兹力作用下,做匀速圆周运动.设圆半径为R,则据牛顿第二定律可得:

R v m B q v 2= ,解得Bq

mv

R =

(2)如图3所示,以OP 为弦的可以画出两个半径相同的圆,分别表示在P点相遇的两个粒子的轨道,圆心

分别为O 1和O 2,在O 处两个圆的切线分别表示两个粒子的射入方向,它们之间的夹角为α,由几何关系知

∠PO 1Q 1=∠PO 2Q 2=α

从O 点射入到相遇,粒子在1的路径为半个圆周加P Q 1弧长等于αR ;粒子在2的路径为半个圆周减P Q 2弧长等于αR .

粒子1的运动时间 t 1=

21T +v R α 粒子2的运动时间 t 2=21T -v

R α

M N

. . . . . .

. . . . . .

两个粒子射入的时间间隔△t =t 1-t 2=2v

R α 由几何关系得R cos

21α=21op =21L ,解得:α=2arccos

R

L

2 故△t =

Bq m 4.arc cos mv

LBq 2 例4、如图4所示,在真空中坐标xoy 平面的0>x 区域内,有磁感强度T B 2

100.1-?=的匀强磁场,方向与xoy 平面垂直,在x 轴上的)0,10(p 点,有一放射源,在xoy 平面内向各

个方向发射速率s m v /100.14

?=的带正电的粒子,粒子的质量为

kg m 25106.1-?=,电量为C q 18106.1-?=,求带电粒子能打到y 轴上的范围.

解析:带电粒子在磁场中运动时有R v m Bqv 2

=,则

cm m Bq mv R 101.0106.1100.1100.1106.118

24

25==??????==---.

如图15所示,当带电粒子打到y 轴上方的A 点与P 连线正好为其圆轨迹的直径时,A 点既为粒子能打到y 轴上方的最高点.因cm R Op 10==,

cm R AP 202==,则cm OP AP OA 3102

2=-=.

当带电粒子的圆轨迹正好与y 轴下方相切于B点时,B点既为粒子能打到

y 轴下方的最低点,易得cm R OB 10==.

综上,带电粒子能打到y 轴上的范围为:cm y cm 31010≤≤-.

三、带电粒子在长方形磁场中的运动 例5、如图5,长为L 间距为d 的水平两极板间,有垂直于纸面向里的匀强磁场,磁感强度为B ,两板不带电,现有质量为m ,电量为q 的带正电粒子(重力不计),从左侧两极板的中心处以不同速率v 水平射入,欲使粒子不打在板上,求粒子速率v 应满足什么条件.

解析:如图4,设粒子以速率1v 运动时,粒子正好打在左极板边缘(图4中轨

图4

o cm x /cm

y /p ??

????????

????

?

??图5

??????

??

→?d L

v

cm /

迹1),则其圆轨迹半径为41d R =,又由12

11R v m Bqv =得m

Bqd

v 41=,则粒子入射速率小于1v 时可不打在

板上.

设粒子以速率2v 运动时,粒子正好打在右极板边缘(图4中轨迹2),

由图可得2

22

2

2)2(d R L R -+=,则其圆轨迹半径为d d L R 44222+=,又由22

22R v m Bqv =得md

d L Bq v 4)4(222+=,则粒子入射速率大于2v 时可不打在板

上.

综上,要粒子不打在板上,其入射速率应满足:m

Bqd v 4<或md d L Bq v 4)4(22+>.

例6、长为L 的水平极板间,有垂直纸面向内的匀强磁场,如图4所示,磁感强度为B ,板间距离也

为L ,板不带电,现有质量为m ,电量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度V 水平射入磁场,欲使粒子不打在极板上,可采用的办法是:

A .使粒子的速度V

B .使粒子的速度V >5BqL /4m ;

C .使粒子的速度V >BqL /m ;

D .使粒子速度BqL /4m

解析:由左手定则判得粒子在磁场中间向上偏,而作匀速圆周运动,很明显,圆周运动的半径大于某值r 1时粒子可以从极板右边穿出,而半径小于某值r 2时粒子可从极板的左边穿出,现在问题归结为求粒子能在右边穿出时r 的最小值r 1以及粒子在左边穿出时r 的最大值r 2,由几何知识得:

粒子擦着板从右边穿出时,圆心在O 点,有:

r 12=L 2+(r 1-L /2)2得r 1=5L /4,

又由于r 1=mV 1/Bq 得V 1=5BqL /4m ,∴V >5BqL /4m 时粒子能从右边穿出。

粒子擦着上板从左边穿出时,圆心在O '点,有r 2=L /4,又由r 2=mV 2/Bq =L /4得V 2=BqL /4m ∴V 2

四、带电粒子在“三角形磁场区域”中的运动

例7、在边长为a 2的ABC ?内存在垂直纸面向里的磁感强度为B 的匀强磁

场,有一带正电q ,质量为m 的粒子从距A点a 3的D点垂直AB方向进入磁场,如图5所示,若粒子能从AC间离开磁场,求粒子速率应满足什么条件及粒子从AC间什么范围内射出.

+q 图6 图7

D

图4

v 2

v

解析:如图6所示,设粒子速率为1v 时,其圆轨迹正好与AC边相切于E点. 由图知,在E AO 1?中,11R E O =,113R a A O -=

,由A

O E O 110

30cos =

得1

132

3

R a R -=,解得

a

R )32(31-=,

则a R a A O AE )332(2

321

1-=-==

. 又由12

11R v m Bqv =得m

aqB m BqR v )32(311-=

=,则要粒子能从AC间离开磁场,其速率应大于1v .

如图7所示,设粒子速率为2v 时,其圆轨迹正好与BC边相切于F点,与AC相交于G点.易知A点即为粒子轨迹的圆心,则a AG AD R 32=

==.

又由22

22R v m Bqv =得m

aqB

v 32=,则要粒子能从AC间离开磁场,其速率应小于等于2v .

综上,要粒子能从AC间离开磁场,粒子速率应满足

m

aqB

v m aqB 3)32(3≤<-.

粒子从距A点a a 3~)332(-的EG 间射出.

五、带电粒子在“宽度一定的无限长磁场区域”中的运动

例8、如图11所示,A 、B 为水平放置的足够长的平行板,板间距离为m d 2

100.1-?=,A 板中央有一电子源P ,在纸面内能向各个方向发射速度在s m /102.3~07

?范围内的电子,Q为P 点正上方B 板上的一点,若垂直纸面加一匀强磁场,磁感应强度T B 3101.9-?=,已知电子的质量

kg m 31101.9-?=,电子电量C e 19106.1-?=,不计电子的重力和电子间相互作

用力,且电子打到板上均被吸收,并转移到大地.求:

(1)沿P Q方向射出的电子击中A 、B 两板上的范围.

(2)若从P点发出的粒子能恰好击中Q点,则电子的发射方向(用图中θ角表示)与电子速度的大小v 之间应满足的关系及各自相应的取值范围.

图6

D

B

1o A B

解析:如图12所示,沿PQ方向射出的电子最大轨迹半径由r

v m Bev 2

=可

得Be

mv r m m =

,代入数据解得d m r m 21022

=?=-. 该电子运动轨迹圆心在A板上H处,恰能击中B板M处.随着电子速度的减少,电子轨迹半径也逐渐减小.击中B板的电子与Q点最远处相切于N点,此时电子的轨迹半径为d ,并恰能落在A板上H处.所以电子能击中B板MN区域和A板PH区域.

在?MFH中,有d d d MF HM FH 3)2(222

2-=-=

s m d PF QM /1068.2)32(3-?=-==, m d QN 2101-?==,m d PH 21022-?==.

电子能击中B板Q点右侧与Q点相距m m 2

3

101~1068.2--??的范围.电子能击中A板P点右侧与P点相距m 2

102~0-?的范围.

(2)如图13所示,要使P点发出的电子能击中Q点,则有Be mv r =,2

sin d

r =θ. 解得6

108sin ?=θv .

v 取最大速度s m /102.37?时,有41sin =θ,4

1

arcsin m in =θ;v 取

最小速度时有2

m ax π

θ=

,s m v /1086

m in ?=.

所以电子速度与θ之间应满足6

108sin ?=θv ,且]2

,

41[a rc s in π

θ∈,]/102.3,/108[76s m s m v ??∈

六、带电粒子在相反方向的两个有界磁场中的运动

例9、如图9所示,空间分布着有理想边界的匀强电场和匀强磁场.左侧匀强电场的场强大小为E 、方向水平向右,电场宽度为L ;中间区域匀强磁场的磁感应强度大小为B ,方向垂直纸面向里.一个质量为m 、电量为q 、不计重力的带正电的粒子从电场的左边缘的O 点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O 点,然后重复上述运动过程.求:

(1) 中间磁场区域的宽度d ;

(2) 带电粒子从O 点开始运动到第一次回到O 点所用时间

t.

B

B

图9

图13

P

图14

o cm x /cm

y /p ???

???

????????

?

??

解析:(1)带电粒子在电场中加速,由动能定理,可得: 22

1

mV qEL = 带电粒子在磁场中偏转,由牛顿第二定律,可得:

R

V m BqV 2

= 由以上两式,可得q

mEL

B R 21=

. 可见在两磁场区粒子运动半径相同,如图11所示,三段圆弧的圆心组成的三角形ΔO 1O 2O 3是等边三角形,其边长为2R .所以中间磁场区域的宽度为

q

mEL

B R d 62160sin 0=

=

(2)在电场中

qE

mL

qE mV a V t 22221===

, 在中间磁场中运动时间qB m

T t 3232π=

=

在右侧磁场中运动时间qB

m

T t 35653π=

=

, 则粒子第一次回到O 点的所用时间为

qB

m qE mL t t t t 3722

321π+=++=. 七、带电粒子在环形或有孔磁场中的运动

例10、核聚变反应需要几百万度以上的高温,为把高温条件下高速运动的离子约束在小范围内(否则不可能发生核反应),通常采用磁约束的方法(托卡马克装置)。如图5所示,环状匀强磁场围成中空区域,中空区域中的带电粒子只要速度不是很大,都不会穿出磁场的外边缘而被约束在该区域内。设环状磁场的内半径为R 1=0.5m ,外半径R 2=1.0m ,磁场的磁感强度B =1.0T ,若被束缚带电粒子的荷质比为q/m =4×7

10C/㎏,中空区域内带电粒子具有各个方向的速

度.试计算 (1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度. (2)所有粒子不能穿越磁场的最大速度. 解析:(1)要粒子沿环状的半径方向射入磁场,不能穿越磁场,则粒子的临界轨迹必须要与外圆相切,轨迹如图6所示.

10

O

图11

由图中知2

122121)(r R R r -=+,解得m r 375.01=

由1211r V m BqV =得s m m

Bqr V /105.171

1?==

所以粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度为

s m V /105.171?=.

(2)当粒子以V 2的速度沿与内圆相切方向射入磁场且轨道与外圆相切时,则

以V 1速度沿各方向射入磁场区的粒子都不能穿出磁场边界,如图7所示.

由图中知m R R r 25.02

1

22=-=

由2222r V m BqV =得s m m

Bqr V /100.172

2?==

所以所有粒子不能穿越磁场的最大速度s m V /100.17

2?=

例11、如图8所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭

缝a 、b 、c 和d ,外筒的外半径为r ,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B .在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电

场.一质量为m、带电量为+q 的粒子,从紧靠内筒且正对狭缝a 的S 点出

发,初速为零。如果该粒子经过一段时间的运动之后恰好又回到出发点S ,

则两电极之间的电压U 应是多少?(不计重力,整个装置在真空中) 解析:如图9所示,带电粒子从S 点出发,在两筒之间的电场作用下

加速,沿径向穿过狭缝a 而进入磁场区,在洛伦兹力作用下做匀速圆周运动.粒子再回到S 点的条件是能沿径向穿过狭缝d .只要穿过了d ,粒子就会在电场力作用下先减速,再反向加速,经d 重新进入磁场区,然后粒子以同样方式经过c 、b ,再回到S 点。设粒子进入磁场区的速度大小为V ,根据动能定理,有

22

1

mV qU =

设粒子做匀速圆周运动的半径为R ,由洛伦兹力公式和牛顿第二定律,有

R

V m BqV 2

=

由前面分析可知,要回到S 点,粒子从a 到d 必经过

4

3

圆周,所以半径R 必定等于筒的外半径r ,即R =r .由以上各式解得; m

qr B U 22

2=

a

c

11 图7

图9

有界磁场问题分类点拨(学生用)

一、带电粒子在圆形磁场中的运动

例1、圆心为O 、半径为r 的圆形区域中有一个磁感强度为B 、方向为垂直于纸面向里的匀强磁场,与区域边缘的最短距离为L 的O '处有一竖直放置的荧屏MN ,今有一质量为m 的电子以速率v 从左侧沿OO'方向垂直射入磁场,越出磁场后打在荧光屏上之P 点,如图1所示,求O 'P 的长度和电子通过磁场所用的时间.

例2、如图2,半径为cm r 10=的匀强磁场区域边界跟y 轴相切于

坐标原点O ,磁感强度T B 332.0=,方向垂直纸面向里.在O 处有一放射源S ,可向纸面各个方向射出速度为s m v /102.36

?=的粒子.已知α粒子质量

kg m 271064.6-?=,电量C q 19102.3-?=,试画出α粒子通过磁场空间做圆周

运动的圆心轨道,求出α粒子通过磁场空间的最大偏角.

二、带电粒子在半无界磁场中的运动 例3、(1999年高考试题)如图3中虚线MN 是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B 、方向垂直纸面向外的匀强磁场.O是MN上的一点,从O点可以向磁场区域发射电荷量为+q 、质量为m 、速率为v 的粒子,粒子射入磁场时的速度可在纸面内各个方向,已知先后射入的两个粒子恰好在磁场中给定的P点相遇,P到O点的距离为L,不计重力和粒子间的相互作用.

(1)求所考察的粒子在磁场中的轨道半径. (2)求这两个粒子从O点射入磁场的时间间隔.

例4、如图4所示,在真空中坐标xoy 平面的0>x 区域内,有磁感强度

T B 2100.1-?=的匀强磁场,方向与xoy 平面垂直,在x 轴上的)0,10(p 点,有一放射源,在xoy 平面内向各个方向发射速率s m v /100.14

?=的带正电

的粒子,粒子的质量为kg m 25106.1-?=,电量为C q 18

106.1-?=,求带电

粒子能打到y 轴上的范围.

M N

O ,

图1

M N

. . . . . .. . . . . .

图4

o cm x /cm

y /p ??

????

?????????

??

三、带电粒子在长方形磁场中的运动

例5、如图5,长为L 间距为d 的水平两极板间,有垂直于纸面向里的匀强磁场,磁感强度为B ,两板不带电,现有质量为m ,电量为q 的带正电粒子(重力不计),从左侧两极板的中心处以不同速率v 水平射入,欲使粒子不打在板上,求粒子速率v 应满足什么条件.

例6、长为L 的水平极板间,有垂直纸面向内的匀强磁场,如图4所示,磁感强度为B ,板间距离也为L ,板不带电,现有质量为m ,电量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度V 水平射入磁场,欲使粒子不打在极板上,可采用的办法是:

A .使粒子的速度V

B .使粒子的速度V >5BqL /4m ;

C .使粒子的速度V >BqL /m ;

D .使粒子速度BqL /4m

四、带电粒子在“三角形磁场区域”中的运动

例7、在边长为a 2的ABC ?内存在垂直纸面向里的磁感强度为B 的匀强磁场,有一带正电q ,质量为m 的粒子从距A点a 3的D点垂直AB方向进入磁场,如图5所示,若粒子能从AC间离开磁场,求粒子速率应满足什么条件及粒子从AC间什么范围内射出.

五、带电粒子在“宽度一定的无限长磁场区域”中的运动

例8、如图11所示,A 、B 为水平放置的足够长的平行板,板间距离为m d 2

100.1-?=,A 板中央有

一电子源P ,在纸面内能向各个方向发射速度在s m /102.3~07

?范围内的电子,Q为P 点正上方B 板上的一点,若垂直纸面加一匀强磁场,磁感应强度

T B 3101.9-?=,已知电子的质量kg m 31101.9-?=,电子电量

+q 图6

图5

??????

??

→?d L

v 图7

D

B

C

e19

10

6.1-

?

=,不计电子的重力和电子间相互作用力,且电子打到板上均被吸收,并转移到大地.求:(1)沿PQ方向射出的电子击中A、B两板上的范围.

(2)若从P点发出的粒子能恰好击中Q点,则电子的发射方向(用图中θ角表示)与电子速度的大小v之间应满足的关系及各自相应的取值范围.

六、带电粒子在相反方向的两个有界磁场中的运动

例9、如图9所示,空间分布着有理想边界的匀强电场和匀强磁场.左

侧匀强电场的场强大小为E、方向水平向右,电场宽度为L;中间区域匀强

磁场的磁感应强度大小为B,方向垂直纸面向里.一个质量为m、电量为q、

不计重力的带正电的粒子从电场的左边缘的O点由静止开始运动,穿过中

间磁场区域进入右侧磁场区域后,又回到O点,然后重复上述运动过程.求:

(3)中间磁场区域的宽度d;

(4)带电粒子从O点开始运动到第一次回到O点所用时间t.

七、带电粒子在环形或有孔磁场中的运动

例10、核聚变反应需要几百万度以上的高温,为把高温条件下高速运动的离

子约束在小范围内(否则不可能发生核反应),通常采用磁约束的方法(托卡马克

装置)。如图5所示,环状匀强磁场围成中空区域,中空区域中的带电粒子只要速

度不是很大,都不会穿出磁场的外边缘而被约束在该区域内。设环状磁场的内半

径为R1=0.5m,外半径R2=1.0m,磁场的磁感强度B=1.0T,若被束缚带电粒子的荷

质比为q/m=4×7

10C/㎏,中空区域内带电粒子具有各个方向的速度.试计算

(1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度.(2)所有粒子不能穿越磁场的最大速度.

例11、如图8所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B.在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场.一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零。如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)

10

a

c

11

B B 图9

高中物理 磁场计算专题(附答案详解)

专题:磁场计算题(附答案详解) 1、如图所示,从离子源产生的甲、乙两种离子,由静止经加速电压U加速后在纸面内水平向右运动,自M点垂直于磁场边界射入匀强磁场,磁场方向垂直于纸面向里,磁场左边界竖直.已知甲种离子射入磁场的速度大小为v1,并在磁场边界的N点射出;乙种离子在MN的中点射出;MN长为l.不计重力影响和离子间的相互作用.求: (1)磁场的磁感应强度大小;(2)甲、乙两种离子的比荷之比. 2、如图所示,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E;在y<0的区域存在方向垂直于xOy平面向外的匀强磁场.一个氕核11H和一个氘21H先后从y轴上y=h点以相同的动能射出,速度方向沿x轴正方向.已知11H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O处第一次射出磁场.11H的质量为m,电荷量为q.不计重力.求: (1)11H第一次进入磁场的位置到原点O的距离;(2)磁场的磁感应强大小; (3)21H第一次离开磁场的位置到原点O的距离.3、一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l′,电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行.一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹; (2)求该粒子从M点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为 π 6,求该粒子的比荷及其从M点运动到N点的时间. 4、如图所示,竖直放置的平行金属板板间电压为U,质量为m、电荷量为+q的带电粒子在靠近左板的P点,由静止开始经电场加速,从小孔Q射出,从a点进入磁场区域,abde是边长为2L的正方形区域,ab边与竖直方向夹角为45°,cf与ab平行且将正方形区域等分成两部分,abcf中有方向垂直纸面向外的匀强磁场B1,defc中有方向垂直纸面向里的匀强磁场B2,粒子进入磁场B1后又从cf 上的M点垂直cf射入磁场B2中(图中M点未画出),不计粒子重力,求:(1)粒子从小孔Q射出时的速度;(2)磁感应强度B1的大小; (3)磁感应强度B2的取值在什么范围内,粒子能从边界cd间射出.

磁场练习题 (3)

稳恒磁场 一.选择题: 1.边长为L 的一个导体方框上通有电流I,则此框中心的磁感应强度[ ]. (1)与L 有关 (2)正比于L 2 (3)正比于L (4)反比于L (5)与I 2有关 2.一载有电流I 的细导线分别均匀密绕成半径为R 和r (R=2r)的螺线管,两螺线管单位长度上的匝数相等,?两螺线管中的磁感应强度的大小B R 和B r 应满足:[ ] (1)B R =2B r (2)B R =B r (3)2B R =2B r (4)B R =4B r 3.均匀磁场的磁感应强度B 垂直于半径为r 的圆面.今以该圆周为边线作一半球面s,则通过s 面的磁通量的大小为:[ ] (1) 2B r 2π (2)B r 2 π. (3) 0 . (4) 无法确定. 4.如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭和回路L,则由安培环路定理可知:[ ] (1) 0=??L l B d 且环路上任意一点B=0, (2) 0=??L l B d 且环路上任意一点B ≠0, (3) 0≠??L l B d 且环路上任意一点B ≠0, (4) 0≠??L l B d 且环路上任意一点B=常数。 5.一半导体样品通过的电流为I, 放在磁场中,如图,实验测的霍耳电压U ba <0, 此半导体是[ ] (1) N 型 (2)P 型 6. 反,这两圆柱面之间距轴线为r 处的磁感应强度大小为[ ] (1) 0 (2)r I πμ20 (3)r I πμ0 (4)πμ20Ir 7.可以用安培环路定理求磁场的是 [ ] (1)通电螺绕环 (2)圆电流 (3)半圆电流 (4)一段直电流

专项训练磁场测试卷.docx

专题训练:磁场单元 1. 关于电场强度E与磁感应强度仪下列说法中错误的是() A.电场强度E是矢量,方向与正电荷受到的电场力方向相同 B.磁感应强度B是欠量,方向与小磁针N极的受力方向相同 C.电场强度定义式为E =匚,但电场中某点的电场强度E与尸、9无关 q D.磁感应强度定义式R -匚,同样的电流元〃在磁场中同一点受到的力一定相同 H 2.如图所示,均匀绕制的螺线管水平放置,在具正屮心的上方附近用绝缘绳水平吊起通电直导 线/并处于平衡状态,/与螺线管垂肓,M导线中的电流方向垂玄纸面向里,开关S闭仑后,绝缘绳 对/拉力变化情况是() A.增人 B.减小 C.不变 D.无法判断 3.如图所示,在兀轴上方存在垂直于纸面向里的匀强磁场,磁感应强度为3。在xOy内, 从原点O处沿与x轴疋方向成0角(0<〃<兀)以速率v发射一个带正电的粒子(重力不计)。则下列说法正确的 A.若卩一定,&越大,则粒子在磁场中运动的时间越短 B.若u—定,0越人,则粒子在离开磁场的位置距O点越远 C.若0—定,v越人,则粒子在磁场屮运动的时间越短 D.若&一定,v越大,则粒了在磁场中运动的角速度越大 4.如图所示为电视机显像管偏转线圈的示意图,当 线圈通以图示的直流电吋,形成的磁场如图所示,一束沿着管颈轴线射向纸内的电子将() A.向上偏转 B.向下偏转 C.向左偏转 D.向右偏转 5.如图所示,光滑的平行导轨与电源连接后,与水平方向成&角倾斜放置,导轨上另放一个质量为加的金属导体棒。通电后,在棒所在区域内加-个合适的匀强磁场,可以使导体棒静止平衡,图中分别加了不同方向的磁场,其中一定不能平衡的是() 6.关于回旋加速器加速带电粒了所获得的能量,下列结论中正确的是() A.只与加速器的半径有关,半径越大,能量越大 B.与加速器的磁场和半径均有关,磁场越强、半径越人,能量越人 C.只与加速器的电场有关,电场越强,能量越大 D.与带电粒子的质量和电荷量均有关,质量和电荷量越大,能量越大 7.如图所示,冇一四面体OABC处在Ox方向的匀强磁场中,下列关于穿过各个面的 磁通量的说法错误的 是() XXX /XXX A.13.

有界磁场习题汇总专题

有界磁场专题复习 一、带电粒子在圆形磁场中的运动 例1、圆心为O 、半径为r 的圆形区域中有一个磁感强度为B 、方向为垂直于纸面向里的匀强磁场,与区域边缘的最短距离为L 的O '处有一竖直放置的荧屏MN ,今有一质量为m 的电子以速率v 从左侧沿OO'方向垂直射入磁场,越出磁场后打在荧光屏上之P 点,如图1所示,求O 'P 的长度和电子通过磁场所用的时间. 例2、如图2,半径为cm r 10=的匀强磁场区域边界跟y 轴相切于坐标原点O ,磁感强度T B 332.0=,方向垂直纸面向里.在O 处有一放射源S ,可向纸面各个方向射出速度为s m v /102.36 ?=的粒子.已知α粒子质量 kg m 271064.6-?=,电量C q 19102.3-?=,试画出α粒子通过磁场 空间做圆周运动的圆心轨道,求出α粒子通过磁场空间的最大偏角. 二、带电粒子在半无界磁场中的运动 例3、如图3中虚线MN 是一垂直纸面的平面与纸面的交线, 在平面右侧的半空间存在一磁感应强度为B 、方向垂直纸面向外的匀强磁场.O是MN上的一点,从O点可以向磁场区域发射电荷量为+q 、质量为m 、速率为v 的粒子,粒子射入磁场时 的速度可在纸面内各个方向,已知先后射入的两个粒子恰好在磁场中给定的P点相遇,P到O点的距离为L,不计重力和粒子间的相互作用. (1)求所考察的粒子在磁场中的轨道半径. (2)求这两个粒子从O点射入磁场的时间间隔. 例4、如图4所示,在真空中坐标xoy 平面的0>x 区域内, M N O , 图1 M N . . . . . . . . . . . . 图4 o cm x /cm y /p ??? ??? ? ????? ?? ? ? ?

高三物理高考第一轮专题复习——电磁场(含答案详解)

高三物理第一轮专题复习——电磁场 在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。 (1)请判断该粒子带何种电荷,并求出其比荷q/m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ’,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ’多大?此次粒子在磁场中运动所用时间t 是多少? 电子自静止开始经M 、N 板间(两板间的电压 为U )的电场加速后从A 点垂直于磁场边界射入宽度为d 的匀强磁场中, 电子离开磁场时的位置P 偏离入射方向的距离为L ,如图所示.求匀强磁 场的磁感应强度.(已知电子的质量为m ,电量为e ) 高考)如图所示,abcd 为一正方形区域,正离子束从a 点沿ad 方向以0 =80m/s 的初速度射入,若在该区域中加上一个沿ab 方向的匀强电场,电场强度为E ,则离子束刚好从c 点射出;若撒去电场,在该区域中加上一个垂直于abcd 平面的匀强磁砀,磁感应强度为B ,则离子束刚好从bc 的中点e 射出,忽略离子束中离子间的相互作用,不计离子的重力,试判断和计算: (1)所加磁场的方向如何?(2)E 与B 的比值B E /为多少?

制D 型金属扁盒组成,两个D 形盒正中间开有一条窄缝。两个D 型盒处在匀强磁场中并接有高频交变电压。图乙为俯视图,在D 型盒上半面中心S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D 型盒中。在磁场力的作用下运动半周,再经狭缝电压加速。如此周而复始,最后到达D 型盒的边缘,获得最大速度,由导出装置导出。已知正离子的电荷量为q ,质量为m ,加速时电极间电压大小为U ,磁场的磁感应强度为B ,D 型盒的半径为R 。每次加速的时间很短,可以忽略不计。正离子从离子源出发时的初速度为零。 (1)为了使正离子每经过窄缝都被加速,求交变电压的频率; (2)求离子能获得的最大动能; (3)求离子第1次与第n 次在下半盒中运动的轨道半径之比。 如图甲所示,图的右侧MN 为一竖直放置的荧光屏,O 为它的中点,OO’与荧光屏垂直,且长度为l 。在MN 的左侧空间内存在着方向水平向里的匀强电场,场强大小为E 。乙图是从甲图的左边去看荧光屏得到的平面图,在荧光屏上以O 为原点建立如图的直角坐标系。一细束质量为m 、电荷为q 的带电粒子以相同的初速度 v 0从O’点沿O’O 方向射入电场区域。粒子的重力和粒子间的相互作用都可忽略不计。 (1)若再在MN 左侧空间加一个匀强磁场,使得荧光屏上的亮点恰好位于原点O 处,求这个磁场的磁感强度的大小和方向。 (2)如果磁感强度的大小保持不变,但把方向变为与电场方向相同,则荧光屏上的亮点位于图中A 点处,已知A 点的纵坐标 l y 3 3 ,求它的横坐标的数值。 E 、方向水平向右,电场宽度为L ;中间区域匀强磁场的磁感应强度大小为B ,方向垂直纸面向里。一个质量为m 、电量为q 、不计重力的带正电的粒子从电场的左边缘的O 点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O 点,然后重复上述运动过程。求: (1)中间磁场区域的宽度d ; (2)带电粒子从O 点开始运动到第一次回到O 点所用时间t 。 如下图所示,PR 是一块长为L= 4m 的绝缘平板,固定在水平地面上,整个空间有一个平行 B B l O 甲 乙

第三章 磁场练习题及答案解析

(时间:90分钟,满分:100分) 一、选择题(本题包括12小题,每小题5分共60分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得5分,选对但不全的得2分,有选错或不答的得0分) 1.有关洛伦兹力和安培力的描述,正确的是() A.通电直导线在匀强磁场中一定受到安培力的作用 B.安培力是大量运动电荷所受洛伦兹力的宏观表现 C.带电粒子在匀强磁场中运动受到的洛伦兹力做正功 D.通电直导线在磁场中受到的安培力方向与磁场方向平行 解析:选B.安培力方向与磁场垂直,洛伦兹力不做功,通电导线在磁场中不一定受安培力.安培力是大量运动电荷所受洛伦兹力的宏观表现. 2. 图3-6 (2011年东北师大高二检测)磁场中某区域的磁感线,如图3-6所示,则() A.a、b两处的磁感应强度的大小不等,B a>B b B.a、b两处的磁感应强度的大小不等,B a<B b C.同一通电导线放在a处受力一定比放在b处受力大 D.同一通电导线放在a处受力一定比放在b处受力小 解析:选A.由磁感线的疏密可知B a>B b,由通电导线所受安培力与通电导线的放置有关,通电导线放在a处与放在b处受力大小无法确定. 3.(2011年聊城高二检测) 图3-7 两个绝缘导体环AA′、BB′大小相同,环面垂直,环中通有相同大小的恒定电流,如图3-7所示,则圆心O处磁感应强度的方向为(AA′面水平,BB′面垂直纸面)() A.指向左上方 B.指向右下方 C.竖直向上 D.水平向右 答案:A 4. 图3-8 (2011年汕头高二检测)如图3-8所示,垂直纸面放置的两根直导线a和b,它们的位置固定并通有相等的电流I;在a、b沿纸面的连线的中垂线上放有另一直导线c,c可以自由运动.当c中通以电流I1时,c并未发生运动,则可以判定a、b中的电流() A.方向相同都向里 B.方向相同都向外 C.方向相反

高考物理最新模拟题精选训练磁场专题安培力含解析

专题02 安培力 1.(2017陕西咸阳模拟)如图所示,在光滑水平面上一轻质弹簧将挡板和一条形磁铁连接起来处于静止状态,此时磁铁对水平面的压力为F N1.。现在磁铁左上方位置固定一导体棒,当导体棒中通一垂直纸面向里的电流瞬间,磁铁对水平面的压力变为F N2。同时出现其它变化,则以下说法正确的是 A.弹簧长度将变长 B.弹簧长度将变 C.F N1.>F N2. D.F N1.

磁铁所受安培力向左。对木板和条形磁铁,由平衡条件可知,木板受到地面的摩擦力水平向右,选项C 正确。 3. (2016·武汉模拟)如图所示,○ ×表示电流方向垂直纸面向里,○·表示电流方向垂直纸面向外。两根通电长直导线a 、b 平行且水平放置,a 、b 中的电流强度分别为I 和2I ,此时a 受到的磁场力大小为F 。当在a 、b 的上方再放置一根与a 、b 平行的通电长直导线c 后,a 受到的磁场力大小仍为F ,图中abc 正好构成一个等边三角形,此时b 受到的磁场力大小为 A .F B .3F C .23F D .7F 【参考答案】D F ’= B ’·2I ·7F ,选项D 正确。 4. (2016河南八市重点高中联考)如图所示,无限长水平直导线中通有向右的恒定电流I ,导线正下方固定一正方形线框。线框中叶通有顺时针方向的恒定电流I ,线框边长为L ,线框上边与直导线平行,且到直导线的距离也为L ,已知在长直导线的磁场中距离长直导线r 处的磁感应强度大小为B=kI/r ,线框质量为m ,则释放线框的一瞬间,线框的加速度可能为

有界磁场带答案

有界磁场专题 1.如图所示,有界匀强磁场边界线SP ∥MN ,速率不同的同种带电粒子(重力不计且忽略粒子间的相互作用)从S 点沿SP 方向同时射入磁场。其中穿过a 点的粒子速度v 1与MN 垂直;穿过b 点的粒子速度v 2与MN 成60°角,则粒子从S 点分别到a 、b 所需时间之比为 A .1∶3 B .4∶3 C .3∶2 D .1∶1 2.如图所示的虚线框为一长方形区域,该区域内有一垂直于纸面向里的匀强磁场,一束电子以不同的速率从O 点垂直于磁场方向、沿图中方向射入磁场后,分别从a 、b 、c 、d 四点射出磁场,比较它们在磁场中的运动时间t a 、t b 、t c 、t d ,其大小关系是 A .t a t d >t c D .t a =t b >t c >t d 3.如图所示,正方形abcd 区域内有垂直于纸面向里的匀强磁场,O 点是cd 边的中点一个带正电的粒子(重力忽略不计)若从O 点沿纸面以垂直于cd 边的速度射入正方形内,经过时间t 0刚好从c 点射出磁场。现设法使该带电粒子从O 点沿纸面以与Od 成30°的方向(如图中虚线所示),以各种不同的速率射入正方形内,那么下列说法中正确的是 A .该带电粒子不可能刚好从正方形的某个顶点射出磁场 B .若该带电粒子从ab 边射出磁场,它在磁场中经历的时间可能是t 0 C .若该带电粒子从bc 边射出磁场,它在磁场中经历的时间可能是 2 30 t D .若该带电粒子从cd 边射出磁场,它在磁场中经历的时间 一定是350t 4.如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O 和y 轴上的点a (0,L )。一质量为m 、电荷量为e 的电子从a 点以初速度v 0平行于x 轴正方向射入磁场,并从x 轴上的b 点射出磁场,此时速度的方向与x 轴正方向的夹角为60°。下列说法正确的是( ) A .电子在磁场中运动的半径为 B .电子在磁场中运动的时间为 23L v π C .磁场的磁感应强度0 2mv B eL = D .电子在磁场中做圆周运动的速度不变 5.如图所示,在直角坐标系的第一象限内有垂直纸面向里的匀强磁场,正、负离子分别以相同的速度从原点O 进入磁场,进入磁场的速度方向与x 轴正方向夹角为30°。已知正离子运动的轨迹半径大于负离子,则可以判断出 ( ) A .正离子的比荷大于负离子 B .正离子在磁场中运动的时间等于负离子 C .正离子在磁场中受到的向心力大于负离子 D .正离子离开磁场时的位置到原点的距离大于负离子 6.如图所示,以直角三角形AOC 为边界的有界匀强磁场区域,磁感应强度为B , ∠A.=60o , AO=L ,在O 点放置一个粒子源,可以向各个方向发射某种带负电粒子。已知粒子的比荷为 q m ,发射速度大小都为0qBL v m =。设粒子发射方向与OC 边的夹角为θ,不计粒子间相互作用及重力。对于粒子进入磁场后的运动,下列说法正确的是 O x B 30v y

高考物理专题汇编物理带电粒子在磁场中的运动(一)

高考物理专题汇编物理带电粒子在磁场中的运动(一) 一、带电粒子在磁场中的运动专项训练 1.如图,区域I 内有与水平方向成45°角的匀强电场1E ,区域宽度为1d ,区域Ⅱ内有正 交的有界匀强磁场B 和匀强电场2E ,区域宽度为2d ,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m 、电量大小为q 的微粒在区域I 左边界的P 点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q 点穿出,其速度方向改变了30o ,重力加速度为g ,求: (1)区域I 和区域Ⅱ内匀强电场的电场强度12E E 、的大小. (2)区域Ⅱ内匀强磁场的磁感应强度B 的大小. (3)微粒从P 运动到Q 的时间有多长. 【答案】(1)12mg E q =,2mg E q =122m gd 121626d d gd gd π+ 【解析】 【详解】 (1)微粒在区域I 内水平向右做直线运动,则在竖直方向上有:1sin45qE mg ?= 求得:12mg E q = 微粒在区域II 内做匀速圆周运动,则重力和电场力平衡,有:2mg qE = 求得:2mg E q = (2)粒子进入磁场区域时满足:2111cos452 qE d mv ?= 2 v qvB m R = 根据几何关系,分析可知:2 22sin30d R d ==? 整理得:1 2 2m gd B = (3)微粒从P 到Q 的时间包括在区域I 内的运动时间t 1和在区域II 内的运动时间t 2,并满足:

2 11112 a t d = 1tan45mg ma ?= 2302360R t v π?= ?? 经整理得:112 121222612126gd d d d t t t gd g gd ππ+=+= +?= 2.如图所示,在xOy 平面内,以O ′(0,R )为圆心,R 为半径的圆内有垂直平面向外的匀强磁场,x 轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小相等.第四象限有一与x 轴成45°角倾斜放置的挡板PQ ,P ,Q 两点在坐标轴上,且O ,P 两点间的距离大于2R ,在圆形磁场的左侧0

磁场练习题及答案

1.电流看不见摸不到,我们可以根据电流产生的 来认识它;磁场看不见摸不到,我们可以根据磁场对磁体所产生的 来认识它,这正是科学的力量所在。 2.如图9-3所示,某点的磁场方向是这样规定的:磁场中可以自由转动的小磁针静止 时________极所指的方向,就是该点磁场的方向。如图9-4所示,磁感线总是从磁体的________极指向________极。 3.关于磁场,下列说法不正确的是( ) A.磁体周围空间存在着磁场 B.地球的周围存在着磁场 C.磁场中不同位置的磁场方向可能不同 D.磁场并非真实存在、,而是为了研究方便而假设的 4.关于对磁感线的认识,下列说法中不正确的是( ) A.磁感线是为描述磁场而画的一种假想的曲线 B.磁体周围越接近磁极的地方磁感线越密,表示磁性越强 C.磁体周围的磁感线都是从s 极出发回到N 极、 D.磁感线与放不放铁屑无关 5.关于地磁场(如图9-5),下列说法中不正确的是( ) A .地磁场的磁感线的方向大致是由地理的北方发出回到南方 B .地磁的北极在地理的南极附近 C .地磁场的磁感线形状与条形磁体的磁感线形状相似 D .世界上最早记述“地理的两极与地磁的两极并不重合”这一现象的人是我国宋代学者沈括 6.磁性水雷是用一个可以绕轴转动的小磁针来控制起爆电路的,军舰被地磁场磁化后就变成了一个浮动的磁 体,当军舰接近磁性水雷时,就会引起水雷的爆炸,其依据是( ) A .磁体的磁性 B .磁极间的相互作用规律 C .电荷间的相互作用规律 D . 磁场对电流的作用原理 7.作图: (1)图9-6已标明了磁感线方向,请标出磁铁的N 极和S 极。 (2)小红在画图时因粗心大意忘了标明图9-7中的磁感线方向和小磁针的N 、s 极,请你帮她补充。 8.据说录像带和录音带都不能靠近磁体。如果如图9—8所示,把永磁体靠近录音磁带,你认为会产生什图9-3 图9-4 图9-5 图9-6 S N N S 图9-7

2014高考物理最新磁场专题训练题组(含答案) (6)

磁场专题训练 大连市物理名师工作室门贵宝 【例1】根据安培假说的物理思想:磁场来源于运动电荷.如果用这种思想解释 地球磁场的形成,根据地球上空并无相对地球定向移动的电荷的事实.那么由此推断, 地球总体上应该是:(A) A.带负电; B.带正电; C.不带电; D.不能确定 解析:因在地球的内部地磁场从地球北极指向地球的南极,根据右手螺旋定则可判断出地球表现环形电流的方向应从东到西,而地球是从西向东自转,所以只有地球表面带负电荷才能形成上述电流,故选A. 【例2】如图所示,正四棱柱abed一a'b'c'd'的中心轴线00'处有一无限长的载流直导线,对该电流的磁场,下列说法中正确的是(AC) A.同一条侧棱上各点的磁感应强度都相等 B.四条侧棱上的磁感应强度都相同 C.在直线ab上,从a到b,磁感应强度是先增大后减小 D.棱柱内任一点的磁感应强度比棱柱侧面上所有点都大 【例3】如图所示,一根通电直导线放在磁感应强度B=1T的匀强磁场 中,在以导线为圆心,半径为r的圆周上有a,b,c,d四个点,若a点的实际 磁感应强度为0,则下列说法中正确的是(AC) A.直导线中电流方向是垂直纸面向里的 B.C点的实际磁感应强度也为0 C. d ,方向斜向下,与B夹角为450D.以上均不正确 解析:题中的磁场是由直导线电流的磁场和匀强磁场共同形成的,磁场中任一点的磁感应强度应为两磁场分别产生的磁感应强度的矢量和.a处磁感应强度为0,说明直线电流在该处产生的磁感应强度大小与匀强磁场B的大小相等、方向相反,可得直导线中电流方向应是垂直纸面向里.在圆周上任一点,由直导线产生的磁感应强度大小均为B=1T,方向沿圆 周切线方向,可知C点的磁感应强度大小为2T,方向向右.d , 方向与B成450斜向右下方. 【例4】如图所示,A为通电线圈,电流方向如图所示,B、C为与A在同一平面内的两同心圆,φB、φC分别为通过两圆面的磁通量的大小,下述判断中正确的是()A.穿过两圆面的磁通方向是垂直纸面向外B.穿过两圆面的磁通方向是垂直纸面向里C.φB>φC D.φB<φC 解析:由安培定则判断,凡是垂直纸面向外的磁感线都集中在是线圈内,因磁感线是闭合曲线,则必有相应条数的磁感线垂直纸面向里,这些磁总线分布在线圈是外,所以B、C 两圆面都有垂直纸面向里和向外的磁感线穿过,垂直纸面向外磁感线条数相同,垂直纸面向里的磁感线条数不同,B圆面较少,c圆面较多,但都比垂直向外的少,所以 B、C磁通方向应垂直纸面向外,φB>φC,所以A、C正确. 分析磁通时要注意磁感线是闭合曲线的特点和正反两方向磁总线条数的多少,不能认为面积大的磁通就大.答案:AC 【例5】如图4所示,一水平放置的矩形闭合线圈abcd在细长磁铁N 极附近下落,保持bc边在纸外,ad边在纸内,由图中的位置Ⅰ经过位置Ⅱ 到位置Ⅲ,且位置Ⅰ和Ⅲ都很靠近位置Ⅱ,在这个过程中,线圈中的磁通 量() A.是增加的;B.是减少的C.先增加,后减少;D.先减少,后增加 解析:要知道线圈在下落过程中磁通量的变化情况,就必须知道条形磁铁在磁极附近B

高中物理复合场专题复习(有界磁场)

习题课一 带电粒子在匀强磁场中的运动 一、带电粒子在直线边界磁场中的运动 1.基本问题 【例题1】如图所示,一束电子(电量为e)以速度V 垂直射入磁感应强度为B 、宽度为d 的匀强磁场,穿透磁场时的速度与电子原来的入射方向的夹角为300 .求: (1)电子的质量m (2)电子在磁场中的运动时间t 【小结】处理带电粒子在匀强磁场中的运动的方法: 1、 找圆心、画轨迹(利用F ⊥v 或利用弦的中垂线); 2、 定半径(几何法求半径或向心力公式求半径) 3、 求时间(t= 0360θ ×T或t= v s ) 注意:带电粒子在匀强磁场中的圆周运动具有对称性。 ① 带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向、出射速度方向与边界的夹角相等; ② 在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。 2.应用对称性可以快速地确定运动的轨迹。 【例题2】如图—所示,在y <0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸面外,磁感应强度为B.一带正电的粒子以速度υ0从O 点射入磁场,入射方向在xy 平面内,与x 轴正向的夹角为θ.若粒子射出磁场的位置与O 点的距离为l ,求该粒子的电量和质量之比 m q 。 【审题】本题为一侧有边界的匀强磁场,粒子从一侧射入,一定从边界射出,只要根据对称规律①画出轨迹,并应用弦切角等于回旋角的一半,构建直角三角形即可求解。 【解析】根据带电粒子在有界磁场的对称性作出轨迹,如图9-5所示,找出圆心A ,向x 轴作垂线,垂足为H ,由与几何关系得: R L s i n θ=1 2 ① 带电粒子在磁场中作圆周运动,由 qv B mv R 00 2 = 解得R mv qB = ② ①②联立解得 q m v LB =20sin θ 【总结】在应用一些特殊规律解题时,一定要明确规律适用的条件,准确地画出轨迹是关键。 2qBd m v = 303603d t T v π= =

高中物理磁场专题讲解经典例题

磁场专题 7.【东北师大附中2011届高三第三次模底】如图所示,MN 是一荧光屏,当带电粒子打到荧光屏上时,荧光屏能够发光。MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里。P 为屏上的一小孔,PQ 与MN 垂直。一群质量为m 、带电荷量q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场方向射入磁场区域,且分布在与PQ 夹角为θ的范围内,不计粒子间的相互作用。则以下说法正确的是( ) A .在荧光屏上将出现一个圆形亮斑,其半径为mv q B B .在荧光屏上将出现一个条形亮线,其长度为 ()21cos mv qB θ- C .在荧光屏上将出现一个半圆形亮斑,其半径为mv qB D .在荧光屏上将出现一个条形亮线,其长度为()21sin mv qB θ- 10.【东北师大附中2011届高三第三次模底】如图,电源电 动势为E ,内阻为r ,滑动变阻器电阻为R ,开关闭合。 两平行极板间有匀强磁场,一带电粒子正好以速度v 匀速 穿过两板。以下说法正确的是(忽略带电粒子的重力)( ) A .保持开关闭合,将滑片P 向上滑动一点,粒子将可能从下极板边缘射出 B .保持开关闭合,将滑片P 向下滑动一点,粒子将可能从下极板边缘射出 C .保持开关闭合,将a 极板向下移动一点,粒子将继续沿直线穿出 D .如果将开关断开,粒子将继续沿直线穿出 4.【辽宁省丹东市四校协作体2011届高三第二次联合考试】如图所示,一粒子源位于一边长为a 的正三角形ABC 的中点O 处,可以在三角形所在的平面内向各个方向发射出速度大小为v 、质量为m 、电荷量为q 的带电粒子,整个三角形位于垂直于△ABC 的匀强磁场中,若使任意方向射出的带电粒子均不能射出三角形区域,则磁感应强度的最小值为 ( ) A .mv qa B .2mv qa Q

高中物理磁场练习题及答案

a b 1、如图所示,两根垂直纸面、平行且固定放置的直导线M 和N ,通有同向等值电流;沿纸面与直导线M 、N 等距放置的另一根可自由移动的通电导线ab ,则通电导线ab 在安培力作用下运动的情况是 A.沿纸面逆时针转动 B.沿纸面顺时针转动 C.a 端转向纸外,b 端转向纸里 D.a 端转向纸里,b 端转向纸外 2.两根长直通电导线互相平行,电流方向相同.它们的截面处于一个等边三角形ABC 的A 和B 处.如图所示,两通电导线在C 处的磁场的磁感应强度的值都是B ,则C 处磁场的总磁感应强度是( ) A.2B B.B C.0 D. 3B 3、空间存在竖直向下的匀强电场和水平方向(垂直纸面向里)的匀强磁场,如图所示,已知一离子在电场力和洛 仑兹力共同作用下,从静止开始自A 点沿曲线ACB 运动,到达B 点时速度为零,C 为运动的最低点.不计重力,则 A.该离子带负电 B.A 、B 两点位于同一高度 C.C 点时离子速度最大 D.离子到达B 点后,将沿原曲线返回A 点 4、一带电粒子以一定速度垂直射入匀强磁场中,则不受磁场影响的物理量是: A 、速度 B 、加速度 C 、动量 D 、动能 5、MN 板两侧都是磁感强度为B 的匀强磁场,方向如图,带电粒子(不计重力)从a 位置以垂直B 方向的速度V 开始运动,依次通过小孔b 、c 、d ,已知ab = bc = cd ,粒子从a 运动到d 的时间为t ,则粒子的荷质比为: A 、 tB π B 、tB 34π C 、π 2tB D 、 tB π 3 6、带电粒子(不计重力)以初速度V 0从a 点进入匀强磁场,如图。运动中经过b 点,oa=ob 。若撤去磁场加一个与y 轴平行的匀强电场,仍以V 0从a 点进入电场,粒子仍能通过b 点,那么电场强度E 与磁感强度B 之比E/B 为: A 、V 0 B 、1 C 、2V 0 D 、 2 0V 7、如图,MN 是匀强磁场中的一块薄金属板,带电粒子(不计重力)在匀强磁场中运动并穿过金属板,虚线表示其运动轨迹,由图知: A 、粒子带负电 B 、粒子运动方向是abcde C 、粒子运动方向是edcba D 、粒子在上半周所用时间比下半周所用时间长 8、带负电的小球用绝缘丝线悬挂于O 点在匀强磁场中摆动,当小球每次通过最低点A 时: A 、摆球受到的磁场力相同 B 、摆球的动能相同 C 、摆球的动量相同 D 、向右摆动通过A 点时悬线的拉力大于向左摆动通过A 点时悬线的拉力 9、如图,磁感强度为B 的匀强磁场,垂直穿过平面直角坐标系的第I 象限。一质量为m ,带电量为q 的粒子以速度V 从O 点沿着与y 轴夹角为30°方向进入磁场,运动到A 点时的速度方向平行于x 轴,那么: A 、粒子带正电 B 、粒子带负电 C 、粒子由O 到A 经历时间qB m t 3π= D 、粒子的速度没有变化 10 、如图所示,一条形磁铁放在水平桌面上,在它的左上方固定一直导线,导线与磁场垂直,若给导线通以垂直于纸面向里的电流, N a b c d B B N O a

带电粒子在磁场中的运动专题训练(选择题)(可编辑修改word版)

A 等离子体 B 用电器 3 带电粒子在磁场中的运动专题训练 选择题部分 一、单项选择题 1、如图所示,宇宙射线中存在高能带电粒子,假如大气层被破坏,这些粒子就会到达地球, 从而给地球上的生命带来危害,根据地磁场的分布特点,判断下列说法中正确的是( ) A .地磁场对直射地球的宇宙射线的阻挡作用在南北两极最强,赤道附近最弱 B .地磁场对直射地球的宇宙射线的阻挡作用在赤道附近最强,南北两极最弱 C .地磁场对宇宙射线的阻挡作用在地球周围各处相同 D .地磁场对宇宙射线无阻挡作用 2、许多科学家在物理学发展中做出了重要贡献, 下列表述中正确的是 ( ) A .安培提出了磁场对运动电荷的作用力的公式 B .奥斯特总结并确认了真空中两个静止点电荷之间的相互作用规律 C .法拉第发现电磁感应现象 D. 牛顿测出万有引力常量 3、磁流体发电是一项新兴技术.如图所示,平行金属板之间有一个很强的磁场,将一束含有大量正、负带电粒子的等离子体,沿图中所示方向喷入磁场.图中虚线框部分相当于发电机.把两个极板与用电器相连,则( ) A .用电器中的负电荷运动方向从 A 到 B B .用电器中的电流方向从 B 到 A C .若只减小喷入粒子的速度,发电机的电动势增大D .若只增大磁场,发电机的电动势增大 4、如图所示,边长为 L 的正方形区域 ABCD 内存在方向垂直纸面向里的匀强磁场,E 点位于 CD 边上,且 ED = 3 L ,三个完全相同的带电粒子 1、2、3 分别以大小不同的初速度υ1 、υ2 、υ3 3 从 A 点沿 AB 方向射入该磁场区域,经磁场偏转后粒子 1、2、3 分别从 C 点、E 点、D 点射出. 若 t 1 、 t 2 、 t 3 分别表示粒子 1、2、3 在磁场中的运动时间. 则以下判断正确的是 υ ( ) B A A . υ1 ∶ υ2 ∶ υ3 =6∶2 ∶3 B . υ1 ∶ υ2 ∶ υ3 =4∶3∶2 C D

磁场·能力强化训练

能力强化训练 一、选择题 1.关于磁力线的说法,下列正确的是 [ ] A.磁力线从磁体的N极出发,终止于磁体S极 B.磁力线可表示磁场的强弱和方向 C.电流在磁场中的受力方向,即为该点磁力线方向的切线方向 D.沿磁力线方向,磁感应强度渐弱 2.如图10-23所示,两根成任意角的直导线AB和CD,其中AB固定不动,CD可自由移动,向导线入方向如图的电流,CD的运动情况是 [ ] A.沿顺时针方向转动,同时靠近AB B.沿顺时针方向转动,同时远离AB C.沿逆时针方向转动,同时靠近AB D.沿逆时针方向转动,同时远离AB 3.如图10-24所示,水平导线中有稳恒电流通过,导线正下方电子初速度方向与电流方向相同,其后电子将 [ ] A.沿a运动,轨迹为圆 B.沿a运动,曲率半径越来越小 C.沿a运动,曲率半径越来越大 D.沿b运动,曲率半径越来越小

4.如图10-25所示,在电磁铁上方放一可自由移动的闭合线圈abcd,线圈平面与电磁铁处于同一竖直面,当通入方向如图的电流时,其运动情况是 [ ] A.ab边转向纸外,cd边转向纸里,同时向下运动 B.ab边转向纸外,cd边转向纸里,同时向上运动 C.ab边转向纸里,cd边转向纸外,同时向下运动 D.ab边转向纸里,cd边转向纸外,同时向上运动 5.三根通电直导线P、Q、R互相平行,通过正三角形的三个顶点,三条导线通入大小相等,方向垂直纸面向里的电流如图10-26所示,R受到P、Q的磁场力的方向是 [ ] A.垂直于R,指向y轴负方向 B.垂直于R,指向y轴正方向 C.垂直于R,指向x轴正方向 D.垂直于R,指向x轴负方向 6.一带电粒子,沿垂直于磁场方向射入匀强磁场,粒子一段径迹如图10-27所示,径迹上每一小段都看成圆弧,由于带电粒子使周围空气电离粒子能量不断变小,(带电量不变)所以 [ ] A.粒子带正电,从B射入 B.粒子带正电,从A射入 C.粒子带负电,从B射入 D.粒子带负电,从A射入

带电粒子磁场中的运动专项训练一

带电粒子磁场中的运动专项训练(一) 思路:画轨迹,定圆心,找半径,求角度,算时间 两个特殊结论:1、进出有界磁场时粒子的速度方向与磁场边界的夹角相等;2、带电粒子进入圆形有界时速度方向经过圆形磁场的圆心,离开时速度方向的反向延长线也经过圆心。 训练1..如图所示,一个质量为m ,带电量为+q 的粒子以速度v 0从O 点沿y 轴正方向射入磁感应强度为B 的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从点b 处穿过x 轴,速度方向与x 轴正方向的夹角为300.粒子的重力不计,试求: (1)圆形匀强磁场区域的最小面积. (2)粒子在磁场中运动的时间. (3)b 到O 的距离. 训练2.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 训练3. 如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示.发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线通过等边三角形的中心O ,且a =)10 1 33( L .要使S 点发出的粒子最终又回到S 点,带电粒子速度v 的大小应取哪些数值? a b c d B P v B F a O F b x y O m ,q v 0 30°

高二物理磁场知识点的总结 高二物理磁场知识点

高二物理磁场知识点的总结高二物理磁场知识点 一、磁场 磁极和磁极之间的相互作用是通过磁场发生的。 电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。磁极和电流之间的相互作用也是通过磁场发生的。 电流和电流之间的相互作用也是通过磁场产生的 磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。 二、磁现象的电本质 1.罗兰实验 正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。 2.安培分子电流假说 法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。安培是最早揭示磁现象的电本质的。 一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。 3.磁现象的电本质 运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用,所有的磁现象都可以归结为运动电荷(电流)通过磁场而发生相互作用。 三、磁场的方向 规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。 四、磁感线 1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。 2.磁感线的特点 (1)在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极。 (2)磁感线是闭合曲线。 (3)磁感线不相交。 (4)磁感线的疏密程度反映磁场的强弱,磁感线越密的地方磁场越强。 3.几种典型磁场的磁感线 (1)条形磁铁 (2)通电直导线 a.安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向; b.其磁感线是内密外疏的同心圆。 (3)环形电流磁场

相关文档
相关文档 最新文档